1
|
Li T, Ding J, Wang Y, Su B. Regulating the work function and surface hydrophobicity of an indium tin oxide electrode for enhanced electrochemiluminescence analysis. Chem Commun (Camb) 2024; 60:15007-15010. [PMID: 39600298 DOI: 10.1039/d4cc05532b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The electrochemical properties of the indium tin oxide (ITO) electrode were improved significantly by surface modification with ethephon and an ultrathin polydimethylsiloxane (PDMS) layer to regulate the work function and surface hydrophobicity of ITO. Based on this strategy, the electrochemiluminescence (ECL) intensity of tris(2,2'-bipyridyl)ruthenium (Ru(bpy)32+) and tri-n-propylamine (TPrA) in solution and on a microbead surface can be enhanced by 110 and 2 times, respectively. When using the modified electrode to detect nicotinamide adenine dinucleotide (NADH), the linear range (5-1000 μM) was increased dramatically in comparison with a bare ITO electrode, with a limit of detection of 1.65 μM. The modified electrode with improved electrochemical properties holds great potential for applications in ECL bioassays and imaging analysis.
Collapse
Affiliation(s)
- Tengyu Li
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Jialian Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Yafeng Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Bin Su
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
2
|
Tian S, Chen L, Zhang J, Zhang H, Sheng L, Wang X, Huang D. Electrochemiluminescent properties of carbon nitride nanoflowers and their application to the detection of melatonin in foods. Food Chem 2024; 448:139162. [PMID: 38579557 DOI: 10.1016/j.foodchem.2024.139162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
Carbon nitride nanoflower materials (CNNFs) modified electrodes were prepared and used as electrochemiluminescence (ECL) sensors for the sensitive detection of melatonin (MT) in food. The luminescence intensity of CNNFs is increased by 4.6 times compared with bulk g-C3N4. In addition, the effect of dissolved oxygen on the material was eliminated, and the stability of ECL intensity of CNNFs was improved. Under the optimal experimental conditions, there is a good linear relationship between the ECL intensity ratio and logCMT in a concentration range of 2.0 × 10-11-1.0 × 10-6 mol/L, and the detection limit is 6.2 × 10-13 mol/L. This experiment has been successfully used for the detection of MT in rice, black rice, oats, apples, bananas, grapes, carrots, tomatoes, cucumbers, bread, and beers. The results are consistent with those obtained by high-performance liquid chromatography (HPLC). Therefore, this sensor is a sensitive and effective method for detecting MT content in food.
Collapse
Affiliation(s)
- Shuangshuang Tian
- School of Chemistry and Material Engineering, Fuyang Normal University, Anhui, Fuyang 236037, PR China
| | - Liqiang Chen
- School of Chemistry and Material Engineering, Fuyang Normal University, Anhui, Fuyang 236037, PR China
| | - Jinghua Zhang
- School of Chemistry and Material Engineering, Fuyang Normal University, Anhui, Fuyang 236037, PR China
| | - Hong Zhang
- School of Chemistry and Material Engineering, Fuyang Normal University, Anhui, Fuyang 236037, PR China; Engineering Research Centre of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang Normal University, Anhui, Fuyang 236037, PR China; Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Anhui, Fuyang 236037, PR China
| | - Liangquan Sheng
- School of Chemistry and Material Engineering, Fuyang Normal University, Anhui, Fuyang 236037, PR China; Engineering Research Centre of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang Normal University, Anhui, Fuyang 236037, PR China; Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Anhui, Fuyang 236037, PR China
| | - Xinxin Wang
- School of Chemistry and Material Engineering, Fuyang Normal University, Anhui, Fuyang 236037, PR China
| | - Deqian Huang
- School of Chemistry and Material Engineering, Fuyang Normal University, Anhui, Fuyang 236037, PR China; Engineering Research Centre of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang Normal University, Anhui, Fuyang 236037, PR China; Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Anhui, Fuyang 236037, PR China.
