1
|
He G, Liu W, Liu Y, Wei S, Yue Y, Dong L, Yu L. Antifouling hydrogel with different mechanisms:Antifouling mechanisms, materials, preparations and applications. Adv Colloid Interface Sci 2024; 335:103359. [PMID: 39591834 DOI: 10.1016/j.cis.2024.103359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/23/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
Biofouling is a long-standing problem for biomedical devices, membranes and marine equipment. Eco-friendly hydrogels show great potential for antifouling applications due to their unique antifouling characteristics. However, a single antifouling mechanism cannot meet a wider practical application of antifouling hydrogels, combined with multiple antifouling mechanisms, the various antifouling advantages can be played, as well as the antifouling performance and service life of antifouling hydrogel can be improved. For the construction of the antifouling hydrogel with multiple antifouling mechanisms, the antifouling mechanisms that have been used in antifouling hydrogels should be analyzed. Hence, this review focus on five major antifouling mechanisms used in antifouling hydrogel: hydration layer, elastic modulus, antifoulant modification, micro/nanostructure and self-renewal surface construction. The methods of exerting the above antifouling mechanisms in hydrogels and the materials of preparing antifouling hydrogel are introduced. Finally, the development of antifouling hydrogel in biomedical materials, membrane and marine related field is summarized, and the existing problems as well as the future trend of antifouling hydrogel are discussed. This review provides reasonable guidance for the future and application of the construction of antifouling hydrogels with multiple antifouling mechanisms.
Collapse
Affiliation(s)
- Guangling He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Wenyan Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yuhua Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shuqing Wei
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yuhao Yue
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Lei Dong
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China; Sanya Oceanographic Laboratory, Sanya 572024, China.
| |
Collapse
|
2
|
Liu X, Yang Y, Song S, Zhang R, Zhang C, Yang S, Liu Y, Song Y. Lignosulfonate-doped polyaniline-reinforced poly(vinyl alcohol) hydrogels as highly sensitive, antimicrobial, and UV-resistant multifunctional sensors. Int J Biol Macromol 2024; 280:135959. [PMID: 39317288 DOI: 10.1016/j.ijbiomac.2024.135959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
Flexible wearable strain sensors exist the advantages of high resolution, lightweight, wide measurement range, which have unlimited potential in fields such as soft robotics, electronic skin, and artificial intelligence. However, current flexible sensors based on hydrogels still have some defects, including poor mechanical properties, self-adhesive properties and bacteriostatic properties. In this study, A conductive hydrogel Sodium Ligninsulfonate (LGS)@PANI-Ag-poly(vinyl alcohol) (PVA) hydrogels consisting of lignosulfonate-doped polyaniline (LGS@PANI), silver nitrate, and PVA interactions were designed and prepared for sensing applications. Here, the abundant reactive functional groups of lignosulfonates not only improve the electrochemical and electrical conductivity of polyaniline, thereby increasing its potential for sensing and capacitor applications, but also provide excellent mechanical properties (0.71 MPa), self-adhesion (81.27 J/m2) and ultraviolet (UV) resistance (UV inhibition close to 100 %) to the hydrogel. In addition, the hydrogel exhibited rich multifunctional properties, including tensile strain resistance (up to 397 %), antimicrobial properties (up to 100 % inhibition of Escherichia coli and Staphylococcus aureus), high sensitivity (gauge factor, GF = 4.18), and a rapid response time (100 ms). The LGS@PANI-Ag-PVA hydrogels showed potential for wearable sensors that monitor various biosignals from the human body, as well as human-computer interaction, artificial intelligence and other diverse fields.
Collapse
Affiliation(s)
- Xinru Liu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Yutong Yang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Shanshan Song
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Rui Zhang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Congcong Zhang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Siwen Yang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Yi Liu
- Key Laboratory of Wooden Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
| | - Yongming Song
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China; College of Home and Art Design, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
3
|
Zhou C, Jiang T, Liu S, He Y, Yang G, Nie J, Wang F, Yang X, Chen Z, Lu C. AgNPs loaded adenine-modified chitosan composite POSS-PEG hybrid hydrogel with enhanced antibacterial and cell proliferation properties for promotion of infected wound healing. Int J Biol Macromol 2024; 267:131575. [PMID: 38614178 DOI: 10.1016/j.ijbiomac.2024.131575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Wound healing is a dynamic and complex process, it's urgent to develop new wound dressings with excellent performance to promote wound healing at the different stages. Here, a novel composite hydrogel dressing composed by silver nanoparticles (AgNPs) impregnated adenine-modified chitosan (CS-A) and octafunctionalized polyhedral oligomeric silsesquioxane (POSS) of benzaldehyde-terminated polyethylene glycol (POSS-PEG-CHO) solution was presented to solve the problem of wound infection. Modification of chitosan with adenine, not only can improve the water solubility of chitosan, but also introduce bioactive substances to promote cell proliferation. CS-A and POSS-PEG-CHO were cross-linked by Schiff-base reaction to form the injectable self-healing hydrogel. On this basis, AgNPs were added into the hydrogel, which endows the hydrogel with better antibacterial activity. Moreover, this kind of hydrogel exhibits excellent cell proliferation properties. Studies demonstrated that the hydrogel can significantly accelerate the closure of infected wounds. The histological analysis and immunofluorescence staining demonstrated that the wounds treated with the composite hydrogel exhibited fewer inflammatory cells, more collagen deposition and angiogenesis, faster regeneration of epithelial tissue. Above all, adenine-modified chitosan composite hydrogel with AgNPs loaded was considered as a dressing material with great application potential for promoting the healing of infected wounds.
