1
|
Grishaev NA, Moiseeva EO, Chernyshev VS, Komlev AS, Novoselov AM, Yashchenok AM. Studying the small extracellular vesicle capture efficiency of magnetic beads coated with tannic acid. J Mater Chem B 2024; 12:6678-6689. [PMID: 38894640 DOI: 10.1039/d4tb00127c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The isolation of small extracellular vesicles (sEVs), including those secreted by pathological cells, with high efficiency and purity is highly demanded for research studies and practical applications. Conventional sEV isolation methods suffer from low yield, presence of contaminants, long-term operation and high costs. Bead-assisted platforms are considered to be effective for trapping sEVs with high recovery yield and sufficient purity for further molecular profiling. In this study, magnetically responsive beads made of calcium carbonate (CaCO3) particles impregnated with iron oxide (Fe3O4) nanoparticles are fabricated using a freezing-induced loading (FIL) method. The developed magnetic beads demonstrate sufficient magnetization and can be collected by a permanent magnet, ensuring their rapid and gentle capture from an aqueous solution. The tannic acid on the surface of magnetic beads is formed by a layer-by-layer (LbL) method and is used to induce coupling of sEVs with the surface of magnetic beads. These tannic acid coated magnetic beads (TAMB) were applied to capture sEVs derived from MCF7 and HCT116 cell lines. Quantitative data derived from nanoparticle tracking analysis (NTA) and BCA methods revealed the capture efficiency and recovery yield of about 60%. High-resolution transmission electron microscopy (HRTEM) imaging of sEVs on the surface of TAMBs indicated their structural integrity. Compared with the size exclusion chromatography (SEC) method, the proposed approach demonstrated comparable efficiency in terms of recovery yield and purity, while offering a relatively short operation time. These results highlight the high potential of the TAMB approach for the enrichment of sEVs from biological fluids, such as cell culture media.
Collapse
Affiliation(s)
- Nikita A Grishaev
- Skoltech Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology Skolkovo Innovation Center, 121205 Moscow, Russia.
| | - Ekaterina O Moiseeva
- Skoltech Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology Skolkovo Innovation Center, 121205 Moscow, Russia.
| | - Vasiliy S Chernyshev
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, 117997 Moscow, Russia
| | - Aleksei S Komlev
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anton M Novoselov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexey M Yashchenok
- Skoltech Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology Skolkovo Innovation Center, 121205 Moscow, Russia.
| |
Collapse
|
2
|
Iqbal MH, Kerdjoudj H, Boulmedais F. Protein-based layer-by-layer films for biomedical applications. Chem Sci 2024; 15:9408-9437. [PMID: 38939139 PMCID: PMC11206333 DOI: 10.1039/d3sc06549a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/03/2024] [Indexed: 06/29/2024] Open
Abstract
The surface engineering of biomaterials is crucial for their successful (bio)integration by the body, i.e. the colonization by the tissue-specific cell, and the prevention of fibrosis and/or bacterial colonization. Performed at room temperature in an aqueous medium, the layer-by-layer (LbL) coating method is based on the alternating deposition of macromolecules. Versatile and simple, this method allows the functionalization of surfaces with proteins, which play a crucial role in several biological mechanisms. Possessing intrinsic properties (cell adhesion, antibacterial, degradable, etc.), protein-based LbL films represent a powerful tool to control bacterial and mammalian cell fate. In this article, after a general introduction to the LbL technique, we will focus on protein-based LbL films addressing different biomedical issues/domains, such as bacterial infection, blood contacting surfaces, mammalian cell adhesion, drug and gene delivery, and bone and neural tissue engineering. We do not consider biosensing applications or electrochemical aspects using specific proteins such as enzymes.
Collapse
Affiliation(s)
- Muhammad Haseeb Iqbal
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, Strasbourg Cedex 2 67034 France
| | | | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, Strasbourg Cedex 2 67034 France
| |
Collapse
|
3
|
Liu C, Sun Y, Li D, Wang F, Wang H, An S, Sun S. A multifunctional nanogel encapsulating layered double hydroxide for enhanced osteoarthritis treatment via protection of chondrocytes and ECM. Mater Today Bio 2024; 26:101034. [PMID: 38596826 PMCID: PMC11002310 DOI: 10.1016/j.mtbio.2024.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/20/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024] Open
Abstract
Osteoarthritis (OA) is characterized by progressive and irreversible damage to the articular cartilage and a consecutive inflammatory response. However, the majority of clinical drugs for OA treatment only alleviate symptoms without addressing the fundamental pathology. To mitigate this issue, we developed an inflammation-responsive carrier and encapsulated bioactive material, namely, LDH@TAGel. The LDH@TAGel was designed with anti-inflammatory and antioxidative abilities, aiming to directly address the pathology of cartilage damage. In particular, LDH was confirmed to restore the ECM secretion function of damaged chondrocytes and attenuate the expression of catabolic matrix metalloproteinases (Mmps). While TAGel showed antioxidant properties by scavenging ROS directly. In vitro evaluation revealed that the LDH@TAGel could protect chondrocytes from inflammation-induced oxidative stress and apoptosis via the Nrf2/Keap1 system and Pi3k-Akt pathway. In vivo experiments demonstrated that the LDH@TAGel could alleviated the degeneration and degradation of cartilage induced by anterior cruciate ligament transection (ACLT). The OARSI scores indicating OA severity decreased significantly after three weeks of intervention. Moreover, the IVIS image revealed that LDH@TAGel enhances the controlled release of LDH in a manner that can be customized according to the severity of OA, allowing adaptive, precise treatment. In summary, this novel design effectively alleviates the underlying pathological causes of OA-related cartilage damage and has emerged as a promising biomaterial for adaptive, cause-targeted OA therapies.
Collapse
Affiliation(s)
- Changxing Liu
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Yawei Sun
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Dengju Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Fan Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Haojue Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Senbo An
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| |
Collapse
|
4
|
Lim SH, Yong GJM, Chia CY, Man SM, Subramanian GS, Oh G, Cheong EJY, Kiryukhin MV. Mucin coated protein-polyphenol microcarriers for daidzein delivery. Food Funct 2024; 15:2645-2654. [PMID: 38362621 DOI: 10.1039/d3fo03356b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Daidzein, an isoflavone found abundantly in legumes, may benefit from bypassing upper gut absorption to reach the colon where it can be metabolized into the potent estrogen equol by the gut microbiome. To achieve this, we developed mucin coated protein-tannin multilayer microcarriers. Highly porous functionalized calcium carbonate (FCC) microparticles efficiently absorbed daidzein from a dimethyl sulfoxide solution, with a loading capacity of 21.6 ± 1.8 wt% as measured by ultra-high pressure liquid chromatography - mass spectrometry (UPLC-MS). Daidzein-containing FCC microparticles were then coated with a bovine serum albumin (BSA)-tannin n-layer film terminated with mucin ((BSA-TA)n-mucin) by layer-by-layer deposition from corresponding aqueous solutions followed by FCC decomposition with HCl. Raman spectroscopy confirmed mucin-tannin complexation involving both hydrophobic interactions and hydrogen bonding. The resulting multilayer microcarriers contained 54 wt% of nanocrystalline daidzein as confirmed by X-ray diffraction and UPLC-MS. Preliminary screening of several types of mucin coatings using an in vitro INFOGEST digestion model demonstrated that mucin type III from porcine stomach provided the highest protection against upper intestinal digestion. (BSA-TA)8-mucin and (BSA-TA)4-mucin microcarriers retained 71 ± 16.4% and 68 ± 4.6% of daidzein, respectively, at the end of the small intestinal phase. Mucin-free (BSA-TA)8 retained a lower daidzein amount of 46%. Daidzein release and further conversion into equol were observed during in vitro colonic studies with fecal microbiota from a healthy non-equol-producing donor and Slackia equolifaciens. The developed approach has potential for encapsulating other hydrophobic nutraceuticals or therapeutics, enhancing their bioaccessibility in the colon.
Collapse
Affiliation(s)
- Su Hui Lim
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669.
| | - Germaine Jia Min Yong
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669.
- Asian Microbiome Library Pte. Ltd, 89 Science Park Dr, #03-09, Singapore 118261
| | - Cheryl Yingxue Chia
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669.
| | - Shu Mei Man
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669.
| | - Gomathy Sandhya Subramanian
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669.
| | - Geraldine Oh
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669.
| | - Eleanor Jing Yi Cheong
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669.
| | - Maxim V Kiryukhin
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669.
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia 143025.
| |
Collapse
|
5
|
Abalymov AA, Anisimov RA, Demina PA, Kildisheva VA, Kalinova AE, Serdobintsev AA, Novikova NG, Petrenko DB, Sadovnikov AV, Voronin DV, Lomova MV. Time-Delayed Anticancer Effect of an Extremely Low Frequency Alternating Magnetic Field and Multimodal Protein-Tannin-Mitoxantrone Carriers with Brillouin Microspectroscopy Visualization In Vitro. Biomedicines 2024; 12:443. [PMID: 38398045 PMCID: PMC10887239 DOI: 10.3390/biomedicines12020443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The effect of an extremely low frequency alternating magnetic field (ELF AMF) at frequencies of 17, 48, and 95 Hz at 100 mT on free and internalized 4T1 breast cancer cell submicron magnetic mineral carriers with an anticancer drug, mitoxantrone, was shown. The alternating magnetic field (100 mT; 17, 48, 95 Hz; time of treatment-10.5 min with a 30 s delay) does not lead to the significant destruction of carrier shells and release of mitoxantrone or bovine serum albumin from them according to the data of spectrophotometry, or the heating of carriers in the process of exposure to magnetic fields. The most optimal set of factors that would lead to the suppression of proliferation and survival of cells with anticancer drug carriers on the third day (in comparison with the control and first day) is exposure to an alternating magnetic field of 100 mT in a pulsed mode with a frequency of 95 Hz. The presence of magnetic nanocarriers in cell lines was carried out by a direct label-free method, space-resolved Brillouin light scattering (BLS) spectrometry, which was realized for the first time. The analysis of the series of integrated BLS spectra showed an increase in the magnetic phase in cells with a growth in the number of particles per cell (from 10 to 100) after their internalization. The safety of magnetic carriers in the release of their constituent ions has been evaluated using atomic absorption spectrometry.
Collapse
Affiliation(s)
- Anatolii A. Abalymov
- Science Medical Centre, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Roman A. Anisimov
- Science Medical Centre, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Polina A. Demina
- Science Medical Centre, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
- Institute of Chemistry, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Veronika A. Kildisheva
- Science Medical Centre, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Alexandra E. Kalinova
- Institute of Physics, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Alexey A. Serdobintsev
- Institute of Physics, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Nadezhda G. Novikova
- Institute of Comprehensive Exploitation, Mineral Resources Russian Academy of Sciences, Moscow 111020, Russia
- The Core Shared Research Facility “Industrial Biotechnologies”, Aleksei Nikolayevich Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Dmitry B. Petrenko
- Geological Institute, Russian Academy of Sciences, Moscow 119017, Russia
- Faculty of Natural Sciences, Department of Theoretical and Applied Chemistry, Federal State University of Education, Mytischi 141014, Russia
| | - Alexandr V. Sadovnikov
- Institute of Physics, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Denis V. Voronin
- Department of Physical and Colloid Chemistry, National University of Oil and Gas “Gubkin University”, Moscow 119991, Russia
| | - Maria V. Lomova
- Science Medical Centre, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| |
Collapse
|
6
|
Guo Y, Zhai X, Li N, Zan X. Recent Progress in Protein-Polyphenol Assemblies for Biomedical Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2005-2014. [PMID: 38227800 DOI: 10.1021/acs.langmuir.3c03244] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Nowadays, natural materials as smart building blocks for assembling functional materials have aroused extensive interest in the scientific community. Proteins and polyphenols are typical natural building blocks that are widely used. On the one hand, proteins are one of the most versatile classes of biomolecules, serving as catalysts, signaling molecules, transporters, receptors, scaffolds that maintain the integrity of cell and tissue, and more. On the other hand, the facile adhesion of naturally abundant polyphenols with other substances and their potential biomedical applications have been highly attractive for functional biomaterials fabrication. Additionally, there are a variety of interactions between the proteins and polyphenols, mainly hydrogen bonding, hydrophobic, and ionic interactions. These reversible dynamic interactions enable proteins and polyphenols to form stable protein-polyphenol assemblies and maintain their inherent structures and biological activities in the assemblies. Therefore, protein-polyphenol assemblies can be applied to design a variety of advanced functional materials for biomedical applications. Herein, recent progress in protein-polyphenol particles, capsules, coatings, and hydrogels is summarized, the preparation and application of these assemblies are introduced in detail, and the future of the field is prospected.
