1
|
Tai Y, Yang B, Li J, Meng L, Xing P, Wang S. Design and Preparation of Heterostructured Cu 2O/TiO 2 Materials for Photocatalytic Applications. Molecules 2024; 29:5028. [PMID: 39519669 PMCID: PMC11547863 DOI: 10.3390/molecules29215028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The extensive use of fossil fuels has sped up the global development of the world economy and is accompanied by significant problems, such as energy shortages and environmental pollution. Solar energy, an inexhaustible and clean energy resource, has emerged as a promising sustainable alternative. Light irradiation can be transformed into electrical/chemical energy, which can be used to remove pollutants or transform contaminants into high-value-added chemicals through photocatalytic reactions. Therefore, photocatalysis is a promising strategy to overcome the increasing energy and environmental problems. As is well-known, photocatalysts are key components of photocatalytic systems. Among the widely investigated photocatalysts, titanium dioxide (TiO2) has attracted great attention owing to its excellent light-driven redox capability and photochemical stability. However, its poor solar light response and rapid recombination of electron-hole pairs limit its photocatalytic applications. Therefore, strategies to enhance the photocatalytic activity of TiO2 by narrowing its bandgap and inhibiting the recombination of charges have been widely accepted. Constructing heterojunctions with other components, including cuprous oxide (Cu2O), has especially narrowed the bandgap, providing a promising means of solving the present challenges. This paper reviews the advances in research on heterostructured Cu2O/TiO2 photocatalysts, such as their synthesis methods, mechanisms for the enhancement of photocatalytic performance, and their applications in hydrogen production, CO2 reduction, selective synthesis, and the degradation of pollutants. The mechanism of charge separation and transfer through the Cu2O/TiO2 heterojunctions and the inherent factors that lead to the enhancement of photocatalytic performance are extensively discussed. Additionally, the current challenges in and future perspectives on the use of heterostructured Cu2O/TiO2 photocatalysts are also highlighted.
Collapse
Affiliation(s)
| | | | | | | | | | - Shengjie Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China; (Y.T.); (B.Y.); (J.L.); (L.M.); (P.X.)
| |
Collapse
|
2
|
Li J, Duan Y, Wang L, Ma J. Preparation of core-shell structure Ag@TiO 2 plasma photocatalysts and reduction of Cr(VI): Size dependent and LSPR effect. ENVIRONMENTAL RESEARCH 2024; 248:118265. [PMID: 38266898 DOI: 10.1016/j.envres.2024.118265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 01/07/2024] [Indexed: 01/26/2024]
Abstract
The poor light absorption and low carrier separation efficiency of Titanium dioxide (TiO2) limit its further application. The introduction of plasma metal Ag have the potential to solve these drawbacks owing to its plasma resonance effect. Thus core-shell structure Ag@TiO2 plasma photocatalysts was prepared by using facile reduction method in this work. More specifically, Ag@TiO2 composite catalysts with different Ag loading amounts were prepared in the presence of surfactant PVP. Ag@TiO2 demonstrates excellent light absorption performance and photoelectric separation efficiency compared with pure TiO2. As a result, it displays excellent performance of Cr(VI) reduction under visible light. The optimal composite catalysts Ag@TiO2-5P achieves exceptional visible-light-driven photocatalytic Cr(VI) reduction efficiency of 0.01416 min-1 that is 2.29 times greater than pure TiO2. To investigate the role of PVP, we also synthesized Ag@TiO2-5 without PVP. The experimental results show that although Ag@TiO2-5 Cr(VI) reduction performance is superior to pure TiO2, it significantly decreases compared with Ag@TiO2-5P. The results of TEM and optoelectronic testing show that agglomeration of Ag particles leads to a decrease in the photoelectric separation efficiency of Ag@TiO2-5. The smaller Ag particles provide more active sites and demonstrating a stronger overall local surface plasmon resonance (LSPR) effect. DMPO spin-trapping ESR spectra testing indicates that ∙O2- and ∙OH are the main reactive species. This research provides a potential strategy to prepare Ag-based plasma photocatalysts for environment protection.
Collapse
Affiliation(s)
- Jiwen Li
- College of Science and Technology, Hebei Agricultural University, Huanghua 061100, PR China.
| | - Yaqian Duan
- College of Science and Technology, Hebei Agricultural University, Huanghua 061100, PR China
| | - Linlin Wang
- College of Science and Technology, Hebei Agricultural University, Huanghua 061100, PR China
| | - Jingjun Ma
- College of Science and Technology, Hebei Agricultural University, Huanghua 061100, PR China.
| |
Collapse
|
3
|
Huang M, Wang H, Xiao Y, Li K. Carbonized titanium dioxide with good adsorption properties for cationic dyes via simple heat treatment. J Chem Phys 2023; 158:2895230. [PMID: 37290073 DOI: 10.1063/5.0146751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
With the development of modern industry, the discharge of dye wastewater is increasing year by year, and the damage caused by this wastewater to the ecosystem is often irreversible. Therefore, the research on the harmless treatment of dyes has attracted much attention in recent years. In this paper, commercial titanium dioxide (anatase nanometer titanium dioxide) was heat treated with anhydrous ethanol to synthesize titanium carbide (C/TiO2). Its maximum adsorption capacity for cationic dyes methylene blue (MB) and Rhodamine B is 27.3 and 124.6 mg g-1, respectively, which is much higher than that of pure TiO2. The adsorption kinetics and isotherm model of C/TiO2 were studied and characterized by Brunauer-Emmett-Teller, x-ray photoelectron spectroscopy, x-ray diffraction, Fourier transform infrared spectroscopy, and other methods. The results show that the carbon layer on the surface of C/TiO2 promotes the increase in surface hydroxyl groups, which is the main reason for the increase in MB adsorption. Compared with other adsorbents, C/TiO2 showed excellent reusability. The experimental results of adsorbent regeneration showed that the adsorption rate R% of MB was almost unchanged after three cycles. During the recovery of C/TiO2, the dyes adsorbed on its surface are removed, which solves the problem that the adsorbent cannot degrade dyes simply by adsorption. Additionally, C/TiO2 has a stable adsorption effect, is insensitive to the pH value, has a simple preparation process, and has relatively low raw material prices, making it suitable for large-scale operation. Therefore, it has good commercial prospects in the organic dye industry wastewater treatment.
Collapse
Affiliation(s)
- Maoliang Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongwei Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Xiao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
4
|
Liu P, Dörfler A, Tabrizi AA, Skokan L, Rawach D, Wang P, Peng Z, Zhang J, Ruediger AP, Claverie JP. In Operando Photoswitching of Cu Oxidation States in Cu-Based Plasmonic Heterogeneous Photocatalysis for Efficient H 2 Evolution. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37257196 DOI: 10.1021/acsami.3c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Metal nanoparticles (NP) supported on TiO2 are known to be efficient photocatalysts for solar-to-chemical energy conversion. While TiO2 decorated with copper NPs has the potential to become an attractive system, the poor oxidative stability of Cu severely limits its applicability. In this work, we demonstrate that, when Cu NPs supported on TiO2 nanobelts (NBs) are engaged in the photocatalytic generation of H2 from water under light illumination, Cu is not only oxidized in CuO but also dissolved under the form of Cu+/Cu2+ ions, leading to a continuous reconstruction of nanoparticles via Ostwald ripening. By nanoencapsulating the CuOx (Cu/CuO/Cu2O) NPs by a few layers of carbon supported on TiO2 (TC@C), Ostwald ripening can be suppressed. Simultaneously, the resulting CuOx@C NPs are photoreduced under light illumination to generate Cu@C NPs. This photoswitching strategy allows the preparation of a Cu plasmonic photocatalyst with enhanced activity for H2 production. Remarkably, the photocatalyst is even active when illuminated with visible light, indicating a clear plasmonic enhancement of photocatalytic activity from the surface plasmonic resonance (SPR) effect of Cu NPs. Three-dimensional electromagnetic wave-frequency domain (3D-EWFD) simulations were conducted to confirm the SPR enhancement. This advance bodes for the development of scalable multifunctional Cu-based plasmonic photocatalysts for solar energy transfer.