Collapse
Affiliation(s)
- Cong Zhou
- Hubei Provincial Engineering Center of Performance Chemicals & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Siju Liu
- Hubei Provincial Engineering Center of Performance Chemicals & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Yingjie He
- Hubei Provincial Engineering Center of Performance Chemicals & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Guichun Yang
- Hubei Provincial Engineering Center of Performance Chemicals & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Junqi Nie
- Hubei Provincial Engineering Center of Performance Chemicals & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Feiyi Wang
- Hubei Provincial Engineering Center of Performance Chemicals & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Cuifen Lu
- Hubei Provincial Engineering Center of Performance Chemicals & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China.
| |
Collapse
|
4
|
Eddine MA, Carvalho A, Schmutz M, Salez T, de Chateauneuf-Randon S, Bresson B, Belbekhouche S, Monteux C. Sieving and Clogging in PEG-PEGDA Hydrogel Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15085-15094. [PMID: 37823796 DOI: 10.1021/acs.langmuir.3c02153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Hydrogels are promising systems for separation applications due to their structural characteristics (i.e., hydrophilicity and porosity). In our study, we investigate the permeation of suspensions of rigid latex particles of different sizes through free-standing hydrogel membranes prepared by photopolymerization of a mixture of poly(ethylene glycol) diacrylate (PEGDA) and large poly(ethylene glycol) (PEG) chains of 300,000 g·mol-1 in the presence of a photoinitiator. Atomic force microscopy and cryoscanning electron microscopy (cryoSEM) were employed to characterize the structures of the hydrogel membranes. We find that the 20 nm particle permeation depends on both the PEGDA/PEG composition and the pressure applied during filtration. In contrast, we do not measure a significant permeation of the 100 nm and 1 μm particles, despite the presence of large cavities of 1 μm evidenced by the cryoSEM images. We suggest that the PEG chains induce local nanoscale defects in the cross-linking of PEGDA-rich walls separating the micrometer-sized cavities, which control the permeation of particles and water. Moreover, we discuss the decline of the permeation flux observed in the presence of latex particles compared to that of pure water. We suggest that a thin layer of particles forms on the surface of the hydrogels.
Collapse
Affiliation(s)
- Malak Alaa Eddine
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, 10 rue Vauquelin, 75231 Cedex 05 Paris, France
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Alain Carvalho
- Université de Strasbourg, CNRS, Institut Charles Sadron, 23 rue du Loess, 67034 Cedex 02 Strasbourg, France
| | - Marc Schmutz
- Université de Strasbourg, CNRS, Institut Charles Sadron, 23 rue du Loess, 67034 Cedex 02 Strasbourg, France
| | - Thomas Salez
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | | | - Bruno Bresson
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, 10 rue Vauquelin, 75231 Cedex 05 Paris, France
| | - Sabrina Belbekhouche
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Cécile Monteux
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, 10 rue Vauquelin, 75231 Cedex 05 Paris, France
| |
Collapse
|
5
|
Stimuli-Responsive Polysaccharide Hydrogels and Their Composites for Wound Healing Applications. Polymers (Basel) 2023; 15:polym15040986. [PMID: 36850269 PMCID: PMC9958605 DOI: 10.3390/polym15040986] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
There is a growing concern about wound care, since traditional dressings such as bandages and sutures can no longer meet existing needs. To address the demanding requirements, naturally occurring polymers have been extensively exploited for use in modern wound management. Polysaccharides, being the most abundant biopolymers, have some distinct characteristics, including biocompatibility and biodegradability, which render them ideal candidates for wound healing applications. Combining them with inorganic and organic moieties can produce effective multifunctional composites with the desired mechanical properties, high wound healing efficiencies and excellent antibacterial behavior. Recent research endeavors focus on the development of stimuli-responsive polysaccharide composites for biomedical applications. Polysaccharide composites, being sensitive to the local environment, such as changes of the solution temperature, pH, etc., can sense and react to the wound conditions, thus promoting an effective interaction with the wound. This review highlights the recent advances in stimuli-responsive polysaccharide hydrogels and their composites for use in wound healing applications. The synthetic approaches, physical, chemical, and biochemical properties as well as their function in wound healing will be discussed.