Collapse
Affiliation(s)
- Yan Guo
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Hunan 411201, China
| | - Xinyue Zhai
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Hunan 411201, China
| | - Na Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou 325001, China
| | - Xingjie Zan
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou 325001, China
| |
Collapse
|
7
|
Zheng Y, Baidya A, Annabi N. Molecular design of an ultra-strong tissue adhesive hydrogel with tunable multifunctionality. Bioact Mater 2023; 29:214-229. [PMID: 37520304 PMCID: PMC10372327 DOI: 10.1016/j.bioactmat.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/15/2023] [Accepted: 06/08/2023] [Indexed: 08/01/2023] Open
Abstract
Designing adhesive hydrogels with optimal properties for the treatment of injured tissues is challenging due to the tradeoff between material stiffness and toughness while maintaining adherence to wet tissue surfaces. In most cases, bioadhesives with improved mechanical strength often lack an appropriate elastic compliance, hindering their application for sealing soft, elastic, and dynamic tissues. Here, we present a novel strategy for engineering tissue adhesives in which molecular building blocks are manipulated to allow for precise control and optimization of the various aforementioned properties without any tradeoffs. To introduce tunable mechanical properties and robust tissue adhesion, the hydrogel network presents different modes of covalent and noncovalent interactions using N-hydroxysuccinimide ester (NHS) conjugated alginate (Alg-NHS), poly (ethylene glycol) diacrylate (PEGDA), tannic acid (TA), and Fe3+ ions. Through combining and tuning different molecular interactions and a variety of crosslinking mechanisms, we were able to design an extremely elastic (924%) and tough (4697 kJ/m3) multifunctional hydrogel that could quickly adhere to wet tissue surfaces within 5 s of gentle pressing and deform to support physiological tissue function over time under wet conditions. While Alg-NHS provides covalent bonding with the tissue surfaces, the catechol moieties of TA molecules synergistically adopt a mussel-inspired adhesive mechanism to establish robust adherence to the wet tissue. The strong adhesion of the engineered bioadhesive patch is showcased by its application to rabbit conjunctiva and porcine cornea. Meanwhile, the engineered bioadhesive demonstrated painless detachable characteristics and in vitro biocompatibility. Additionally, due to the molecular interactions between TA and Fe3+, antioxidant and antibacterial properties required to support the wound healing pathways were also highlighted. Overall, by tuning various molecular interactions, we were able to develop a single-hydrogel platform with an "all-in-one" multifunctionality that can address current challenges of engineering hydrogel-based bioadhesives for tissue repair and sealing.
Collapse
Affiliation(s)
- Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| |
Collapse
|
8
|
Ghasemian M, Kazeminava F, Naseri A, Mohebzadeh S, Abbaszadeh M, Kafil HS, Ahmadian Z. Recent progress in tannic acid based approaches as a natural polyphenolic biomaterial for cancer therapy: A review. Biomed Pharmacother 2023; 166:115328. [PMID: 37591125 DOI: 10.1016/j.biopha.2023.115328] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023] Open
Abstract
Significant advancements have been noticed in cancer therapy for decades. Despite this, there are still many critical challenges ahead, including multidrug resistance, drug instability, and side effects. To overcome obstacles of these problems, various types of materials in biomedical research have been explored. Chief among them, the applications of natural compounds have grown rapidly due to their superb biological activities. Natural compounds, especially polyphenolic compounds, play a positive and great role in cancer therapy. Tannic acid (TA), one of the most famous polyphenols, has attracted widespread attention in the field of cancer treatment with unique structural, physicochemical, pharmaceutical, anticancer, antiviral, antioxidant and other strong biological features. This review concentrated on the basic structure along with the important role of TA in tuning oncological signal pathways firstly, and then focused on the use of TA in chemotherapy and preparation of delivery systems including nanoparticles and hydrogels for cancer therapy. Besides, the application of TA/Fe3+ complex coating in photothermal therapy, chemodynamic therapy, combined therapy and theranostics is discussed.
Collapse
Affiliation(s)
- Motaleb Ghasemian
- Department of Medicinal Chemistry, School of Pharmacy, Lorestan University of Medical Science, Khorramabad, Iran
| | - Fahimeh Kazeminava
- Department of Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashkan Naseri
- Department of Applied Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Soheila Mohebzadeh
- Department of Plant Production and Genetics, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mahmoud Abbaszadeh
- Department of Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Department of Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
9
|
Utatsu K, Motoyama K, Nakamura T, Onodera R, Higashi T. Tannic acid-based sustained-release system for protein drugs. Int J Pharm 2023; 643:123229. [PMID: 37454828 DOI: 10.1016/j.ijpharm.2023.123229] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/23/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
In recent years, protein drug development has gained momentum, and simple and facile controlled-release systems without loss of activity are required. Herein, we developed a sustained-release system for protein drugs by exploiting the "astringency" mechanism, namely insoluble precipitate formation by interacting with tannic acid. Tannic acid formed insoluble precipitates with various protein drugs, such as nisin, insulin, lysozyme, ovalbumin, hyaluronidase, and human immunoglobulin G, through hydrophobic interactions and hydrogen bonds. The lysozyme/tannic acid complex retained in vitro lytic activity. Precipitates of the insulin/tannic acid complex prolonged hypoglycemic effects without loss of activity after subcutaneous administration. The ovalbumin/tannic acid complex enhanced anti-ovalbumin antibody production induced by ovalbumin, which may be attributed to its sustained-release profile. Accordingly, tannic acid is useful as a simple and user-friendly drug delivery system for protein drugs.
Collapse
Affiliation(s)
- Kosei Utatsu
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Teruya Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Risako Onodera
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
10
|
Navolokin N, Lomova M, Bucharskaya A, Godage O, Polukonova N, Shirokov A, Grinev V, Maslyakova G. Antitumor Effects of Microencapsulated Gratiola officinalis Extract on Breast Carcinoma and Human Cervical Cancer Cells In Vitro. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1470. [PMID: 36837099 PMCID: PMC9960207 DOI: 10.3390/ma16041470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Flavonoid-containing Gratiola officinalis extract has been studied in relation to breast carcinoma and human cervical cancer cells in encapsulated and native form. Encapsulation was realized in polymer shells, which were formed by the layer-by-layer method using sequential adsorption of poly(allylamine hydrochloride) and poly(sodium 4-styrenesulfonate) on the destructible cores. The extract was prepared by the author's method and characterized using high performance liquid chromatography. By means of optical and fluorescent microscopy, cell changes under the action of pure and encapsulated extracts were comprehensively studied, and statistical analysis was carried out. Cells were stained with propidium iodide, acridine orange, and Hoechst 33258. A fluorescence microscope with a digital video camera were used for cell imaging. The encapsulated extract caused 100% death of breast cancer SKBR-3 cells and 34% death of cervical cancer HeLa cells and prevented the formation of autophagosomes in both cultures. Analysis of the viability and morphological features of tumor cells under the action of microencapsulated extract allows us to consider microencapsulation as an effective strategy for delivering Gratiola officinalis extract to tumor cells and a promising way to overcome the protective autophagy.
Collapse
Affiliation(s)
- Nikita Navolokin
- Center for Collective Use of Experimental Oncology, Saratov State Medical University n.a. V.I. Razumovsky, Saratov 410012, Russia
- Science Medical Centre, Saratov State University, Saratov 410012, Russia
| | - Maria Lomova
- Science Medical Centre, Saratov State University, Saratov 410012, Russia
| | - Alla Bucharskaya
- Center for Collective Use of Experimental Oncology, Saratov State Medical University n.a. V.I. Razumovsky, Saratov 410012, Russia
- Science Medical Centre, Saratov State University, Saratov 410012, Russia
- Laser Molecular Imaging and Machine Learning Laboratory, Tomsk State University, Tomsk 634050, Russia
| | - Olga Godage
- Center for Collective Use of Experimental Oncology, Saratov State Medical University n.a. V.I. Razumovsky, Saratov 410012, Russia
| | - Natalya Polukonova
- Center for Collective Use of Experimental Oncology, Saratov State Medical University n.a. V.I. Razumovsky, Saratov 410012, Russia
| | - Alexander Shirokov
- Center for Collective Use of Experimental Oncology, Saratov State Medical University n.a. V.I. Razumovsky, Saratov 410012, Russia
- Science Medical Centre, Saratov State University, Saratov 410012, Russia
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), Saratov 410028, Russia
| | - Vyacheslav Grinev
- Science Medical Centre, Saratov State University, Saratov 410012, Russia
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), Saratov 410028, Russia
| | - Galina Maslyakova
- Center for Collective Use of Experimental Oncology, Saratov State Medical University n.a. V.I. Razumovsky, Saratov 410012, Russia
- Science Medical Centre, Saratov State University, Saratov 410012, Russia
| |
Collapse
|
11
|
Cao Z, Wang H, Chen J, Zhang Y, Mo Q, Zhang P, Wang M, Liu H, Bao X, Sun Y, Zhang W, Yao Q. Silk-based hydrogel incorporated with metal-organic framework nanozymes for enhanced osteochondral regeneration. Bioact Mater 2023; 20:221-242. [PMID: 35702612 PMCID: PMC9163388 DOI: 10.1016/j.bioactmat.2022.05.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Osteochondral defects (OCD) cannot be efficiently repaired due to the unique physical architecture and the pathological microenvironment including enhanced oxidative stress and inflammation. Conventional strategies, such as the control of implant microstructure or the introduction of growth factors, have limited functions failing to manage these complex environments. Here we developed a multifunctional silk-based hydrogel incorporated with metal-organic framework nanozymes (CuTA@SF) to provide a suitable microenvironment for enhanced OCD regeneration. The incorporation of CuTA nanozymes endowed the SF hydrogel with a uniform microstructure and elevated hydrophilicity. In vitro cultivation of mesenchymal stem cells (MSCs) and chondrocytes showed that CuTA@SF hydrogel accelerated cell proliferation and enhanced cell viability, as well as had antioxidant and antibacterial properties. Under the inflammatory environment with the stimulation of IL-1β, CuTA@SF hydrogel still possessed the potential to promote MSC osteogenesis and deposition of cartilage-specific extracellular matrix (ECM). The proteomics analysis further confirmed that CuTA@SF hydrogel promoted cell proliferation and ECM synthesis. In the full-thickness OCD model of rabbit, CuTA@SF hydrogel displayed successfully in situ OCD regeneration, as evidenced by micro-CT, histology (HE, S/O, and toluidine blue staining) and immunohistochemistry (Col I and aggrecan immunostaining). Therefore, CuTA@SF hydrogel is a promising biomaterial targeted at the regeneration of OCD. A multifunctional silk-based hydrogel incorporated with metal-organic framework nanozymes (CuTA@SF) was fabricated. CuTA@SF hydrogel has antioxidant, anti-inflammation and antibacterial capacities. Proteomics analysis confirmed that CuTA@SF hydrogel promoted cell proliferation and ECM synthesis. CuTA@SF hydrogel displayed successful osteochondral regeneration in vivo.
