1
|
Kryukova AE, Konarev PV, Volkov VV. Searching for an Efficient Solution Reconstruction Algorithm in the Analysis of Small-Angle Scattering Data from Silicasol Solution. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521050102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Liu Q, Shaukat A, Kyllönen D, Kostiainen MA. Polyelectrolyte Encapsulation and Confinement within Protein Cage-Inspired Nanocompartments. Pharmaceutics 2021; 13:1551. [PMID: 34683843 PMCID: PMC8537137 DOI: 10.3390/pharmaceutics13101551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Protein cages are nanocompartments with a well-defined structure and monodisperse size. They are composed of several individual subunits and can be categorized as viral and non-viral protein cages. Native viral cages often exhibit a cationic interior, which binds the anionic nucleic acid genome through electrostatic interactions leading to efficient encapsulation. Non-viral cages can carry various cargo, ranging from small molecules to inorganic nanoparticles. Both cage types can be functionalized at targeted locations through genetic engineering or chemical modification to entrap materials through interactions that are inaccessible to wild-type cages. Moreover, the limited number of constitutional subunits ease the modification efforts, because a single modification on the subunit can lead to multiple functional sites on the cage surface. Increasing efforts have also been dedicated to the assembly of protein cage-mimicking structures or templated protein coatings. This review focuses on native and modified protein cages that have been used to encapsulate and package polyelectrolyte cargos and on the electrostatic interactions that are the driving force for the assembly of such structures. Selective encapsulation can protect the payload from the surroundings, shield the potential toxicity or even enhance the intended performance of the payload, which is appealing in drug or gene delivery and imaging.
Collapse
Affiliation(s)
- Qing Liu
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Ahmed Shaukat
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Daniella Kyllönen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Mauri A. Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
- HYBER Center, Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
3
|
Zhang Y, Li X, Zhang Y, Wei J, Wang W, Dong C, Xue Y, Liu M, Pei R. Engineered Fe 3O 4-based nanomaterials for diagnosis and therapy of cancer. NEW J CHEM 2021. [DOI: 10.1039/d1nj00419k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent developments of Fe3O4 NP-based theranostic nanoplatforms and their applications in tumor-targeted imaging and therapy.
Collapse
Affiliation(s)
- Yiwei Zhang
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- China
| | - Xinxin Li
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- China
| | - Yajie Zhang
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
- China
| | - Jun Wei
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- China
| | - Wei Wang
- Department of Anesthesiology
- Xinqiao Hospital
- Third Military Medical University
- Chongqing
- China
| | - Changzhi Dong
- University Paris Diderot
- Sorbonne Paris Cité
- ITODYS
- UMR CNRS 7086
- 75205 Paris Cedex 13
| | - Yanan Xue
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- China
| | - Min Liu
- Institute for Interdisciplinary Research
- Jianghan University
- Wuhan 430056
- China
- CAS Key Laboratory of Nano-Bio Interface
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
- China
| |
Collapse
|
4
|
Shukla S, Hu H, Cai H, Chan SK, Boone CE, Beiss V, Chariou PL, Steinmetz NF. Plant Viruses and Bacteriophage-Based Reagents for Diagnosis and Therapy. Annu Rev Virol 2020; 7:559-587. [PMID: 32991265 PMCID: PMC8018517 DOI: 10.1146/annurev-virology-010720-052252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Viral nanotechnology exploits the prefabricated nanostructures of viruses, which are already abundant in nature. With well-defined molecular architectures, viral nanocarriers offer unprecedented opportunities for precise structural and functional manipulation using genetic engineering and/or bio-orthogonal chemistries. In this manner, they can be loaded with diverse molecular payloads for targeted delivery. Mammalian viruses are already established in the clinic for gene therapy and immunotherapy, and inactivated viruses or virus-like particles have long been used as vaccines. More recently, plant viruses and bacteriophages have been developed as nanocarriers for diagnostic imaging, vaccine and drug delivery, and combined diagnosis/therapy (theranostics). The first wave of these novel virus-based tools has completed clinical development and is poised to make an impact on clinical practice.