Collapse
|
6
|
Ren R, Lim C, Li S, Wang Y, Song J, Lin TW, Muir BW, Hsu HY, Shen HH. Recent Advances in the Development of Lipid-, Metal-, Carbon-, and Polymer-Based Nanomaterials for Antibacterial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3855. [PMID: 36364631 PMCID: PMC9658259 DOI: 10.3390/nano12213855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 05/29/2023]
Abstract
Infections caused by multidrug-resistant (MDR) bacteria are becoming a serious threat to public health worldwide. With an ever-reducing pipeline of last-resort drugs further complicating the current dire situation arising due to antibiotic resistance, there has never been a greater urgency to attempt to discover potential new antibiotics. The use of nanotechnology, encompassing a broad range of organic and inorganic nanomaterials, offers promising solutions. Organic nanomaterials, including lipid-, polymer-, and carbon-based nanomaterials, have inherent antibacterial activity or can act as nanocarriers in delivering antibacterial agents. Nanocarriers, owing to the protection and enhanced bioavailability of the encapsulated drugs, have the ability to enable an increased concentration of a drug to be delivered to an infected site and reduce the associated toxicity elsewhere. On the other hand, inorganic metal-based nanomaterials exhibit multivalent antibacterial mechanisms that combat MDR bacteria effectively and reduce the occurrence of bacterial resistance. These nanomaterials have great potential for the prevention and treatment of MDR bacterial infection. Recent advances in the field of nanotechnology are enabling researchers to utilize nanomaterial building blocks in intriguing ways to create multi-functional nanocomposite materials. These nanocomposite materials, formed by lipid-, polymer-, carbon-, and metal-based nanomaterial building blocks, have opened a new avenue for researchers due to the unprecedented physiochemical properties and enhanced antibacterial activities being observed when compared to their mono-constituent parts. This review covers the latest advances of nanotechnologies used in the design and development of nano- and nanocomposite materials to fight MDR bacteria with different purposes. Our aim is to discuss and summarize these recently established nanomaterials and the respective nanocomposites, their current application, and challenges for use in applications treating MDR bacteria. In addition, we discuss the prospects for antimicrobial nanomaterials and look forward to further develop these materials, emphasizing their potential for clinical translation.
Collapse
Affiliation(s)
- Ruohua Ren
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Chiaxin Lim
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Shiqi Li
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Yajun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jiangning Song
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | | | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong 518057, China
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
7
|
Zhang X, Feng Y, Gao D, Ma W, Jin C, Jiang X, Lin J, Yang F. Functionalization of cellulosic hydrogels with Cu2O@CuO nanospheres: Toward antifouling applications. Carbohydr Polym 2022; 282:119136. [DOI: 10.1016/j.carbpol.2022.119136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/19/2021] [Accepted: 01/09/2022] [Indexed: 01/21/2023]
|
8
|
Haidari H, Bright R, Garg S, Vasilev K, Cowin AJ, Kopecki Z. Eradication of Mature Bacterial Biofilms with Concurrent Improvement in Chronic Wound Healing Using Silver Nanoparticle Hydrogel Treatment. Biomedicines 2021; 9:1182. [PMID: 34572368 PMCID: PMC8470956 DOI: 10.3390/biomedicines9091182] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/05/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022] Open
Abstract
Biofilm-associated infections are a major cause of impaired wound healing. Despite the broad spectrum of anti-bacterial benefits provided by silver nanoparticles (AgNPs), these materials still cause controversy due to cytotoxicity and a lack of efficacy against mature biofilms. Herein, highly potent ultrasmall AgNPs were combined with a biocompatible hydrogel with integrated synergistic functionalities to facilitate elimination of clinically relevant mature biofilms in-vivo combined with improved wound healing capacity. The delivery platform showed a superior release mechanism, reflected by high biocompatibility, hemocompatibility, and extended antibacterial efficacy. In vivo studies using the S. aureus wound biofilm model showed that the AgNP hydrogel (200 µg/g) was highly effective in eliminating biofilm infection and promoting wound repair compared to the controls, including silver sulfadiazine (Ag SD). Treatment of infected wounds with the AgNP hydrogel resulted in faster wound closure (46% closure compared to 20% for Ag SD) and accelerated wound re-epithelization (60% for AgNP), as well as improved early collagen deposition. The AgNP hydrogel did not show any toxicity to tissue and/or organs. These findings suggest that the developed AgNP hydrogel has the potential to be a safe wound treatment capable of eliminating infection and providing a safe yet effective strategy for the treatment of infected wounds.
Collapse
Affiliation(s)
- Hanif Haidari
- Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (H.H.); (S.G.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Richard Bright
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Sanjay Garg
- Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (H.H.); (S.G.)
| | - Krasimir Vasilev
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Allison J. Cowin
- Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (H.H.); (S.G.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Zlatko Kopecki
- Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (H.H.); (S.G.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| |
Collapse
|
9
|
Nanogels as a Versatile Drug Delivery System for Brain Cancer. Gels 2021; 7:gels7020063. [PMID: 34073626 PMCID: PMC8162335 DOI: 10.3390/gels7020063] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Chemotherapy and radiation remain as mainstays in the treatment of a variety of cancers globally, yet some therapies exhibit limited specificity and result in harsh side effects in patients. Brain tissue differs from other tissue due to restrictions from the blood-brain barrier, thus systemic treatment options are limited. The focus of this review is on nanogels as local and systemic drug delivery systems in the treatment of brain cancer. Nanogels are a unique local or systemic drug delivery system that is tailorable and consists of a three-dimensional polymeric network formed via physical or chemical assembly. For example, thermosensitive nanogels show promise in their ability to incorporate therapeutic agents in nano-structured matrices, be applied in the forms of sprays or sols to the area from which a tumor has been removed, form adhesive gels to fill the cavity and deliver treatment locally. Their usage does come with complications, such as handling, storage, chemical stability, and degradation. Despite these limitations, the current ongoing development of nanogels allows patient-centered treatment that can be considered as a promising tool for the management of brain cancer.