Collapse
Affiliation(s)
- Zhicheng Cao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Hongmei Wang
- School of Medicine, Southeast University, 210009, Nanjing, China
- Department of Pharmaceutical Sciences, Binzhou Medical University, 264003, Yantai, Shandong, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Yanan Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Qingyun Mo
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Po Zhang
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Mingyue Wang
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Xueyang Bao
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Yuzhi Sun
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
- Corresponding author. School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
- Corresponding author. Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China.
| |
Collapse
|
12
|
Bhardwaj H, Khute S, Sahu R, Jangde RK. Advanced Drug Delivery System for Management of Chronic Diabetes Wound Healing. Curr Drug Targets 2023; 24:1239-1259. [PMID: 37957907 DOI: 10.2174/0113894501260002231101080505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/28/2023] [Accepted: 09/07/2023] [Indexed: 11/15/2023]
Abstract
The diabetic wound is excessively vulnerable to infection because the diabetic wound suggests delayed and incomplete healing techniques. Presently, wounds and ulcers related to diabetes have additionally increased the medical burden. A diabetic wound can impair mobility, lead to amputations, or even death. In recent times, advanced drug delivery systems have emerged as promising approaches for enhancing the efficacy of wound healing treatments in diabetic patients. This review aims to provide an overview of the current advancements in drug delivery systems in managing chronic diabetic wound healing. This review begins by discussing the pathophysiological features of diabetic wounds, including impaired angiogenesis, elevated reactive oxygen species, and compromised immune response. These factors contribute to delayed wound healing and increased susceptibility to infection. The importance of early intervention and effective wound management strategies is emphasized. Various types of advanced drug delivery systems are then explored, including nanoparticles, hydrogels, transferosomes, liposomes, niosomes, dendrimers, and nanosuspension with incorporated bioactive agents and biological macromolecules are also utilized for chronic diabetes wound management. These systems offer advantages such as sustained release of therapeutic agents, improved targeting and penetration, and enhanced wound closure. Additionally, the review highlights the potential of novel approaches such as antibiotics, minerals, vitamins, growth factors gene therapy, and stem cell-based therapy in diabetic wound healing. The outcome of advanced drug delivery systems holds immense potential in managing chronic diabetic wound healing. They offer innovative approaches for delivering therapeutic agents, improving wound closure, and addressing the specific pathophysiological characteristics of diabetic wounds.
Collapse
Affiliation(s)
- Harish Bhardwaj
- Department of Pharmacy, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, C.G, India
| | - Sulekha Khute
- Department of Pharmacy, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, C.G, India
| | - Ram Sahu
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar, Assam, India
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal-249161, Uttarakhand, India
| | - Rajendra Kumar Jangde
- Department of Pharmacy, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, C.G, India
| |
Collapse
|
13
|
Novoselova MV, Shramova EI, Sergeeva OV, Shcherbinina EY, Perevoschikov SV, Melnikov P, Griaznova OY, Sergeev IS, Konovalova EV, Schulga AA, Proshkina GM, Zatsepin TS, Deyev SM, Gorin DA. Polymer/magnetite carriers functionalized by HER2-DARPin: Avoiding lysosomes during internalization and controlled toxicity of doxorubicin by focused ultrasound induced release. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102612. [PMID: 36243307 DOI: 10.1016/j.nano.2022.102612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/08/2022] [Accepted: 09/25/2022] [Indexed: 11/05/2022]
Abstract
Nanomedicine has revolutionized the available treatment options during the last decade, but poor selectivity of targeted drug delivery and release is still poses a challenge. In this study, doxorubicin (DOX) and magnetite nanoparticles were encapsulated by freezing-induced loading, coated with polymeric shell bearing two bi-layers of polyarginine/dextran sulphate and finally modified with HER2-specific DARPin proteins. We demonstrated that the enhanced cellular uptake of these nanocarriers predominantly occurs by SKOV-3 (HER2+) cells, in comparison to CHO (HER2-) cells, together with the controlled DOX release using low intensity focused ultrasound (LIFU). In addition, a good ability of DARPin+ capsules to accumulate in the tumor and the possibility of combination therapy with LIFU were demonstrated. A relatively high sensitivity of the obtained nanocarriers to LIFU and their preferential interactions with mitochondria in cancer cells make these carriers promising candidates for cancer treatment, including novel approaches to overcome drug resistance.
Collapse
Affiliation(s)
- M V Novoselova
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | - E I Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - O V Sergeeva
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | - E Y Shcherbinina
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | | | - P Melnikov
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - O Yu Griaznova
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia.
| | - I S Sergeev
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - E V Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - A A Schulga
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - G M Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia.
| | - T S Zatsepin
- Lomonosov Moscow State University, Moscow 119991, Russia.
| | - S M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - D A Gorin
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| |
Collapse
|
14
|
Sapach AY, Sindeeva OA, Nesterchuk MV, Tsitrina AA, Mayorova OA, Prikhozhdenko ES, Verkhovskii RA, Mikaelyan AS, Kotelevtsev YV, Sukhorukov GB. Macrophage In Vitro and In Vivo Tracking via Anchored Microcapsules. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51579-51592. [PMID: 36367877 DOI: 10.1021/acsami.2c12004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A new promising trend in personalized medicine is the use of autologous cells (macrophages or stem cells) for cell-based therapy and also as a "Trojan horse" for targeted delivery of a drug carrier. The natural ability of macrophages for chemotaxis allows them to deliver cargo to the damaged area, significantly reducing side effects on healthy organ tissues. Therefore, it is important to develop tools to track their behavior in the organism. While labeled containers can serve as anchored tags for imaging macrophages in vivo, they can affect the properties and functions of macrophages. This work demonstrates that 3 μm sized capsules based on biocompatible polyelectrolytes and fluorescently labeled with both Cy7 and RITC dyes do not affect cell functionalization in vitro, such as viability, proliferation, and movement of transformed monocyte/macrophage-like cells (RAW 264.7) and primary bone marrow derived macrophages (BMDM) at maximal loading of five capsules per cell. In addition, capsules allowed fluorescent detection of ex vivo loaded cells 24 h after the tail vein injection in vivo and visualization of microcapsule-laden macrophages ex vivo using confocal microscopy. We have delivered about 62.5% of injected BMDM containing 12.5 million capsules with 3.75 μg of high-molecular-weight cargo (0.3 pg/capsule) to the liver. Our results demonstrate that 3 μm polyelectrolyte fluorescently labeled microcapsules can be used for safe macrophage loading, allowing cell tracking and drug delivery, which will facilitate development of macrophage-based cell therapy protocols.
Collapse
Affiliation(s)
- Anastasiia Yu Sapach
- Skolkovo Institute of Science and Technology, Moscow 143005, Russia
- Sechenov First State Medical University, Moscow 119991, Russia
| | - Olga A Sindeeva
- Skolkovo Institute of Science and Technology, Moscow 143005, Russia
| | | | - Alexandra A Tsitrina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia
| | | | | | | | - Arsen S Mikaelyan
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia
| | | | - Gleb B Sukhorukov
- Skolkovo Institute of Science and Technology, Moscow 143005, Russia
- Siberian State Medical University, Tomsk 634050, Russia
- Queen Mary University of London, London E1 4NS, U.K
| |
Collapse
|
15
|
Jayachandran B, Parvin TN, Alam MM, Chanda K, MM B. Insights on Chemical Crosslinking Strategies for Proteins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238124. [PMID: 36500216 PMCID: PMC9738610 DOI: 10.3390/molecules27238124] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
Crosslinking of proteins has gained immense significance in the fabrication of biomaterials for various health care applications. Various novel chemical-based strategies are being continuously developed for intra-/inter-molecular crosslinking of proteins to create a network/matrix with desired mechanical/functional properties without imparting toxicity to the host system. Many materials that are used in biomedical and food packaging industries are prepared by chemical means of crosslinking the proteins, besides the physical or enzymatic means of crosslinking. Such chemical methods utilize the chemical compounds or crosslinkers available from natural sources or synthetically generated with the ability to form covalent/non-covalent bonds with proteins. Such linkages are possible with chemicals like carbodiimides/epoxides, while photo-induced novel chemical crosslinkers are also available. In this review, we have discussed different protein crosslinking strategies under chemical methods, along with the corresponding crosslinking reactions/conditions, material properties and significant applications.
Collapse
Affiliation(s)
- Brindha Jayachandran
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Chennai 600127, India
| | - Thansila N Parvin
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Chennai 600127, India
| | - M Mujahid Alam
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India
- Correspondence: (K.C.); (B.M.)
| | - Balamurali MM
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Chennai 600127, India
- Correspondence: (K.C.); (B.M.)
| |
Collapse
|
16
|
Tan C, Dima C, Huang M, Assadpour E, Wang J, Sun B, Kharazmi MS, Jafari SM. Advanced CaCO3-derived delivery systems for bioactive compounds. Adv Colloid Interface Sci 2022; 309:102791. [DOI: 10.1016/j.cis.2022.102791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
|
17
|
Pei M, Zhu D, Yang J, Yang K, Yang H, Gu S, Li W, Xu W, Xiao P, Zhou Y. Multi-crosslinked Flexible Nanocomposite Hydrogel Fibers with Excellent Strength and Knittability. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
18
|
Dextrans and dextran derivatives as polyelectrolytes in layer-by-layer processing materials – A review. Carbohydr Polym 2022; 293:119700. [DOI: 10.1016/j.carbpol.2022.119700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/19/2022]
|
19
|
Li Y, Liu C, Cheng X, Zhang A, Liu W, Zhang S, Jian X. Tunicate inspired gelatin-based tough hydrogel wound dressing containing twisted phthalazinone with adhesive, self-healing and antibacterial properties. Int J Biol Macromol 2022; 218:639-653. [PMID: 35872313 DOI: 10.1016/j.ijbiomac.2022.07.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 12/17/2022]
Abstract
As a hydrolytic product of collagen, gelatin is a polypeptide of biological origin. Gelatin hydrogels emerge as promising material candidates for traditional dressings due to good biocompatibility and the ability to keep wounds moist. However, it is difficult to simultaneously achieve gelatin hydrogel with robust mechanical property for long-term usage, reliable tissue adhesion, self-healing and antibacterial properties. Herein, we propose a simply synthesized strategy of a multifunctional gelatin hydrogel dressing, which is constructed by conjugating a newly synthesized 2-(4'-aldehydephenyl)-4-(2',3',4'-trihydroxyphenyl)-2,3-phthalazine-1(2H)-one (THPZB) to gelatin with Schiff base and chelating with Fe3+ ions (termed G/THPZB/Fe hydrogel). The twisted structure of phthalazinone in THPZB leads to entanglement of gelatin molecular chains, which resolves the stiffness-toughness conflict of the hydrogel. Furthermore, the strong tissue adhesion and fast self-healing capability mainly originate from the hydrogen bonding of the pyrogallol in THPZB. In vitro study shows that the hydrogels possess good biocompatibility with L929 cells, hemostatic and antibacterial activity. In the rat model of skin infection, the hydrogel dressing not only have no adverse effects on vital organs, but also can effectively promote wound healing of bacterial infection. Considering that it has multiple functions, G/THPZB/Fe hydrogel can be used as a promising wound dressing for biomedical applications.