Collapse
Affiliation(s)
- Peipei Liu
- Département de Chimie, Université de Sherbrooke, 2500 Blvd de l'Université, Sherbrooke, QC J1K2R1, Canada
- Centre Énergie, Matériaux & Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Andreas Dörfler
- Centre Énergie, Matériaux & Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Afsaneh Asgariyan Tabrizi
- Centre Énergie, Matériaux & Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Lilian Skokan
- Centre Énergie, Matériaux & Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Diane Rawach
- Centre Énergie, Matériaux & Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Peikui Wang
- Département de Chimie, Université de Sherbrooke, 2500 Blvd de l'Université, Sherbrooke, QC J1K2R1, Canada
| | - Zhiyuan Peng
- Department of Chemistry and Biochemistry, Université du Québec à Montréal, CP8888, Montréal QC H3C 3P8, Canada
| | - Jianming Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Andreas Peter Ruediger
- Centre Énergie, Matériaux & Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Jerome P Claverie
- Département de Chimie, Université de Sherbrooke, 2500 Blvd de l'Université, Sherbrooke, QC J1K2R1, Canada
| |
Collapse
|
5
|
Zhang J, Lin Y, Liu L. Electron transfer in heterojunction catalysts. Phys Chem Chem Phys 2023; 25:7106-7119. [PMID: 36846919 DOI: 10.1039/d2cp05150h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heterojunction catalysis, the cornerstone of the modern chemical industry, shows potential to tackle the growing energy and environmental crises. Electron transfer (ET) is ubiquitous in heterojunction catalysts, and it holds great promise for improving the catalytic efficiency by tuning the electronic structures or building internal electric fields at interfaces. This perspective summarizes the recent progress of catalysis involving ET in heterojunction catalysts and pinpoints its crucial role in catalytic mechanisms. We specifically highlight the occurrence, driving forces, and applications of ET in heterojunction catalysis. For corroborating the ET processes, common techniques with measurement principles are introduced. We end with the limitations of the current study on ET, and envision future challenges in this field.
Collapse
Affiliation(s)
- Jianhua Zhang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Yuan Lin
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Lijun Liu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| |
Collapse
|
6
|
Cao J, Zhang J, Guo W, Chen H, Li J, Jing D, Luo B, Ma L. A Type-I Heterojunction by Anchoring Ultrafine Cu 2O on Defective TiO 2 Framework for Efficient Photocatalytic H 2 Production. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jiamei Cao
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi710049, China
| | - Jiankang Zhang
- State Power Investment Group Xinjiang Energy Chemical Co., Ltd., Urumqi, Xinjiang830010, China
| | - Wangui Guo
- State Power Investment Group Xinjiang Energy Chemical Co., Ltd., Urumqi, Xinjiang830010, China
| | - Hao Chen
- State Power Investment Group Xinjiang Energy Chemical Co., Ltd., Urumqi, Xinjiang830010, China
| | - Jinghua Li
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi710049, China
| | - Dengwei Jing
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi710049, China
| | - Bing Luo
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi710049, China
| | - Lijing Ma
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi710049, China
| |
Collapse
|
7
|
Li Y, Yin P, Zhang Y, Zhang R. Synthesis of honeycomb Ag@CuO nanoparticles and their application as a highly sensitive and electrocatalytically active hydrogen peroxide sensor material. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4842-4850. [PMID: 36398599 DOI: 10.1039/d2ay01211a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Copper acetate/silver nitrate/polyvinylpyrrolidone was first prepared into nano-hybrid silver-doped copper oxide by electrospinning, and then nano-honeycomb particles were produced through heat-treatment. For the first time, honeycomb Ag@CuO nanoparticles were prepared by electrospinning, and a H2O2 sensor was constructed by modifying the carbon paste electrode (CPE) with the honeycomb Ag@CuO nanoparticles. This work performed the structural, morphological, and phase analysis of the Ag@CuO nanoparticles by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicated the synthesis of Ag@CuO hybrid nanoparticles with high purity, and cyclic voltammetry and amperometry show that the Ag@CuO modified electrode has high electrocatalytic performances with fast voltammetric responses and a notably decreased overpotential compared to that of even the CuO modified CPE. In addition, the Ag/CuO-CPE based H2O2 sensor has the highest sensitivity of 1982.14 μA (mmol L-1)-1 cm-2, the lowest detection limit of 0.01 μmol L-1 ((S/N) = 3), and the measured linear response for H2O2 oxidation ranged from 0.05 μmol L-1 to 100 μmol L-1 and 100 μmol L-1 to 1.5 mmol L-1. The proposed method was applied to the determination of H2O2 in coconut fruit samples from canned coconut, and the satisfactory results confirmed the applicability of this sensor in practical analysis.
Collapse
Affiliation(s)
- Yong Li
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, PR China.
| | - Pengchong Yin
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, PR China.
| | - Yuxin Zhang
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, PR China.
| | - Ruizhu Zhang
- Henan Engineering Technology Research Center, North China University of Water Resources and Electric Power, Zhengzhou 450045, PR China
| |
Collapse
|
8
|
Li Z, Li Z, Zuo C, Fang X. Application of Nanostructured TiO 2 in UV Photodetectors: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109083. [PMID: 35061927 DOI: 10.1002/adma.202109083] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/16/2022] [Indexed: 06/14/2023]
Abstract
As a wide-bandgap semiconductor material, titanium dioxide (TiO2 ), which possesses three crystal polymorphs (i.e., rutile, anatase, and brookite), has gained tremendous attention as a cutting-edge material for application in the environment and energy fields. Based on the strong attractiveness from its advantages such as high stability, excellent photoelectric properties, and low-cost fabrication, the construction of high-performance photodetectors (PDs) based on TiO2 nanostructures is being extensively developed. An elaborate microtopography and device configuration is the most widely used strategy to achieve efficient TiO2 -based PDs with high photoelectric performances; however, a deep understanding of all the key parameters that influence the behavior of photon-generated carriers, is also highly required to achieve improved photoelectric performances, as well as their ultimate functional applications. Herein, an in-depth illustration of the electrical and optical properties of TiO2 nanostructures in addition to the advances in the technological issues such as preparation, microdefects, p-type doping, bandgap engineering, heterojunctions, and functional applications are presented. Finally, a future outlook for TiO2 -based PDs, particularly that of further functional applications is provided. This work will systematically illustrate the fundamentals of TiO2 and shed light on the preparation of more efficient TiO2 nanostructures and heterojunctions for future photoelectric applications.
Collapse
Affiliation(s)
- Ziliang Li
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Ziqing Li
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Chaolei Zuo
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
9
|
Geng B, Zhang S, Yang X, Shi W, Li P, Pan D, Shen L. Cu2-xO@TiO2-y Z-scheme heterojunctions for sonodynamic-chemodynamic combined tumor eradication. CHEMICAL ENGINEERING JOURNAL 2022; 435:134777. [DOI: 10.1016/j.cej.2022.134777] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
|
10
|
Luo Y, Xing L, Hu C, Zhang W, Lin X, Gu J. Facile synthesis of nanocellulose-based Cu 2O/Ag heterostructure as a surface-enhanced Raman scattering substrate for trace dye detection. Int J Biol Macromol 2022; 205:366-375. [PMID: 35192906 DOI: 10.1016/j.ijbiomac.2022.02.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/28/2021] [Accepted: 02/16/2022] [Indexed: 12/16/2022]
Abstract
Semiconductor metal-oxide/metal heterostructures with synergetic properties have potential applications in photocatalysis and optical sensors. Here, Cu2O sub-micro cubes were synthesized under environmentally benign conditions using 2, 2, 6, 6-tetramethylpyperdine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils as a reducing and stabilizing agent. Then the surface of the Cu2O cubes was decorated with silver nanoparticles (AgNPs) by a substitution reaction. The Cu2O/Ag heterostructures within the cellulose nanofibrils (CNFs) network were employed as a promising surface-enhanced Raman scattering (SERS) assay for efficient sensing of methylene blue (MB), reaching a maximum enhancement factor (EF) of 4.0 × 104. Their SERS intensities depended on the coverage density of AgNPs and the wavelength of the excitation laser. The excellent SERS performance may result from the charge transfer between Ag and Cu2O molecules and the strong electromagnetic field at the interface. The CNF-Cu2O/Ag substrates were capable of detecting MB dye down to 10-8 M level with a relative standard deviation of 10-15%, demonstrating great sensitivity and reproducibility.
