1
|
Jung Y, Hwang J, Cho H, Yoon JH, Lee JH, Song J, Kim D, Ahn M, Hong BH, Kweon DH. Graphene quantum dots as potential broad-spectrum antiviral agents. NANOSCALE ADVANCES 2025; 7:2032-2038. [PMID: 39974343 PMCID: PMC11833456 DOI: 10.1039/d4na00879k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/24/2025] [Indexed: 02/21/2025]
Abstract
As pandemic viruses have become a threat to people, various treatments have been developed, including vaccines, neutralizing antibodies, and inhibitors. However, some mutations in the target envelope protein limit the efficiency of these treatments. Therefore, the development of broad-spectrum antiviral agents targeting mutation-free viral membranes is of considerable importance. Herein, we propose graphene quantum dots (GQDs) as broad-spectrum antiviral agents, wherein the amphiphilic properties of GQDs destroy the viral membranes, regardless of the type of viruses, including SARS-CoV-2 and influenza virus. We observed that GQDs suppress both viral infection and replication and demonstrated their low cytotoxicity in a cell line and a mouse model, revealing the potential of GQDs as a universal first-line treatment for various viral diseases.
Collapse
Affiliation(s)
- Younghun Jung
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Jaehyeon Hwang
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Hyeonwoo Cho
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
- Graphene Research Center & Graphene Square Chemical Inc., Advanced Institute of Convergence Technology Suwon 16229 Republic of Korea
| | - Jeong Hyeon Yoon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Jong-Hwan Lee
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Jaekwang Song
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Donghoon Kim
- Department of Pharmacology, Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine Busan 49201 Republic of Korea
| | - Minchul Ahn
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
- Graphene Research Center & Graphene Square Chemical Inc., Advanced Institute of Convergence Technology Suwon 16229 Republic of Korea
| | - Byung Hee Hong
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
- Graphene Research Center & Graphene Square Chemical Inc., Advanced Institute of Convergence Technology Suwon 16229 Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University Suwon 16419 Republic of Korea
| |
Collapse
|
2
|
Chae DH, Park HS, Kim KM, Yu A, Park JH, Oh MK, Choi SW, Ryu J, Dunbar CE, Yoo HM, Yu KR. SARS-CoV-2 pseudovirus dysregulates hematopoiesis and induces inflammaging of hematopoietic stem and progenitor cells. Exp Mol Med 2025; 57:616-627. [PMID: 40025168 PMCID: PMC11958793 DOI: 10.1038/s12276-025-01416-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/15/2024] [Accepted: 12/16/2024] [Indexed: 03/04/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection primarily affects the respiratory system but may induce hematological alterations such as anemia, lymphopenia and thrombocytopenia. Previous studies have reported that SARS-CoV-2 efficiently infects hematopoietic stem and progenitor cells (HSPCs); however, the subsequent effects on hematopoiesis and immune reconstitution have not yet been described. Here we evaluated the pathological effects of infection of umbilical-cord-blood-derived HSPCs with the SARS-CoV-2 Omicron variant pseudovirus (PsV). Transcriptomic analysis of Omicron PsV-infected HSPCs revealed the upregulation of genes involved in inflammation, aging and the NLRP3 inflammasome, suggesting a potential trigger of inflammaging. Omicron PsV-infected HSPCs presented decreased numbers of multipotential progenitors (granulocyte‒erythrocyte‒macrophage‒megakaryocyte colony-forming units) ex vivo and repopulated primitive hematopoietic stem cells (Ki-67-hCD34+ cells) in an HSPC transplantation NOD-scid IL2rγnull mouse model (Omicron mouse). Furthermore, Omicron PsV infection induced myeloid-biased differentiation of HSPCs. Treatment with nanographene oxide, an antiviral agent, partially mitigated the myeloid bias and inflammaging phenotype both in vitro and in vivo. These findings provide insights into the abnormal hematopoietic and immune effects of SARS-CoV-2 infection and highlight potential therapeutic interventions.
Collapse
Affiliation(s)
- Dong-Hoon Chae
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun Sung Park
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kyoung-Myeon Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Biometrology Group, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Aaron Yu
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jae Han Park
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Mi-Kyung Oh
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Soon Won Choi
- Institutes of Convergence Technology, INBCT, Seoul, Republic of Korea
| | - Jaechul Ryu
- Institutes of Convergence Technology, INBCT, Seoul, Republic of Korea
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Hee Min Yoo
- Biometrology Group, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea.
- Department of Precision Measurement, University of Science and Technology, Daejeon, Republic of Korea.
| | - Kyung-Rok Yu
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Ashok Kumar SS, Bashir S, Pershaanaa M, Kamarulazam F, Kuppusamy AV, Badawi N, Ramesh K, Ramesh S. A review of the role of graphene-based nanomaterials in tackling challenges posed by the COVID-19 pandemic. Microb Pathog 2024; 197:107059. [PMID: 39442812 DOI: 10.1016/j.micpath.2024.107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/31/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
In 2020, the World Health Organization (WHO) declared a pandemic due to the emergence of the coronavirus disease (COVID-19) which had resulted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). At present, the emergence of many new variants and mutants were found to be more harmful compared to the previous strains. As a result, research scientists around the world had devoted significant efforts to understand the mechanism, causes and transmission due to COVID-19 along with the treatment to cure these diseases. However, despite achieving several findings, much more was unknown and yet to be explored. Hence, along with these developments, it is also extremely essential to design effective systems by incorporating smart materials to battle the COVID-19. Therefore, several approaches have been implemented to combat against COVID-19. Recently, the graphene-based materials have been explored for the current COVID-19 and future pandemics due to its superior physicochemical properties, providing efficient nanoplatforms for optical and electrochemical sensing and diagnostic applications with high sensitivity and selectivity. Moreover, based on the photothermal effects or reactive oxygen species formation, the carbon-based nanomaterials have shown its potentiality for targeted antiviral drug delivery and the inhibitory effects against pathogenic viruses. Therefore, this review article sheds light on the recent progress and the most promising strategies related to graphene and related materials and its applications for detection, decontamination, diagnosis, and protection against COVID-19. In addition, the key challenges and future directives are discussed in detail for fundamental design and development of technologies based on graphene-based materials along with the demand aspects of graphene-based products and lastly, our personal opinions on the appropriate approaches to improve these technologies respectively.
Collapse
Affiliation(s)
- Sachin Sharma Ashok Kumar
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; School of Engineering, Taylor's University, 1 Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia.
| | - Shahid Bashir
- Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, Universiti Malaya, Jalan Pantai Baharu, 59990, Kuala Lumpur, Malaysia
| | - M Pershaanaa
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Fathiah Kamarulazam
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - A V Kuppusamy
- School of Engineering and Computing, Manipal International University, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Nujud Badawi
- University of Hafr Al-Batin College of Science, Hafer Al-Batin, 39921, Saudi Arabia
| | - K Ramesh
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Physical Sciences, Saveetha School of Engineering, Saveetha University (SIMATS), Chennai, India.
| | - S Ramesh
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Physical Sciences, Saveetha School of Engineering, Saveetha University (SIMATS), Chennai, India
| |
Collapse
|
4
|
Liang J, Xu W, Pan X, Han S, Zhang L, Wen H, Ding M, Zhang W, Peng D. Advances research in porcine enteric coronavirus therapies and antiviral drugs. Vet Q 2024; 44:1-49. [PMID: 39484691 PMCID: PMC11536681 DOI: 10.1080/01652176.2024.2421299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
The porcine enteric coronaviruses (PECs) currently reported include porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), transmissible gastroenteritis virus (TGEV), and swine acute diarrhea syndrome coronavirus (SADS-CoV). In the absence of effective treatment, they can cause similar clinical characteristics including weight loss, sleepiness, vomiting, anorexia and fatal diarrhea in neonatal piglets, resulting in significant economic losses to the global pig industry. Although many studies on drugs for treating and combating PECs have been issued. There are still no specific drug targeting PECs and used in clinical production. Therefore, it is necessary to sort out and summarize the research on the treatment and anti PECs drugs, and further development of low toxicity and high efficiency drugs is needed. Here, we review the latest progress of anti PECs drugs, focus on the mechanism of anti PECs reaction of drug components, and try to clarify new strategies for effective control and elimination of PECs. These comprehensive and profound insights will help to further investigate, prevent and control the transmission of PECs infection.
Collapse
Affiliation(s)
- Jixiang Liang
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Weihang Xu
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Xiaoming Pan
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Shiyun Han
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Linwei Zhang
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Hao Wen
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Mingyue Ding
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Wanpo Zhang
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Dapeng Peng
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
5
|
Zeng J, Desmond P, Ngo HH, Lin W, Liu X, Liu B, Li G, Ding A. Membrane modification in enhancement of virus removal: A critical review. J Environ Sci (China) 2024; 146:198-216. [PMID: 38969448 DOI: 10.1016/j.jes.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2024]
Abstract
Many waterborne diseases are related with viruses, and COVID-19 worldwide has raised the concern of virus security in water into the public horizon. Compared to other conventional water treatment processes, membrane technology can achieve satisfactory virus removal with fewer chemicals, and prevent the outbreaks of viruses to a maximal extent. Researchers developed new modification methods to improve membrane performance. This review focused on the membrane modifications that enhance the performance in virus removal. The characteristics of viruses and their removal by membrane filtration were briefly generalized, and membrane modifications were systematically discussed through different virus removal mechanisms, including size exclusion, hydrophilic and hydrophobic interactions, electronic interactions, and inactivation. Advanced functional materials for membrane modification were summarized based on their nature. Furthermore, it is suggested that membranes should be enhanced through different mechanisms mainly based on their ranks of pore size. The current review provided theoretical support regarding membrane modifications in the enhancement of virus removal and avenues for practical application.
Collapse
Affiliation(s)
- Jie Zeng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peter Desmond
- Institute of Environmental Engineering (ISA), RWTH Aachen University, Aachen 52056, Germany
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, Sydney 2007, Australia
| | - Wei Lin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiao Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bingsheng Liu
- The Second Construction Co. Ltd. of China Construction Third Engineering Bureau, China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - An Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
6
|
Ma X, Tian Y, Yang R, Wang H, Allahou LW, Chang J, Williams G, Knowles JC, Poma A. Nanotechnology in healthcare, and its safety and environmental risks. J Nanobiotechnology 2024; 22:715. [PMID: 39548502 PMCID: PMC11566612 DOI: 10.1186/s12951-024-02901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/03/2024] [Indexed: 11/18/2024] Open
Abstract
Nanotechnology holds immense promise in revolutionising healthcare, offering unprecedented opportunities in diagnostics, drug delivery, cancer therapy, and combating infectious diseases. This review explores the multifaceted landscape of nanotechnology in healthcare while addressing the critical aspects of safety and environmental risks associated with its widespread application. Beginning with an introduction to the integration of nanotechnology in healthcare, we first delved into its categorisation and various materials employed, setting the stage for a comprehensive understanding of its potential. We then proceeded to elucidate the diverse healthcare applications of nanotechnology, spanning medical diagnostics, tissue engineering, targeted drug delivery, gene delivery, cancer therapy, and the development of antimicrobial agents. The discussion extended to the current situation surrounding the clinical translation and commercialisation of these cutting-edge technologies, focusing on the nanotechnology-based healthcare products that have been approved globally to date. We also discussed the safety considerations of nanomaterials, both in terms of human health and environmental impact. We presented the in vivo health risks associated with nanomaterial exposure, in relation with transport mechanisms, oxidative stress, and physical interactions. Moreover, we highlighted the environmental risks, acknowledging the potential implications on ecosystems and biodiversity. Lastly, we strived to offer insights into the current regulatory landscape governing nanotechnology in healthcare across different regions globally. By synthesising these diverse perspectives, we underscore the imperative of balancing innovation with safety and environmental stewardship, while charting a path forward for the responsible integration of nanotechnology in healthcare.