Collapse
Affiliation(s)
- Yizheng Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China; Department of Polymer Science & Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Chengde Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China; Department of Polymer Science & Engineering, Dalian University of Technology, 116024 Dalian, China.
| | - Xitong Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China; Department of Polymer Science & Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Ali Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China; Department of Polymer Science & Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Wentao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China; Department of Polymer Science & Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Shouhai Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China; Department of Polymer Science & Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Xigao Jian
- Liaoning Province Engineering Research Centre of High-Performance Resins, 116024 Dalian, China.
| |
Collapse
|
20
|
Degradation of Hybrid Drug Delivery Carriers with a Mineral Core and a Protein–Tannin Shell under Proteolytic Hydrolases. Biomimetics (Basel) 2022; 7:biomimetics7020061. [PMID: 35645188 PMCID: PMC9149959 DOI: 10.3390/biomimetics7020061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Hybrid carriers with the mineral CaCO3/Fe3O4 core and the protein–tannin shell are attractive for drug delivery applications due to reliable coupling of anticancer drugs with protein–tannin complex and the possibility of remote control over drug localization and delivery by the external magnetic field. This study aims to elucidate the mechanisms of drug release via enzymatic degradation of a protein–tannin carrier shell triggered by proteolytic hydrolases trypsin and pepsin under physiological conditions. To do this, the carriers were incubated with the enzyme solutions in special buffers to maintain the enzyme activity. The time-lapse spectrophotometric and electron microscopy measurements were carried out to evaluate the degradation of the carriers. It was established that the protein–tannin complex demonstrates the different degradation behavior depending on the enzyme type and buffer medium. The incubation in trypsin solution mostly resulted in the protein shell degradation. The incubation in pepsin solution did not affect the protein component; however, the citric buffer stimulates the degradation of the mineral core. The presented results allow for predicting the degradation pathways of the carriers including the release profile of the loaded cargo under physiological conditions. The viability of 4T1 breast cancer cells with mineral magnetic carriers with protein–tannin shells was investigated, and their movement in the fields of action of the permanent magnet was shown.
Collapse
|
21
|
Multi-stimuli responsive poly(N-isopropyl-co-tetraphenylethene) acrylamide copolymer mediating AIEgens by controllable tannic acid. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Giannelli M, Guerrini A, Ballestri M, Aluigi A, Zamboni R, Sotgiu G, Posati T. Bioactive Keratin and Fibroin Nanoparticles: An Overview of Their Preparation Strategies. NANOMATERIALS 2022; 12:nano12091406. [PMID: 35564115 PMCID: PMC9104131 DOI: 10.3390/nano12091406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/13/2022]
Abstract
In recent years, several studies have focused their attention on the preparation of biocompatible and biodegradable nanocarriers of potential interest in the biomedical field, ranging from drug delivery systems to imaging and diagnosis. In this regard, natural biomolecules—such as proteins—represent an attractive alternative to synthetic polymers or inorganic materials, thanks to their numerous advantages, such as biocompatibility, biodegradability, and low immunogenicity. Among the most interesting proteins, keratin extracted from wool and feathers, as well as fibroin extracted from Bombyx mori cocoons, possess all of the abovementioned features required for biomedical applications. In the present review, we therefore aim to give an overview of the most important and efficient methodologies for obtaining drug-loaded keratin and fibroin nanoparticles, and of their potential for biomedical applications.
Collapse
|
23
|
Shi J, Zhang R, Zhou J, Yim W, Jokerst JV, Zhang Y, Mansel BW, Yang N, Zhang Y, Ma J. Supramolecular Assembly of Multifunctional Collagen Nanocomposite Film via Polyphenol-Coordinated Clay Nanoplatelets. ACS APPLIED BIO MATERIALS 2022; 5:1319-1329. [PMID: 35262325 DOI: 10.1021/acsabm.2c00013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Functional bionanocomposites have evoked immense research interests in many fields including biomedicine, food packaging, and environmental applications. Supramolecular self-assembled bionanocomposite materials fabricated by biopolymers and two-dimensional (2D) nanomaterials have particularly emerged as a compelling material due to their biodegradable nature, hierarchical structures, and designable multifunctions. However, construction of these materials with tunable properties has been still challenging. Here, we report a self-assembled, flexible, and antioxidative collagen nanocomposite film (CNF) via regulating supramolecular interactions of type I collagen and tannic acid (TA)-functionalized 2D synthetic clay nanoplatelets Laponite (LAP). Specifically, TA-coordinated LAP (LAP-TA) complexes were obtained via chelation and hydrogen bonding between TA and LAP clay nanoplatelets and further used to stabilize the triple-helical confirmation and fibrillar structure of the collagen via hydrogen bonding and electrostatic interactions, forming a hierarchical microstructure. The obtained transparent CNF not only exhibited the reinforced thermal stability, enzymatic resistance, tensile strength, and hydrophobicity but also good water vapor permeability and antioxidation. For example, the tensile strength was improved by over 2000%, and the antioxidant property was improved by 71%. Together with the simple fabrication process, we envision that the resulting CNF provides greater opportunities for versatile bionanocomposites design and fabrication serving as a promising candidate for emerging applications, especially food packaging and smart wearable devices.
Collapse
Affiliation(s)
- Jiabo Shi
- College of Bioresources Chemical and Materials Engineering, Xi'an Key Laboratory of Green Chemicals and Functional Materials, and National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, No. 6 Xuefu Zhonglu, Weiyang District, Xi'an, 710021, China
| | - Ruizhen Zhang
- College of Bioresources Chemical and Materials Engineering, Xi'an Key Laboratory of Green Chemicals and Functional Materials, and National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, No. 6 Xuefu Zhonglu, Weiyang District, Xi'an, 710021, China
| | - Jiajing Zhou
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States.,Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States.,Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yi Zhang
- Leather and Shoe Research Association of New Zealand, P.O. Box 8094, Palmerston North 4472, New Zealand
| | - Bradley W Mansel
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan China
| | - Na Yang
- College of Bioresources Chemical and Materials Engineering, Xi'an Key Laboratory of Green Chemicals and Functional Materials, and National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, No. 6 Xuefu Zhonglu, Weiyang District, Xi'an, 710021, China
| | - Yuxuan Zhang
- College of Bioresources Chemical and Materials Engineering, Xi'an Key Laboratory of Green Chemicals and Functional Materials, and National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, No. 6 Xuefu Zhonglu, Weiyang District, Xi'an, 710021, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Xi'an Key Laboratory of Green Chemicals and Functional Materials, and National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, No. 6 Xuefu Zhonglu, Weiyang District, Xi'an, 710021, China
| |
Collapse
|
24
|
Hatami E, Nagesh PKB, Chauhan N, Jaggi M, Chauhan SC, Yallapu MM. In Situ Nanoparticle Self-Assembly for Combination Delivery of Therapeutics to Non-Small Cell Lung Cancer. ACS APPLIED BIO MATERIALS 2022; 5:1104-1119. [PMID: 35179871 DOI: 10.1021/acsabm.1c01158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemotherapy often experiences several challenges including severe systemic toxicity and adverse effects. The combination chemotherapy arose as an effective clinical practice aimed at reducing doses of drugs to achieve synergistic actions with low toxicity. Our recent efforts demonstrated a synergistic therapeutic benefit of gambogic acid (GA) and gemcitabine (Gem) against lung cancer. However, simultaneous delivery of these two drugs at the tumor site is highly challenging. Therefore, the development of an injectable formulation that can effectively deliver both hydrophobic (GA) and hydrophilic (Gem) drugs in one formulation is a clinically unmet need. Herein, this study reports an in situ human serum albumin (HSA)- and tannic acid (TA)-mediated complexed GA and Gem nanoparticles (G-G@HTA NPs). G-G@HTA NP formation was confirmed by the particle size, Fourier transform infrared spectroscopy, and 1H NMR spectroscopy. The superior therapeutic activity of G-G@HTA NPs was demonstrated by multiple in vitro functional assays. Additionally, G-G@HTA NPs revealed an obvious and precise targeting of tumors in vivo. The promoted and more synergistic anti-tumor efficacy of G-G@HTA NPs was attained than that of combined treatments and single drug treatments. These events have resulted in no apparent systemic and organ toxicities. Together, this study suggests that in situ HSA-TA-based combinatorial treatment strategy is a suitable approach for application in lung cancer treatment.
Collapse
Affiliation(s)
- Elham Hatami
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Prashanth K B Nagesh
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States.,Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Neeraj Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| |
Collapse
|
25
|
Transport of Magnetic Polyelectrolyte Capsules in Various Environments. COATINGS 2022. [DOI: 10.3390/coatings12020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microcapsules consisting of eleven layers of polyelectrolyte and one layer of iron oxide nanoparticles were fabricated. Two types of nanoparticles were inserted as one of the layers within the microcapsule’s walls: Fe2O3, ferric oxide, having a mean diameter (Ø) of 50 nm and superparamagnetic Fe3O4 having Ø 15 nm. The microcapsules were suspended in liquid environments at a concentration of 108 caps/mL. The suspensions were pumped through a tube over a permanent magnet, and the accumulation within a minute was more than 90% of the initial concentration. The design of the capsules, the amount of iron embedded in the microcapsule, and the viscosity of the transportation fluid had a rather small influence on the accumulation capacity. Magnetic microcapsules have broad applications from cancer treatment to molecular communication.
Collapse
|
26
|
Zhang Z, Zeng J, Groll J, Matsusaki M. Layer-by-layer assembly methods and their biomedical applications. Biomater Sci 2022; 10:4077-4094. [DOI: 10.1039/d2bm00497f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Various biomedical applications arising due to the development of different LbL assembly methods with unique process properties.
Collapse
Affiliation(s)
- Zhuying Zhang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Fellow of Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB) and Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
27
|
Sharma K, Porat Z, Gedanken A. Designing Natural Polymer-Based Capsules and Spheres for Biomedical Applications-A Review. Polymers (Basel) 2021; 13:4307. [PMID: 34960858 PMCID: PMC8708131 DOI: 10.3390/polym13244307] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Natural polymers, such as polysaccharides and polypeptides, are potential candidates to serve as carriers of biomedical cargo. Natural polymer-based carriers, having a core-shell structural configuration, offer ample scope for introducing multifunctional capabilities and enable the simultaneous encapsulation of cargo materials of different physical and chemical properties for their targeted delivery and sustained and stimuli-responsive release. On the other hand, carriers with a porous matrix structure offer larger surface area and lower density, in order to serve as potential platforms for cell culture and tissue regeneration. This review explores the designing of micro- and nano-metric core-shell capsules and porous spheres, based on various functions. Synthesis approaches, mechanisms of formation, general- and function-specific characteristics, challenges, and future perspectives are discussed. Recent advances in protein-based carriers with a porous matrix structure and different core-shell configurations are also presented in detail.
Collapse
Affiliation(s)
- Kusha Sharma
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel;
| | - Ze’ev Porat
- Department of Civil and Environmental Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- Department of Chemistry, Nuclear Research Center-Negev, Be’er Sheva 84190, Israel
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel;
| |
Collapse
|
28
|
He W, Zhang Z, Chen J, Zheng Y, Xie Y, Liu W, Wu J, Mosselhy DA. Evaluation of the anti-biofilm activities of bacterial cellulose-tannic acid-magnesium chloride composites using an in vitro multispecies biofilm model. Regen Biomater 2021; 8:rbab054. [PMID: 34754505 PMCID: PMC8569941 DOI: 10.1093/rb/rbab054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/29/2021] [Accepted: 09/22/2021] [Indexed: 12/31/2022] Open
Abstract
Chronic wounds are a serious worldwide problem, which are often accompanied by wound infections. In this study, bacterial cellulose (BC)-based composites introduced with tannic acid (TA) and magnesium chloride (BC-TA-Mg) were fabricated for anti-biofilm activities. The prepared composites' surface properties, mechanical capacity, thermal stability, water absorption and retention property, releasing behavior, anti-biofilm activities and potential cytotoxicity were tested. Results showed that TA and MgCl2 particles closely adhered to the nanofibers of BC membranes, thus increasing surface roughness and hydrophobicity of the membranes. While the introduction of TA and MgCl2 did not influence the transparency of the membranes, making it beneficial for wound inspection. BC-TA and BC-TA-Mg composites displayed increased tensile strength and elongation at break compared to pure BC. Moreover, BC-TA-Mg exhibited higher water absorption and retention capacity than BC and BC-TA, suitable for the absorption of wound exudates. BC-TA-Mg demonstrated controlled release of TA and good inhibitory effect on both singly cultured Staphylococcus aureus and Pseudomonas aeruginosa biofilm and co-cultured biofilm of S. aureus and P. aeruginosa. Furthermore, the cytotoxicity grade of BC-TA-6Mg membrane was eligible based on standard toxicity classifications. These indicated that BC-TA-Mg is potential to be used as wound dressings combating biofilms in chronic wounds.