Collapse
Affiliation(s)
- Yinglin Luo
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China
| | - Lida Xing
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Chuanshuang Hu
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China.
| | - Weiwei Zhang
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiuyi Lin
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China
| | - Jin Gu
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
11
|
Chen JL, Liu MM, Xie SY, Yue LJ, Gong FL, Chai KM, Zhang YH. Cu2O-loaded TiO2 heterojunction composites for enhanced photocatalytic H2 production. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131294] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Unnikrishnan B, Gultom IS, Tseng YT, Chang HT, Huang CC. Controlling morphology evolution of titanium oxide-gold nanourchin for photocatalytic degradation of dyes and photoinactivation of bacteria in the infected wound. J Colloid Interface Sci 2021; 598:260-273. [PMID: 33901851 DOI: 10.1016/j.jcis.2021.04.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
We report a one-pot, room-temperature, morphology-controlled synthesis of titanium oxide (TiOx)-gold nanocomposites (TiOx-Au NCs) using HAuCl4 and TiCl3 as precursors, and catechin as reducing agent. TiOx-Au NCs have a range of morphologies from star-like to urchin-like shape depending on the concentration of TiCl3 in the reaction mixture. The urchin-shaped TiOx-Au NCs exhibited excellent photocatalytic activity toward dye degradation due to strong light absorption, plasmon-induced excitation, high conductivity of the gold, and reduced hole-electron pair recombination. TiOx-Au NCs have the advantage of a wide range of light absorption and surface plasmon absorption-mediated excitation due to their abundant gold spikes, which enabled the degradation of dyes over 97% in 60 min, using a xenon lamp as a light source. In addition, TiOx-Au NCs are highly efficient for the photoinactivation of Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA), and Candida albicans through the photodynamic generation of reactive oxygen species (ROS) and damage to the bacterial membrane. The catechin derivatives on the NCs effectively promoted curing MRSA infected wounds in rats through inducing collagen synthesis, migration of keratinocytes, and neovascularization.
Collapse
Affiliation(s)
- Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Irma Suryani Gultom
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yu-Ting Tseng
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
13
|
Shaw ZL, Kuriakose S, Cheeseman S, Dickey MD, Genzer J, Christofferson AJ, Crawford RJ, McConville CF, Chapman J, Truong VK, Elbourne A, Walia S. Antipathogenic properties and applications of low-dimensional materials. Nat Commun 2021; 12:3897. [PMID: 34162835 PMCID: PMC8222221 DOI: 10.1038/s41467-021-23278-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/14/2021] [Indexed: 01/31/2023] Open
Abstract
A major health concern of the 21st century is the rise of multi-drug resistant pathogenic microbial species. Recent technological advancements have led to considerable opportunities for low-dimensional materials (LDMs) as potential next-generation antimicrobials. LDMs have demonstrated antimicrobial behaviour towards a variety of pathogenic bacterial and fungal cells, due to their unique physicochemical properties. This review provides a critical assessment of current LDMs that have exhibited antimicrobial behaviour and their mechanism of action. Future design considerations and constraints in deploying LDMs for antimicrobial applications are discussed. It is envisioned that this review will guide future design parameters for LDM-based antimicrobial applications.
Collapse
Affiliation(s)
- Z L Shaw
- School of Engineering, RMIT University, Melbourne, Australia
| | - Sruthi Kuriakose
- School of Engineering, RMIT University, Melbourne, Australia
- Functional Materials and Microsystems Research Group, MicroNano Research Facility, RMIT University, Melbourne, Australia
| | | | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Jan Genzer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | | | | | - Chris F McConville
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3220, Australia
| | - James Chapman
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Vi Khanh Truong
- School of Science, RMIT University, Melbourne, VIC, Australia
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, VIC, Australia.
| | - Sumeet Walia
- School of Engineering, RMIT University, Melbourne, Australia.
- Functional Materials and Microsystems Research Group, MicroNano Research Facility, RMIT University, Melbourne, Australia.
| |
Collapse
|
14
|
Koutavarapu R, Tamtam MR, Rao MC, Peera SG, Shim J. Recent progress in transition metal oxide/sulfide quantum dots-based nanocomposites for the removal of toxic organic pollutants. CHEMOSPHERE 2021; 272:129849. [PMID: 33582511 DOI: 10.1016/j.chemosphere.2021.129849] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/06/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
Water is an essential solvent that is extremely necessary for the survival of life. Water pollution due to the increased utilization of water for various processes, including domestic and industrial activities, poses a special threat that contaminates both surface and ground water. In recent years, advanced oxidation processes (AOPs) have been applied to deal with wastewater problems, which is a green method used to oxidize organic contaminants with strong oxidative radical species. Among the AOPs, photocatalytic technology is one of the most promising strategies for wastewater cleaning, which fulfills the aims of environmentally friendly and sustainable development. Owing to their unique electronic, optical, and structural properties, nanoscale semiconductors have received substantial interest as materials for AOPs, particularly inspired by their superb quantum confinement effects and large surface-area-to-volume ratio, which are essential for catalytic reaction kinetics. Recent advancements have revealed that semiconductor nanocrystals, known as quantum dots (QDs), are newly emerging zero-dimensional (0-D) nanomaterials, which have garnered much attention owing to their special physiochemical characteristics such as high conductivity, thermo-chemical and opto-mechanical stability, high adsorption coefficients, and, most importantly, their admirable recyclability. In this review, we provide a clear understanding of the importance of semiconductor QD-based nanocomposites in the degradation of organic pollutants, in addition to the mechanism involved in the reaction process. Following this, the enhancement of different materials, such as metal oxides and metal sulfide QD-based nanocomposites, is discussed in the context of combating environmental pollution.
Collapse
Affiliation(s)
| | - Mohan Rao Tamtam
- Chemical Engineering Department, Debre Berhan University, Debre Berhan 445, Ethiopia
| | - M C Rao
- Department of Physics, Andhra Loyola College, Vijayawada, 520-008, Andhra Pradesh, India.
| | - Shaik Gouse Peera
- Department of Environmental Science and Engineering, Keimyung University, Daegu, 42602, Republic of Korea.
| | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| |
Collapse
|
15
|
Photodehydrogenation of Ethanol over Cu 2O/TiO 2 Heterostructures. NANOMATERIALS 2021; 11:nano11061399. [PMID: 34070566 PMCID: PMC8230259 DOI: 10.3390/nano11061399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
The photodehydrogenation of ethanol is a sustainable and potentially cost-effective strategy to produce hydrogen and acetaldehyde from renewable resources. The optimization of this process requires the use of highly active, stable and selective photocatalytic materials based on abundant elements and the proper adjustment of the reaction conditions, including temperature. In this work, Cu2O-TiO2 type-II heterojunctions with different Cu2O amounts are obtained by a one-pot hydrothermal method. The structural and chemical properties of the produced materials and their activity toward ethanol photodehydrogenation under UV and visible light illumination are evaluated. The Cu2O-TiO2 photocatalysts exhibit a high selectivity toward acetaldehyde production and up to tenfold higher hydrogen evolution rates compared to bare TiO2. We further discern here the influence of temperature and visible light absorption on the photocatalytic performance. Our results point toward the combination of energy sources in thermo-photocatalytic reactors as an efficient strategy for solar energy conversion.