Collapse
Affiliation(s)
- Xiaohan Ma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK.
| | - Yaxin Tian
- United InnoMed (Shanghai) Limited, F/2, E-1, No.299, Kangwei Rd, Pudong District, Shanghai, China
| | - Ren Yang
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - Haowei Wang
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, London, WC1E 6JF, UK
| | - Latifa W Allahou
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jinke Chang
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, NW3 2PF, UK
| | - Gareth Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Med-Icine, Dankook University, Cheonan, 31116, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
7
|
Farsiu N, Mousavi E, Barani M, Khanbabaei H, Ebrahimi S. Exploring potential of graphene oxide as an alternative antiviral approach for influenza A H1N1. Nanomedicine (Lond) 2024; 19:2509-2520. [PMID: 39513633 DOI: 10.1080/17435889.2024.2416381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Aim: Graphene oxide (GO), known for its distinctive physicochemical properties, shows promise as a nanomaterial capable of combating infectious agents. This study investigates the efficacy of GO nanoparticles in restricting influenza A H1N1 replication in MDCK cells.Methods: GO nanoparticles were synthesized. After evaluating the toxicity of GO nanoparticles, the antiviral activity of the highest nontoxic concentration of GO against influenza A H1N1 in MDCK cells was studied.Results: GO treatments resulted in substantial decreases in virus titers, as shown via hemagglutination assay, TCID50 assay and real-time PCR analysis.Conclusion: This study emphasizes that GO nanoparticles have a high level of effectiveness against influenza A H1N1 viruses, making them an intriguing option for various antiviral uses.
Collapse
Affiliation(s)
- Niloofar Farsiu
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Mousavi
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran
| | - Hashem Khanbabaei
- Department of Radiologic Technology, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeedeh Ebrahimi
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
8
|
Wang J, Dong H, Ji Y, Li Y, Lee ST. Patterned graphene: An effective platform for adsorption, immobilization, and destruction of SARS-CoV-2 M pro. J Colloid Interface Sci 2024; 673:202-215. [PMID: 38875787 DOI: 10.1016/j.jcis.2024.06.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
To address the ongoing challenges posed by the SARS-CoV-2 and potentially stronger viruses in the future, the development of effective methods to fabricate patterned graphene (PG) and other precisely functional products has become a new research frontier. Herein, we modeled the "checkerboard" graphene (CG) and stripped graphene (SG) as representatives of PG, and studied their interaction mechanism with the target protein (Mpro) by molecular dynamics simulation. The calculation results on the binding strength and the root mean square deviation values of the active pocket revealed that PG is an effective platform for adsorption, immobilization, and destruction of Mpro. Specifically, CG is found to promote disruption of the active pocket for Mpro, but the presence of "checkerboard" oxidized regions inhibits the adsorption of Mpro. Meanwhile, the SG can effectively confine Mpro within the non-oxidized strips and enhances their binding strength, but doesn't play well on disrupting the active pocket. Our work not only elucidates the biological effects of PGs, but also provides guidance for their targeted and precise utilization in combating the SARS-CoV-2.
Collapse
Affiliation(s)
- Jiawen Wang
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Huilong Dong
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Youyong Li
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Shuit-Tong Lee
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
9
|
Cymerys J, Bartak M, Słońska A, Lange A, Jaworski S, Chodkowski M, Ostrowska A, Wierzbicki M, Sawosz E, Bańbura MW. Antiviral Activity of Graphene Oxide-Silver Nanocomposites Against Murine Betacoronavirus. Int J Nanomedicine 2024; 19:9009-9033. [PMID: 39246425 PMCID: PMC11380865 DOI: 10.2147/ijn.s473448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Background The high infectivity of coronaviruses has led to increased interest in developing new strategies to prevent virus spread. Silver nanoparticles (AgNPs) and graphene oxide (GO) have attracted much attention in the antiviral field. We investigated the potential antiviral activity of GO and AgNPs combined in the nanocomposite GO-Ag against murine betacoronavirus MHV using an in vitro model. Methods GO, AgNPs, and GO-Ag characterization (size distribution, zeta potential, TEM visualization, FT-IR, and EDX analysis) and XTT assay were performed. The antiviral activity of GO-Ag nanocomposites was evaluated by RT-qPCR and TCID50 assays. The results were compared with free AgNPs and pure GO. Cell growth and morphology of MHV-infected hepatocytes treated with GO-Ag composites were analyzed by JuLI™Br. Immunofluorescence was used to visualize the cell receptor used by MHV. Ultrastructural SEM analysis was performed to examine cell morphology after MHV infection and GO-Ag composite treatment. Results A significant reduction in virus titer was observed for all nanocomposites tested, ranging from 3.2 to 7.3 log10 TCID50. The highest titer reduction was obtained for GO 5 µg/mL - Ag 25 µg/mL in the post-treatment method. These results were confirmed by RT-qPCR analysis. The results indicate that GO-Ag nanocomposites exhibited better antiviral activity compared to AgNPs and GO. Moreover, the attachment of AgNPs to the GO flake platform reduced their cytotoxicity. In addition, the GO-Ag composite modulates the distribution of the Ceacam1 cell receptor and can modulate cell morphology. Conclusion Graphene oxide sheets act as a stabilizing agent, inhibiting the accumulation of AgNPs and reducing their cellular toxicity. The GO-Ag composite can physically bind and inhibit murine betacoronavirus from entering cells. Furthermore, the constant presence of GO-Ag can inhibit MHV replication and significantly limit its extracellular release. In conclusion, GO-Ag shows promise as an antiviral coating on solid surfaces to minimize virus transmission and spread.
Collapse
Affiliation(s)
- Joanna Cymerys
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Michalina Bartak
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Anna Słońska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marcin W Bańbura
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
10
|
Jiang L, Cheng J, Pan H, Yang F, Zhu X, Wu J, Pan H, Yan P, Zhou J, Gao Q, Huan C, Gao S. Analysis of the recombination and evolution of the new type mutant pseudorabies virus XJ5 in China. BMC Genomics 2024; 25:752. [PMID: 39090561 PMCID: PMC11295580 DOI: 10.1186/s12864-024-10664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
Pseudorabies have caused enormous economic losses in China's pig industry and have recurred on many large pig farms since late 2011. The disease is caused by highly pathogenic, antigenic variant pseudorabies virus (vPRV) strains. Our laboratory isolated a pseudorabies virus in 2015 and named it XJ5. The pathogenic ability of this mutant strain was much stronger than that of the original isolate. After we sequenced its whole genome (GenBank accession number: OP512542), we found that its overall structure was not greatly changed compared with that of the previous strain Ea (KX423960.1). The whole genome alignment showed that XJ5 had a strong genetic relationship with the strains isolated in China after 2012 reported in GenBank. Based on the isolation time of XJ5 and the mutation and recombination analysis of programs, we found that the whole genome homology of XJ5 and other strains with Chinese isolates was greater than 95%, while the homology with strains outside Asia was less than 94%, which indicated that there may be some recombination and mutation patterns. We found that virulent PRV isolates emerged successively in China in 2011 and formed two different evolutionary clades from foreign isolates. At the same time, this may be due to improper immunization and the presence of wild strains in the field, and recent reports have confirmed that Bartha vaccine strains recombine with wild strains to obtain new pathogenic strains. We performed genetic evolution analysis of XJ5 isolated and sequenced in our laboratory to trace its possible mutations and recombination. We found that XJ5 may be the result of natural mutation of a virus in a branch of mutant strains widely existing in China.
Collapse
Affiliation(s)
- Luyao Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Jinlong Cheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hao Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Fan Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Xiemin Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Jiayan Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Haochun Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Ping Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Jinzhu Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
- Jiangsu Academy of Agricultural Sciences Veterinary Institute, Nanjing, 210014, Jiangsu, China
| | - Qingqing Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Changchao Huan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China.
| | - Song Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
11
|
Wang T, Wen Y, Qian B, Tang F, Zhang X, Xu X, Zhou Y, Dai J, Wang A, Xue F. Virological evaluation of natural and modified attapulgite against porcine epidemic diarrhoea virus. Virol J 2024; 21:120. [PMID: 38816738 PMCID: PMC11137985 DOI: 10.1186/s12985-024-02396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND The Porcine Epidemic Diarrhea Virus (PEDV) has caused significant economic losses in the global swine industry. As a potential drug for treating diarrhea, the antiviral properties of attapulgite deserve further study. METHODS In this study, various methods such as RT-qPCR, Western blot, viral titer assay, Cytopathic Effect, immunofluorescence analysis and transmission electron microscopy were used to detect the antiviral activity of attapulgite and to assess its inhibitory effect on PEDV. RESULTS When exposed to the same amount of virus, there was a significant decrease in the expression of the S protein, resulting in a viral titer reduction from 10-5.613 TCID50/mL to 10-2.90 TCID50/mL, which represents a decrease of approximately 102.6 folds. Results of cytopathic effect and indirect immunofluorescence also indicate a notable decrease in viral infectivity after attapulgite treatment. Additionally, it was observed that modified materials after acidification had weaker antiviral efficacy compared to powdered samples that underwent ultrasonic disintegration, which showed the strongest antiviral effects. CONCLUSION As a result, Attapulgite powders can trap and adsorb viruses to inhibit PEDV in vitro, leading to loss of viral infectivity. This study provides new materials for the development of novel disinfectants and antiviral additives.
Collapse
Affiliation(s)
- Tianmin Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuan Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bingxu Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225104, China
| | - Xiulong Xu
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225104, China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- China Pharmaceutical University, Nanjing, 211198, China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730099, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Iannazzo D, Giofrè SV, Espro C, Celesti C. Graphene-based materials as nanoplatforms for antiviral therapy and prophylaxis. Expert Opin Drug Deliv 2024; 21:751-766. [PMID: 38841752 DOI: 10.1080/17425247.2024.2364652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION The dramatic effects caused by viral diseases have prompted the search for effective therapeutic and preventive agents. In this context, 2D graphene-based nanomaterials (GBNs) have shown great potential for antiviral therapy, enabling the functionalization and/or decoration with biomolecules, metals and polymers, able to improve their interaction with viral nanoparticles. AREAS COVERED This review summarizes the most recent advances of the antiviral research related to 2D GBNs, based on their antiviral mechanism of action. Their ability to inactivate viruses by inhibiting the entry inside cells, or through drug/gene delivery, or by stimulating the host immune response are here discussed. As reported, biological studies performed in vitro and/or in vivo allowed to demonstrate the antiviral activity of the developed GBNs, at different stages of the virus life cycle and the evaluation of their long-term toxicity. Other mechanisms closely related to the physicochemical properties of GBNs are also reported, demonstrating the potential of these materials for antiviral prophylaxis. EXPERT OPINION GBNs represent valuable tools to fight emerging or reemerging viral infections. However, their translation into the clinic requires standardized scale-up procedures leading to the reliable and reproducible synthesis of these nanomaterials with suitable physicochemical properties, as well as more in-depth pharmacological and toxicological investigations. We believe that multidisciplinary approaches will give valuable solutions to overcome the encountered limitations in the application of GBNs in biomedical and clinical field.