Collapse
Affiliation(s)
- Wei He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Suzhou Xiangcheng Medical Materials Science and Technology Co., Ltd, Suzhou 215028, China
| | - Zhaoyu Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yajie Xie
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenbo Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Jian Wu
- Suzhou Xiangcheng Medical Materials Science and Technology Co., Ltd, Suzhou 215028, China
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Division of Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Nanchang 330200, China
| | - Dina A Mosselhy
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, Helsinki 00014, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland
| |
Collapse
|
29
|
Lu R, Zhang X, Cheng X, Zan X, Geng W. Secondary Structure-Dominated Layer-by-Layer Growth Mode of Protein Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13000-13011. [PMID: 34723563 DOI: 10.1021/acs.langmuir.1c02062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Benefiting from the luxury functions of proteins, protein coatings have been extended to various applications, including tissue engineering scaffolds, drug delivery, antimicrobials, sensing and diagnostic equipment, food packaging, etc. Fast construction of protein coatings is always interesting to materials science and significant to industrialization. Here, we report a layer-by-layer (LbL) multilayer-constructed coating of tannic acid (TA) and lysozyme (Lyz), in which the secondary conformations of Lyz dominate the growth rate of the TA/Lyz coating. As well characterized by various techniques (quartz crystal microbalance with dissipation (QCM-D), circular dichroism (CD) spectra, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), contact angle, etc.), TA-induced conformational transition of Lyz to α-helices occurs at pH 8 from other secondary structures (β-sheets, β-turns, and random coils), which leads to the very fast growth of TA/Lyz with a number of deposited bilayers, with thicknesses of more than 90 nm for six bilayers. In contrast to the leading conformation of α-helices at pH 8, Lyz displayed multiple conformations (α-helices, β-sheets, β-turns, and random coils) at pH 6, which resulted in coating thicknesses of less than 30 nm for six bilayers. By the addition of NaCl, Tween 20, and urea, we further confirmed that the secondary conformations of Lyz relied greatly on the interactions between TA and Lyz and dominated the growth rate of the multilayers. We believe that these findings will help to understand the transformation of secondary conformations by TA or other polyphenols and inspire a new route to quickly build protein coatings.
Collapse
Affiliation(s)
- Ruofei Lu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqiang Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxiu Cheng
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingjie Zan
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Wujun Geng
- Wenzhou Key Laboratory of Perioperative Medicine, Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
30
|
Llacer-Wintle J, Rivas-Dapena A, Chen XZ, Pellicer E, Nelson BJ, Puigmartí-Luis J, Pané S. Biodegradable Small-Scale Swimmers for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102049. [PMID: 34480388 DOI: 10.1002/adma.202102049] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Most forms of biomatter are ephemeral, which means they transform or deteriorate after a certain time. From this perspective, implantable healthcare devices designed for temporary treatments should exhibit the ability to degrade and either blend in with healthy tissues, or be cleared from the body with minimal disruption after accomplishing their designated tasks. This topic is currently being investigated in the field of biomedical micro- and nanoswimmers. These tiny devices have the ability to move through fluids by converting physical or chemical energy into motion. Several architectures of these devices have been designed to mimic the motion strategies of nature's motile microorganisms and cells. Due to their motion abilities, these devices have been proposed as minimally invasive tools for precision healthcare applications. Hence, a natural progression in this field is to produce motile structures that can adopt, or even surpass, similar transient features as biological systems. The fate of small-scale swimmers after accomplishing their therapeutic mission is critical for the successful translation of small-scale swimmers' technologies into clinical applications. In this review, recent research efforts are summarized on the topic of biodegradable micro- and nanoswimmers for biomedical applications, with a focus on targeted therapeutic delivery.
Collapse
Affiliation(s)
- Joaquin Llacer-Wintle
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Antón Rivas-Dapena
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Xiang-Zhong Chen
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Eva Pellicer
- Departament de Física, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, 08193, Spain
| | - Bradley J Nelson
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica I Computacional, Barcelona, 08028, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 0 8010, Spain
| | - Salvador Pané
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, CH-8092, Switzerland
| |
Collapse
|
31
|
Ermatov T, Novoselova M, Skibina J, Machnev A, Gorin D, Noskov RE. Ultrasmooth, biocompatible, and removable nanocoating for hollow-core microstructured optical fibers. OPTICS LETTERS 2021; 46:4828-4831. [PMID: 34598210 DOI: 10.1364/ol.436220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Functional nanocoatings of hollow-core microstructured optical fibers (HC-MOFs) have extended the domain of their applications to biosensing and photochemistry. However, novel modalities typically come with increased optical losses since a significant surface roughness of functional layers gives rise to additional light scattering, restricting the performance of functionalization. Here, the technique that enables a biocompatible and removable nanocoating of HC-MOFs with low surface roughness is presented. The initial functional film is formed by a layer-by-layer assembly of bovine serum albumin (BSA) and tannic acid (TA). The alkaline etching at pH 9 results in the reduction of surface roughness from 26 nm to 3 nm and decreases fiber optical losses by three times. The nanocoating can be fully removed within 7 min of the treatment. Natural biocompatibility of BSA alongside antibacterial and antifouling properties of TA makes the presented nanocoating promising for biophotonic applications.
Collapse
|
32
|
Vikulina AS, Campbell J. Biopolymer-Based Multilayer Capsules and Beads Made via Templating: Advantages, Hurdles and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2502. [PMID: 34684943 PMCID: PMC8537085 DOI: 10.3390/nano11102502] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
One of the undeniable trends in modern bioengineering and nanotechnology is the use of various biomolecules, primarily of a polymeric nature, for the design and formulation of novel functional materials for controlled and targeted drug delivery, bioimaging and theranostics, tissue engineering, and other bioapplications. Biocompatibility, biodegradability, the possibility of replicating natural cellular microenvironments, and the minimal toxicity typical of biogenic polymers are features that have secured a growing interest in them as the building blocks for biomaterials of the fourth generation. Many recent studies showed the promise of the hard-templating approach for the fabrication of nano- and microparticles utilizing biopolymers. This review covers these studies, bringing together up-to-date knowledge on biopolymer-based multilayer capsules and beads, critically assessing the progress made in this field of research, and outlining the current challenges and perspectives of these architectures. According to the classification of the templates, the review sequentially considers biopolymer structures templated on non-porous particles, porous particles, and crystal drugs. Opportunities for the functionalization of biopolymer-based capsules to tailor them toward specific bioapplications is highlighted in a separate section.
Collapse
Affiliation(s)
- Anna S. Vikulina
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg, 1, 14476 Potsdam, Germany
- Bavarian Polymer Institute, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Dr.-Mack-Straße, 77, 90762 Fürth, Germany
| | - Jack Campbell
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| |
Collapse
|
33
|
Chen Z, Farag MA, Zhong Z, Zhang C, Yang Y, Wang S, Wang Y. Multifaceted role of phyto-derived polyphenols in nanodrug delivery systems. Adv Drug Deliv Rev 2021; 176:113870. [PMID: 34280511 DOI: 10.1016/j.addr.2021.113870] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022]
Abstract
As naturally occurring bioactive products, several lines of evidence have shown the potential of polyphenols in the medical intervention of various diseases, including tumors, inflammatory diseases, and cardiovascular diseases. Notably, owing to the particular molecular structure, polyphenols can combine with proteins, metal ions, polymers, and nucleic acids providing better strategies for polyphenol-delivery strategies. This contributes to the inherent advantages of polyphenols as important functional components for other drug delivery strategies, e.g., protecting nanodrugs from oxidation as a protective layer, improving the physicochemical properties of carbohydrate polymer carriers, or being used to synthesize innovative functional delivery vehicles. Polyphenols have emerged as a multifaceted player in novel drug delivery systems, both as therapeutic agents delivered to intervene in disease progression and as essential components of drug carriers. Although an increasing number of studies have focused on polyphenol-based nanodrug delivery including epigallocatechin-3-gallate, curcumin, resveratrol, tannic acid, and polyphenol-related innovative preparations, these molecules are not without inherent shortcomings. The active biochemical characteristics of polyphenols constitute a prerequisite to their high-frequency use in drug delivery systems and likewise to provoke new challenges for the design and development of novel polyphenol drug delivery systems of improved efficacies. In this review, we focus on both the targeted delivery of polyphenols and the application of polyphenols as components of drug delivery carriers, and comprehensively elaborate on the application of polyphenols in new types of drug delivery systems. According to the different roles played by polyphenols in innovative drug delivery strategies, potential limitations and risks are discussed in detail including the influences on the physical and chemical properties of nanodrug delivery systems, and their influence on normal physiological functions inside the organism.
Collapse
Affiliation(s)
- Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Chemistry Department, American University in Cairo AUC, Cairo, Egypt
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
34
|
Zhen L, Lange H, Zongo L, Crestini C. Chemical Derivatization of Commercially Available Condensed and Hydrolyzable Tannins. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:10154-10166. [PMID: 34484990 PMCID: PMC8411582 DOI: 10.1021/acssuschemeng.1c02114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/28/2021] [Indexed: 05/03/2023]
Abstract
Novel valorization routes for tannins were opened by the development of a simple, straightforward, robust, and flexible approach to the selective functionalization of condensed and hydrolyzable tannins. Irrespective of the different degrees of polymerization, different commercial tannins were efficiently functionalized by the generation of an ether linkage bound to a short linker carrying the desired functional group. Functionalizations could be realized at varying degrees of technical loadings, i.e., amounts of introduced tannin-alien functionalities per number of phenolic hydroxyl groups. The same strategy was found suitable for the synthesis of polyethylene glycol-functionalized tannin copolymers. Condensed tannins functionalized with carboxylic acid moieties could be converted into a tannin-oligopeptide hybrid.
Collapse
Affiliation(s)
- Lili Zhen
- University
of Rome “Tor Vergata”, Department of Chemical Science
and Technologies, Via
della Ricerca Scientifica, 00133 Rome, Italy
- CSGI—Center
for Colloid and Surface Science, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Heiko Lange
- CSGI—Center
for Colloid and Surface Science, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Department
of Earth and Environmental Sciences, University
of Milan-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Luc Zongo
- University
of Rome “Tor Vergata”, Department of Chemical Science
and Technologies, Via
della Ricerca Scientifica, 00133 Rome, Italy
| | - Claudia Crestini
- CSGI—Center
for Colloid and Surface Science, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- University
of Venice “Ca” Foscari’, Department of Molecular
Science and Nanosystems, Via Torino 155, 30170 Venice Mestre, Italy
| |
Collapse
|
35
|
Kiryukhin MV, Lim SH, Lau HH, Antipina M, Khin YW, Chia CY, Harris P, Weeks M, Berry C, Hurford D, Wallace O, Broadhurst M, Ridgway CJ, Schoelkopf J. Surface-reacted calcium carbonate microparticles as templates for lactoferrin encapsulation. J Colloid Interface Sci 2021; 594:362-371. [PMID: 33774393 DOI: 10.1016/j.jcis.2021.03.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/01/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Microencapsulation helps to improve bioavailability of a functional whey protein, lactoferrin (Lf), in adults. Herein, we report the Lf loading capacity (LC) and retention efficiency (RE) in the microparticles of surface-reacted calcium carbonate (SRCC) of different types and compare them to those of widely used vaterite microparticles. The LCs and REs are analyzed in connection to the total surface area and the volume of intraparticle pores. The best performing SRCC3 demonstrates Lf LC of 11.00 wt% achieved in a single absorption step and 74% RE after two cycles of washing with deionized water. A much larger surface area of SRCC templates and a lower pH required to release Lf do not affect its antitumor activity in MCF-7 assay. Layer-by-Layer assembly of pepsin-tannic acid multilayer shell around Lf-loaded microparticles followed by acidic decomposition of the inorganic core produces microencapsulated Lf with a yield ~36 times higher than from vaterite templates reported earlier, while the scale of encapsulated Lf production is ~12,000 times larger. In vitro digestion tests demonstrate the protection of ~65% of encapsulated Lf from gastric digestion. The developed capsules are prospective candidates for functional foods fortified with Lf.