| |
Collapse
|
3
|
Dai W, Chen G, Wang X, Zhen S, Huang C, Zhan L, Li Y. Facile synthesis of dual-ligand europium-metal organic gels for ratiometric electrochemiluminescence detecting I27L gene. Biosens Bioelectron 2024; 246:115863. [PMID: 38008056 DOI: 10.1016/j.bios.2023.115863] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/04/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
Metal organic gels (MOGs) are a new kind of intelligent soft materials with excellent luminescence properties. However, MOGs with dual electrochemiluminescence (ECL) properties have not been reported. In this study, using Eu3+ as metal node, 4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine (Hcptpy) and Luminol as organic ligands, a novel dual-ligand Europium-organic gels (Eu-L-H MOGs) were prepared by simple mixing at room temperature. On the one hand, Eu-L-H MOGs could exhibit strong and stable anodic ECL signals in the phosphate buffered saline (PBS) without the addition of co-reactants, which came from the blue emission of Luminol. On the other hand, using K2S2O8 as a cathodic co-reactant, Eu-L-H MOGs produced cathodic signals, which were derived from the red emission of Eu sensitized by Hcptpy through the antenna effect. Based on the independent dual ECL signals of Eu-L-H MOGs, we selected Alexa Flour 430 as the receptor and anodic ECL emission of Eu-L-H MOGs as the donor to construct the ECL resonance energy transfer (ECL-RET) ratio biosensor, which utilized exonuclease III assisted DNA cycle amplification to achieve ultrasensitive detection of the I27L gene. The detection linearity of I27L ranged from 1 fM to 10 nM, with a detection limit as low as 284 aM. This study developed a straightforward technique for obtaining a single luminescent material with dual signals, and further broadened the analytical application of MOGs in the realm of ECL.
Collapse
Affiliation(s)
- Wenjie Dai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Gaoxu Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xiaoyan Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shujun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Chengzhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Lei Zhan
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Yuanfang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
4
|
Firoozbakhtian A, Salah B, Eid K, Hosseini M, Xu G. Unmasking the Electrochemiluminescence Properties of Ternary Mn/Fe/Co Metals Doped Porous g-C 3N 4 Fiber-like Nanostructure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38290524 DOI: 10.1021/acs.langmuir.3c03885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Graphitic-phase carbon nitride (g-C3N4) materials have exhibited increasingly remarkable performance as emerging electrochemiluminescence (ECL) emitters, owing to their unique optical and electronic properties; however, the ECL merits of porous g-C3N4 nanofibers doped with ternary metals are not yet explored. Deciphering the ECL properties of trimetal-doped g-C3N4 nanofibers could provide an exquisite pathway for ultrasensitive sensing and imaging with impressive advantages of minimal background signal, great sensitivity, and durability. Herein, we rationally synthesized g-C3N4 nanofibers doped atomically with Mn, Fe, and Co elements (Mn/Fe/Co/g-C3N4) in a one-pot via the protonation in ethanol and annealing process driven by the rolling up mechanism. The ECL performance of g-C3N4 with and without metal dopants was investigated and compared with standard Ru(bpy)32+ in the presence of potassium persulfate (K2S2O8) as the coreactant. Notably, g-C3N4 nanofibers doped with metal ions exhibited an ECL efficiency of 483% that was 4.83 times higher than that of Ru(bpy)32+. Mechanistic investigations unveiled that the g-C3N4 nanofibers possess a large surface area and, as a result, exhibit a reduced interfacial impedance within the porous microstructure. These factors contribute to the acceleration of charge transfer rates and the stabilization of charge carriers and excitons, ultimately facilitating the ECL process. This research endeavor may pave the way for a new hot research area and serves as a powerful tool for elucidating fundamental inquiries of ECL on one-dimensional g-C3N4 nanostructures.