Collapse
Affiliation(s)
- Daniela Iannazzo
- Department of Engineering, University of Messina, Messina, Italy
| | - Salvatore V Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Messina, Italy
| | - Claudia Espro
- Department of Engineering, University of Messina, Messina, Italy
| | - Consuelo Celesti
- Department of Engineering, University of Messina, Messina, Italy
| |
Collapse
|
13
|
Xu X, Gao S, Zuo Q, Gong J, Song X, Liu Y, Xiao J, Zhai X, Sun H, Zhang M, Gao X, Guo D. Enhanced In Vitro Antiviral Activity of Ivermectin-Loaded Nanostructured Lipid Carriers against Porcine Epidemic Diarrhea Virus via Improved Intracellular Delivery. Pharmaceutics 2024; 16:601. [PMID: 38794264 PMCID: PMC11125651 DOI: 10.3390/pharmaceutics16050601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an acute enteric coronavirus, inducing watery diarrhea and high mortality in piglets, leading to huge economic losses in global pig industry. Ivermectin (IVM), an FDA-approved antiparasitic agent, is characterized by high efficacy and wide applicability. However, the poor bioavailability limits its application. Since the virus is parasitized inside the host cells, increasing the intracellular drug uptake can improve antiviral efficacy. Hence, we aimed to develop nanostructured lipid carriers (NLCs) to enhance the antiviral efficacy of IVM. The findings first revealed the capacity of IVM to inhibit the infectivity of PEDV by reducing viral replication with a certain direct inactivation effect. The as-prepared IVM-NLCs possessed hydrodynamic diameter of 153.5 nm with a zeta potential of -31.5 mV and high encapsulation efficiency (95.72%) and drug loading (11.17%). IVM interacted with lipids and was enveloped in lipid carriers with an amorphous state. Furthermore, its encapsulation in NLCs could enhance drug internalization. Meanwhile, IVM-NLCs inhibited PEDV proliferation by up to three orders of magnitude in terms of viral RNA copies, impeding the accumulation of reactive oxygen species and mitigating the mitochondrial dysfunction caused by PEDV infection. Moreover, IVM-NLCs markedly decreased the apoptosis rate of PEDV-induced Vero cells. Hence, IVM-NLCs showed superior inhibitory effect against PEDV compared to free IVM. Together, these results implied that NLCs is an efficient delivery system for IVM to improve its antiviral efficacy against PEDV via enhanced intracellular uptake.
Collapse
Affiliation(s)
- Xiaolin Xu
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shasha Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Qindan Zuo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jiahao Gong
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xinhao Song
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yongshi Liu
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jing Xiao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xiaofeng Zhai
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifeng Sun
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Mingzhi Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
14
|
Lei Y, Li W, Han Y, Wang L, Wu H, He P, Wei G, Guo L. Biomimetic ZrO 2-modified seaweed residue with excellent fluorine/ bacteria removal and uranium extraction properties for wastewater purification. WATER RESEARCH 2024; 252:121219. [PMID: 38309067 DOI: 10.1016/j.watres.2024.121219] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Exploring and developing promising biomass composite membranes for the water purification and waste resource utilization is of great significance. The modification of biomass has always been a focus of research in its resource utilization. In this study, we successfully prepare a functional composite membrane, activated graphene oxide/seaweed residue-zirconium dioxide (GOSRZ), with fluoride removal, uranium extraction, and antibacterial activity by biomimetic mineralization of zirconium dioxide nanoparticles (ZrO2 NPs) on seaweed residue (SR) grafted with oxidized graphene (GO). The GOSRZ membrane exhibits highly efficient and specific adsorption of fluoride. For the fluoride concentrations in the range of 100-400 mg/L in water, the removal efficiency can reach over 99 %, even in the presence of interfering ions. Satisfactory extraction rates are also achieved for uranium by the GOSRZ membrane. Additionally, the antibacterial performance studies show that this composite membrane efficiently removes Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA). The high adsorption of F- and U(VI) to the composite membrane is ascribed to the ionic exchange and coordination interactions, and its antibacterial activity is caused by the destruction of bacterial cell structure. The sustainability of the biomass composite membranes is further evaluated using the Sustainability Footprint method. This study provides a simple preparation method of biomass composite membrane, expands the water purification treatment technology, and offers valuable guidance for the resource utilization of seaweed waste and the removal of pollutants in wastewater.
Collapse
Affiliation(s)
- Yu Lei
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, PR China
| | - Wanying Li
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, PR China
| | - Yunhai Han
- College of Applied Technology, Qingdao University, Qingdao 266061, PR China
| | - Lupeng Wang
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, PR China
| | - Hao Wu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, PR China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
15
|
Sencha-Hlevatska KV, Sementsov YI, Zhuravskyi SV, Mys LA, Korkach YP, Kolev H, Sagach VF, Goshovska YV. A multifactorial study of in situ antioxidant activity of modified GrO in myocardial reperfusion injury using the Langerdorff model. Arch Biochem Biophys 2024; 753:109885. [PMID: 38232798 DOI: 10.1016/j.abb.2024.109885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Carbon nanomaterials possess antioxidant properties that can be applied in biomedicine and clinics for the development of new highly effective treatments against oxidative stress-induced diseases like ischemic heart disease. We previously reported the usage of graphene oxide (GrO) as a precursor for the elaboration of such prototypes. The promising findings led to the development of two new modifications of GrO: nitrogen-doped (N-GrO) and l-cysteine functionalized (S-GrO) derivatives as possible antioxidant agents in ischemia-reperfusion (I/R) conditions. In this study, the cardioprotective and antioxidant potential of modified GrO as a pre-treatment in rats was evaluated for the first time. In Langendorff isolated rat heart I/R model, the left ventricle developed pressure (LVDP), the end-diastolic pressure (EDP), the maximal (dP/dtmax) and minimal (dP/dtmin) value of the first derivative of LVDP, and heart rate (HR) were measured. The oxidative-nitrosative markers, in particular, the rate of O2*- and H2O2 generation, the content of malonic dialdehyde, diene conjugates, and leukotriene as well as cNOS and iNOS activity were estimated. Obtained results show a significant restoration of cadiodynamic parameters at the reperfusion period. Simultaneously, all samples significantly reduced the rate of reactive oxygen species (ROS) and lipid peroxidation markers in cardiac homogenates and preserved cNOS activity at the preischemic level. This evidence makes GrO derivatives promising candidates for the correction of reperfusion disorders affecting myocardial function.
Collapse
Affiliation(s)
- Kateryna V Sencha-Hlevatska
- Department of Physico-chemistry of Carbon Materials, Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str., 03164, Kyiv, Ukraine.
| | - Yury I Sementsov
- Department of Physico-chemistry of Carbon Materials, Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str., 03164, Kyiv, Ukraine
| | - Sergey V Zhuravskyi
- Department of Physico-chemistry of Carbon Materials, Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str., 03164, Kyiv, Ukraine
| | - Lidia A Mys
- Department of Blood Circulation, Bogomoletz Institute of Physiology, NAS of Ukraine, 4 Bogomoletz Str., 01024, Kyiv, Ukraine
| | - Yulia P Korkach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, NAS of Ukraine, 4 Bogomoletz Str., 01024, Kyiv, Ukraine
| | - Hristo Kolev
- Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bldg. 11, Sofia 1113, Bulgaria Sofia, Bulgaria
| | - Vadym F Sagach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, NAS of Ukraine, 4 Bogomoletz Str., 01024, Kyiv, Ukraine
| | - Yulia V Goshovska
- Department of Blood Circulation, Bogomoletz Institute of Physiology, NAS of Ukraine, 4 Bogomoletz Str., 01024, Kyiv, Ukraine.
| |
Collapse
|
16
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
17
|
Malode SJ, Pandiaraj S, Alodhayb A, Shetti NP. Carbon Nanomaterials for Biomedical Applications: Progress and Outlook. ACS APPLIED BIO MATERIALS 2024; 7:752-777. [PMID: 38271214 DOI: 10.1021/acsabm.3c00983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Recent developments in nanoscale materials have found extensive use in various fields, especially in the biomedical industry. Several substantial obstacles must be overcome, particularly those related to nanostructured materials in biomedicine, before they can be used in therapeutic applications. Significant concerns in biomedicine include biological processes, adaptability, toxic effects, and nano-biointerfacial properties. Biomedical researchers have difficulty choosing suitable materials for drug carriers, cancer treatment, and antiviral uses. Carbon nanomaterials are among the various nanoparticle forms that are continually receiving interest for biomedical applications. They are suitable materials owing to their distinctive physical and chemical properties, such as electrical, high-temperature, mechanical, and optical diversification. An individualized, controlled, dependable, low-carcinogenic, target-specific drug delivery system can diagnose and treat infections in biomedical applications. The variety of carbon materials at the nanoscale is remarkable. Allotropes and other forms of the same element, carbon, are represented in nanoscale dimensions. These show promise for a wide range of applications. Carbon nanostructured materials with exceptional mechanical, electrical, and thermal properties include graphene and carbon nanotubes. They can potentially revolutionize industries, including electronics, energy, and medicine. Ongoing investigation and expansion efforts continue to unlock possibilities for these materials, making them a key player in shaping the future of advanced technology. Carbon nanostructured materials explore the potential positive effects of reducing the greenhouse effect. The current state of nanostructured materials in the biomedical sector is covered in this review, along with their synthesis techniques and potential uses.
Collapse
Affiliation(s)
- Shweta J Malode
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alodhayb
- Department of Physics and Astronomy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali 140413, Panjab, India
| |
Collapse
|
18
|
Pan Y, Yao X, Yang TN, Li JL, Shi DF. The VP1/2 Protein of a New Recombinant PRV Strain Promotes the Infectivity and Pathogenicity of PRV in Northeastern China. Transbound Emerg Dis 2024; 2024:1575103. [PMID: 40303024 PMCID: PMC12020405 DOI: 10.1155/2024/1575103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 05/02/2025]
Abstract
Pseudorabies virus (PRV) is an acute infectious disease characterized by neurological and respiratory symptoms. In order to have a better understanding of the current prevalence of PRV in northeastern China, a strain of PRV was isolated by us. Then, protein structure analysis and pathogenicity testing of the virus were performed to give insight into the characterization of the isolated PRV strains. In this study, the PRV strain named CH/HLJPRVJ/2023 was isolated and identified. Genome-wide phylogenetic analysis shows CH/HLJPRVJ/2023 and HeN1 have higher homology. The CH/HLJPRVJ/2023 strain had the highest homology with HeN1 strain (97.3%) and the lowest homology with Bartha-K61 (89.2%). Recombinant evolution analysis shows CH/HLJPRVJ/2023 shows many variants in OBP, AN, UL21, UL17, VP11/12, and VP1/2 fragments, which predict its unique genetically. VP1/2, an effector protein of capsid transport and neuroinvasion, has mutations and deletions in its amino acids, which cause changes in the protein conformation of CH/HLJPRVJ/2023. Besides the typical neurologic and respiratory lesions, infection with highly pathogenic CH/HLJPRVJ/2023 can lead to damage to the colonic villi and colonic barrier in piglets. This study will provide a basis for knowledge about the prevalence, genetic evolution, and vaccine optimization of endemic PRV strains in northeastern China.