Collapse
|
16
|
Singh J, Juneja S, Soni R, Bhattacharya J. Sunlight mediated enhanced photocatalytic activity of TiO2 nanoparticles functionalized CuO-Cu2O nanorods for removal of methylene blue and oxytetracycline hydrochloride. J Colloid Interface Sci 2021; 590:60-71. [DOI: 10.1016/j.jcis.2021.01.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 01/10/2023]
|
17
|
Lim T, Ryoo JY, Jang M, Han MS. Ligand-free Suzuki-Miyaura cross-coupling with low Pd content: rapid development by a fluorescence-based high-throughput screening method. Org Biomol Chem 2021; 19:1009-1016. [PMID: 33438708 DOI: 10.1039/d0ob02359k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Suzuki-Miyaura (SM) cross-coupling is one of the most effective strategies for carbon-carbon bond formation, but previous methods have several drawbacks, such as the requirement of complicated ligands, toxic organic solvents, and high-content-Pd catalysts. Thus, in this study, a highly efficient SM cross-coupling was developed using metal oxide catalysts: 0.02 mol% Pd, aqueous solvent, no ligand, and room temperature. Metal oxides containing low Pd content (ppm scale) were prepared by a simple co-precipitation method and used as a catalyst for the SM reaction. A fluorescence-based high-throughput screening (HTS) method was developed for the rapid evaluation of catalytic activity and reaction conditions. Among the various metal oxides, Pd/Fe2O3 showed the highest activity for the SM reaction. After further optimization by HTS, various biaryl compounds were obtained under optimal conditions: Pd/Fe2O3 (0.02 mol% Pd) in aqueous ethanol at mild temperature without any ligands.
Collapse
Affiliation(s)
- Taeho Lim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Jeong Yup Ryoo
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Mingyeong Jang
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Min Su Han
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
18
|
Periyayya U, Madhu D, Subramaniyam K, Son H, Lee IH. Enhanced cyclic performance initiated via an in situ transformation of Cu/CuO nanodisk to Cu/CuO/Cu 2O nanosponge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6459-6469. [PMID: 32996093 DOI: 10.1007/s11356-020-10910-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
A simple oxidation method for preparing CuO nanodisks on a flexible Cu sheet is presented. The crystal structure of as-prepared CuO nanodisks was analyzed by X-ray diffraction. The elemental composition and surface morphology were documented by X-ray photoelectron spectroscopy, scanning, and transmission electron microscopy. The photocatalytic performance of flexible Cu/CuO nanodisks was tested to mediate the degradation of RhB and MB dyes. After 2nd recycling, an in situ transformation of the nanodisk surface leads to electron transfer between the conduction bands of Cu2O and CuO phase, accelerating the degradation of the dyes due to a more favorable electron-hole separation under different band gap engineering. The optical and electrochemical impedance analyses were conducted to examine the efficiency of photogenerated charge carrier separation. Additionally, in the photodegradation system of Cu/CuO nanodisks, the generation of superoxide radical (·O2-) is responsible for the dye degradation under daylight irradiation. The generation of the latter radical is energetically feasible since the conduction band of Cu2O (- 0.28 eV) is well-matching with the redox potential of O2/·O2- (- 0.28 eV). Consequently, it is concluded that the cyclic stability shows the usefulness of Cu/CuO nanodisk preparation for the dye degradation under daylight irradiation. Graphical abstract.
Collapse
Affiliation(s)
- Uthirakumar Periyayya
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, South Korea.
- Nanoscience Center for Optoelectronic and Energy Devices [Nano-COED], Department of Chemistry, Sona College of Technology, Salem, Tamilnadu, 636005, India.
| | - Devendiran Madhu
- Nanoscience Center for Optoelectronic and Energy Devices [Nano-COED], Department of Chemistry, Sona College of Technology, Salem, Tamilnadu, 636005, India
| | - Kalaiarasan Subramaniyam
- Nanoscience Center for Optoelectronic and Energy Devices [Nano-COED], Department of Chemistry, Sona College of Technology, Salem, Tamilnadu, 636005, India
| | - Hoki Son
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, South Korea
| | - In-Hwan Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
19
|
Khasanah RAN, Lin HC, Ho HY, Peng YP, Lim TS, Hsiao HL, Wang CR, Chuang MC, Chien FSS. Studies on the substrate-dependent photocatalytic properties of Cu 2O heterojunctions. RSC Adv 2021; 11:4935-4941. [PMID: 35424443 PMCID: PMC8694542 DOI: 10.1039/d0ra10681j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/17/2021] [Indexed: 11/26/2022] Open
Abstract
Cu2O is a promising material for photocatalysis because of its absorption ability in the ultraviolet (UV)-visible light range. Cu2O deposited on conductive Ti and fluorine-doped tin oxide (FTO) substrates behaves as a photocathode. Cu2O deposited on an n-type semiconductor such as TiO2 nanotube arrays (TNA)/Ti behaves as a photoanode and has demonstrated better photocatalytic activity than that of TNA/Ti. The substrate-dependent photocatalytic properties of Cu2O heterojunctions are not well studied. In this work, the photocatalytic properties of a Cu2O/TNA/Ti junction as a photoanode and of Cu2O/Ti and Cu2O/FTO junctions as photocathodes without bias were systematically studied to understand their performance. The Cu2O/TNA/Ti photoanode exhibited higher photocurrent spectral responses than those of Cu2O/Ti and Cu2O/FTO photocathodes. The photoanodic/photocathodic properties of those junctions were depicted in their energy band diagrams. Time-resolved photoluminescence indicated that Cu2O/TNA/Ti, Cu2O/Ti, and Cu2O/FTO junctions did not enhance the separation of photogenerated charges. The improved photocatalytic properties of Cu2O/TNA/Ti compared with TNA/Ti were mainly attributed to the UV-visible light absorption of Cu2O.
Collapse
Affiliation(s)
| | - Hui-Ching Lin
- Department of Applied Physics, Tunghai University Taichung 407224 Taiwan
| | - Hsiang-Yun Ho
- Department of Environmental Science and Engineering, Tunghai University Taichung 407224 Taiwan
| | - Yen-Ping Peng
- Institute of Environmental Engineering, National Sun Yat-sen University Kaoshiung 804 Taiwan
| | - Tsong-Shin Lim
- Department of Applied Physics, Tunghai University Taichung 407224 Taiwan
| | - Hsi-Lien Hsiao
- Department of Applied Physics, Tunghai University Taichung 407224 Taiwan
| | - Chang-Ren Wang
- Department of Applied Physics, Tunghai University Taichung 407224 Taiwan
| | - Min-Chieh Chuang
- Department of Chemistry, Tunghai University Taichung 407224 Taiwan
| | | |
Collapse
|
20
|
Bai X, Liu B, Zhang W, Wang Y, Yu Y, Yang Y, Guo J. MOF-derived porous TiO2 decorated with n-type Cu2O for efficient photocatalytic H2 evolution. NEW J CHEM 2021. [DOI: 10.1039/d1nj03089b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Type-I Cu2O/TiO2 with a porous structure has excellent photocatalytic activity for hydrogen production because of the effectively separated electron–hole pairs.