Collapse
|
10
|
Li Z, Xu W, Wang X, Jiang W, Ma X, Wang F, Zhang C, Ren C. Fabrication of PVA/PAAm IPN hydrogel with high adhesion and enhanced mechanical properties for body sensors and antibacterial activity. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110253] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Facile Synthesis of Long-Term Stable Silver Nanoparticles by Kaempferol and Their Enhanced Antibacterial Activity Against Escherichia coli and Staphylococcus aureus. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01874-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Peng Q, Chen J, Zeng Z, Wang T, Xiang L, Peng X, Liu J, Zeng H. Adhesive Coacervates Driven by Hydrogen-Bonding Interaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004132. [PMID: 33006447 DOI: 10.1002/smll.202004132] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Coacervation plays a critical role in numerous biological activities such as constructing biological tissues and achieving robust wet adhesion of marine sessile organisms, which conventionally occurs when oppositely charged polyelectrolytes are mixed in aqueous solutions driven by electrostatic attraction. Here, a novel type of adhesive coacervate is reported, driven by hydrogen-bonding interactions, readily formed by mixing silicotungstic acid and nonionic polyethylene glycol in water, providing a new approach for developing coacervates from nonionic systems. The as-prepared coacervate is easily paintable underwater, show strong wet adhesion to diverse substrates, and has been successfully applied as a hemostatic agent to treat organ injuries without displaying hemolytic activity, while with inherent antimicrobial properties thus avoiding inflammations and infections due to microorganism accumulation. This work demonstrates that coacervation can occur in salt-free environments via non-electrostatic interactions, providing a new platform for engineering multifunctional coacervate materials as tissue glues, wound dressings and membrane-free cell systems.
Collapse
Affiliation(s)
- Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Zicheng Zeng
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510700, China
| | - Tao Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Li Xiang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Jifang Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510700, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| |
Collapse
|
13
|
Dong P, Feng J, Zhang D, Li C, Shi QS, Xie X. In situ synthesis of amply antimicrobial silver nanoparticle (AgNP) by polyzwitterionic copolymers bearing hydroxyl groups. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Mussel-inspired antimicrobial gelatin/chitosan tissue adhesive rapidly activated in situ by H 2O 2/ascorbic acid for infected wound closure. Carbohydr Polym 2020; 247:116692. [PMID: 32829820 DOI: 10.1016/j.carbpol.2020.116692] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/16/2020] [Accepted: 06/24/2020] [Indexed: 02/05/2023]
Abstract
The development of minimally invasive surgery has created a demand for ideal medical adhesives exhibiting biocompatibility, biodegradability, antimicrobial activity, and strong adhesion to tissues in wet environments. However, as clinically approved surgical tissue glues suffer from poor adhesion activation, limited adhesion strength, and toxicity, novel tissue glues are highly sought after. Herein, a mussel-inspired injectable hydrogel was prepared from catechol- and methacrylate-modified chitosan/gelatin and shown to exhibit biocompatibility, inherent antimicrobial activity, and good adhesion to wet tissues. Moreover, as this gel could be applied onto tissue surfaces and cured in situ within seconds of body contact by a biocompatible and multifunctional redox initiator (H2O2-ascorbic acid), it was concluded to be a promising surgical sealant and wound dressing (even for infected wounds) accelerating wound healing.
Collapse
|
15
|
Yang K, Yin X, Yan Y, Luo G, Xu M, Pi P, Xu S, Wen X. Fast near infrared light response hydrogel as medical dressing for wound healing. J Appl Polym Sci 2020. [DOI: 10.1002/app.49309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kai Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product TechnologySouth China University of Technology Guangzhou China
| | - Xinyu Yin
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product TechnologySouth China University of Technology Guangzhou China
| | - Yuanyang Yan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product TechnologySouth China University of Technology Guangzhou China
| | - Guanzhou Luo
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product TechnologySouth China University of Technology Guangzhou China
| | - Mengyi Xu
- School of Chemical Engineering and TechnologyGuangdong Industry Polytechnic Guangzhou China
| | - Pihui Pi
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product TechnologySouth China University of Technology Guangzhou China
| | - Shouping Xu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product TechnologySouth China University of Technology Guangzhou China
| | - Xiufang Wen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product TechnologySouth China University of Technology Guangzhou China
| |
Collapse
|
16
|
Zhu Y, Luo Q, Zhang H, Cai Q, Li X, Shen Z, Zhu W. A shear-thinning electrostatic hydrogel with antibacterial activity by nanoengineering of polyelectrolytes. Biomater Sci 2020; 8:1394-1404. [PMID: 31922160 DOI: 10.1039/c9bm01386e] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Injectable shear-thinning hydrogels can be prepared by the non-covalent interactions between hydrophilic polymers. Although electrostatic force is a typical non-covalent interaction, direct mixing of two oppositely charged polyelectrolytes usually leads to a complex coacervate rather than an injectable hydrogel. Herein, a facile approach is proposed to prepare a shear-thinning hydrogel by nanoengineering of polyelectrolytes. Nanosized cationic micelles with electroneutral shells were prepared by mixing methoxyl poly(ethylene glycol)-block-poly(ε-caprolactone) and poly(ε-caprolactone)-block-poly(hexamethylene guanidine) hydrochloride-block-poly(ε-caprolactone) in an aqueous solution. When sodium carboxymethyl cellulose was added into the micellar solution, the outer poly(ethylene glycol) shell of mixed micelles prevented the instant electrostatic interaction between poly(hexamethylene guanidine) hydrochloride segments and sodium carboxymethyl cellulose, resulting in a homogenous shear-thinning electrostatic (STES) hydrogel. Because of the cationic poly(hexamethylene guanidine) hydrochloride segments, this hydrogel exhibits strong antibacterial activity against both Gram-positive and Gram-negative bacteria. Furthermore, the poly(ε-caprolactone) core of the mixed micelles can efficiently encapsulate a hydrophobic drug. In this work, curcumin-loaded STES hydrogel prepared by this method was used as wound dressing material that can promote wound healing even in infected wounds by further reducing bacterial infection via releasing curcumin. The present study provides a facile strategy to prepare shear-thinning antibacterial hydrogels from polyelectrolytes, which has great potential in biomedical application.