Collapse
Affiliation(s)
- Maxim V Kiryukhin
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore 138669, Singapore; Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, 08-03, Singapore 138634, Singapore.
| | - Su Hui Lim
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore 138669, Singapore; Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, 08-03, Singapore 138634, Singapore
| | - Hooi Hong Lau
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, 08-03, Singapore 138634, Singapore
| | - Maria Antipina
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore 138669, Singapore; Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, 08-03, Singapore 138634, Singapore
| | - Yin Win Khin
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, 08-03, Singapore 138634, Singapore
| | - Cheryl Yingxue Chia
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore 138669, Singapore
| | - Paul Harris
- AgResearch Limited, Ruakura Research Centre, East Street, Private Bag 3123, Hamilton, New Zealand
| | - Mike Weeks
- AgResearch Limited, Ruakura Research Centre, East Street, Private Bag 3123, Hamilton, New Zealand
| | - Carole Berry
- AgResearch Limited, Ruakura Research Centre, East Street, Private Bag 3123, Hamilton, New Zealand
| | - Daralyn Hurford
- AgResearch Limited, Ruakura Research Centre, East Street, Private Bag 3123, Hamilton, New Zealand
| | - Olivia Wallace
- AgResearch Limited, Ruakura Research Centre, East Street, Private Bag 3123, Hamilton, New Zealand
| | - Marita Broadhurst
- AgResearch Limited, Ruakura Research Centre, East Street, Private Bag 3123, Hamilton, New Zealand
| | - Cathy J Ridgway
- Omya International AG, Baslerstrasse 42, CH-4665 Oftringen, Switzerland
| | | |
Collapse
|
36
|
Guo Y, Sun Q, Wu FG, Dai Y, Chen X. Polyphenol-Containing Nanoparticles: Synthesis, Properties, and Therapeutic Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007356. [PMID: 33876449 DOI: 10.1002/adma.202007356] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Polyphenols, the phenolic hydroxyl group-containing organic molecules, are widely found in natural plants and have shown beneficial effects on human health. Recently, polyphenol-containing nanoparticles have attracted extensive research attention due to their antioxidation property, anticancer activity, and universal adherent affinity, and thus have shown great promise in the preparation, stabilization, and modification of multifunctional nanoassemblies for bioimaging, therapeutic delivery, and other biomedical applications. Additionally, the metal-polyphenol networks, formed by the coordination interactions between polyphenols and metal ions, have been used to prepare an important class of polyphenol-containing nanoparticles for surface modification, bioimaging, drug delivery, and disease treatments. By focusing on the interactions between polyphenols and different materials (e.g., metal ions, inorganic materials, polymers, proteins, and nucleic acids), a comprehensive review on the synthesis and properties of the polyphenol-containing nanoparticles is provided. Moreover, the remarkable versatility of polyphenol-containing nanoparticles in different biomedical applications, including biodetection, multimodal bioimaging, protein and gene delivery, bone repair, antibiosis, and cancer theranostics is also demonstrated. Finally, the challenges faced by future research regarding the polyphenol-containing nanoparticles are discussed.
Collapse
Affiliation(s)
- Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Qing Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yunlu Dai
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
37
|
Zongo L, Lange H, Crestini C. Sulfited Tannin Capsules: Novel Stimuli-Responsive Delivery Systems. ACS OMEGA 2021; 6:13192-13203. [PMID: 34056469 PMCID: PMC8158821 DOI: 10.1021/acsomega.1c01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Microcapsules of sulfited Acacia mearnsii tannin (AmST-MCs) were generated for the first time via the sonochemical method. Their stability profile was assessed and set in the general context of tannin microcapsules (TMCs) generated under the same experimental conditions. The analytical data gathered in this work indicate an excellent stability of TMCs over time as well as under high temperature and pressure, which is a major milestone toward the meaningful applications of TMCs in industrial, pharmaceutical, and biomedical applications in which sterilization of TMCs might be a prerequisite. Active release is shown to be efficiently triggered by varying pH and/or salinity, with different profiles for TMCs from sulfited and nonsulfited species. Surfactants also affect the stability of TMCs significantly, with effects eventually amplifiable by pH and the inherent kosmotropic and chaotropic characteristics of salt components in solutions.
Collapse
Affiliation(s)
- Luc Zongo
- Department
of Chemical Science and Technologies, University
of Rome “Tor Vergata”, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Heiko Lange
- Department
of Earth and Environmental Sciences, University
of Milano-Bicocca, Piazza della Scienza 1, Milan 20126, Italy
- CSGI
− Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Claudia Crestini
- CSGI
− Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
- Department
of Molecular Science and Nanosystems, University
of Venice “Ca’ Foscari”, Via Torino 155, Venice Mestre 30170, Italy
| |
Collapse
|
38
|
Zhang Q, Feng Z, Wang H, Su C, Lu Z, Yu J, Dushkin AV, Su W. Preparation of camptothecin micelles self-assembled from disodium glycyrrhizin and tannic acid with enhanced antitumor activity. Eur J Pharm Biopharm 2021; 164:75-85. [PMID: 33878433 DOI: 10.1016/j.ejpb.2021.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022]
Abstract
Natural compounds as carriers for hydrophobic drugs have been increasingly used in drug delivery systems. In this study, disodium glycyrrhizin (Na2GA), tannic acid (TA) and camptothecin (CPT) were firstly used to prepare the camptothecin solid dispersion (CPT SD). When dissolved in a solution medium, Na2GA self-assembled to form micelles and CPT was encapsulated in micelles, meanwhile, TA connected with Na2GA through hydrogen bonds to form a contract shell. The average diameter of the CPT-loaded micelles is 80 nm with the critical micellar concentration of 0.303 mg/mL, the zeta potential of -33 mV, the PDI of 0.25 and drug loading 6.22%. In vitro experiments confirmed that the drug-loaded micelles exhibited excellent stability and permeability in the intestinal environment. Furthermore, the formulation showed excellent anti-tumor activity in vitro and in vivo. These findings imply that this nano-micelles provide a more potential and efficacious oral drug formulation for chemotherapy.
Collapse
Affiliation(s)
- Qihong Zhang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zongmiao Feng
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Hui Wang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chen Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhaohui Lu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jingbo Yu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Alexandr V Dushkin
- Institute of Solid State Chemistry and Mechanochemistry, Novosibirsk, Russia
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
39
|
Du J, Wang L, Han X, Dou J, Yuan J, Shen J. Keratin-tannic acid complex nanoparticles as pH/GSH dual responsive drug carriers for doxorubicin. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1125-1139. [PMID: 33739232 DOI: 10.1080/09205063.2021.1906074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Drug-loaded nanoparticles have been widely used in the field of tumor treatment due to their low side effects and reduced frequency of administration. In this study, pH and glutathione (GSH) dual-responsive keratin-tannic acid (TA) complex nanoparticles were established to trigger drug release under tumor microenvironments. Reductive keratin was first extracted using a reduction method. Then, keratin-TA complex nanoparticles (KNPs) were self-assembled via non-covalent interaction and further stabilized by self-crosslinking of thiols. This method was facile and green without chemicals during the whole procedure. KNPs exhibited pH and GSH dual responsiveness as well as charge reversibility in the simulated tumor microenvironment. The anticancer drug of doxorubicin (DOX) was loaded on KNPs by hydrophobicity and hydrogen bonds. Drug-loaded KNPs accelerated drug release under mimicked tumor microenvironments, performing high toxic against A549 cells while low toxic on normal cells. Besides, drug-loaded nanoparticles could be endocytosed by tumor cells. Based on these results, KNPs may serve as drug carriers for therapeutic delivery.
Collapse
Affiliation(s)
- Jinsong Du
- Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, P.R. China
| | - Lijuan Wang
- Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, P.R. China
| | - Xiao Han
- Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, P.R. China
| | - Jie Dou
- Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, P.R. China
| | - Jiang Yuan
- Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, P.R. China
| | - Jian Shen
- Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, P.R. China
| |
Collapse
|
40
|
Cometta S, Bock N, Suresh S, Dargaville TR, Hutmacher DW. Antibacterial Albumin-Tannic Acid Coatings for Scaffold-Guided Breast Reconstruction. Front Bioeng Biotechnol 2021; 9:638577. [PMID: 33869154 PMCID: PMC8044405 DOI: 10.3389/fbioe.2021.638577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Infection is the major cause of morbidity after breast implant surgery. Biodegradable medical-grade polycaprolactone (mPCL) scaffolds designed and rooted in evidence-based research offer a promising alternative to overcome the limitations of routinely used silicone implants for breast reconstruction. Nevertheless, as with any implant, biodegradable scaffolds are susceptible to bacterial infection too, especially as bacteria can rapidly colonize the biomaterial surface and form biofilms. Biofilm-related infections are notoriously challenging to treat and can lead to chronic infection and persisting inflammation of surrounding tissue. To date, no clinical solution that allows to efficiently prevent bacterial infection while promoting correct implant integration, has been developed. In this study, we demonstrated for the first time, to our knowledge that the physical immobilization of 1 and 5% human serum albumin (HSA) onto the surface of 3D printed macro- and microporous mPCL scaffolds, resulted in a reduction of Staphylococcus aureus colonization by 71.7 ± 13.6% and 54.3 ± 12.8%, respectively. Notably, when treatment of scaffolds with HSA was followed by tannic acid (TA) crosslinking/stabilization, uniform and stable coatings with improved antibacterial activity were obtained. The HSA/TA-coated scaffolds were shown to be stable when incubated at physiological conditions in cell culture media for 7 days. Moreover, they were capable of inhibiting the growth of S. aureus and Pseudomonas aeruginosa, two most commonly found bacteria in breast implant infections. Most importantly, 1%HSA/10%TA- and 5%HSA/1%TA-coated scaffolds were able to reduce S. aureus colonization on the mPCL surface, by 99.8 ± 0.1% and 98.8 ± 0.6%, respectively, in comparison to the non-coated control specimens. This system offers a new biomaterial strategy to effectively translate the prevention of biofilm-related infections on implant surfaces without relying on the use of prophylactic antibiotic treatment.
Collapse
Affiliation(s)
- Silvia Cometta
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nathalie Bock
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Brisbane, QLD, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sinduja Suresh
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia.,ARC Industrial Transformation Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Queensland University of Technology, Brisbane, QLD, Australia
| | - Tim R Dargaville
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia
| | - Dietmar W Hutmacher
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia.,ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
41
|
Zhou J, Wu Y, Zhang X, Lai J, Li Y, Xing J, Teng L, Chen J. Enzyme Catalyzed Hydrogel as Versatile Bioadhesive for Tissue Wound Hemostasis, Bonding, and Continuous Repair. Biomacromolecules 2021; 22:1346-1356. [PMID: 33657790 DOI: 10.1021/acs.biomac.0c01329] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Developing a versatile bioadhesive which is biocompatible, adhesive, hemostatic, and therapeutic is of great significance to promote wound sealing and healing. Herein, an adhesive (GTT-3 hydrogel) is fabricated by catalysis of tannic acid modified gelatin (Gel-TA) with transglutaminase (TG). The hydrogen bonding, imine linking, and acyl-transfer reaction between GTT-3 hydrogel and tissue enable efficient hydrogel integration and adhesion to tissue instantly, so as to seal the wound and stop bleeding. Moreover, the intrinsic wound healing ability of gelatin and the antibacterial properties of TA provide favorable conditions for wound healing after adhesion. In vitro mechanical property testing and cell experimental results determine the elasticity, adhesion, and biocompatibility of the GTT-3 hydrogel. The wound operation in mouse models and pathological sectioning results indicate that GTT-3 adhesive obviously accelerates hemostasis, wound bonding, and healing. With the special property of instant adhesion and excellent hemostatic and therapeutic repair effects, GTT-3 hydrogel may provide a new option for surgical operation.