Collapse
Affiliation(s)
- Xue Bai
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Bo Liu
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Wei Zhang
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Yang Wang
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Yu Yu
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Yang Yang
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Jianping Guo
- State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Science Research, Beijing, 100041, P. R. China
| |
Collapse
|
21
|
Yang H, Amari H, Liu L, Zhao C, Gao H, He A, Browning ND, Little MA, Sprick RS, Cooper AI. Nano-assemblies of a soluble conjugated organic polymer and an inorganic semiconductor for sacrificial photocatalytic hydrogen production from water. NANOSCALE 2020; 12:24488-24494. [PMID: 33319898 DOI: 10.1039/d0nr05801g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanostructured materials have interesting optical and electronic properties that are often drastically different from those of their bulk counterparts. While bulk organic/inorganic semiconductor composites have attracted much attention in the past decade, the preparation of organic/inorganic semiconductor nanocomposites (OISNs) still remains challenging. This work presents an assembly method for the co-encapsulation of titanium dioxide dots (TDs) with a cyano-substituted soluble conjugated polymer (CSCP) into a particular nanoparticle. The as-prepared CSCP/TD semiconductor nanocomposites (CSCP/TD NCs) exhibit different particle surfaces and morphologies depending on the mass ratio of the CSCP to TDs. We then tested them as photocatalysts for sacrificial hydrogen production from water. We found that nanocomposites outperformed nanoparticles of the individual components and physical mixtures thereof. The most active CSCP/TD NC had a catalytic H2 production rate that was 4.25 times higher than that of pure polymer nanoparticles prepared under the same conditions. We ascribe this to energy transfer between the semiconductors, where direct phase contact is essential, highlighting a potential avenue for using soluble, visible light-absorbing conjugated organic polymers to build Z-schemes for overall water splitting in the future.
Collapse
Affiliation(s)
- Haofan Yang
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Enhanced stability and activity for solvent-free selective oxidation of cyclohexane over Cu2O/CuO fabricated by facile alkali etching method. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
Co-Catalytic Action of Faceted Non-Noble Metal Deposits on Titania Photocatalyst for Multielectron Oxygen Reduction. Catalysts 2020. [DOI: 10.3390/catal10101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In order to clarify the reason of often reported low photocatalytic activity of rutile titania compared to that of anatase titania and the sluggish kinetics for oxygen reduction of rutile titania, in this study, faceted copper(I) oxide (Cu2O) particles (FCPs), i.e., cube, cuboctahedron and octahedron, were deposited onto rutile particles by an in-situ wet chemical method, and the co-catalytic action of FCPs was studied in the oxidative decomposition of acetic acid. The oxygen reduction reaction kinetics of bare and FCP-loaded titania samples in photodecomposition of organic compounds were investigated by light-intensity dependence measurement. FCPs serve as the specific sites (sink) which accumulate excited electrons to drive multielectron oxygen reduction reactions, as the counter reaction in photodecomposition of organic compounds by positive holes, which significantly improves the photocatalytic activity of rutile titania particles.
Collapse
|
24
|
Polat K. A low cost flexible photocatalyst based on silver decorated Cu2O nanowires. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
25
|
Highly Crystalline Ordered Cu-dopedTiO2Nanostructure by Paper Templated Method: Hydrogen Production and Dye Degradation under Natural Sunlight. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4020048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A highly crystalline ordered Cu-TiO2 nanostructure was synthesized using a simple paper template method using cupric nitrate and titanium isopropoxide as precursors. The structural study by XRD confirmed the formation of highly crystalline anatase phase of Cu-TiO2. The broad diffraction peaks of Cu-TiO2 exhibit the nanocrystalline nature of the product. The optical study by UV-DRS indicated the red shift in absorption wavelength with an increase in Cu doping, i.e., towards the visible region. The FE-SEM and FE-TEM study validated the formation of spherical shaped nanoparticles of Cu-TiO2 having sizes in the range of 20–30 nm. Considering the absorption in the visible region, the photocatalytic study was performed for water splitting and rhodamine-B (RhB) dye degradation under natural sunlight. The 2% Cu-doped TiO2 showed the highest photocatalytic hydrogen evolution, i.e., 1400 µmol·g−1·h−1 from water, among the prepared compositions. The photocatalytic performance of Cu-TiO2 conferred complete degradation of RhB dye within 40 min. The higher activity in both cases was attributed to the formation of highly crystalline ordered nanostructure of Cu-doped TiO2. This synthesis approach has potential to prepare other highly crystalline ordered nanostructured semiconductors for different applications.
Collapse
|
26
|
Chen J, Wang M, Han J, Guo R. TiO 2 nanosheet/NiO nanorod hierarchical nanostructures: p-n heterojunctions towards efficient photocatalysis. J Colloid Interface Sci 2020; 562:313-321. [PMID: 31846805 DOI: 10.1016/j.jcis.2019.12.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 02/02/2023]
Abstract
TiO2 nanosheet/NiO nanorod heterojunction hybrids have been developed through a hydrothermal route, where NiO nanorods (size: 5 nm in diameter and 20-40 nm in length) are deposited at the {0 0 1} facet of anatase TiO2 nanosheets. The photocatalysts were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption-desorption analysis, UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy and time-resolved fluorescence. The TiO2/NiO photocatalysts exhibited good photocatalytic activities towards the degradation of methyl blue (MB) and phenol, and hydrogen generation efficiency under visible light irradiation. The maximum rate constant can be reached 0.0279 min-1 and 0.0135 min-1 respectively, which are about 12 and 10 times higher than that of TiO2 nanosheets. And the hydrogen generation efficiency is 10 times higher than physical mixing of TiO2 and NiO. Photocatalytic degradation efficiency remains more than 90% after 6 times cycle dye degradation, and the H2 production efficiency is almost the same after four cycles, suggesting good stability and reusability. The enhanced photocatalytic activities are associated with the rational design of TiO2/NiO hierarchical heterojunctions which ensues high photogenerated charge separation efficiency. With the improved photocatalytic performance, the TiO2/NiO heterojunction hybrids are expected to be potential photocatalysts in environmental and energy related areas.
Collapse
Affiliation(s)
- Jie Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | - Minggui Wang
- Guangling College, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China.
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China.
| |
Collapse
|
27
|
Zou Y, Zhou X, Ma J, Yang X, Deng Y. Recent advances in amphiphilic block copolymer templated mesoporous metal-based materials: assembly engineering and applications. Chem Soc Rev 2020; 49:1173-1208. [PMID: 31967137 DOI: 10.1039/c9cs00334g] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mesoporous metal-based materials (MMBMs) have received unprecedented attention in catalysis, sensing, and energy storage and conversion owing to their unique electronic structures, uniform mesopore size and high specific surface area. In the last decade, great progress has been made in the design and application of MMBMs; in particular, many novel assembly engineering methods and strategies based on amphiphilic block copolymers as structure-directing agents have also been developed for the "bottom-up" construction of a variety of MMBMs. Development of MMBMs is therefore of significant importance from both academic and practical points of view. In this review, we provide a systematic elaboration of the molecular assembly methods and strategies for MMBMs, such as tuning the driving force between amphiphilic block copolymers and various precursors (i.e., metal salts, nanoparticles/clusters and polyoxometalates) for pore characteristics and physicochemical properties. The structure-performance relationship of MMBMs (e.g., pore size, surface area, crystallinity and crystal structure) based on various spectroscopy analysis techniques and density functional theory (DFT) calculation is discussed and the influence of the surface/interfacial properties of MMBMs (e.g., active surfaces, heterojunctions, binding sites and acid-base properties) in various applications is also included. The prospect of accurately designing functional mesoporous materials and future research directions in the field of MMBMs is pointed out in this review, and it will open a new avenue for the inorganic-organic assembly in various fields.
Collapse
Affiliation(s)
- Yidong Zou
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China.
| | - Xinran Zhou
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China.
| | - Junhao Ma
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China.
| | - Xuanyu Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China.