Collapse
Affiliation(s)
- Sourabh Shukla
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - He Hu
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Hui Cai
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Soo-Khim Chan
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Christine E Boone
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Veronique Beiss
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Paul L Chariou
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
- Moores Cancer Center and Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, USA;
| |
Collapse
|
5
|
Raghava Reddy K, Reddy PA, Reddy CV, Shetti NP, Babu B, Ravindranadh K, Shankar MV, Reddy MC, Soni S, Naveen S. Functionalized magnetic nanoparticles/biopolymer hybrids: Synthesis methods, properties and biomedical applications. METHODS IN MICROBIOLOGY 2019. [DOI: 10.1016/bs.mim.2019.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Jeevanandam J, Pal K, Danquah MK. Virus-like nanoparticles as a novel delivery tool in gene therapy. Biochimie 2018; 157:38-47. [PMID: 30408502 DOI: 10.1016/j.biochi.2018.11.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
Viruses are considered as natural nanomaterials as they are in the size range of 20-500 nm with a genetical material either DNA or RNA, which is surrounded by a protein coat capsid. Recently, the field of virus nanotechnology is gaining significant attention from researchers. Attention is given to the utilization of viruses as nanomaterials for medical, biotechnology and energy applications. Removal of genetic material from the viral capsid creates empty capsid for drug incorporation and coating the capsid protein crystals with antibodies, enzymes or aptamers will enhance their targeted drug deliver efficiency. Studies reported that these virus-like nanoparticles have been used in delivering drugs for cancer. It is also used in imaging and sensory applications for various diseases. However, there is reservation among researchers to utilize virus-like nanoparticles in targeted delivery of genes in gene therapy, as there is a possibility of using virus-like nanoparticles for targeted gene delivery. In addition, other biomedical applications that are explored using virus-like nanoparticles and the probable mechanism of delivering genes.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, CDT250, Miri, Sarawak, 98009, Malaysia
| | - Kaushik Pal
- Bharath Institute of Higher Education and Research, Bharath University, Department of Nanotechnology, Research Park, 173 Agharam Road, Selaiyur, Chennai, 600073, Tamil Nadu, India.
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN, 37403, United States
| |
Collapse
|
7
|
Abstract
Within the materials science community, proteins with cage-like architectures are being developed as versatile nanoscale platforms for use in protein nanotechnology. Much effort has been focused on the functionalization of protein cages with biological and non-biological moieties to bring about new properties of not only individual protein cages, but collective bulk-scale assemblies of protein cages. In this review, we report on the current understanding of protein cage assembly, both of the cages themselves from individual subunits, and the assembly of the individual protein cages into higher order structures. We start by discussing the key properties of natural protein cages (for example: size, shape and structure) followed by a review of some of the mechanisms of protein cage assembly and the factors that influence it. We then explore the current approaches for functionalizing protein cages, on the interior or exterior surfaces of the capsids. Lastly, we explore the emerging area of higher order assemblies created from individual protein cages and their potential for new and exciting collective properties.
Collapse
Affiliation(s)
- William M Aumiller
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
8
|
Zhang W, Xu C, Yin GQ, Zhang XE, Wang Q, Li F. Encapsulation of Inorganic Nanomaterials inside Virus-Based Nanoparticles for Bioimaging. Nanotheranostics 2017; 1:358-368. [PMID: 29071199 PMCID: PMC5646737 DOI: 10.7150/ntno.21384] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/23/2017] [Indexed: 01/06/2023] Open
Abstract
Virus-based nanoparticles (VNPs) can serve as containers for inorganic nanomaterials with excellent physical and chemical properties. Incorporation of nanomaterials inside the inner cavity of VNPs has opened up lots of possibilities for imaging applications in the field of biology and medicine. Encapsulation of inorganic nanoparticles (NPs) in VNPs can achieve the labeling of VNPs with nanoprobes and maintain the original outer surface features of VNPs at the same time. In return, VNPs enhance the stability and biocompatibility of the inorganic cargoes. This review briefly summarizes the current typical strategies to encapsulate inorganic nanomaterials in VNPs, i.e. mineralization and self-assembly, as well as the applications of these hybrid nanostructures in the field of bioimaging, including in vitro and in vivo fluorescence imaging, magnetic resonance imaging, and theranostics. Nanophotonic studies based on the VNP platform are also discussed. We anticipate that this field will continue to flourish, with new exciting opportunities stemming from advancements in the rational design of VNPs, the development of excellent inorganic nanomaterials, the integration of multiple functionalities, and the regulation of nano-bio interfacial interactions.