Collapse
Affiliation(s)
- Ali Firoozbakhtian
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439817435, Iran
| | - Belal Salah
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | - Kamel Eid
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439817435, Iran
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Liu C, Wang Y, Li Y, Meng S, Li W, Liu D, You T. Electric field-enabled aptasensing interfacial engineering to simultaneously enhance specific preconcentration and electrochemical detection of mercury and lead ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166407. [PMID: 37597549 DOI: 10.1016/j.scitotenv.2023.166407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/04/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Aptamers with strong affinity to heavy metal ions (HMIs) allow fabrication of electrochemical sensors with high selectivity and sensitivity, while controllable regulation of aptamer-HMI recognition at the sensing interface, which is vital for better analytical performance, remains challenging. Here, an electric field-based strategy for engineering an aptasensing interface was proposed to realize the specific preconcentration and accurate detection of mercury (Hg2+) and lead (Pb2+) ions with a ratiometric electrochemical sensor. The working principle is to apply an electric field to drive HMIs to approach the aptamer and retain the orientation of the DNA structure. Anthraquinone-2-carboxylic acid (AQ)-labeled complementary DNA was designed to simultaneously bind a ferrocene (Fc)-labeled aptamer for Hg2+ and a methylene blue (MB)-labeled aptamer for Pb2+, and the sensing interface was fabricated with this presynthesized DNA structure. For preconcentration, an electric field of 3.0 V pushed HMIs to approach the aptamer and retained the orientation of DNA to favor the following recognition; for detection, the oriented DNA in 2.5 V electric field offered a stable current of AQ as a reference. In this way, currents of AQ, Fc and MB were used to produce ratiometric signals of IAQ/IFc and IAQ/IMB for Hg2+ and Pb2+, respectively. Such a strategy allowed the simultaneous detection of Hg2+ and Pb2+ within 30 min with detection limits of 0.69 pM and 0.093 pM, respectively. The aptasensor was applied for soil, water, and crayfish analysis in paddy fields. The electric field-enabled strategy offers a new way to fabricate high-performance electrochemical aptasensor for HMIs detection.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuan Wang
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenjia Li
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; School of Emergency Management, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
6
|
Rasheed T, Ahmad T, Khan S, Ferry DB, Sher F, Ali A, Majeed S. Graphitic carbon nitride derived probes for the recognition of heavy metal pollutants of environmental concern in water bodies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1142. [PMID: 37665398 DOI: 10.1007/s10661-023-11792-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Graphitic carbon nitride (g-CN) has a number of valuable features that have been recognized during the studies related to its photocatalytic activity enhancement derived by visible light. Because of these characteristics, g-CN can be used as a detecting signal transducer with different transmission modalities. The latest up-to-date detection capabilities of modified g-CN nanoarchitectures are covered in this study. The structural features and synthetic methodologies have been discussed in a number of reports. Herein, employment of the g-CN as a promising probing modality for the recognition of different toxic heavy metals is the promising feature of the present study.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), 31261, Dhahran, Saudi Arabia.
| | - Tauqir Ahmad
- Center for Advanced Specialty Chemicals, Korea Research, Institute of Chemical Technology (KRICT) , Ulsan, 44412, Republic of Korea
| | - Sardaraz Khan
- Chemistry Department, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Darim Badur Ferry
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), 31261, Dhahran, Saudi Arabia
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Amjad Ali
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006, Katowice, Poland
| | - Saadat Majeed
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
7
|
Zhao B, Liang J, Zou X, Zhang B, Zhang Y, Niu L. Crystallization Regulation Engineering in the Carbon Nitride Nanoflower for Strong and Stable Electrochemiluminescence. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16723-16731. [PMID: 36971542 DOI: 10.1021/acsami.2c22803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cathode electrochemiluminescence (ECL) of C3N4 material has suffered from weak and unstable ECL emission for a long time, which greatly limits its practical application. Herein, a novel approach was developed to improve the ECL performance by regulating the crystallinity of the C3N4 nanoflower for the first time. The high-crystalline C3N4 nanoflower achieved a pretty strong ECL signal as well as excellent long-term stability compared to low-crystalline C3N4 when K2S2O8 was used as a co-reactant. Through the investigation, it is found that the enhanced ECL signal is attributed to the simultaneous inhibition of K2S2O8 catalytic reduction and enhancement of C3N4 reduction in the high-crystalline C3N4 nanoflower, which can provide more opportunities for SO4• - to react with electro-reduced C3N4• -, and a new "activity passivation ECL mechanism" was proposed, while the improvement of the stability is mainly ascribed to the long-range ordered atomic arrangements caused by structure stability in the high-crystalline C3N4 nanoflower. As a benefit from the excellent ECL emission and stability of high-crystalline C3N4, the C3N4 nanoflower/K2S2O8 system was employed as a Cu2+ detection sensing platform, which exhibited high sensitivity, excellent stability, and good selectivity with a wide linear range from 6 nM to 10 μM and a low detection limit of 1.8 nM.