Collapse
Affiliation(s)
- Yanhui Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Wang Y, Xie R, Li Q, Dai F, Lan G, Shang S, Lu F. A self-adapting hydrogel based on chitosan/oxidized konjac glucomannan/AgNPs for repairing irregular wounds. Biomater Sci 2020; 8:1910-1922. [DOI: 10.1039/c9bm01635j] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Self-adapting hydrogels are prepared for the treatment of irregular wounds.
Collapse
Affiliation(s)
- Yixin Wang
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
| | - Ruiqi Xie
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| | - Qing Li
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| | - Fangyin Dai
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| | - Guangqian Lan
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| | - Songmin Shang
- Institute of Textiles and Clothing
- The Hong Kong Polytechnic University
- Kowloon
- China
| | - Fei Lu
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| |
Collapse
|
18
|
Ko H, Park HH, Byeon H, Kang M, Ryu J, Sung HJ, Lee SJ, Jeong HE. Undulatory topographical waves for flow-induced foulant sweeping. SCIENCE ADVANCES 2019; 5:eaax8935. [PMID: 31819902 PMCID: PMC6884415 DOI: 10.1126/sciadv.aax8935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Diverse bioinspired antifouling strategies have demonstrated effective fouling-resistant properties with good biocompatibility, sustainability, and long-term activity. However, previous studies on bioinspired antifouling materials have mainly focused on material aspects or static architectures of nature without serious consideration of kinetic topographies or dynamic motion. Here, we propose a magnetically responsive multilayered composite that can generate coordinated, undulatory topographical waves with controlled length and time scales as a new class of dynamic antifouling materials. The undulatory surface waves of the dynamic composite induce local and global vortices near the material surface and thereby sweep away foulants from the surface, fundamentally inhibiting their initial attachment. As a result, the dynamic composite material with undulating topographical waves provides an effective means for efficient suppression of biofilm formation without surface modification with chemical moieties or nanoscale architectures.
Collapse
Affiliation(s)
- Hangil Ko
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun-Ha Park
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyeokjun Byeon
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Minsu Kang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaeha Ryu
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyung Jin Sung
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
19
|
Kamaruzzaman NF, Tan LP, Hamdan RH, Choong SS, Wong WK, Gibson AJ, Chivu A, Pina MDF. Antimicrobial Polymers: The Potential Replacement of Existing Antibiotics? Int J Mol Sci 2019; 20:E2747. [PMID: 31167476 PMCID: PMC6600223 DOI: 10.3390/ijms20112747] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial resistance is now considered a major global challenge; compromising medical advancements and our ability to treat infectious disease. Increased antimicrobial resistance has resulted in increased morbidity and mortality due to infectious diseases worldwide. The lack of discovery of novel compounds from natural products or new classes of antimicrobials, encouraged us to recycle discontinued antimicrobials that were previously removed from routine use due to their toxicity, e.g., colistin. Since the discovery of new classes of compounds is extremely expensive and has very little success, one strategy to overcome this issue could be the application of synthetic compounds that possess antimicrobial activities. Polymers with innate antimicrobial properties or that have the ability to be conjugated with other antimicrobial compounds create the possibility for replacement of antimicrobials either for the direct application as medicine or implanted on medical devices to control infection. Here, we provide the latest update on research related to antimicrobial polymers in the context of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens. We summarise polymer subgroups: compounds containing natural peptides, halogens, phosphor and sulfo derivatives and phenol and benzoic derivatives, organometalic polymers, metal nanoparticles incorporated into polymeric carriers, dendrimers and polymer-based guanidine. We intend to enhance understanding in the field and promote further work on the development of polymer based antimicrobial compounds.