Collapse
Affiliation(s)
- Yan Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xin Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tian-Ning Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Dong-Fang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
19
|
Ye S, Su F, Li J, Yu B, Xu L, Xiong T, Shao K, Yuan X. Enhanced in vivo antiviral activity against pseudorabies virus through transforming gallic acid into graphene quantum dots with stimulation of interferon-related immune responses. J Mater Chem B 2023; 12:122-130. [PMID: 37997769 DOI: 10.1039/d3tb01844j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
With the urgent need for antiviral agents, antiviral materials with high biocompatibility and antiviral effects have attracted a lot of attention. In this study, gallic acid, a natural polyphenolic compound, was transformed into biocompatible graphene quantum dots (GAGQDs) which exhibit enhanced antiviral activity against pseudorabies virus (PRV). The as-prepared GAGQDs inhibit PRV proliferation with a 104-fold reduction in viral titers. Investigation of the antiviral mechanism revealed that GAGQDs inhibit the adsorption, invasion and replication of PRV infection. Treatment with GAGQDs regulates the expression levels of interferon-related antiviral proteins, including mitochondrial antiviral-signaling protein (MAVS), signal transducer and activator of transcription 1 (STAT1) and 2',5'-oligoadenylate synthetase 1 (OAS1), suggesting that GAGQDs can stimulate innate antiviral immune responses, resulting in enhanced antiviral effects. More importantly, GAGQD treatments alleviate clinical symptoms and reduce mortality in PRV-infected mice. Our results reveal the enhanced therapeutic effects of GAGQDs against PRV infection in vitro and in vivo, suggesting the potential of GAGQDs as a promising novel antiviral agent.
Collapse
Affiliation(s)
- Shiyi Ye
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China.
| | - Fei Su
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China.
| | - Junxing Li
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China.
| | - Bin Yu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China.
| | - Lihua Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China.
| | - Tao Xiong
- College of Life Science, Yangtze University, Jingzhou 434025, P. R. China
| | - Kang Shao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiufang Yuan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China.
| |
Collapse
|
20
|
Sadiq S, Khan I, Shen Z, Wang M, Xu T, Khan S, Zhou X, Bahadur A, Rafiq M, Sohail S, Wu P. Recent Updates on Multifunctional Nanomaterials as Antipathogens in Humans and Livestock: Classification, Application, Mode of Action, and Challenges. Molecules 2023; 28:7674. [PMID: 38005395 PMCID: PMC10675011 DOI: 10.3390/molecules28227674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogens cause infections and millions of deaths globally, while antipathogens are drugs or treatments designed to combat them. To date, multifunctional nanomaterials (NMs), such as organic, inorganic, and nanocomposites, have attracted significant attention by transforming antipathogen livelihoods. They are very small in size so can quickly pass through the walls of bacterial, fungal, or parasitic cells and viral particles to perform their antipathogenic activity. They are more reactive and have a high band gap, making them more effective than traditional medications. Moreover, due to some pathogen's resistance to currently available medications, the antipathogen performance of NMs is becoming crucial. Additionally, due to their prospective properties and administration methods, NMs are eventually chosen for cutting-edge applications and therapies, including drug administration and diagnostic tools for antipathogens. Herein, NMs have significant characteristics that can facilitate identifying and eliminating pathogens in real-time. This mini-review analyzes multifunctional NMs as antimicrobial tools and investigates their mode of action. We also discussed the challenges that need to be solved for the utilization of NMs as antipathogens.
Collapse
Affiliation(s)
- Samreen Sadiq
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Iltaf Khan
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
| | - Zhenyu Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Mengdong Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Tao Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Sohail Khan
- Department of Pharmacy, University of Swabi, Khyber Pakhtunkhwa 94640, Pakistan;
| | - Xuemin Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Ali Bahadur
- College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou 325060, China;
| | - Madiha Rafiq
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515063, China
| | - Sumreen Sohail
- Department of Information Technology, Careerera, Beltsville, MD 20705, USA;
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| |
Collapse
|
21
|
Li J, Long J, Zhao Z, Wang Q, Bo W, Ren L, Fan Y, Wang P, Cheng Y, Liu B, Cheng X, Xi H. Procedural Promotion of Multiple Stages in the Wound Healing Process by Graphene-Spiky Silica Heterostructured Nanoparticles. Int J Nanomedicine 2023; 18:6585-6599. [PMID: 38026527 PMCID: PMC10644860 DOI: 10.2147/ijn.s426552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
Background Multiple stages including hemostasis, inflammation, proliferation, and remodeling were involved in the wound healing process. The increase in nanomaterials in recent years has extended the scope of tools for wound healing; however, it is still difficult to achieve the four multistage procedures simultaneously. Materials and Methods In this study, graphene-spiky silica heterostructured nanoparticles (GS) were synthesized for the procedural acceleration of the multistage in wound healing process. The nanobridge effect of GS was analyzed through the adhesion of two skins, the antibacterial effect was assessed in Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria, cell proliferation and migration were investigated in mouse embryonic fibroblast (NIH-3T3) cells, and the in vivo wound healing effect was examined in female BALB/c mice with a cutting wound and E. coli or S. aureus bacteria infection on the back. Results First, GS has a strong nanobridge effect on the rapid closure of wounds because the spiky architecture on the surface of GS facilitates the adhesion of skins, promoting the hemostasis stage. Second, graphene exhibits antimicrobial activities both in chemical and physical interactions, especially under simulated sunlight irradiation. Third, graphene plays an important role in scaffolding function, together with the spiky topographical architecture of GS, accelerating the proliferation and maturation stages. Conclusion By periodically promoting every stage of wound healing, GS combined with simulated sunlight irradiation could significantly accelerate wound healing. With a simple composition and compact structure but multiple functions, this strategy will be the guideline for the development of ideal wound-healing nanomaterials.
Collapse
Affiliation(s)
- Jie Li
- Department of Orthopedics, Children’s Hospital Affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jiangtao Long
- Department of Orthopedics, Children’s Hospital Affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Zheng Zhao
- Department of General Surgery, Children’s Hospital Affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Qianqian Wang
- Department of Orthopedics, Children’s Hospital Affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Wang Bo
- Department of General Surgery, Children’s Hospital Affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Liang Ren
- Department of Orthopedics, Children’s Hospital Affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yan Fan
- Department of Burn and Plastic Surgery, Children’s Hospital affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Peng Wang
- Department of Orthopedics, Children’s Hospital Affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yi Cheng
- Department of Orthopedics, Children’s Hospital Affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Binbin Liu
- Department of Orthopedics, Children’s Hospital Affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xinkui Cheng
- Department of Orthopedics, Children’s Hospital Affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Hongwei Xi
- Department of General Surgery, Children’s Hospital Affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
22
|
Zhang S, Wang N, Zhang Q, Guan R, Qu Z, Sun L, Li J. The Rise of Electroactive Materials in Face Masks for Preventing Virus Infections. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48839-48854. [PMID: 37815875 DOI: 10.1021/acsami.3c10465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Air-transmitted pathogens may cause severe epidemics, posing considerable threats to public health and safety. Wearing a face mask is one of the most effective ways to prevent respiratory virus infection transmission. Especially since the new coronavirus pandemic, electroactive materials have received much attention in antiviral face masks due to their highly efficient antiviral capabilities, flexible structural design, excellent sustainability, and outstanding safety. This review first introduces the mechanism for preventing viral infection or the inactivation of viruses by electroactive materials. Then, the applications of electrostatic-, conductive-, triboelectric-, and microbattery-based materials in face masks are described in detail. Finally, the problems of various electroactive antiviral materials are summarized, and the prospects for their future development directions are discussed. In conclusion, electroactive materials have attracted great attention for antiviral face masks, and this review will provide a reference for materials scientists and engineers in antiviral materials and interfaces.
Collapse
Affiliation(s)
- Shaohua Zhang
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
| | - Na Wang
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, Qingdao 266071, People's Republic of China
| | - Qian Zhang
- Department of Respirology, Qingdao Women and Children's Hospital, Qingdao 266034, People's Republic of China
| | - Renzheng Guan
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
| | - Zhenghai Qu
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
| | - Lirong Sun
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
| | - Jiwei Li
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, Qingdao 266071, People's Republic of China
| |
Collapse
|
23
|
Cao Z, Ma X, Lv D, Wang J, Shen Y, Peng S, Yang S, Huang J, Sun X. Synthesis of chitin nanocrystals supported Zn 2+ with high activity against tobacco mosaic virus. Int J Biol Macromol 2023; 250:126168. [PMID: 37553033 DOI: 10.1016/j.ijbiomac.2023.126168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
Chitin is a kind of natural nitrogenous organic polysaccharide. It contains antibacterial and antiviral properties, and it can induce plant disease resistance and promote plant growth. However, its application is constrained due to its insolubility and intricate molecular structure. Tobacco mosaic disease is caused by tobacco mosaic virus (TMV) infection, which seriously harms tobacco production. Zinc-containing chemical agents are commonly used to control tobacco mosaic disease, but overuse of chemical agents will cause serious environmental pollution. In this study, a novel nanomaterial (ChNC@Zn) was prepared by using chitin nanocrystals loaded with Zn2+, which has the function of inducing disease resistance to plants and reducing virus activity. When the Zn2+ concentration of ChNC@Zn is 105.6 μg/mL, it shows higher resistance to TMV than Lentinan (LNT). ChNC@Zn can improve the enzymes activities of peroxidase (POD) and catalase (CAT) in tobacco, and reduce the damage of reactive oxygen species (ROS) caused by TMV infection, thereby inducing resistance to TMV in tobacco. Besides, it can promote the growth of tobacco. As a result, ChNC@Zn can exhibit strong antiviral activity at low Zn2+ concentration and minimize the pollution of Zn2+ to the environment, which has high potential application value in the control of virus disease.
Collapse
Affiliation(s)
- Zhe Cao
- College of Plant Protection, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Xiaozhou Ma
- College of Plant Protection, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Dashu Lv
- Technology Center, China Tobacco Guizhou Industrial Co., Ltd., Guiyang 550000, China
| | - Jing Wang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yang Shen
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Shiqi Peng
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Shenggang Yang
- Technology Center, China Tobacco Guizhou Industrial Co., Ltd., Guiyang 550000, China
| | - Jin Huang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
24
|
Landim MG, Carneiro MLB, Joanitti GA, Anflor CTM, Marinho DD, Rodrigues JFB, de Sousa WJB, Fernandes DDO, Souza BF, Ombredane AS, do Nascimento JCF, Felice GDJ, Kubota AMA, Barbosa JSC, Ohno JH, Amoah SKS, Pena LJ, Luz GVDS, de Andrade LR, Pinheiro WO, Ribeiro BM, Formiga FR, Fook MVL, Rosa MFF, Peixoto HM, Luiz Carregaro R, Rosa SDSRF. A novel N95 respirator with chitosan nanoparticles: mechanical, antiviral, microbiological and cytotoxicity evaluations. DISCOVER NANO 2023; 18:118. [PMID: 37733165 PMCID: PMC10514013 DOI: 10.1186/s11671-023-03892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND It is known that some sectors of hospitals have high bacteria and virus loads that can remain as aerosols in the air and represent a significant health threat for patients and mainly professionals that work in the place daily. Therefore, the need for a respirator able to improve the filtration barrier of N95 masks and even inactivating airborne virus and bacteria becomes apparent. Such a fact motivated the creation of a new N95 respirator which employs chitosan nanoparticles on its intermediate layer (SN95 + CNP). RESULTS The average chitosan nanoparticle size obtained was 165.20 ± 35.00 nm, with a polydispersity index of 0.36 ± 0.03 and a zeta potential of 47.50 ± 1.70 mV. Mechanical tests demonstrate that the SN95 + CNP respirator is more resistant and meets the safety requisites of aerosol penetration, resistance to breath and flammability, presenting higher potential to filtrate microbial and viral particles when compared to conventional SN95 respirators. Furthermore, biological in vitro tests on bacteria, fungi and mammalian cell lines (HaCat, Vero E6 and CCL-81) corroborate the hypothesis that our SN95 + CNP respirator presents strong antimicrobial activity and is safe for human use. There was a reduction of 96.83% of the alphacoronavirus virus and 99% of H1N1 virus and MHV-3 betacoronavirus after 120 min of contact compared to the conventional respirator (SN95), demonstrating that SN95 + CNP have a relevant potential as personal protection equipment. CONCLUSIONS Due to chitosan nanotechnology, our novel N95 respirator presents improved mechanical, antimicrobial and antiviral characteristics.