Collapse
Affiliation(s)
- Bolin Zhao
- Center for Advanced Analytical Science c/o School of Chemistry and Chemical Engineering, School of Economics and Statistics, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jiahui Liang
- Center for Advanced Analytical Science c/o School of Chemistry and Chemical Engineering, School of Economics and Statistics, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Xingzi Zou
- Center for Advanced Analytical Science c/o School of Chemistry and Chemical Engineering, School of Economics and Statistics, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Baohua Zhang
- Center for Advanced Analytical Science c/o School of Chemistry and Chemical Engineering, School of Economics and Statistics, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yuwei Zhang
- Center for Advanced Analytical Science c/o School of Chemistry and Chemical Engineering, School of Economics and Statistics, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Li Niu
- Center for Advanced Analytical Science c/o School of Chemistry and Chemical Engineering, School of Economics and Statistics, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
8
|
Wang Y, Ding J, Zhou P, Liu J, Qiao Z, Yu K, Jiang J, Su B. Electrochemiluminescence Distance and Reactivity of Coreactants Determine the Sensitivity of Bead-Based Immunoassays. Angew Chem Int Ed Engl 2023; 62:e202216525. [PMID: 36812044 DOI: 10.1002/anie.202216525] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Herein we report the study of electrochemiluminescence (ECL) generation by tris(2,2'-bipyridyl)ruthenium (Ru(bpy)3 2+ ) and five tertiary amine coreactants. The ECL distance and lifetime of coreactant radical cations were measured by ECL self-interference spectroscopy. And the reactivity of coreactants was quantitatively evaluated in terms of integrated ECL intensity. By statistical analysis of ECL images of single Ru(bpy)3 2+ -labeled microbeads, we propose that ECL distance and reactivity of coreactant codetermine the emission intensity and thus the sensitivity of immunoassay. 2,2-bis(hydroxymethyl)-2,2',2''-nitrilotriethanol (BIS-TRIS) can well balance ECL distance-reactivity trade-off and enhance the sensitivity by 236 % compared with tri-n-propylamine (TPrA) in the bead-based immunoassay of carcinoembryonic antigen. The study brings an insightful understanding of ECL generation in bead-based immunoassay and a way of maximizing the analytical sensitivity from the aspect of coreactant.
Collapse
Affiliation(s)
- Yafeng Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jialian Ding
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Ping Zhou
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jilin Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhiyuan Qiao
- School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology, Weihai, 150090, China
| | - Kai Yu
- School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology, Weihai, 150090, China
| | - Jie Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.,School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology, Weihai, 150090, China.,State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Bin Su
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
9
|
Zhao J, Zhou Y, He Y, Tan X, Yuan R, Chen S. Dual-emitting BP-CdTe QDs coupled with dual-function moderator TiO2 NSs for electrochemiluminescence ratio bioassay. Biosens Bioelectron 2022; 212:114420. [DOI: 10.1016/j.bios.2022.114420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/07/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022]
|
10
|
Li Z, Zhou Y, Cui Y, Liang G. Dual-potential electrochemiluminescent film constructed from single AIE luminogens for the sensitive detection of malachite green. NANOSCALE 2022; 14:7711-7719. [PMID: 35579044 DOI: 10.1039/d2nr01009g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exploiting efficient electrochemiluminescent (ECL) luminogens is crucial for the development of high-performance ECL sensors. Herein, a kind of efficient luminogen (BTPEBT) consisting of benzothiadiazole (BTD) as an electron acceptor and tetraphenylethylene (TPE) as an electron donor was facilely synthesized through a one-step Suzuki reaction. BTPEBT showed typical aggregation-induced emission (AIE) effects with a high solid-state quantum yield of 69.8%. The fabricated solid-state ECL film that is based on single AIE luminogens presented unique dual-potential ECL properties for the first time. The bright ECL of this film could be observed by the naked eye with a satisfactory ECL efficiency of 22.8%. The dense ECL film showed a low electron-transfer resistance, which favors electron transfer among AIE luminogens, electrolytes and the electrode, giving rise to bright ECL emission. The bright ECL film was developed as an ECL sensor for the sensitive and selective detection of malachite green (MG) in a broad linear range from 10-10 to 10-5 M. The limit of detection (LOD) was as low as 7.6 × 10-11 M. Moreover, the ECL sensing platform was further employed to detect MG in a real fish tissue sample with high sensitivity and good specificity. More importantly, the recycled BTPEBT film had good reproducibility for MG detection. The novel dual-potential ECL film constructed from single AIE luminogens provides a promising platform for the sensitive detection of MG in the food industry.
Collapse
Affiliation(s)
- Zihua Li
- PCFM lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yusheng Zhou
- PCFM lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yuhan Cui
- PCFM lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Guodong Liang
- PCFM lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
11
|
Flower-like titanium dioxide as novel co-reaction accelerator for ultrasensitive “off–on” electrochemiluminescence aptasensor construction based on 2D g-C3N4 layer for thrombin detection. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05136-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Chen L, Zhao P, Tian L, Wang Y, Zhou SF. Modulating the anodic electrochemiluminescence of graphitic carbon nitride by thiophene doping. NEW J CHEM 2022; 46:16114-16120. [DOI: 10.1039/d2nj02764j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Modulating the anodic electrochemiluminescence of graphitic carbon nitride by molecular engineering with electron donor thiophene.