Collapse
Affiliation(s)
- Juan Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Yanzhe Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Xihe Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Jiahui Lai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Yuanli Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Jian Xing
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Liping Teng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
42
|
Qiao Z, Lv X, He S, Bai S, Liu X, Hou L, He J, Tong D, Ruan R, Zhang J, Ding J, Yang H. A mussel-inspired supramolecular hydrogel with robust tissue anchor for rapid hemostasis of arterial and visceral bleedings. Bioact Mater 2021; 6:2829-2840. [PMID: 33718665 PMCID: PMC7905459 DOI: 10.1016/j.bioactmat.2021.01.039] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/18/2021] [Accepted: 01/30/2021] [Indexed: 01/29/2023] Open
Abstract
In recent years, the developed hemostatic technologies are still difficult to be applied to the hemostasis of massive arterial and visceral hemorrhage, owing to their weak hemostatic function, inferior wet tissue adhesion, and low mechanical properties. Herein, a mussel-inspired supramolecular interaction-cross-linked hydrogel with robust mechanical property (308.47 ± 29.20 kPa) and excellent hemostatic efficiency (96.5% ± 2.1%) was constructed as a hemostatic sealant. Typically, we combined chitosan (CS) with silk fibroin (SF) by cross-linking them through tannic acid (TA) to maintain the structural stability of the hydrogel, especially for wet tissue adhesion ability (shear adhesive strength = 29.66 ± 0.36 kPa). Compared with other materials reported previously, the obtained CS/TA/SF hydrogel yielded a lower amount of blood loss and shorter time to hemostasis in various arterial and visceral bleeding models, which could be ascribed to the synergistic effect of wound closure under wet state as well as intrinsic hemostatic activity of CS. As a superior hemostatic sealant, the unique hydrogel proposed in this work can be exploited to offer significant advantages in the acute wound and massive hemorrhage with the restrictive access of therapeutic moieties.
Collapse
Affiliation(s)
- Ziwen Qiao
- Qingyuan Innovation Laboratory, College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Xueli Lv
- College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Shaohua He
- Department of Pediatric Surgery, Fujian Provincial Hospital, 134 Dongjie Road, Fuzhou, 350001, PR China
| | - Shumeng Bai
- College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Xiaochen Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Linxi Hou
- Qingyuan Innovation Laboratory, College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Jingjing He
- Qingyuan Innovation Laboratory, College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Dongmei Tong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Renjie Ruan
- Qingyuan Innovation Laboratory, College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Jin Zhang
- Qingyuan Innovation Laboratory, College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| |
Collapse
|
43
|
Novoselova MV, German SV, Abakumova TO, Perevoschikov SV, Sergeeva OV, Nesterchuk MV, Efimova OI, Petrov KS, Chernyshev VS, Zatsepin TS, Gorin DA. Multifunctional nanostructured drug delivery carriers for cancer therapy: Multimodal imaging and ultrasound-induced drug release. Colloids Surf B Biointerfaces 2021; 200:111576. [PMID: 33508660 DOI: 10.1016/j.colsurfb.2021.111576] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/03/2020] [Accepted: 01/10/2021] [Indexed: 12/21/2022]
Abstract
Development of multimodal systems for therapy and diagnosis of neoplastic diseases is an unmet need in oncology. The possibility of simultaneous diagnostics, monitoring, and therapy of various diseases allows expanding the applicability of modern systems for drug delivery. We have developed hybrid particles based on biocompatible polymers containing magnetic nanoparticles (MNPs), photoacoustic (MNPs), fluorescent (Cy5 or Cy7 dyes), and therapeutic components (doxorubicin). To achieve high loading efficiency of MNP and Dox to nanostructured carriers, we utilized a novel freezing-induced loading technique. To reduce the systemic toxicity of antitumor drugs and increase their therapeutic efficacy, we can use targeted delivery followed by the remote control of drug release using high intensity-focused ultrasound (HIFU). Loading of MNPs allowed performing magnetic targeting of the carriers and enhanced optoacoustic signal after controlled destruction of the shell and release of therapeutics as well as MRI imaging. The raster scanning optoacoustic mesoscopy (PA, RSOM), MRI, and fluorescent tomography (FT) confirmed the ultrasound-induced release of doxorubicin from capsules: in vitro (in tubes and pieces of meat) and in vivo (after delivery to the liver). Disruption of capsules results in a significant increase of doxorubicin and Cy7 fluorescence initially quenched by magnetite nanoparticles that can be used for real-time monitoring of drug release in vivo. In addition, we explicitly studied cytotoxicity, intracellular localization, and biodistribution of these particles. Elaborated drug delivery carriers have a good perspective for simultaneous imaging and focal therapy of different cancer types, including liver cancer.
Collapse
Affiliation(s)
- Marina V Novoselova
- Skolkovo Institute of Science and Technology, 30b1 Bolshoy Boulevard, Moscow, 121205, Russia.
| | - Sergei V German
- Skolkovo Institute of Science and Technology, 30b1 Bolshoy Boulevard, Moscow, 121205, Russia; Institute of Spectroscopy of the Russian Academy of Sciences, 5 Fizicheskaya Street, 108840, Moscow, Russia
| | - Tatiana O Abakumova
- Skolkovo Institute of Science and Technology, 30b1 Bolshoy Boulevard, Moscow, 121205, Russia
| | | | - Olga V Sergeeva
- Skolkovo Institute of Science and Technology, 30b1 Bolshoy Boulevard, Moscow, 121205, Russia
| | - Mikhail V Nesterchuk
- Skolkovo Institute of Science and Technology, 30b1 Bolshoy Boulevard, Moscow, 121205, Russia
| | - Olga I Efimova
- Skolkovo Institute of Science and Technology, 30b1 Bolshoy Boulevard, Moscow, 121205, Russia
| | - Kirill S Petrov
- Hadassah Medical Center, 46 Bolshoy Boulevard, Moscow, 121205, Russia
| | - Vasiliy S Chernyshev
- Skolkovo Institute of Science and Technology, 30b1 Bolshoy Boulevard, Moscow, 121205, Russia
| | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology, 30b1 Bolshoy Boulevard, Moscow, 121205, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology, 30b1 Bolshoy Boulevard, Moscow, 121205, Russia
| |
Collapse
|
44
|
Kopach O, Pavlov AM, Sindeeva OA, Sukhorukov GB, Rusakov DA. Biodegradable Microcapsules Loaded with Nerve Growth Factor Enable Neurite Guidance and Synapse Formation. Pharmaceutics 2020; 13:E25. [PMID: 33375672 PMCID: PMC7823884 DOI: 10.3390/pharmaceutics13010025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Neurological disorders and traumas often involve loss of specific neuronal connections, which would require intervention with high spatial precision. We have previously demonstrated the biocompatibility and therapeutic potential of the layer-by-layer (LbL)-fabricated microcapsules aimed at the localized delivery of specific channel blockers to peripheral nerves. Here, we explore the potential of LbL-microcapsules to enable site-specific, directional action of neurotrophins to stimulate neuronal morphogenesis and synaptic circuit formation. We find that nanoengineered biodegradable microcapsules loaded with nerve growth factor (NGF) can guide the morphological development of hippocampal neurons in vitro. The presence of NGF-loaded microcapsules or their clusters increases the neurite outgrowth rate while boosting neurite branching. Microcapsule clusters appear to guide the trajectory of developing individual axons leading to the formation of functional synapses. Our observations highlight the potential of NGF-loaded, biodegradable LbL-microcapsules to help guide axonal development and possibly circuit regeneration in neuropathology.
Collapse
Affiliation(s)
- Olga Kopach
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Anton M. Pavlov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK; (A.M.P.); (O.A.S.)
- Remote Controlled Theranostic Systems Laboratory, Saratov State University, 83 Astrakhanskaya Street, 410012 Saratov, Russia
| | - Olga A. Sindeeva
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK; (A.M.P.); (O.A.S.)
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143005 Moscow, Russia
| | - Gleb B. Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK; (A.M.P.); (O.A.S.)
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143005 Moscow, Russia
| | - Dmitri A. Rusakov
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
45
|
Kozlovskaya V, Alford A, Dolmat M, Ducharme M, Caviedes R, Radford L, Lapi SE, Kharlampieva E. Multilayer Microcapsules with Shell-Chelated 89Zr for PET Imaging and Controlled Delivery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56792-56804. [PMID: 33306342 DOI: 10.1021/acsami.0c17456] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Radionuclide-functionalized drug delivery vehicles capable of being imaged via positron emission tomography (PET) are of increasing interest in the biomedical field as they can reveal the in vivo behavior of encapsulated therapeutics with high sensitivity. However, the majority of current PET-guided theranostic agents suffer from poor retention of radiometal over time, low drug loading capacities, and time-limited PET imaging capability. To overcome these challenges, we have developed hollow microcapsules with a thin (<100 nm) multilayer shell as advanced theranostic delivery systems for multiday PET tracking in vivo. The 3 μm capsules were fabricated via the aqueous multilayer assembly of a natural antioxidant, tannic acid (TA), and a poly(N-vinylpyrrolidone) (PVPON) copolymer containing monomer units functionalized with deferoxamine (DFO) to chelate the 89Zr radionuclide, which has a half-life of 3.3 days. We have found using radiochromatography that (TA/PVPON-DFO)6 capsules retained on average 17% more 89Zr than their (TA/PVPON)6 counterparts, which suggests that the covalent attachment of the DFO to PVPON provides stable 89Zr chelation. In vivo PET imaging studies performed in mice demonstrated that excellent stability and imaging contrast were still present 7 days postinjection. Animal biodistribution analyses showed that capsules primarily accumulated in the spleen, liver, and lungs with negligible accumulation in the femur, with the latter confirming the stable binding of the radiotracer to the capsule walls. The application of therapeutic ultrasound (US) (60 s of 20 kHz US at 120 W cm-2) to Zr-functionalized capsules could release the hydrophilic anticancer drug doxorubicin from the capsules in the therapeutic amounts. Polymeric capsules with the capability of extended in vivo PET-based tracking and US-induced drug release provide an advanced platform for development of precision-targeted therapeutic carriers and could aid in the development of more effective drug delivery systems.
Collapse
Affiliation(s)
- Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Center for Nanomaterials and Biointegration, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Aaron Alford
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Maksim Dolmat
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Maxwell Ducharme
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Racquel Caviedes
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Lauren Radford
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Center for Nanomaterials and Biointegration, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
46
|
Koopmann AK, Schuster C, Torres-Rodríguez J, Kain S, Pertl-Obermeyer H, Petutschnigg A, Hüsing N. Tannin-Based Hybrid Materials and Their Applications: A Review. Molecules 2020; 25:E4910. [PMID: 33114152 PMCID: PMC7660623 DOI: 10.3390/molecules25214910] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/29/2022] Open
Abstract
Tannins are eco-friendly, bio-sourced, natural, and highly reactive polyphenols. In the past decades, the understanding of their versatile properties has grown substantially alongside a continuously broadening of the tannins' application scope. In particular, recently, tannins have been increasingly investigated for their interaction with other species in order to obtain tannin-based hybrid systems that feature advanced and/or novel properties. Furthermore, in virtue of the tannins' chemistry and their high reactivity, they either physicochemically or physically interact with a wide variety of different compounds, including metals and ceramics, as well as a number of organic species. Such hybrid or hybrid-like systems allow the preparation of various advanced nanomaterials, featuring improved performances compared to the current ones. Consequently, these diverse-shaped materials have potential use in wastewater treatment or catalysis, as well as in some novel fields such as UV-shielding, functional food packaging, and biomedicine. Since these kinds of tannin-based hybrids represent an emerging field, thus far no comprehensive overview concerning their potential as functional chemical building blocks is available. Hence, this review aims to provide a structured summary of the current state of research regarding tannin-based hybrids, detailed findings on the chemical mechanisms as well as their fields of application.