Collapse
Affiliation(s)
| | | | | | | | | | - José Filipe Bacalhau Rodrigues
- Northeast Laboratory for Evaluation and Development of Biomaterials (CERTBIO), University of Campina Grande, Campina Grande, Paraiba, Brazil
| | | | | | | | | | | | | | | | | | - John Hideki Ohno
- MCI Ultrasonica LTDA, Av. Campinas, 367 - Arraial Paulista, Taboão da Serra, São Paulo, Brazil
| | - Solomon Kweku Sagoe Amoah
- Northeast Laboratory for Evaluation and Development of Biomaterials (CERTBIO), University of Campina Grande, Campina Grande, Paraiba, Brazil
| | | | | | | | | | | | | | - Marcus Vinícius Lia Fook
- Northeast Laboratory for Evaluation and Development of Biomaterials (CERTBIO), University of Campina Grande, Campina Grande, Paraiba, Brazil
| | | | | | | | | |
Collapse
|
25
|
Einafshar E, Einafshar N, Khazaei M. Recent Advances in MXene Quantum Dots: A Platform with Unique Properties for General-Purpose Functional Materials with Novel Biomedical Applications. Top Curr Chem (Cham) 2023; 381:27. [PMID: 37670112 DOI: 10.1007/s41061-023-00439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Developing new, high-performance materials is a prerequisite for technological advancement. In comparison to bulk materials, quantum dots have a number of good advantages due to their small size, high surface area, and quantum dimensions. Quantum dots, two-dimensional materials with lateral dimensions less than 100 nm, can be generated by the quantum confinement effect. Mxene quantum dots (MQDs) retain some of their two-dimensional characteristics. They also exhibit novel physicochemical properties, including enhanced dispersibility in aqueous and nonaqueous phases, modification or doping capabilities, and photoluminescence. MQDs, due to their unique and diverse properties, have been receiving a great deal of attention as new members of the Mxene group and wide use for biotechnology, bioimaging, optoelectronics, catalysis, cancer therapy, etc. This review aims to provide an overview of the synthesis of MQDs, their optical properties, and their cancer therapy applications. MQDs exhibit remarkable photothermal and photodynamic features and can be suitable for bioimaging. In addition to obtaining bioimaging, photothermal therapy (PTT) and photodynamic therapy (PDT) effects simultaneously, MQDs have high biocompatibility in vitro and in vivo, providing evidence of their potential clinical utility. Herein, recent developments and future prospects concerning MQDs biomedical applications are discussed.
Collapse
Affiliation(s)
- Elham Einafshar
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Nafiseh Einafshar
- Faculty of Civil Engineering, Quchan University of Technology, Quchan, Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran.
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Rahman A, Roy KJ, Deb GK, Ha T, Rahman S, Aktar MK, Ali MI, Kafi MA, Choi JW. Nano-Enabled Antivirals for Overcoming Antibody Escaped Mutations Based SARS-CoV-2 Waves. Int J Mol Sci 2023; 24:13130. [PMID: 37685938 PMCID: PMC10488153 DOI: 10.3390/ijms241713130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
This review discusses receptor-binding domain (RBD) mutations related to the emergence of various SARS-CoV-2 variants, which have been highlighted as a major cause of repetitive clinical waves of COVID-19. Our perusal of the literature reveals that most variants were able to escape neutralizing antibodies developed after immunization or natural exposure, pointing to the need for a sustainable technological solution to overcome this crisis. This review, therefore, focuses on nanotechnology and the development of antiviral nanomaterials with physical antagonistic features of viral replication checkpoints as such a solution. Our detailed discussion of SARS-CoV-2 replication and pathogenesis highlights four distinct checkpoints, the S protein (ACE2 receptor coupling), the RBD motif (ACE2 receptor coupling), ACE2 coupling, and the S protein cleavage site, as targets for the development of nano-enabled solutions that, for example, prevent viral attachment and fusion with the host cell by either blocking viral RBD/spike proteins or cellular ACE2 receptors. As proof of this concept, we highlight applications of several nanomaterials, such as metal and metal oxide nanoparticles, carbon-based nanoparticles, carbon nanotubes, fullerene, carbon dots, quantum dots, polymeric nanoparticles, lipid-based, polymer-based, lipid-polymer hybrid-based, surface-modified nanoparticles that have already been employed to control viral infections. These nanoparticles were developed to inhibit receptor-mediated host-virus attachments and cell fusion, the uncoating of the virus, viral gene expression, protein synthesis, the assembly of progeny viral particles, and the release of the virion. Moreover, nanomaterials have been used as antiviral drug carriers and vaccines, and nano-enabled sensors have already been shown to enable fast, sensitive, and label-free real-time diagnosis of viral infections. Nano-biosensors could, therefore, also be useful in the remote testing and tracking of patients, while nanocarriers probed with target tissue could facilitate the targeted delivery of antiviral drugs to infected cells, tissues, organs, or systems while avoiding unwanted exposure of non-target tissues. Antiviral nanoparticles can also be applied to sanitizers, clothing, facemasks, and other personal protective equipment to minimize horizontal spread. We believe that the nanotechnology-enabled solutions described in this review will enable us to control repeated SAR-CoV-2 waves caused by antibody escape mutations.
Collapse
Affiliation(s)
- Aminur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Kumar Jyotirmoy Roy
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Gautam Kumar Deb
- Department of Biotechnology, Bangladesh Livestock Research Institute, Dhaka 1341, Bangladesh;
| | - Taehyeong Ha
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea;
| | - Saifur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Mst. Khudishta Aktar
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Md. Isahak Ali
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Md. Abdul Kafi
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea;
| |
Collapse
|
27
|
Wang J, Wen Z, Xu Y, Ning X, Wang D, Cao J, Feng Y. Procedural Promotion of Wound Healing by Graphene-Barium Titanate Nanosystem with White Light Irradiation. Int J Nanomedicine 2023; 18:4507-4520. [PMID: 37576464 PMCID: PMC10417647 DOI: 10.2147/ijn.s408981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023] Open
Abstract
Background Wound healing is a continuous and complex process that comprises multiple phases including hemostasis, inflammation, multiplication (proliferation) and remodeling. Although a variety of nanomaterials have been developed to control infection and accelerate wound healing, most of them can only promote one phase but not multiple phases, resulting in lower efficient healing. Although various formulations such as nitric oxide releasing wound dressings were developed for dual action, the nanostructure synthesis and the encapsulation process were complex. Materials and Methods Here, we report on the design of graphene-barium titanate nanosystem to procedural promote the wound healing process. The antibacterial effect was assessed in Gram-negative Escherichia coli bacteria (E. coli) and Gram-positive Staphylococcus aureus bacteria (S. aureus), the cell proliferation and migration experiment was investigated in mouse embryonic fibroblast (NIH-3T3) cells, and the wound healing effect was analyzed in female BALB/c mice with infected skin wound on the back. Results Results showed that graphene-barium titanate nanosystem could generate abundant ROS to kill both E. coli and S. aureus. The growth curves, bacterial viability, colony number formation and scanning electron microscopy (SEM) images of E. coli and S. aureus all confirmed the antibacterial effect. Cell Counting Kit-8 (CCK-8) assay displayed that GBT possesses great biocompatibility. EdU assay showed that GBT plus white light irradiation significantly promoted the proliferation and migration of NIH-3T3 cells. Scratch assay found that GBT could achieve a fast scratch closure compared to the control. In vivo wound healing effect indicates that GBT can accelerate wound repair procedure. Conclusion GBT nanocomposite is capable of programmatically accelerating wound healing through multiple stages, including production of a large amount of ROS after white light exposure to effectively kill E. coli and S. aureus to prevent wound infection and as a scaffold to accelerate fibroblast proliferation and migration to the wound to accelerate wound healing.
Collapse
Affiliation(s)
- Jianlin Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Zhaoyang Wen
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yumei Xu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Xin Ning
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Deping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yanlin Feng
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| |
Collapse
|
28
|
Sharifi E, Yousefiasl S, Trovato M, Sartorius R, Esmaeili Y, Goodarzi H, Ghomi M, Bigham A, Moghaddam FD, Heidarifard M, Pourmotabed S, Nazarzadeh Zare E, Paiva-Santos AC, Rabiee N, Wang X, Tay FR. Nanostructures for prevention, diagnosis, and treatment of viral respiratory infections: from influenza virus to SARS-CoV-2 variants. J Nanobiotechnology 2023; 21:199. [PMID: 37344894 PMCID: PMC10283343 DOI: 10.1186/s12951-023-01938-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Viruses are a major cause of mortality and socio-economic downfall despite the plethora of biopharmaceuticals designed for their eradication. Conventional antiviral therapies are often ineffective. Live-attenuated vaccines can pose a safety risk due to the possibility of pathogen reversion, whereas inactivated viral vaccines and subunit vaccines do not generate robust and sustained immune responses. Recent studies have demonstrated the potential of strategies that combine nanotechnology concepts with the diagnosis, prevention, and treatment of viral infectious diseases. The present review provides a comprehensive introduction to the different strains of viruses involved in respiratory diseases and presents an overview of recent advances in the diagnosis and treatment of viral infections based on nanotechnology concepts and applications. Discussions in diagnostic/therapeutic nanotechnology-based approaches will be focused on H1N1 influenza, respiratory syncytial virus, human parainfluenza virus type 3 infections, as well as COVID-19 infections caused by the SARS-CoV-2 virus Delta variant and new emerging Omicron variant.