Collapse
Affiliation(s)
- Lichan Chen
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Panpan Zhao
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Libing Tian
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yini Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
13
|
Liu FY, Zhang TK, Zhao YL, Ning HX, Li FS. Electrochemiluminescence of 1,8-Naphthalimide-Modified Carbon Nitride for Cu2+ Detection. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00203-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Zhao B, Luo Y, Qu X, Hu Q, Zou J, He Y, Liu Z, Zhang Y, Bao Y, Wang W, Niu L. Graphite-like Carbon Nitride Nanotube for Electrochemiluminescence Featuring High Efficiency, High Stability, and Ultrasensitive Ion Detection Capability. J Phys Chem Lett 2021; 12:11191-11198. [PMID: 34761929 DOI: 10.1021/acs.jpclett.1c02824] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, for the first time, we introduced a novel electrochemiluminescence (ECL) luminophore based on a one-dimensional g-C3N4 nanotube using K2S2O8 as the coreactant. The g-C3N4 nanotube/K2S2O8 couple displayed very satisfactory ECL performance, i.e., an ECL efficiency (ΦECL) of 437% (vs 100% for the Ru(bpy)32+/K2S2O8 reference) and excellent ECL stability (the relative standard deviation (RSD) = 0.78%). By contrast, ΦECL and RSD of the control g-C3N4 nanosheet/K2S2O8 couple were merely 196% and 45.34%, respectively. The mechanism study revealed that the g-C3N4 nanotube features a large surface area and much lower interfacial impedance in the porous microstructure, which are beneficial for accelerating the charge transfer rate and stabilizing charge/excitons for ECL. Moreover, using the g-C3N4 nanotube/K2S2O8 system as a sensing platform, excellent Cu2+ detection capability was also achieved. Our work thus triggers a promising g-C3N4 nanomaterial system toward ECL application.
Collapse
Affiliation(s)
- Bolin Zhao
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yelin Luo
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xiaodan Qu
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, China
| | - Qiong Hu
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jinhui Zou
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| | - Ying He
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhenbang Liu
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yuwei Zhang
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yu Bao
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wei Wang
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- School of Civil Engineering c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
15
|
Yang X, Zhang M, Xu J, Wen S, Zhang Y, Zhang J. Synthesis of fluorescent terbium-based metal-organic framework for quantitative detection of nitrite and ferric ions in water samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119553. [PMID: 33631626 DOI: 10.1016/j.saa.2021.119553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Through a solvothermal reaction between the corresponding lanthanide(III) nitrate, 1,10 o-phenanthroline and pyridine 3,5-dicarboxylic acid ligands, a novel two-dimensional terbium-based metal-organic framework (Tb-MOF), named {Tb2O0.5(C12H8N2)2(C7H3NO4)3(H2O)2.75}n (1) with strong fluorescence was synthesized by hydrothermal method. The single crystal structure and phase purity of the as-synthesized Tb-MOF were verified by single crystal X-ray diffraction. Subsequently, some studies on the morphology, structure, and optical properties of the compound were carried out. The results show that the synthesized Tb-MOF (1) can be used for the fluorescence sensing of nitrite and ferric ions. Simultaneously, the as-synthesized crystal structure offers good chemical stability in different environments, such as common organic solvents, solutions with a wide pH range, and aqueous solutions of metal ions. Besides, it has good chemical stability in a certain temperature range. In addition, a detection method for nitrite and iron ions was established based on the principle of fluorescence quenching of Tb-MOF by the analytical target, showing good recovery and precision. The proposed method provides a reliable new method for detecting nitrite and ferric ions concentrations in actual water samples.
Collapse
Affiliation(s)
- Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China.