Collapse
Affiliation(s)
- Wenjing Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengchen Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Gen-Quan Yin
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interfaces, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
9
|
Qiao C, Yang J, Chen L, Weng J, Zhang X. Intracellular accumulation and immunological responses of lipid modified magnetic iron nanoparticles in mouse antigen processing cells. Biomater Sci 2017; 5:1603-1611. [DOI: 10.1039/c7bm00244k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipid modified magnetic nanoparticles could enhance the intracellular accumulation and immune responses of mouse antigen processing cells.
Collapse
Affiliation(s)
- Chenmeng Qiao
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- PR China
| | - Lei Chen
- Department of Obstetrics and Gynecology
- Navy General Hospital of People Liberation Army
- Beijing 100048
- PR China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- PR China
| |
Collapse
|
10
|
van Rijn P, Schirhagl R. Viruses, Artificial Viruses and Virus-Based Structures for Biomedical Applications. Adv Healthc Mater 2016; 5:1386-400. [PMID: 27119823 DOI: 10.1002/adhm.201501000] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/14/2016] [Indexed: 12/17/2022]
Abstract
Nanobiomaterials such as virus particles and artificial virus particles offer tremendous opportunities to develop new biomedical applications such as drug- or gene-delivery, imaging and sensing but also improve understanding of biological mechanisms. Recent advances within the field of virus-based systems give insights in how to mimic viral structures and virus assembly processes as well as understanding biodistribution, cell/tissue targeting, controlled and triggered disassembly or release and circulation times. All these factors are of high importance for virus-based functional systems. This review illustrates advances in mimicking and enhancing or controlling these aspects to a high degree toward delivery and imaging applications.
Collapse
Affiliation(s)
- Patrick van Rijn
- University of Groningen University Medical Center Groningen Biomedical Engineering‐FB40 W.J. Kolff Institute for Biomedical Engineering and Materials Science‐FB41 Antonius Deusinglaan 1 9713 AW Groningen Netherlands
- Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen Netherlands
| | - Romana Schirhagl
- University of Groningen University Medical Center Groningen Biomedical Engineering‐FB40 W.J. Kolff Institute for Biomedical Engineering and Materials Science‐FB41 Antonius Deusinglaan 1 9713 AW Groningen Netherlands
| |
Collapse
|
11
|
Rother M, Nussbaumer MG, Renggli K, Bruns N. Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Chem Soc Rev 2016; 45:6213-6249. [DOI: 10.1039/c6cs00177g] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein cages have become essential tools in bionanotechnology due to their well-defined, monodisperse, capsule-like structure. Combining them with synthetic polymers greatly expands their application, giving rise to novel nanomaterials fore.g.drug-delivery, sensing, electronic devices and for uses as nanoreactors.
Collapse
Affiliation(s)
- Martin Rother
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Martin G. Nussbaumer
- Wyss Institute for Biologically Inspired Engineering
- Harvard University
- Cambridge
- USA
| | - Kasper Renggli
- Department of Biosystems Science and Engineering
- ETH Zürich
- 4058 Basel
- Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute
- University of Fribourg
- CH-1700 Fribourg
- Switzerland
| |
Collapse
|