Collapse
Affiliation(s)
- Nor Fadhilah Kamaruzzaman
- Faculty of Veterinary Medicine, Locked bag 36, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Li Peng Tan
- Faculty of Veterinary Medicine, Locked bag 36, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Ruhil Hayati Hamdan
- Faculty of Veterinary Medicine, Locked bag 36, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Siew Shean Choong
- Faculty of Veterinary Medicine, Locked bag 36, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Weng Kin Wong
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia.
| | - Amanda Jane Gibson
- Royal Veterinary College, Pathobiology and Population Sciences, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK.
| | - Alexandru Chivu
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK.
| | - Maria de Fatima Pina
- Medicines and Healthcare Regulatory Products Agency, 10 South Colonnade, Canary Wharf, London E14 4PU, UK.
| |
Collapse
|
20
|
Li M, Jiang X, Wang D, Xu Z, Yang M. In situ reduction of silver nanoparticles in the lignin based hydrogel for enhanced antibacterial application. Colloids Surf B Biointerfaces 2019; 177:370-376. [PMID: 30785034 DOI: 10.1016/j.colsurfb.2019.02.029] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 12/25/2022]
Abstract
Although antibiotics have been widely used, the problem of bacterial infection in the medical field still faces many challenges. In this study, we designed a new lignin based antimicrobial hydrogel for antimicrobial application. First, we grafted the amino group onto sodium lignin sulfonate through Mannich reaction to obtain lignin amine (LA), which can cross-link with poly(vinyl alcohol) (PVA) to form hydrogel. Then, silver nitrate solution is added to the formed gel pre-solution to be in situ reduced to silver nanoparticles. The enhanced effect of antibacterial properties due to lignin and silver nanoparticles endows the hydrogel enhanced antibacterial properties. The modification of sodium lignosulfonate and the crosslinking reaction between LA and PVA are confirmed by FTIR, while the content of nitrogen in LA is characterized by XPS. The SEM image of the hydrogel after lyophilization illustrates its internal porous network structure. The rheological test of hydrogel demonstrates its good strength and elasticity. The hydrogel exhibits good antibacterial properties in in vitro antibacterial experiments towards both S. aureus and E. coli, while toxicity tests using L929 cells demonstrated good biocompatibility of the hydrogel.
Collapse
Affiliation(s)
- Man Li
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xingxing Jiang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Dan Wang
- Department of Engineering Management, Hunan College of Finance and Economics, Changsha, 410083, China
| | - Zeyu Xu
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Minghui Yang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
21
|
Pratibha, Shukla M, Kaul G, Chopra S, Verma S. Nucleobase Soft Metallogel Composites with Antifouling Activities against ESKAPE Pathogens. ChemistrySelect 2019. [DOI: 10.1002/slct.201803693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pratibha
- Department of ChemistryCenter for Environmental Science and EngineeringIndian Institute of Technology Kanpur Kanpur 208016 (UP) India
| | - Manjulika Shukla
- Division of MicrobiologyCSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension Sitapur Road Lucknow 226031 India
| | - Grace Kaul
- Division of MicrobiologyCSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension Sitapur Road Lucknow 226031 India
| | - Sidharth Chopra
- Division of MicrobiologyCSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension Sitapur Road Lucknow 226031 India
| | - Sandeep Verma
- Department of ChemistryCenter for Environmental Science and EngineeringIndian Institute of Technology Kanpur Kanpur 208016 (UP) India
- DST Thematic Unit of Excellence on Soft NanofabricationIndian Institute of Technology Kanpur, Kanpur Uttar Pradesh 208016 India
| |
Collapse
|
22
|
Park HH, Sun K, Seong M, Kang M, Park S, Hong S, Jung H, Jang J, Kim J, Jeong HE. Lipid-Hydrogel-Nanostructure Hybrids as Robust Biofilm-Resistant Polymeric Materials. ACS Macro Lett 2019; 8:64-69. [PMID: 35619411 DOI: 10.1021/acsmacrolett.8b00888] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite extensive efforts toward developing antibiofilm materials, efficient prevention of biofilm formation remains challenging. Approaches based on a single strategy using either bactericidal material, antifouling coatings, or nanopatterning have shown limited performance in the prevention of biofilm formation. This study presents a hybrid strategy based on a lipid-hydrogel-nanotopography hybrid for the development of a highly efficient and durable biofilm-resistant material. The hybrid material consists of nanostructured antifouling, biocompatible polyethylene glycol-based polymer grafted with an antifouling zwitterionic polymer of 2-methacryloyloxyethyl phosphorylcholine. Based on the unique composite nanostructures, the lipid-hydrogel-nanostructure hybrid exhibits superior dual functionalities of antifouling and bactericidal activities against Gram-negative and Gram-positive bacteria, compared with those of surfaces with simple nanostructures or antifouling coatings. Additionally, it preserves the robust antibiofilm activity even when the material is damaged under external mechanical stimuli thanks to the polymeric composite nanostructure.
Collapse
Affiliation(s)
- Hyun-Ha Park
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kahyun Sun
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Minho Seong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Minsu Kang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sunho Park
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seongkyeol Hong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hosup Jung
- Center for Food and Bioconvergence, Department of Food Science and Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaesung Jang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
23
|
Tian R, Qiu X, Yuan P, Lei K, Wang L, Bai Y, Liu S, Chen X. Fabrication of Self-Healing Hydrogels with On-Demand Antimicrobial Activity and Sustained Biomolecule Release for Infected Skin Regeneration. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17018-17027. [PMID: 29693373 DOI: 10.1021/acsami.8b01740] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Microbial infection has been considered as one of the most critical challenges in bioengineering applications especially in tissue regeneration, which engenders severe threat to public health. Herein, a hydrogel performing properties of rapid self-healing, on-demand antibiosis and controlled cargo release was fabricated by a simple assembly of Fe complex as the cross-linker and hyaluronic acid as the gel network. This hydrogel is able to locally degrade and release Fe3+ to kill bacteria as needed because of hyaluronidase excreted by surrounding bacteria, resulting in efficient antibacterial activity against different types of bacteria. The sustained release property of certain types of growth factors was also observed from this hydrogel owing to its dense network. Moreover, this hydrogel could repeatedly heal itself in minutes because of the coordination interaction between Fe3+ and COOH, exhibiting good potential in bioengineering applications on the exposed tissue, where the materials are easily damaged during daily life. When topically applied onto damaged mouse skin with infection of Staphylococcus aureus, the hydrogel is able to inhibit microbial infections, meanwhile promoting cutaneous regeneration, which formed new skin with no inflammation within a 10 day treatment. These results demonstrate the potential application of this self-healing hydrogel for the integrated therapy of antibiosis and tissue regeneration.