Collapse
Affiliation(s)
- Ann-Kathrin Koopmann
- Salzburg Center for Smart Materials, Jakob-Haringer-Straße 2a, 5020 Salzburg, Austria; (A.-K.K.); (C.S.); (J.T.-R.); (S.K.); (H.P.-O.); (A.P.)
- Department of Chemistry and Physics of Materials, Paris-Lodron-University Salzburg, Jakob-Haringer-Straße 2A, 5020 Salzburg, Austria
| | - Christian Schuster
- Salzburg Center for Smart Materials, Jakob-Haringer-Straße 2a, 5020 Salzburg, Austria; (A.-K.K.); (C.S.); (J.T.-R.); (S.K.); (H.P.-O.); (A.P.)
- Department of Chemistry and Physics of Materials, Paris-Lodron-University Salzburg, Jakob-Haringer-Straße 2A, 5020 Salzburg, Austria
| | - Jorge Torres-Rodríguez
- Salzburg Center for Smart Materials, Jakob-Haringer-Straße 2a, 5020 Salzburg, Austria; (A.-K.K.); (C.S.); (J.T.-R.); (S.K.); (H.P.-O.); (A.P.)
- Department of Chemistry and Physics of Materials, Paris-Lodron-University Salzburg, Jakob-Haringer-Straße 2A, 5020 Salzburg, Austria
| | - Stefan Kain
- Salzburg Center for Smart Materials, Jakob-Haringer-Straße 2a, 5020 Salzburg, Austria; (A.-K.K.); (C.S.); (J.T.-R.); (S.K.); (H.P.-O.); (A.P.)
- Forest Products Technology & Timber Constructions Department, Salzburg University of Applied Sciences, Markt 136a, 5431 Kuchl, Austria
| | - Heidi Pertl-Obermeyer
- Salzburg Center for Smart Materials, Jakob-Haringer-Straße 2a, 5020 Salzburg, Austria; (A.-K.K.); (C.S.); (J.T.-R.); (S.K.); (H.P.-O.); (A.P.)
- Department of Chemistry and Physics of Materials, Paris-Lodron-University Salzburg, Jakob-Haringer-Straße 2A, 5020 Salzburg, Austria
- Forest Products Technology & Timber Constructions Department, Salzburg University of Applied Sciences, Markt 136a, 5431 Kuchl, Austria
| | - Alexander Petutschnigg
- Salzburg Center for Smart Materials, Jakob-Haringer-Straße 2a, 5020 Salzburg, Austria; (A.-K.K.); (C.S.); (J.T.-R.); (S.K.); (H.P.-O.); (A.P.)
- Forest Products Technology & Timber Constructions Department, Salzburg University of Applied Sciences, Markt 136a, 5431 Kuchl, Austria
| | - Nicola Hüsing
- Salzburg Center for Smart Materials, Jakob-Haringer-Straße 2a, 5020 Salzburg, Austria; (A.-K.K.); (C.S.); (J.T.-R.); (S.K.); (H.P.-O.); (A.P.)
- Department of Chemistry and Physics of Materials, Paris-Lodron-University Salzburg, Jakob-Haringer-Straße 2A, 5020 Salzburg, Austria
| |
Collapse
|
47
|
Kiryukhin MV, Lau HH, Lim SH, Salgado G, Fan C, Ng YZ, Leavesley DI, Upton Z. Arrays of Biocompatible and Mechanically Robust Microchambers Made of Protein-Polyphenol-Clay Multilayer Films. ACS Biomater Sci Eng 2020; 6:5653-5661. [PMID: 33320583 DOI: 10.1021/acsbiomaterials.0c00973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is a growing demand for biocompatible and mechanically robust arrays of microcompartments loaded with minute amounts of active substances for sensing or controlled release applications. Here we report on a novel biocompatible composite material, protein-polyphenol-clay (PPC) multilayer film. The material is shown to be strong enough to make robust microchambers retaining the shape and dimensions of truncated square pyramids. We study the mechanical properties and biocompatibility of the PPC microchambers and compare them to those made of synthetic polyelectrolyte multilayer film, poly(styrenesulfonate)-poly(allylammonium) (PSS-PAH). The mechanical properties of the microchambers were characterized under uniaxial compression using nanoindentation with a flat-punch tip. The effective Young's modulus of PPC microchambers, 166 ± 53 MPa, is found to be lower than that of PSS-PAH microchambers, 245 ± 52 MPa. However, the capacity to elastically absorb the energy of the former, 2.4 ± 1.0 MPa, is marginally higher than of the latter, 2.0 ± 1.3 MPa. Arrays of microchambers were sealed onto a polyethylene film, loaded with a model oil-soluble drug, and their biocompatibility was tested using an ex vivo 3D human skin reconstruct model. We found no evidence for toxicity with the PPC microchambers; however, PSS-PAH microchambers stimulated reduced cell density in the epidermis and significantly affected epidermal-dermal attachment. Both materials do not alter skin cell proliferation but affect skin cell differentiation. We interpret that rather than affecting epidermal barrier function, these data suggest the applied plastic films with microchamber arrays affect transpiration, normoxia, and moisture exchange.
Collapse
Affiliation(s)
- Maxim V Kiryukhin
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Hooi Hong Lau
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Su Hui Lim
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Giorgiana Salgado
- Skin Research Institute of Singapore, A*STAR, 11 Mandalay Road, #17-01, Singapore 308232
| | - Chen Fan
- Skin Research Institute of Singapore, A*STAR, 11 Mandalay Road, #17-01, Singapore 308232
| | - Yi Zhen Ng
- Skin Research Institute of Singapore, A*STAR, 11 Mandalay Road, #17-01, Singapore 308232
| | - David I Leavesley
- Skin Research Institute of Singapore, A*STAR, 11 Mandalay Road, #17-01, Singapore 308232
| | - Zee Upton
- Skin Research Institute of Singapore, A*STAR, 11 Mandalay Road, #17-01, Singapore 308232
| |
Collapse
|
48
|
Kastania G, Campbell J, Mitford J, Volodkin D. Polyelectrolyte Multilayer Capsule (PEMC)-Based Scaffolds for Tissue Engineering. MICROMACHINES 2020; 11:E797. [PMID: 32842692 PMCID: PMC7570195 DOI: 10.3390/mi11090797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022]
Abstract
Tissue engineering (TE) is a highly multidisciplinary field that focuses on novel regenerative treatments and seeks to tackle problems relating to tissue growth both in vitro and in vivo. These issues currently involve the replacement and regeneration of defective tissues, as well as drug testing and other related bioapplications. The key approach in TE is to employ artificial structures (scaffolds) to support tissue development; these constructs should be capable of hosting, protecting and releasing bioactives that guide cellular behaviour. A straightforward approach to integrating bioactives into the scaffolds is discussed utilising polyelectrolyte multilayer capsules (PEMCs). Herein, this review illustrates the recent progress in the use of CaCO3 vaterite-templated PEMCs for the fabrication of functional scaffolds for TE applications, including bone TE as one of the main targets of PEMCs. Approaches for PEMC integration into scaffolds is addressed, taking into account the formulation, advantages, and disadvantages of such PEMCs, together with future perspectives of such architectures.
Collapse
Affiliation(s)
| | | | | | - Dmitry Volodkin
- School of Science and Technology, Department of Chemistry and Forensics, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK; (G.K.); (J.C.); (J.M.)
| |
Collapse
|
49
|
Encapsulation of Low-Molecular-Weight Drugs into Polymer Multilayer Capsules Templated on Vaterite CaCO 3 Crystals. MICROMACHINES 2020; 11:mi11080717. [PMID: 32722123 PMCID: PMC7463826 DOI: 10.3390/mi11080717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022]
Abstract
Polyelectrolyte multilayer capsules (PEMCs) templated onto biocompatible and easily degradable vaterite CaCO3 crystals via the layer-by-layer (LbL) polymer deposition process have served as multifunctional and tailor-made vehicles for advanced drug delivery. Since the last two decades, the PEMCs were utilized for effective encapsulation and controlled release of bioactive macromolecules (proteins, nucleic acids, etc.). However, their capacity to host low-molecular-weight (LMW) drugs (<1–2 kDa) has been demonstrated rather recently due to a limited retention ability of multilayers to small molecules. The safe and controlled delivery of LMW drugs plays a vital role for the treatment of cancers and other diseases, and, due to their tunable and inherent properties, PEMCs have shown to be good candidates for smart drug delivery. Herein, we summarize recent progress on the encapsulation of LMW drugs into PEMCs templated onto vaterite CaCO3 crystals. The drug loading and release mechanisms, advantages and limitations of the PEMCs as LMW drug carriers, as well as bio-applications of drug-laden capsules are discussed based upon the recent literature findings.
Collapse
|
50
|
Zyuzin MV, Antuganov D, Tarakanchikova YV, Karpov TE, Mashel TV, Gerasimova EN, Peltek OO, Alexandre N, Bruyere S, Kondratenko YA, Muslimov AR, Timin AS. Radiolabeling Strategies of Micron- and Submicron-Sized Core-Shell Carriers for In Vivo Studies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31137-31147. [PMID: 32551479 DOI: 10.1021/acsami.0c06996] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Core-shell particles made of calcium carbonate and coated with biocompatible polymers using the Layer-by-Layer technique can be considered as a unique drug-delivery platform that enables us to load different therapeutic compounds, exhibits a high biocompatibility, and can integrate several stimuli-responsive mechanisms for drug release. However, before implementation for diagnostic or therapeutic purposes, such core-shell particles require a comprehensive in vivo evaluation in terms of physicochemical and pharmacokinetic properties. Positron emission tomography (PET) is an advanced imaging technique for the evaluation of in vivo biodistribution of drug carriers; nevertheless, an incorporation of positron emitters in these carriers is needed. Here, for the first time, we demonstrate the radiolabeling approaches of calcium carbonate core-shell particles with different sizes (CaCO3 micron-sized core-shell particles (MicCSPs) and CaCO3 submicron-sized core-shell particles (SubCSPs)) to precisely determine their in vivo biodistribution after intravenous administration in rats. For this, several methods of radiolabeling have been developed, where the positron emitter (68Ga) was incorporated into the particle's core (co-precipitation approach) or onto the surface of the shell (either layer coating or adsorption approaches). According to the obtained data, radiochemical bounding and stability of 68Ga strongly depend on the used radiolabeling approach, and the co-precipitation method has shown the best radiochemical stability in human serum (96-98.5% for both types of core-shell particles). Finally, we demonstrate the size-dependent effect of core-shell particles' distribution on the specific organ uptake, using a combination of imaging techniques, PET, and computerized tomography (CT), as well as radiometry of separate organs. Thus, our findings open up new perspectives of CaCO3-radiolabeled core-shell particles for their further implementation into clinical practice.
Collapse
Affiliation(s)
- Mikhail V Zyuzin
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
- Department of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| | - Dmitrii Antuganov
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
| | - Yana V Tarakanchikova
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
- Nanobiotechnology Laboratory, St. Petersburg Academic University, St. Petersburg 194021, Russian Federation
| | - Timofey E Karpov
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Tatiana V Mashel
- Department of Applied Optics, ITMO University, Grivtsova 14-16, St. Petersburg 190000, Russian Federation
| | - Elena N Gerasimova
- Department of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| | - Oleksii O Peltek
- Department of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| | - Nominé Alexandre
- Department of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
- Universite de Lorraine CNRS, Institut Jean Lamour, F-54000 Nancy, France
| | - Stéphanie Bruyere
- Universite de Lorraine CNRS, Institut Jean Lamour, F-54000 Nancy, France
| | - Yulia A Kondratenko
- Laboratory of Organosilicon Compounds and Materials, Grebenshchikov Institute of Silicate Chemistry RAS, nab. Makarova, 2, St. Petersburg 199034, Russia
| | - Albert R Muslimov
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
- Nanobiotechnology Laboratory, St. Petersburg Academic University, St. Petersburg 194021, Russian Federation
| | - Alexander S Timin
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
| |
Collapse
|