Collapse
Affiliation(s)
- Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran.
| | - Satar Yousefiasl
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131, Naples, Italy
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131, Naples, Italy
| | - Yasaman Esmaeili
- School of Advanced Technologies in Medicine, Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Hamid Goodarzi
- Centre de recherche, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
- Départment d'Ophtalmologie, Université de Montréal, Montreal, QC, Canada
| | - Matineh Ghomi
- School of Chemistry, Damghan University, Damghan, 36716-45667, Iran
| | - Ashkan Bigham
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133, Rome, Italy
| | - Maryam Heidarifard
- Centre de recherche, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
- Départment d'Ophtalmologie, Université de Montréal, Montreal, QC, Canada
| | - Samiramis Pourmotabed
- Department of Emergency Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | | | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
29
|
Feng X, Li P, Xiao M, Li T, Chen B, Wang X, Wang L. Recent advances in the detection of pathogenic microorganisms and toxins based on field-effect transistor biosensors. Crit Rev Food Sci Nutr 2023; 64:9161-9190. [PMID: 37171049 DOI: 10.1080/10408398.2023.2208677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In food safety analysis, the detection and control of foodborne pathogens and their toxins are of great importance. Monitoring of virus transmission is equally important, especially in light of recent findings that coronaviruses have been detected in frozen foods and packages during the current global epidemic of coronavirus disease 2019. In recent years, field-effect transistor (FET) biosensors have attracted considerable scholarly attention for pathogenic microorganisms and toxins detection and sensing due to their rapid response time, high sensitivity, wide dynamic range, high specificity, label-free detection, portability, and cost-effectiveness. FET-based biosensors can be modified with specific recognition elements, thus providing real-time qualitative and semiquantitative analysis. Furthermore, with advances in nanotechnology and device design, various high-performance nanomaterials are gradually applied in the detection of FET-based biosensors. In this article, we review specific detection in different biological recognition elements are immobilized on FET biosensors for the detection of pathogenic microorganisms and toxins, and we also discuss nonspecific detection by FET biosensors. In addition, there are still unresolved challenges in the development and application of FET biosensors for achieving efficient, multiplexed, in situ detection of pathogenic microorganisms and toxins. Therefore, directions for future FET biosensor research and applications are discussed.
Collapse
Affiliation(s)
- Xiaoxuan Feng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pengzhen Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Mengmeng Xiao
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
| | - Tingxian Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
| | - Baiyan Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaoying Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Li Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
30
|
Ghazzy A, Naik RR, Shakya AK. Metal-Polymer Nanocomposites: A Promising Approach to Antibacterial Materials. Polymers (Basel) 2023; 15:polym15092167. [PMID: 37177313 PMCID: PMC10180664 DOI: 10.3390/polym15092167] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
There has been a new approach in the development of antibacterials in order to enhance the antibacterial potential. The nanoparticles are tagged on to the surface of other metals or metal oxides and polymers to achieve nanocomposites. These have shown significant antibacterial properties when compared to nanoparticles. In this article we explore the antibacterial potentials of metal-based and metal-polymer-based nanocomposites, various techniques which are involved in the synthesis of the metal-polymer, nanocomposites, mechanisms of action, and their advantages, disadvantages, and applications.
Collapse
Affiliation(s)
- Asma Ghazzy
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Rajashri R Naik
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ashok K Shakya
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| |
Collapse
|
31
|
Raghav PK, Mann Z, Ahluwalia SK, Rajalingam R. Potential treatments of COVID-19: Drug repurposing and therapeutic interventions. J Pharmacol Sci 2023; 152:1-21. [PMID: 37059487 PMCID: PMC9930377 DOI: 10.1016/j.jphs.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The infection is caused when Spike-protein (S-protein) present on the surface of SARS-CoV-2 interacts with human cell surface receptor, Angiotensin-converting enzyme 2 (ACE2). This binding facilitates SARS-CoV-2 genome entry into the human cells, which in turn causes infection. Since the beginning of the pandemic, many different therapies have been developed to combat COVID-19, including treatment and prevention. This review is focused on the currently adapted and certain other potential therapies for COVID-19 treatment, which include drug repurposing, vaccines and drug-free therapies. The efficacy of various treatment options is constantly being tested through clinical trials and in vivo studies before they are made medically available to the public.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
| | | | - Simran Kaur Ahluwalia
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh, India
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
32
|
Bhattacharjee B, Ikbal AMA, Farooqui A, Sahu RK, Ruhi S, Syed A, Miatmoko A, Khan D, Khan J. Superior possibilities and upcoming horizons for nanoscience in COVID-19: noteworthy approach for effective diagnostics and management of SARS-CoV-2 outbreak. CHEMICKE ZVESTI 2023; 77:1-24. [PMID: 37362791 PMCID: PMC10072050 DOI: 10.1007/s11696-023-02795-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/18/2023] [Indexed: 04/07/2023]
Abstract
The outbreak of COVID-19 has caused great havoc and affected many parts of the world. It has imposed a great challenge to the medical and health fraternity with its ability to continue mutating and increasing the transmission rate. Some challenges include the availability of current knowledge of active drugs against the virus, mode of delivery of the medicaments, its diagnosis, which are relatively limited and do not suffice for further prognosis. One recently developed drug delivery system called nanoparticles is currently being utilized in combating COVID-19. This article highlights the existing methods for diagnosis of COVID-19 such as computed tomography scan, reverse transcription-polymerase chain reaction, nucleic acid sequencing, immunoassay, point-of-care test, detection from breath, nanotechnology-based bio-sensors, viral antigen detection, microfluidic device, magnetic nanosensor, magnetic resonance platform and internet-of-things biosensors. The latest detection strategy based on nanotechnology, biosensor, is said to produce satisfactory results in recognizing SARS-CoV-2 virus. It also highlights the successes in the research and development of COVID-19 treatments and vaccines that are already in use. In addition, there are a number of nanovaccines and nanomedicines currently in clinical trials that have the potential to target COVID-19.
Collapse
Affiliation(s)
- Bedanta Bhattacharjee
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur, Assam 784501 India
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar, 788011 India
| | - Atika Farooqui
- The Deccan College of Medical Sciences, Kanchan Bagh, Hyderabad, Telangana 500058 India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand 249161 India
| | - Sakina Ruhi
- Department of Biochemistry, IMS, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 Shah Alam, Selangor Malaysia
| | - Ayesha Syed
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 Shah Alam, Selangor Malaysia
| | - Andang Miatmoko
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java 60115 Indonesia
| | - Danish Khan
- Panineeya Institute of Dental Science and Research Centre, Kalonji Narayana Rao University of Health Sciences, Warangal, Telangana 506007 India
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, 40100 Shah Alam, Selangor Malaysia
| |
Collapse
|
33
|
Garren M, Ashcraft M, Crowley D, Brisbois EJ, Handa H. Derivatization of graphene oxide nanosheets with tunable nitric oxide release for antibacterial biomaterials. J Biomed Mater Res A 2023; 111:451-464. [PMID: 36594584 PMCID: PMC9936865 DOI: 10.1002/jbm.a.37493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023]
Abstract
Graphene oxide (GO) nanosheets are a promising class of carbon-based materials suitable for application in the construction of medical devices. These materials have inherent antimicrobial properties based on sheet size, but these effects must be carefully traded off to maintain biocompatibility. Chemical modification of functional groups to the lattice structure of GO nanosheets enables unique opportunities to introduce new surface properties to bolster biological effects. Herein, we have developed nitric oxide (NO)-releasing GO nanosheets via immobilization of S-nitrosothiol (RSNO) moieties to GO nanosheets (GO-[NH]x -SNO). These novel RSNO-based GO nanosheets were characterized for chemical functionality via Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, and colorimetric assays for functional group quantification. Stoichiometric control of the available RSNO groups functionalized onto the nanosheets was studied using chemiluminescence-based NO detection methods, showing highly tunable NO release kinetics. Studies of electrical stimulation and subsequent electrochemical reduction of the nanosheets demonstrated further tunability of the NO release based on stimuli. Finally, nanosheets were evaluated for cytotoxicity and antibacterial effects, showing strong cytocompatibility with human fibroblasts in parallel to broad antibacterial and anti-biofilm effects against both Gram-positive and Gram-negative strains. In summary, derivatized GO-(NH)x -SNO nanosheets were shown to have tunable NO release properties, enabling application-specific tailoring for diverse biomedical applications such as antimicrobial coatings and composite fillers for stents, sensors, and other medical devices.
Collapse
Affiliation(s)
- Mark Garren
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Morgan Ashcraft
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - Dagney Crowley
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Elizabeth J. Brisbois
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
34
|
Choi J, Poudel K, Nam KS, Piri A, Rivera-Piza A, Ku SK, Hwang J, Kim JO, Byeon JH. Aero-manufacture of nanobulges for an in-place anticoronaviral on air filters. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130458. [PMID: 36444810 DOI: 10.1016/j.jhazmat.2022.130458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
The interest in removing contagious viruses from indoor air using ventilation and filtration systems is increasing rapidly because people spend most of the day indoors. The development of an effective platform to regenerate the antiviral function of air filters during use and safe abrogation of used filters containing infectious viruses is a challenging task, because an on-demand safe-by-design manufacture system is essential for in-place antiviral coatings, but it has been rarely investigated. With these considerations, an electrically operable dispenser was prepared for decorating continuous ultrafine Fe-Zn, Fe-Ag, or Fe-Cu particles (<5 nm) onto SiO2 nanobeads (ca. 130 nm) to form nanobulges (i.e., nanoroughness for engaging coronavirus spikes) in the aerosol state for 3 min direct deposition on the air filter surfaces. The resulting nanobulges were exposed to human coronaviruses (HCoV; surrogates of SARS-CoV-2) to assess antiviral function. The results were compared with similar-sized individual Zn, Ag, and Cu particles. The nanobulges exhibited comparable antiviral activity to Zn, Ag, and Cu particles while retaining biosafety in both in vitro and in vivo models because of the significantly smaller metallic fractions. This suggests that the bimetallic bulge structures generate reactive oxygen species and Fenton-mediated hydroxyl radicals for inactivating HCoV.
Collapse
Affiliation(s)
- Jisoo Choi
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Kishwor Poudel
- College of Pharmacy, Yeungnam University, Gyeongsan 38511, Republic of Korea; Wellman Center for Photomedicine, Department of Dermatology, Meassachusetts General Hospital, Harvard Medical School, MA 02114, USA
| | - Kang Sik Nam
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Amin Piri
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Adriana Rivera-Piza
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610 Republic of Korea
| | - Jungho Hwang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38511, Republic of Korea.
| | - Jeong Hoon Byeon
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
35
|
Antiviral Peptides in Antimicrobial Surface Coatings—From Current Techniques to Potential Applications. Viruses 2023; 15:v15030640. [PMID: 36992349 PMCID: PMC10051592 DOI: 10.3390/v15030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
The transmission of pathogens through contact with contaminated surfaces is an important route for the spread of infections. The recent outbreak of COVID-19 highlights the necessity to attenuate surface-mediated transmission. Currently, the disinfection and sanitization of surfaces are commonly performed in this regard. However, there are some disadvantages associated with these practices, including the development of antibiotic resistance, viral mutation, etc.; hence, a better strategy is necessary. In recent years, peptides have been studied to be utilized as a potential alternative. They are part of the host immune defense and have many potential in vivo applications in drug delivery, diagnostics, immunomodulation, etc. Additionally, the ability of peptides to interact with different molecules and membrane surfaces of microorganisms has made it possible to exploit them in ex vivo applications such as antimicrobial (antibacterial and antiviral) coatings. Although antibacterial peptide coatings have been studied extensively and proven to be effective, antiviral coatings are a more recent development. Therefore, this study aims to highlight antiviral coating strategies and the current practices and application of antiviral coating materials in personal protective equipment, healthcare devices, and textiles and surfaces in public settings. Here, we have presented a review on potential techniques to incorporate peptides in current surface coating strategies that will serve as a guide for developing cost-effective, sustainable and coherent antiviral surface coatings. We further our discussion to highlight some challenges of using peptides as a surface coating material and to examine future perspectives.