Collapse
Affiliation(s)
- Ran Tian
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering , Xi'an Jiao Tong University , Xi'an Shaanxi 710049 , P. R. China
| | - Xinyu Qiu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology , Fourth Military Medical University , Xi'an , Shaanxi 710032 , China
| | - Pingyun Yuan
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering , Xi'an Jiao Tong University , Xi'an Shaanxi 710049 , P. R. China
| | - Kai Lei
- College of Chemistry & Pharmacy , Northwest A&F University , Yangling , Shaanxi 712100 , PR China
| | - Lin Wang
- College of Chemistry & Pharmacy , Northwest A&F University , Yangling , Shaanxi 712100 , PR China
| | - Yongkang Bai
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering , Xi'an Jiao Tong University , Xi'an Shaanxi 710049 , P. R. China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology , Fourth Military Medical University , Xi'an , Shaanxi 710032 , China
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering , Xi'an Jiao Tong University , Xi'an Shaanxi 710049 , P. R. China
| |
Collapse
|
24
|
Konai MM, Bhattacharjee B, Ghosh S, Haldar J. Recent Progress in Polymer Research to Tackle Infections and Antimicrobial Resistance. Biomacromolecules 2018; 19:1888-1917. [PMID: 29718664 DOI: 10.1021/acs.biomac.8b00458] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Global health is increasingly being threatened by the rapid emergence of drug-resistant microbes. The ability of these microbes to form biofilms has further exacerbated the scenario leading to notorious infections that are almost impossible to treat. For addressing this clinical threat, various antimicrobial polymers, polymer-based antimicrobial hydrogels and polymer-coated antimicrobial surfaces have been developed in the recent past. This review aims to discuss such polymer-based antimicrobial strategies with a focus on their current advancement in the field. Antimicrobial polymers, whose designs are inspired from antimicrobial peptides (AMPs), are described with an emphasis on structure-activity analysis. Additionally, antibiofilm activity and in vivo efficacy are delineated to elucidate the real potential of these antimicrobial polymers as possible therapeutics. Antimicrobial hydrogels, prepared from either inherently antimicrobial polymers or biocide-loaded into polymer-derived hydrogel matrix, are elaborated followed by various strategies to engineer polymer-coated antimicrobial surfaces. In the end, the current challenges are accentuated along with future directions for further expansion of the field toward tackling infections and antimicrobial resistance.
Collapse
Affiliation(s)
- Mohini Mohan Konai
- Antimicrobial Research Laboratory, New Chemistry Unit , Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560064 , Karnataka , India
| | - Brinta Bhattacharjee
- Antimicrobial Research Laboratory, New Chemistry Unit , Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560064 , Karnataka , India
| | - Sreyan Ghosh
- Antimicrobial Research Laboratory, New Chemistry Unit , Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560064 , Karnataka , India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit , Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560064 , Karnataka , India
| |
Collapse
|
25
|
Dai T, Wang C, Wang Y, Xu W, Hu J, Cheng Y. A Nanocomposite Hydrogel with Potent and Broad-Spectrum Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15163-15173. [PMID: 29648438 DOI: 10.1021/acsami.8b02527] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Local bacterial infection is a challenging task and still remains a serious threat to human health in clinics. Systemic administration of antibiotics has only short-term antibacterial activity and usually causes adverse effects and bacterial resistance. A bioadhesive hydrogel with broad-spectrum and on-demand antibiotic activity is highly desirable. Here, we designed a pH-responsive nanocomposite hydrogel via a Schiff base linkage between oxidized polysaccharides and cationic dendrimers encapsulated with silver nanoparticles. The antibacterial components, both the cationic dendrimers and silver species, could be released in response to the acidity generated by growing bacteria. The released cationic polymer and silver exhibited a synergistic effect in antibacterial activity, and thus, the nanocomposite hydrogel showed potent antibacterial activity against both Gram-negative ( Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria ( Staphylococcus epidermidis and Staphylococcus aureus). The gel showed superior in vivo antibacterial efficacy against S. aureus infection compared with a commercial silver hydrogel at the same silver concentration. In addition, no obvious hemolytic toxicity, cytotoxicity, and tissue and biochemical toxicity were observed for the antibacterial hydrogel after incubation with cells or implantation. This study provides a facile and promising strategy to develop smart hydrogels to treat local bacterial infections.