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China. and State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
28
|
Nanocrystal-engineered thin CuO film photocatalyst for visible-light-driven photocatalytic degradation of organic pollutant in aqueous solution. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.12.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Ahmed F, Awada C, Ansari SA, Aljaafari A, Alshoaibi A. Photocatalytic inactivation of Escherischia coli under UV light irradiation using large surface area anatase TiO 2 quantum dots. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191444. [PMID: 31903213 PMCID: PMC6936290 DOI: 10.1098/rsos.191444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 09/16/2019] [Indexed: 05/17/2023]
Abstract
In this study, high specific surface areas (SSAs) of anatase titanium dioxide (TiO2) quantum dots (QDs) were successfully synthesized through a novel one-step microwave-hydrothermal method in rapid synthesis time (20 min) without further heat treatment. XRD analysis and HR-TEM images showed that the as-prepared TiO2 QDs of approximately 2 nm size have high crystallinity with anatase phase. Optical properties showed that the energy band gap (E g) of as-prepared TiO2 QDs was 3.60 eV, which is higher than the standard TiO2 band gap, which might be due to the quantum size effect. Raman studies showed shifting and broadening of the peaks of TiO2 QDs due to the reduction of the crystallite size. The obtained Brunauer-Emmett-Teller specific surface area (381 m2 g-1) of TiO2 QDs is greater than the surface area (181 m2 g-1) of commercial TiO2 nanoparticles. The photocatalytic activities of TiO2 QDs were conducted by the inactivation of Escherischia coli under ultraviolet light irradiation and compared with commercially available anatase TiO2 nanoparticles. The photocatalytic inactivation ability of E. coli was estimated to be 91% at 60 µg ml-1 for TiO2 QDs, which is superior to the commercial TiO2 nanoparticles. Hence, the present study provides new insight into the rapid synthesis of TiO2 QDs without any annealing treatment to increase the absorbance of ultraviolet light for superior photocatalytic inactivation ability of E. coli.
Collapse
Affiliation(s)
- Faheem Ahmed
- Physics Department, College of Science, King Faisal University, Hofuf, Al-Ahsa 31982, Saudi Arabia
| | - Chawki Awada
- Physics Department, College of Science, King Faisal University, Hofuf, Al-Ahsa 31982, Saudi Arabia
| | | | | | | |
Collapse
|
30
|
Yang X, Zhang S, Zhang L, Zhang B, Ren T. Dynamic growth of rhombic dodecahedral Cu 2O crystals controlled by reaction temperature and their size-dependent photocatalytic performance. RSC Adv 2019; 9:36831-36837. [PMID: 35539055 PMCID: PMC9075176 DOI: 10.1039/c9ra07255a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/06/2019] [Indexed: 11/29/2022] Open
Abstract
Compared with low-index {100} or {111} planes of Cu2O crystals, rhombic dodecahedra (RD) Cu2O crystals exposing 12 {110} facets exhibit the most superior photodegradation of organic pollutants. Herein, a series of RD Cu2O crystals with different sizes were successfully synthesized by precisely adjusting the reaction temperature ranging from 40 °C to 100 °C. The results revealed that truncated rhombic dodecahedra (TRD) Cu2O crystals were fabricated when the temperatures was 40 °C. More importantly, on raising the temperature to above 40 °C, Cu2O architectures dynamically evolved from TRD to RD. Meanwhile, the sizes gradually decreased with elevation of the temperature, while the RD morphology of Cu2O crystals remained, demonstrating the importance of temperature for determining the morphology and size of Cu2O crystals. In addition, we also carefully investigated the visible-light photodegradation performance of Cu2O crystals for methyl orange (MO). RD Cu2O crystals exhibited superior photocatalytic activity compared with TRD, and showed size-dependent photocatalytic activity for MO. The photocatalytic activity of RD Cu2O crystals can be greatly improved by decreasing the size. In particular, RD-60 with the minimum size achieved the best photocatalytic properties compared to the other RD and TRD Cu2O crystals, and still displayed high photocatalytic efficiency even after three cycles. Such results advance the understanding that temperature modulation serves as an effective means to fabricate RD Cu2O crystals. Compared with low-index {100} or {111} planes of Cu2O crystals, rhombic dodecahedra (RD) Cu2O crystals exposing 12 {110} facets exhibit the most superior photodegradation of organic pollutants.![]()
Collapse
Affiliation(s)
- Xiaodong Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Guiyang 550025 P. R. China
| | - Shupeng Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Guiyang 550025 P. R. China
| | - Lei Zhang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Engineering Research Center of Green Energy Chemical Engineering, College of Chemistry and Materials Science, Shanghai Normal University 100 Guilin Road Shanghai 200234 P. R. China
| | - Bo Zhang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Engineering Research Center of Green Energy Chemical Engineering, College of Chemistry and Materials Science, Shanghai Normal University 100 Guilin Road Shanghai 200234 P. R. China
| | - Tianrui Ren
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Engineering Research Center of Green Energy Chemical Engineering, College of Chemistry and Materials Science, Shanghai Normal University 100 Guilin Road Shanghai 200234 P. R. China
| |
Collapse
|
31
|
Li JF, Zhong CY, Huang JR, Chen Y, Wang Z, Liu ZQ. Carbon dots decorated three-dimensionally ordered macroporous bismuth-doped titanium dioxide with efficient charge separation for high performance photocatalysis. J Colloid Interface Sci 2019; 553:758-767. [DOI: 10.1016/j.jcis.2019.06.077] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/12/2019] [Accepted: 06/23/2019] [Indexed: 10/26/2022]
|
32
|
Huang CL, Weng WL, Huang YS, Liao CN. Enhanced photolysis stability of Cu 2O grown on Cu nanowires with nanoscale twin boundaries. NANOSCALE 2019; 11:13709-13713. [PMID: 31194206 DOI: 10.1039/c9nr01406c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cuprous oxide (Cu2O) that has a direct bandgap corresponding to visible-light absorption exhibits versatile functionalities, which are appealing to solar cell, photocatalyst, bio-sensing and water splitting applications. However, photolysis stability has long been a problem for Cu2O under light exposure and a humid environment. Here, we found that the Cu2O layer grown on Cu nanowires (CuNWs) with high-density nanoscale twin boundaries can maintain the integrity of Cu/Cu2O core-shell structure under ambient air conditions for more than one year. The Cu2O on nanotwinned CuNWs also demonstrates much higher stability in humid air and water with light exposure than its counterpart on nanocrystalline CuNWs. The superior photolysis stability of Cu2O is attributed to (1) photoelectrons drained to the Cu core, (2) limited vacancy sources in the Cu2O layer and (3) the suppressed out-diffusion of Cu cations through the oxide layer. It is suggested that the presence of nanoscale twin boundaries modifies the atomic surface structure of the CuNWs and alters the photolysis reaction of Cu2O.