Collapse
|
36
|
Li S, Sun Y, Du M, Shangguan A, Liu Z, Li W, Lina L, Liu W, Zhang S, Han H. Graphene Oxide Nanoparticles Combined with CRISPR/Cas9 System Enable Efficient Inhibition of Pseudorabies Virus. Bioconjug Chem 2023; 34:326-332. [PMID: 36629744 DOI: 10.1021/acs.bioconjchem.2c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We describe an application where graphene oxide nanoparticles (GONs) enable combined inhibition of Pseudorabies Virus (PRV) through delivery of a CRISPR/Cas9 system for targeted cleaving of a PRV genome and direct interaction with viral particles. The sheeted GONs could load CRISPR plasmid DNA (pDNA) to form a small sized, near-spheroidal GONs-CRISPR complex, which enables CRISPR pDNA efficient intracellular delivery and transient expression under serum conditions. Cell studies showed that GONs-CRISPR could allow rapid cellular uptake, endolysosomes escape, and nucleus transport within 3 h. Virus studies demonstrated that the pure GONs have antiviral activity and GONs-CRISPR could significantly inhibit PRV replication and result in progeny PRV decreasing by approximately 4000 times in infected host cells. Transmission electron microscopy (TEM) imaging showed that GONs-CRISPR could destroy the PRV structures by directly interacting with viral particles. This GONs-based strategy may extend the advanced application of the CRISPR system for antiviral action.
Collapse
Affiliation(s)
- Shuojun Li
- State Key Laboratory of Agriculture Microbiology, College of life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yumei Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.,State Key Laboratory of Agriculture Microbiology, School of Animal Science and Technology, School of Animal Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Moqing Du
- State Key Laboratory of Agriculture Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aishao Shangguan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongzhu Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Wentao Li
- State Key Laboratory of Agriculture Microbiology, School of Animal Science and Technology, School of Animal Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liu Lina
- Department of Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Wenju Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shujun Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Heyou Han
- State Key Laboratory of Agriculture Microbiology, College of life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,State Key Laboratory of Agriculture Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
37
|
Fu J, Liu T, Binte Touhid SS, Fu F, Liu X. Functional Textile Materials for Blocking COVID-19 Transmission. ACS NANO 2023; 17:1739-1763. [PMID: 36683285 PMCID: PMC9885531 DOI: 10.1021/acsnano.2c08894] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The outbreak of COVID-19 provided a warning sign for society worldwide: that is, we urgently need to explore effective strategies for combating unpredictable viral pandemics. Protective textiles such as surgery masks have played an important role in the mitigation of the COVID-19 pandemic, while revealing serious challenges in terms of supply, cross-infection risk, and environmental pollution. In this context, textiles with an antivirus functionality have attracted increasing attention, and many innovative proposals with exciting commercial possibilities have been reported over the past three years. In this review, we illustrate the progress of textile filtration for pandemics and summarize the recent development of antiviral textiles for personal protective purposes by cataloging them into three classes: metal-based, carbon-based, and polymer-based materials. We focused on the preparation routes of emerging antiviral textiles, providing a forward-looking perspective on their opportunities and challenges, to evaluate their efficacy, scale up their manufacturing processes, and expand their high-volume applications. Based on this review, we conclude that ideal antiviral textiles are characterized by a high filtration efficiency, reliable antiviral effect, long storage life, and recyclability. The expected manufacturing processes should be economically feasible, scalable, and quickly responsive.
Collapse
Affiliation(s)
- Jiajia Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Tianxing Liu
- Department of Cell and Systems Biology,
University of Toronto, Toronto, OntarioM5S1A1,
Canada
| | - S Salvia Binte Touhid
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Feiya Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Xiangdong Liu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| |
Collapse
|
38
|
An Overview on Exploitation of Graphene-Based Membranes: From Water Treatment to Medical Industry, Including Recent Fighting against COVID-19. Microorganisms 2023; 11:microorganisms11020310. [PMID: 36838275 PMCID: PMC9967324 DOI: 10.3390/microorganisms11020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Graphene and its derivatives have lately been the subject of increased attention for different environmental applications of membrane technology such as water treatment and air filtration, exploiting their antimicrobial and antiviral activity. They are interesting candidates as membrane materials for their outstanding mechanical and chemical stability and for their thin two-dimensional (2D) nanostructure with potential pore engineering for advanced separation. All these applications have evolved and diversified from discovery to today, and now graphene and graphene derivatives also offer fascinating opportunities for the fight against infective diseases such as COVID-19 thanks to their antimicrobial and antiviral properties. This paper presents an overview of graphene-based 2D materials, their preparation and use as membrane material for applications in water treatment and in respiratory protection devices.
Collapse
|
39
|
Parra B, Contreras A, Mina JH, Valencia ME, Grande-Tovar CD, Valencia CH, Ramírez C, Bolívar GA. The Entrapment and Concentration of SARS-CoV-2 Particles with Graphene Oxide: An In Vitro Assay. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:343. [PMID: 36678096 PMCID: PMC9861810 DOI: 10.3390/nano13020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Previous studies have suggested that graphene oxide (GO) has some antiviral capacity against some enveloped viruses, including SARS-CoV-2. Given this background, we wanted to test the in vitro antiviral ability to GO using the viral plaque assay technique. Two-dimensional graphene oxide (GO) nanoparticles were synthesized using the modified Hummers method, varying the oxidation conditions to achieve nanoparticles between 390 and 718 nm. The antiviral activity of GO was evaluated by experimental infection and plaque formation units assay of the SARS-CoV-2 virus in VERO cells using a titrated viral clinical isolate. It was found that GO at concentrations of 400 µg/mL, 100 µg/mL, 40 µg/mL, and 4 µg/mL was not toxic to cell culture and also did not inhibit the infection of VERO cells by SARS-CoV-2. However, it was evident that GO generated a novel virus entrapment phenomenon directly proportional to its concentration in the suspension. Similarly, this effect of GO was maintained in assays performed with the Zika virus. A new application for GO nanoparticles is proposed as part of a system to trap viruses in surgical mask filters, air conditioning equipment filters, and air purifier filters, complemented with the use of viricidal agents that can destroy the trapped viruses, an application of broad interest for human beings.
Collapse
Affiliation(s)
- Beatriz Parra
- Grupo de Virus Emergentes y Enfermedad (VIREM), Departamento de Microbiología, Facultad de Salud, Universidad del Valle, Calle 4B No. 36-00, Santiago de Cali 760032, Colombia
| | - Adolfo Contreras
- Grupo Medicina Periodontal, Escuela de Odontología, Facultad de Salud, Universidad del Valle, Calle 4B No. 36-00, Santiago de Cali 760043, Colombia
| | - José Herminsul Mina
- Grupo Materiales Compuestos (GMC), Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia
| | - Mayra Eliana Valencia
- Grupo Materiales Compuestos (GMC), Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Facultad de Ciencias, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Carlos Humberto Valencia
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B No. 36-00, Santiago de Cali 76001, Colombia
| | - Cristina Ramírez
- Grupo de Investigación en Ingeniería de Procesos Agroalimentarios y Biotecnológicos (GIPAB), Escuela de Ingeniería de Alimentos, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia
- Grupo de Investigación en Microbiología y Biotecnología Aplicada (MIBIA), Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia
| | - Germán Armando Bolívar
- Grupo de Investigación en Microbiología y Biotecnología Aplicada (MIBIA), Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia
| |
Collapse
|
40
|
Ghosal K. Tackling COVID-19 Using Antiviral Nanocoating's-Recent Progress and Future Challenges. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2023; 40:2200154. [PMID: 36711425 PMCID: PMC9874835 DOI: 10.1002/ppsc.202200154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/24/2022] [Indexed: 05/05/2023]
Abstract
In the current situation of the global coronavirus disease 2019 (COVID-19) pandemic, there is a worldwide demand for the protection of regular handling surfaces from viral transmission to restrict the spread of COVID-19 infection. To tackle this challenge, researchers and scientists are continuously working on novel antiviral nanocoatings to make various substrates capable of arresting the spread of such pathogens. These nanocoatings systems include metal/metal oxide nanoparticles, electrospun antiviral polymer nanofibers, antiviral polymer nanoparticles, graphene family nanomaterials, and etched nanostructures. The antiviral mechanism of these systems involves depletion of the spike glycoprotein that anchors to surfaces by the nanocoating and makes the spike glycoprotein and viral nucleotides inactive; however, the nature of the interaction between the spike proteins and virus depends on the type of nanostructure and a surface charge over the coating surface. In this article, the current scenario of COVID-19 and how it can be tackled using antiviral nanocoatings from the further transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), along with their different mode of action, are discussed. Additionally, it is also highlighted different types of nanocoatings developed for various substrates to encounter transmission of SARS-CoV-2, future research areas along with the current challenges related to it, and how these challenges can be resolved.
Collapse
Affiliation(s)
- Krishanu Ghosal
- Research & Development LaboratoryShalimar Paints LimitedNashikMaharashtra422403India
- The Wolfson Faculty of Chemical EngineeringTechnion‐Israel Institute of TechnologyHaifa3200003Israel
| |
Collapse
|
41
|
Gungordu Er S, Edirisinghe M, Tabish TA. Graphene-Based Nanocomposites as Antibacterial, Antiviral and Antifungal Agents. Adv Healthc Mater 2023; 12:e2201523. [PMID: 36511355 PMCID: PMC11468666 DOI: 10.1002/adhm.202201523] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/08/2022] [Indexed: 12/15/2022]
Abstract
Over the past decade, there have been many interesting studies in the scientific literature about the interaction of graphene-based polymeric nanocomposites with microorganisms to tackle antimicrobial resistance. These studies have reported variable intensities of biocompatibility and selectivity for the nanocomposites toward a specific strain, but it is widely believed that graphene nanocomposites have antibacterial, antiviral, and antifungal activities. Such antibacterial activity is due to several mechanisms by which graphene nanocomposites can act on cells including stimulating oxidative stress; disrupting membranes due to sharp edges; greatly changing core structure mechanical strength and coarseness. However, the underlying mechanisms of graphene nanocomposites as antiviral and antifungal agents remain relatively scarce. In this review, recent advances in the synthesis, functional tailoring, and antibacterial, antiviral, and antifungal applications of graphene nanocomposites are summarized. The synthesis of graphene materials and graphene-based polymeric nanocomposites with techniques such as pressurized gyration, electrospinning, chemical vapor deposition, and layer-by-layer self-assembly is first introduced. Then, the antimicrobial mechanisms of graphene membranes are presented and demonstrated typical in vitro and in vivo studies on the use of graphene nanocomposites for antibacterial, antiviral, and antifungal applications. Finally, the review describes the biosafety, current limitations, and potential of antimicrobial graphene-based nanocomposites.
Collapse
Affiliation(s)
- Seda Gungordu Er
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Mohan Edirisinghe
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Tanveer A. Tabish
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- Radcliffe Department of MedicineUniversity of OxfordOld RoadOxfordOX3 7BNUK
- Department of Engineering ScienceUniversity of OxfordBegbroke Science ParkOxfordOX5 1PFUK
| |
Collapse
|
42
|
Kim K, Min J, Lee M, Sim G, Oh SS, Park MJ. Porous charged polymer nanosheets formed via microplastic removal from frozen ice for virus filtration and detection. NANOSCALE 2022; 14:17157-17162. [PMID: 36301119 DOI: 10.1039/d2nr04479j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We developed a method for producing porous charged polymer nanosheets using frozen ice containing microplastics. Upon assessing SARS-CoV-2 filtration using nanosheets with 100 nm-sized pores, a high rejection rate of 96% was achieved. The charged surfaces of nanosheets further enabled the electrophoretic capture of the virus using a portable battery with additional real-time sensing capability.