Collapse
Affiliation(s)
- Tianjiao Dai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai 200241 , P. R. China
| | - Changping Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai 200241 , P. R. China
| | - Yuqing Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai 200241 , P. R. China
| | - Wei Xu
- Department of Orthopedic Oncology, Changzheng Hospital , The Second Military Medical University , Shanghai 200003 , P. R. China
| | - Jingjing Hu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai 200241 , P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai 200241 , P. R. China
| |
Collapse
|
26
|
In vitro performance of Ag-incorporated hydroxyapatite and its adhesive porous coatings deposited by electrostatic spraying. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:556-564. [PMID: 28532065 DOI: 10.1016/j.msec.2017.03.233] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/23/2016] [Accepted: 03/25/2017] [Indexed: 11/23/2022]
Abstract
Bacterial infection of implanted materials is a significant complication that might require additional surgical operations for implant retrieval. As an antibacterial biomaterial, Ag-containing hydroxyapatite (HA) may be a solution to reduce the incidences of implant associated infections. In this study, pure, 0.2mol% and 0.3mol% Ag incorporated HA powders were synthesized via a precipitation method. Colloidal precursor dispersions prepared from these powders were used to deposit porous coatings onto titanium and stainless steel substrates via electrostatic spraying. The porous coating layers obtained with various deposition times and heat treatment conditions were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Scratch tests were conducted to assess the adhesion strength of the coating. Antibacterial activity of Ag-incorporated HA was tested towards Escherichia coli (E. coli) at various incubation times. Osteoblast adhesion on Ag-incorporated HA was evaluated to assess biocompatibility. Improvement in adhesion strength of the coating layer was observed after the heat treatment process due to mutual ionic diffusion at the interface. The Ag-incorporated HA killed all viable E. coli after 24h of incubation, whereas no antibacterial activity was detected with pure HA. In addition, in vitro cell culture tests demonstrated osteoblast adhesion similar to pure HA, which indicated good cytocompatibility. In summary, results of this study provided significant promise for the future study of Ag-incorporated HA for numerous medical applications.
Collapse
|
27
|
Li L, Yan B, Yang J, Huang W, Chen L, Zeng H. Injectable Self-Healing Hydrogel with Antimicrobial and Antifouling Properties. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9221-9225. [PMID: 28266838 DOI: 10.1021/acsami.6b16192] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microbial adhesion, biofilm formation and associated microbial infection are common challenges faced by implanted biomaterials (e.g., hydrogels) in bioengineering applications. In this work, an injectable self-healing hydrogel with antimicrobial and antifouling properties was prepared through self-assembly of an ABA triblock copolymer employing catechol functionalized polyethylene glycol (PEG) as A block and poly{[2-(methacryloyloxy)-ethyl] trimethylammonium iodide}(PMETA) as B block. This hydrogel exhibits excellent thermosensitivity, and can effectively inhibit the growth of E. coli (>99.8% killing efficiency) and prevent cell attachment. It can also heal autonomously from repeated damage, through mussel-inspired catechol-mediated hydrogen bonding and aromatic interactions, exhibiting great potential in bioengineering applications.
Collapse
Affiliation(s)
- Lin Li
- Department of Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 1H9, Canada
| | - Bin Yan
- Department of Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 1H9, Canada
- College of Light Industry, Textile & Food Engineering, Sichuan University , Chengdu 610065, China
| | - Jingqi Yang
- Department of Agriculture, Food and Nutritional Science, University of Alberta , Edmonton, Alberta T6G 2P5, Canada
| | - Weijuan Huang
- Department of Agriculture, Food and Nutritional Science, University of Alberta , Edmonton, Alberta T6G 2P5, Canada
| | - Lingyun Chen
- Department of Agriculture, Food and Nutritional Science, University of Alberta , Edmonton, Alberta T6G 2P5, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
28
|
Jiang D, Xue Q, Liu Z, Han J, Wu X. Novel anti-algal nanocomposite hydrogels based on thiol/acetyl thioester groups chelating with silver nanoparticles. NEW J CHEM 2017. [DOI: 10.1039/c6nj02246d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Jiang D, Zhang Y, Zhang F, Liu Z, Han J, Wu X. Antimicrobial and antifouling nanocomposite hydrogels containing polythioether dendron: high-loading silver nanoparticles and controlled particle release. Colloid Polym Sci 2016. [DOI: 10.1007/s00396-016-3967-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Jiang H, Zhang G, Xu B, Feng X, Bai Q, Yang G, Li H. Thermosensitive antibacterial Ag nanocomposite hydrogels made by a one-step green synthesis strategy. NEW J CHEM 2016. [DOI: 10.1039/c5nj03608a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Clay nanosheets act as a catalyst and stabilizing agent for rapid in situ synthesis of silver nanoparticles in a hydrogel matrix.
Collapse
Affiliation(s)
- Haoyang Jiang
- School of Chemical Engineering and Environment
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Gongzheng Zhang
- School of Chemical Engineering and Environment
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Bo Xu
- School of Chemical Engineering and Environment
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Xianqi Feng
- School of Chemical Engineering and Environment
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Quanming Bai
- School of Chemical Engineering and Environment
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Guoli Yang
- School of Chemical Engineering and Environment
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Huanjun Li
- School of Chemical Engineering and Environment
- Beijing Institute of Technology
- Beijing 100081
- China
| |
Collapse
|