Collapse
Affiliation(s)
- Chun-Lung Huang
- Department of Materials Science and Engineering, National Tsing Hua University, 101 Sec. 2 Kuang-Fu Road, Hsinchu 30013, Taiwan.
| | - Wei-Lun Weng
- Department of Materials Science and Engineering, National Tsing Hua University, 101 Sec. 2 Kuang-Fu Road, Hsinchu 30013, Taiwan.
| | - Yan-Syun Huang
- Department of Materials Science and Engineering, National Tsing Hua University, 101 Sec. 2 Kuang-Fu Road, Hsinchu 30013, Taiwan.
| | - Chien-Neng Liao
- Department of Materials Science and Engineering, National Tsing Hua University, 101 Sec. 2 Kuang-Fu Road, Hsinchu 30013, Taiwan.
| |
Collapse
|
33
|
Zhu YC, Liu YL, Xu YT, Ruan YF, Fan GC, Zhao WW, Xu JJ, Chen HY. Three-Dimensional TiO 2@Cu 2O@Nickel Foam Electrodes: Design, Characterization, and Validation of O 2-Independent Photocathodic Enzymatic Bioanalysis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25702-25707. [PMID: 31294540 DOI: 10.1021/acsami.9b07523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This work reports the innovative design and application of a three-dimensional (3D) TiO2@Cu2O@nickel foam electrode synergized with enzyme catalysis toward the proof-of-concept study for oxygen-independent photocathodic enzymatic detection. Specifically, a 3D-nanostructured photoelectrode has great potential in the semiconductor-based photoelectrochemical (PEC) biological analysis. On the other hand, using various photocathodes, cathodic PEC bioanalysis, especially the photocathodic enzymatic detection, represents an attractive frontier in the field. Different from state-of-the-art photocathodic enzymatic studies that are oxygen-dependent, herein, we present the ingenious design, characterization, and implementation of 3D TiO2@Cu2O@nickel foam photocathodes for the first oxygen-independent example. In such a configuration, the Cu2O acted as the visible-light absorber, while the TiO2 shell would simultaneously function as a protective layer for Cu2O and as a desirable substrate for the immobilization of enzyme biomolecules. Especially, because of the proper band positions, the as-designed photocathode exhibited unique O2-independent PEC property. Exemplified by glucose oxidases, the as-developed sensor exhibited positive response to glucose with good performance. Because various oxidases could be integrated with the system, this protocol could serve as a universal O2-independent platform for many other targets. This work is also anticipated to catalyze more studies in the advanced 3D photoelectrodes toward innovative enzymatic applications.
Collapse
Affiliation(s)
- Yuan-Cheng Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Yi-Li Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Yi-Fan Ruan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Gao-Chao Fan
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
34
|
Kasmi AE, Vieker H, Wu LN, Beyer A, Chafik T, Tian ZY. Enhanced property of thin cuprous oxide film prepared through green synthetic route. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1812277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Achraf El Kasmi
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Laboratory LGCVR UAE/L01FST, University Abdelmalek Essaadi, Tangier B.P. 416, Morocco
| | - Henning Vieker
- Department of Physics, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Ling-nan Wu
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - André Beyer
- Department of Physics, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Tarik Chafik
- Laboratory LGCVR UAE/L01FST, University Abdelmalek Essaadi, Tangier B.P. 416, Morocco
| | - Zhen-yu Tian
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Weng B, Qi MY, Han C, Tang ZR, Xu YJ. Photocorrosion Inhibition of Semiconductor-Based Photocatalysts: Basic Principle, Current Development, and Future Perspective. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00313] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bo Weng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, P. R. China
| | - Ming-Yu Qi
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, P. R. China
| | - Chuang Han
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zi-Rong Tang
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yi-Jun Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
36
|
Zhang YH, Li YL, Jiu BB, Gong FL, Chen JL, Fang SM, Zhang HL. Highly enhanced photocatalytic H 2 evolution of Cu 2O microcube by coupling with TiO 2 nanoparticles. NANOTECHNOLOGY 2019; 30:145401. [PMID: 30625420 DOI: 10.1088/1361-6528/aafccb] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A Cu2O/TiO2 p-n heterojunction composite was created via a facile, controllable, one-pot hydrothermal method based on cubic Cu2O and TiO2 nanoparticles in the presence of dioctyl sulfosuccinate sodium salt (AOT) surfactant. The TiO2 nanoparticles with an average edge length of ∼10.1 nm were uniformly distributed on the crystal surface of a Cu2O cube {100}. The photocatalytic performance of the composite was effectively tuned by controlling the amount of TiO2. The Cu2O/TiO2 (60 wt%, labeled as CT-60) exhibits the highest enhanced photocatalytic activity in hydrogen production with H2 evolution of 3002.5 μmol g-1. The yield remained around 92.6% after three cycles. Hydrogen production of the CT-60 is 103 and 8.5 fold higher than the cubic Cu2O and TiO2 nanoparticles, respectively. The improvement in photocatalytic performance could be attributed to the formation of p-n heterojunction. Furthermore, the interface effect of Cu2O and TiO2 caused a broader absorbance in the visible-light region and the lower recombination of photogenerated electron-hole pairs. It is believed that the Cu2O/TiO2 p-n heterojunction composites could provide an alternative method to design highly efficient photocatalysts for solar energy.
Collapse
Affiliation(s)
- Yong-Hui Zhang
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
37
|
Heterostructure Cu2O/(001)TiO2 Effected on Photocatalytic Degradation of Ammonia of Livestock Houses. Catalysts 2019. [DOI: 10.3390/catal9030267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this paper, a heterogeneous composite catalyst Cu2O/(001)TiO2 was prepared by the impregnation-reduction method. The crystal form, highly active facet content, morphology, optical properties, and the photogenerated electron-hole recombination rate of the as-prepared catalysts were investigated. The performance of Cu2O/(001)TiO2 was appraised by photocatalytic degradation of ammonia under sunlight and was compared with lone P25, Cu2O, and (001)TiO2 at the same reaction conditions. The results showed that 80% of the ammonia concentration (120 ± 3 ppm) was removed by Cu2O/(001)TiO2, which was a higher degradation rate than that of pure P25 (12%), Cu2O (12%), and (001)TiO2 (15%) during 120 min of reaction time. The reason may be due to the compound’s (Cu2O/(001)TiO2) highly active (001) facets content that increased by 8.2% and the band gap width decreasing by 1.02 eV. It was also found that the air flow impacts the photocatalytic degradation of ammonia. Therefore, learning how to maintain the degradation effect of Cu2O/(001)TiO2 with ammonia will be important in future practical applications.
Collapse
|
38
|
Li X, Yu J, Jaroniec M, Chen X. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chem Rev 2019; 119:3962-4179. [DOI: 10.1021/acs.chemrev.8b00400] [Citation(s) in RCA: 1094] [Impact Index Per Article: 218.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xin Li
- College of Forestry and Landscape Architecture, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Xiaobo Chen
- Department of Chemistry, University of Missouri—Kansas City, Kansas City, Missouri 64110, United States
| |
Collapse
|
39
|
Significantly enhanced photocatalytic performance of mesoporous C@ZnO hollow nanospheres via suppressing charge recombination. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2018.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Naresh G, Hsieh PL, Meena V, Lee SK, Chiu YH, Madasu M, Lee AT, Tsai HY, Lai TH, Hsu YJ, Lo YC, Huang MH. Facet-Dependent Photocatalytic Behaviors of ZnS-Decorated Cu 2O Polyhedra Arising from Tunable Interfacial Band Alignment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3582-3589. [PMID: 30592409 DOI: 10.1021/acsami.8b19197] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
ZnS particles were grown over Cu2O cubes, octahedra, and rhombic dodecahedra for examination of their facet-dependent photocatalytic behaviors. After ZnS growth, Cu2O cubes stay photocatalytically inactive. ZnS-decorated Cu2O octahedra show enhanced photocatalytic activity, resulting from better charge carrier separation upon photoexcitation. Surprisingly, Cu2O rhombic dodecahedra give greatly suppressed photocatalytic activity after ZnS deposition. Electron paramagnetic resonance spectra agree with these experimental observations. Time-resolved photoluminescence profiles provide charge-transfer insights. The decrease in the photocatalytic activity is attributed to an unfavorable band alignment caused by significant band bending within the Cu2O(110)/ZnS(200) plane interface. A modified Cu2O-ZnS band diagram is presented. Density functional theory calculations generating plane-specific band energy diagrams of Cu2O and ZnS match well with the experimental results, showing that charge transfer across the Cu2O(110)/ZnS(200) plane interface would not happen. This example further illustrates that the actual photocatalysis outcome for semiconductor heterojunctions cannot be assumed because interfacial charge transfer is strongly facet-dependent.