Collapse
Affiliation(s)
- Kyoungwook Kim
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Jaemin Min
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Minjong Lee
- Department of Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Geunhong Sim
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Seung Soo Oh
- Department of Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Moon Jeong Park
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
43
|
Gungordu Er S, Tabish TA, Edirisinghe M, Matharu RK. Antiviral properties of porous graphene, graphene oxide and graphene foam ultrafine fibers against Phi6 bacteriophage. Front Med (Lausanne) 2022; 9:1032899. [PMID: 36507513 PMCID: PMC9730705 DOI: 10.3389/fmed.2022.1032899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
As the world has experienced in the Coronavirus Disease 2019 pandemic, viral infections have devastating effects on public health. Personal protective equipment with high antiviral features has become popular among healthcare staff, researchers, immunocompromised people and more to minimize this effect. Graphene and its derivatives have been included in many antimicrobial studies due to their exceptional physicochemical properties. However, scientific studies on antiviral graphene are much more limited than antibacterial and antifungal studies. The aim of this study was to produce nanocomposite fibers with high antiviral properties that can be used for personal protective equipment and biomedical devices. In this work, 10 wt% polycaprolactone-based fibers were prepared with different concentrations (0.1, 0.5, 1, 2, 4 w/w%) of porous graphene, graphene oxide and graphene foam in acetone by using electrospinning. SEM, FTIR and XRD characterizations were applied to understand the structure of fibers and the presence of materials. According to SEM results, the mean diameters of the porous graphene, graphene oxide and graphene foam nanofibers formed were around 390, 470, and 520 nm, respectively. FTIR and XRD characterization results for 2 w/w% concentration nanofibers demonstrated the presence of graphene oxide, porous graphene and graphene foam nanomaterials in the fiber. The antiviral properties of the formed fibers were tested against Pseudomonas phage Phi6. According to the results, concentration-dependent antiviral activity was observed, and the strongest viral inhibition graphene oxide-loaded nanofibers were 33.08 ± 1.21% at the end of 24 h.
Collapse
Affiliation(s)
- Seda Gungordu Er
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Tanveer A. Tabish
- Department of Mechanical Engineering, University College London, London, United Kingdom
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, University of Oxford Begbroke Science Park, Oxford, United Kingdom
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Rupy Kaur Matharu
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, United Kingdom
| |
Collapse
|
44
|
Zhang X, Cao H, Wang J, Li F, Zhao J. Graphene Oxide Exhibits Antifungal Activity against Bipolaris sorokiniana In Vitro and In Vivo. Microorganisms 2022; 10:microorganisms10101994. [PMID: 36296270 PMCID: PMC9606959 DOI: 10.3390/microorganisms10101994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022] Open
Abstract
The antimicrobial properties of graphene in vitro have been widely reported. However, compared to research performed on graphene’s antibacterial properties, there have been relatively few studies assessing graphene’s antifungal properties. In particular, evaluating graphene’s pathogenic effects on host plants in vivo, which is critical to using graphene in disease control, has rarely been performed. In this study, the fungal pathogen of wheat, barley, and other plants, Bipolaris sorokiniana (B. sorokiniana) and graphene oxide (GO) were selected for materials. A combination of physiological, cytological, and biochemical approaches was used to explore how GO affects the growth and pathogenicity of B. sorokiniana. The mycelial growth and spore germination of B. sorokiniana were both inhibited in a dose-dependent manner by GO treatment. The addition of GO significantly alleviated the infection of pathogenic fungi in host plants. The results of scanning electron microscopy demonstrated that the inhibitory effect of GO on B. sorokiniana was primarily related to the destruction of the cell membrane. Our study confirmed the antifungal effect of graphene in vitro and in vivo, providing an experimental basis for applying graphene in disease resistance, which is of great significance for agricultural and forestry production.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China
- Correspondence: (X.Z.); (H.C.); (J.Z.)
| | - Huifen Cao
- College of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China
- Correspondence: (X.Z.); (H.C.); (J.Z.)
| | - Juan Wang
- College of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China
| | - Feng Li
- College of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China
| | - Jianguo Zhao
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China
- Correspondence: (X.Z.); (H.C.); (J.Z.)
| |
Collapse
|
45
|
Han R, Coey JD, O'Rourke C, Bamford CGG, Mills A. Flexible, disposable photocatalytic plastic films for the destruction of viruses. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 2022; 235:112551. [PMID: 36063568 PMCID: PMC9404456 DOI: 10.1016/j.jphotobiol.2022.112551] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/26/2022] [Accepted: 08/21/2022] [Indexed: 01/31/2023]
Abstract
A thin, 30 μm, flexible, robust low-density polyethylene, LDPE, film, loaded with 30 wt% P25 TiO2, is extruded and subsequently rendered highly active photocatalytically by exposing it to UVA (352 nm, 1.5 mW cm−2) for 144 h. The film was tested for anti-viral activity using four different viruses, namely, two strains of Influenza A Virus (IAV), WSN, and a recombinant PR8, encephalomyocarditis virus (EMCV), and SARS-CoV-2 (SARS2). The film was irradiated with either UVA radiation (352 nm, 1.5 mW cm−2; although only 0.25 mW cm−2 for SARS2) or with light from a cool white fluorescent lamp (UVA irradiance: 365 nm, 0.047 mW cm−2). In all cases the films exhibited an average virus inactivation rate of >1.5log/h. In the case of SARS2, the rates were > 2log/h, with the rate determined using a dedicated, low intensity UVA source (0.25 mW cm−2) only 1.3 x's faster than that for a cool white lamp (UVA irradiance = 0.047 mW cm−2), which suggests that SARS2 is particularly prone to photocatalytic inactivation even under low UV irradiation conditions, such as found in a room lit with just white fluorescent tubes. This is the first example of a flexible, very thin, photocatalytic plastic film, produced by a scalable process (extrusion), for virus inactivation. The potential of such a film for use as a disposable, self-sterilising thin plastic material alternative to the common, non-photocatalytic, inert equivalent used currently for curtains, aprons and table coverings in healthcare is discussed briefly.
Collapse
Affiliation(s)
- Ri Han
- School of Chemistry and Chemical Engineering, Queens University Belfast, Stranmillis Road, Belfast BT9 5AG, UK
| | - Jonathon D Coey
- Wellcome-Wolfson Institute for Experimental Medicine (WWIEM), Queens University Belfast, School of Medicine, Dentistry and Biomedical Sciences, 96 Lisburn Road, Belfast BT9 7BL, UK
| | - Christopher O'Rourke
- School of Chemistry and Chemical Engineering, Queens University Belfast, Stranmillis Road, Belfast BT9 5AG, UK
| | - Connor G G Bamford
- Wellcome-Wolfson Institute for Experimental Medicine (WWIEM), Queens University Belfast, School of Medicine, Dentistry and Biomedical Sciences, 96 Lisburn Road, Belfast BT9 7BL, UK
| | - Andrew Mills
- School of Chemistry and Chemical Engineering, Queens University Belfast, Stranmillis Road, Belfast BT9 5AG, UK.
| |
Collapse
|
46
|
Role of Nanomaterials in COVID-19 Prevention, Diagnostics, Therapeutics, and Vaccine Development. JOURNAL OF NANOTHERANOSTICS 2022. [DOI: 10.3390/jnt3040011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Facing the deadly pandemic caused by the SARS-CoV-2 virus all over the globe, it is crucial to devote efforts to fighting and preventing this infectious virus. Nanomaterials have gained much attention after the approval of lipid nanoparticle-based COVID-19 vaccines by the United States Food and Drug Administration (USFDA). In light of increasing demands for utilizing nanomaterials in the management of COVID-19, this comprehensive review focuses on the role of nanomaterials in the prevention, diagnostics, therapeutics, and vaccine development of COVID-19. First, we highlight the variety of nanomaterials usage in the prevention of COVID-19. We discuss the advantages of nanomaterials as well as their uses in the production of diagnostic tools and treatment methods. Finally, we review the role of nanomaterials in COVID-19 vaccine development. This review offers direction for creating products based on nanomaterials to combat COVID-19.
Collapse
|
47
|
Flake Graphene as an Efficient Agent Governing Cellular Fate and Antimicrobial Properties of Fibrous Tissue Engineering Scaffolds—A Review. MATERIALS 2022; 15:ma15155306. [PMID: 35955241 PMCID: PMC9369702 DOI: 10.3390/ma15155306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 12/10/2022]
Abstract
Although there are several methods for fabricating nanofibrous scaffolds for biomedical applications, electrospinning is probably the most versatile and feasible process. Electrospinning enables the preparation of reproducible, homogeneous fibers from many types of polymers. In addition, implementation of this technique gives the possibility to fabricated polymer-based composite mats embroidered with manifold materials, such as graphene. Flake graphene and its derivatives represent an extremely promising material for imparting new, biomedically relevant properties, functions, and applications. Graphene oxide (GO) and reduced graphene oxide (rGO), among many extraordinary properties, confer antimicrobial properties of the resulting material. Moreover, graphene oxide and reduced graphene oxide promote the desired cellular response. Tissue engineering and regenerative medicine enable advanced treatments to regenerate damaged tissues and organs. This review provides a reliable summary of the recent scientific literature on the fabrication of nanofibers and their further modification with GO/rGO flakes for biomedical applications.
Collapse
|
48
|
Abdelhalim AO, Ageev SV, Petrov AV, Meshcheriakov AA, Luttsev MD, Vasina LV, Nashchekina IA, Murin IV, Molchanov OE, Maistrenko DN, Potanin AA, Semenov KN, Sharoyko VV. Graphene oxide conjugated with doxorubicin: Synthesis, bioactivity, and biosafety. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Goharshadi EK, Goharshadi K, Moghayedi M. The use of nanotechnology in the fight against viruses: A critical review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Pseudorabies Virus: From Pathogenesis to Prevention Strategies. Viruses 2022; 14:v14081638. [PMID: 36016260 PMCID: PMC9414054 DOI: 10.3390/v14081638] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudorabies (PR), also called Aujeszky’s disease (AD), is a highly infectious viral disease which is caused by pseudorabies virus (PRV). It has been nearly 200 years since the first PR case occurred. Currently, the virus can infect human beings and various mammals, including pigs, sheep, dogs, rabbits, rodents, cattle and cats, and among them, pigs are the only natural host of PRV infection. PRV is characterized by reproductive failure in pregnant sows, nervous disorders in newborn piglets, and respiratory distress in growing pigs, resulting in serious economic losses to the pig industry worldwide. Due to the extensive application of the attenuated vaccine containing the Bartha-K61 strain, PR was well controlled. With the variation of PRV strain, PR re-emerged and rapidly spread in some countries, especially China. Although researchers have been committed to the design of diagnostic methods and the development of vaccines in recent years, PR is still an important infectious disease and is widely prevalent in the global pig industry. In this review, we introduce the structural composition and life cycle of PRV virions and then discuss the latest findings on PRV pathogenesis, following the molecular characteristic of PRV and the summary of existing diagnosis methods. Subsequently, we also focus on the latest clinical progress in the prevention and control of PRV infection via the development of vaccines, traditional herbal medicines and novel small RNAs. Lastly, we provide an outlook on PRV eradication.
Collapse
|