Collapse
Affiliation(s)
| | | | - Vandana Meena
- Department of Chemistry , Indian Institute of Technology Roorkee , Roorkee 247 667 , India
| | - Shih-Kuang Lee
- Department of Materials Science and Engineering , National Chiao Tung University , Hsinchu 30010 , Taiwan
| | - Yi-Hsuan Chiu
- Department of Materials Science and Engineering , National Chiao Tung University , Hsinchu 30010 , Taiwan
| | | | | | | | - Ting-Hsuan Lai
- Department of Materials Science and Engineering , National Chiao Tung University , Hsinchu 30010 , Taiwan
| | - Yung-Jung Hsu
- Department of Materials Science and Engineering , National Chiao Tung University , Hsinchu 30010 , Taiwan
| | - Yu-Chieh Lo
- Department of Materials Science and Engineering , National Chiao Tung University , Hsinchu 30010 , Taiwan
| | | |
Collapse
|
41
|
Fu W, Cao Y, Feng Q, Smith WR, Dong P, Ye M, Shen J. Pd-Co nanoalloys nested on CuO nanosheets for efficient electrocatalytic N 2 reduction and room-temperature Suzuki-Miyaura coupling reaction. NANOSCALE 2019; 11:1379-1385. [PMID: 30604824 DOI: 10.1039/c8nr08724e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Due to their synergistic and tunable effects, bimetallic alloy systems have recently attracted considerable attention as superior catalysts. Herein, Pd-Co bimetallic alloy nanoparticles were uniformly deposited onto CuO nanosheet supports. This nanostructured catalyst was first shown to be an effective catalyst to convert N2 to NH3 in 0.1 M KOH with a yield of 10.04 μg h-1 mg-1cat. and a faradaic efficiency of 2.16%. The catalyst also performed well in the Suzuki-Miyaura coupling reaction at room temperature without an inert atmosphere and any toxic solvents. Thus, the catalyst is consistent with the principles of green chemistry. Due to the synergistic effects, this bimetallic Pd-Co catalyst shows higher catalytic activity than its monometallic counterparts. Moreover, the Pd/Co ratio was tuned to achieve the best catalytic performance. Finally, the Pd-Co/CuO catalyst presented good stability and recyclability. The superior catalytic activity of the bimetallic alloy catalyst make it an alternative material for catalytic applications in the future.
Collapse
Affiliation(s)
- Wenzhi Fu
- Institute of Special Materials and Technology, Fudan University, Shanghai, 200433, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
42
|
The study of Fe-doped CdS nanoparticle-assisted photocatalytic degradation of organic dye in wastewater. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-018-0933-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Preparation of CdS/BiOCl/Bi2O3 double composite system for visible light active photocatalytic applications. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.05.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Wu D, Li J, Guan J, Liu C, Zhao X, Zhu Z, Ma C, Huo P, Li C, Yan Y. Improved photoelectric performance via fabricated heterojunction g-C3N4/TiO2/HNTs loaded photocatalysts for photodegradation of ciprofloxacin. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.03.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Wang X, Jiang S, Huo X, Xia R, Muhire E, Gao M. Facile preparation of a TiO 2 quantum dot/graphitic carbon nitride heterojunction with highly efficient photocatalytic activity. NANOTECHNOLOGY 2018; 29:205702. [PMID: 29473542 DOI: 10.1088/1361-6528/aab1be] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this article, mechanical grinding, an effortless and super-effective synthetic strategy, is used to successfully synthesize a TiO2 quantum dot (TiO2QD)/graphitic carbon nitride (g-C3N4) heterostructure. X-ray photoelectron spectroscopy results together with transmission electron microscopy reveal the formation of the TiO2QD/g-C3N4 heterostructure with strong interfacial interaction. Because of the advantages of this characteristic, the prepared heterostructure exhibits excellent properties for photocatalytic wastewater treatment. Notably, the optimum photocatalytic activity of the TiO2QD/g-C3N4 heterostructure is nearly 3.4 times higher than that of the g-C3N4 nanosheets used for the photodegradation of rhodamine B pollutant. In addition, the stability and possible degradation mechanism of the TiO2QD/g-C3N4 heterojunction are studied in detail. This method may stimulate an effective approach to synthesizing QD-sensitized semiconductor materials and facilitate their application in environmental protection.
Collapse
Affiliation(s)
- Xing Wang
- Key Laboratory for Magnetism and Magnetic Materials of MOE, School of Physical Science and Technology, Lanzhou University, 730000 Lanzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
Zhang JJ, Qi P, Li J, Zheng XC, Liu P, Guan XX, Zheng GP. Three-dimensional Fe2O3–TiO2–graphene aerogel nanocomposites with enhanced adsorption and visible light-driven photocatalytic performance in the removal of RhB dyes. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.12.040] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Huang X, Ruan L, Jiang R, Guo L, Liu S. The Direction of Photogenerated Charge Carrier Transfer in TiO 2–Fe 2O 3 and TiO 2–CuO. CHEM LETT 2018. [DOI: 10.1246/cl.180020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaomin Huang
- South China University of Technology, Guangzhou 510640, P. R. China
| | - Lingfeng Ruan
- South China University of Technology, Guangzhou 510640, P. R. China
| | - Rongying Jiang
- South China University of Technology, Guangzhou 510640, P. R. China
| | - Lin Guo
- Department of Chemistry, Guangdong University of Education, Guangzhou 510303, P. R. China
| | - Song Liu
- South China University of Technology, Guangzhou 510640, P. R. China
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, Guangzhou 510640, P. R. China
| |
Collapse
|
48
|
Lakhera SK, Watts A, Hafeez HY, Neppolian B. Interparticle double charge transfer mechanism of heterojunction α-Fe2O3/Cu2O mixed oxide catalysts and its visible light photocatalytic activity. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.03.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Karthik P, Balaraman E, Neppolian B. Efficient solar light-driven H2 production: post-synthetic encapsulation of a Cu2O co-catalyst in a metal–organic framework (MOF) for boosting the effective charge carrier separation. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00604k] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The development of new and efficient catalytic systems for solar light-driven hydrogen generation is one of the prime focuses of contemporary chemical sciences.
Collapse
Affiliation(s)
- Peramaiah Karthik
- SRM Research Institute and Department of Chemistry
- SRM University
- Chennai-603203
- India
| | - Ekambaram Balaraman
- Organic Chemistry Division
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Pune-411008
- India
| | | |
Collapse
|
50
|
Zhang B, Liao S, Wu W, Li H, Ren T. Work function: a determining factor of the photodegradation rate of methyl orange via hollow octadecahedron Cu2O crystals. Phys Chem Chem Phys 2018; 20:20117-20123. [DOI: 10.1039/c8cp03670e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, the work function serves as a crucial factor for controlling the photodegradation efficiency of methyl orange via hollow octadecahedron Cu2O crystals.
Collapse
Affiliation(s)
- Bo Zhang
- The Key Laboratory of Resource Chemistry of Ministry of Education
- The Development Centre of Plant Germplasm Resources
- College of Life and Environmental Science
- Shanghai Normal University
- Shanghai
| | - Shaowei Liao
- The Key Laboratory of Resource Chemistry of Ministry of Education
- The Development Centre of Plant Germplasm Resources
- College of Life and Environmental Science
- Shanghai Normal University
- Shanghai
| | - Wenjun Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
| | - Hui Li
- The Key Laboratory of Resource Chemistry of Ministry of Education
- The Development Centre of Plant Germplasm Resources
- College of Life and Environmental Science
- Shanghai Normal University
- Shanghai
| | - Tianrui Ren
- The Key Laboratory of Resource Chemistry of Ministry of Education
- The Development Centre of Plant Germplasm Resources
- College of Life and Environmental Science
- Shanghai Normal University
- Shanghai
| |
Collapse
|