| | - Maoxue Zhang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Jing Xu
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Shaohua Wen
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Yi Zhang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Jie Zhang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| |
Collapse
|
16
|
Zou R, Lin Y, Lu C. Nitrogen Vacancy Engineering in Graphitic Carbon Nitride for Strong, Stable, and Wavelength Tunable Electrochemiluminescence Emissions. Anal Chem 2021; 93:2678-2686. [PMID: 33459017 DOI: 10.1021/acs.analchem.0c05027] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As an attractive electrochemiluminescence (ECL) emitter, graphitic carbon nitride (CN) still suffers from weak and unstable ECL signals for its poor conductivity and the occurrence of electrode passivation. In this study, a simple nitrogen vacancy (NV) engineering strategy has been developed for the improvement of ECL performances (intensity and stability) for the first time. In comparison to pristine CN (RSD = 51.98% for 10 continuous scan), ca. 60 times amplification in ECL intensity and 70 times enhancement in ECL efficiency for CN modified with NVs (CN-NVs) were obtained. In addition, more stable ECL emissions (RSD = 0.53%) were achieved for CN-NV-550 by thermal treatment of pristine CN in a N2 atmosphere for another 2 h at 550 °C. The mechanism study for the vital role of NVs on the ECL of CN-NVs revealed that NVs can not only facilitate electron transfer to amplify the ECL intensity but also serve as the electron trap to inhibit electrode passivation. More interestingly, a series of CN-NVs exhibited a tunable ECL wavelength range from 470 to 516 nm with different NV contents. Moreover, their ECL spectra showed an obvious red-shift of the wavelength with their corresponding fluorescence spectra. These findings confirmed that the ECL emissions of CN-NVs were susceptible to the relevant surface states of NVs. Our work may open up a promising pathway for improving ECL performances of CN and create new possibilities for multitarget simultaneous detection based on ECL and construction of color tunable light-emitting devices.
Collapse
Affiliation(s)
- Rui Zou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanjun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
17
|
Karimzadeh Z, Hasanzadeh M, Isildak I, Khalilzadeh B. Multiplex bioassaying of cancer proteins and biomacromolecules: Nanotechnological, structural and technical perspectives. Int J Biol Macromol 2020; 165:3020-3039. [PMID: 33122068 DOI: 10.1016/j.ijbiomac.2020.10.191] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
Abstract
Since the specific proteins (carbohydrate antigens, ligands and interleukins) get raised up in body tissue or fluids in cancer cases, early detection of them will provide an effective treatment and survival rate. Sensitive and accurate determination of multiple cancer proteins can be engaged in chorus by simultaneous/multiplex detection in the biomedical fields. Bioassaying technology is one of the non-invasive, high-sensitive, and economical methods. Currently, extensive application of nanomaterial (biocompatible polymers, metallic and metal oxide) in bioassays resulted in ultra-high sensitive and selective diagnosis. This review article focuses on types of multiplex bioassays for delicate and specific determination of cancer proteins for diagnostic aims. It also covers two modes of multiplex bioassays as multi labeled bioassays and spatially-separated test zones (multi-electrode mode). In this review, the nanotechnological, structural, and technical perspectives in the multiplex analysis of cancer proteins were discussed. Finally, the use of different types of nanomaterials, polysaccharides, biopolymers and their advantages in signal amplification are discussed.
Collapse
Affiliation(s)
- Zahra Karimzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ibrahim Isildak
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, 34220 Istanbul, Turkey
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Biosensor Sciences and Technologies Research Center (BSTRC), Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
18
|
Qin Y, Wang Z, Xu J, Han F, Zhao X, Han D, Liu Y, Kang Z, Niu L. Carbon Nitride Quantum Dots Enhancing the Anodic Electrochemiluminescence of Ruthenium(II) Tris(2,2′-bipyridyl) via Inhibiting the Oxygen Evolution Reaction. Anal Chem 2020; 92:15352-15360. [DOI: 10.1021/acs.analchem.0c02568] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yunlong Qin
- Engineering Laboratory for Modern Analytical Techniques, C/o State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zeqian Wang
- Engineering Laboratory for Modern Analytical Techniques, C/o State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Jianan Xu
- Engineering Laboratory for Modern Analytical Techniques, C/o State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Fangjie Han
- Engineering Laboratory for Modern Analytical Techniques, C/o State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Xin Zhao
- Engineering Laboratory for Modern Analytical Techniques, C/o State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Dongxue Han
- Engineering Laboratory for Modern Analytical Techniques, C/o State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230029, China
- Center for Advanced Analytical Science, C/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yang Liu
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Zhenhui Kang
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Li Niu
- Engineering Laboratory for Modern Analytical Techniques, C/o State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Center for Advanced Analytical Science, C/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
19
|
Zou R, Teng X, Lin Y, Lu C. Graphitic carbon nitride-based nanocomposites electrochemiluminescence systems and their applications in biosensors. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116054] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Talapaneni SN, Singh G, Kim IY, AlBahily K, Al-Muhtaseb AH, Karakoti AS, Tavakkoli E, Vinu A. Nanostructured Carbon Nitrides for CO 2 Capture and Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904635. [PMID: 31608512 DOI: 10.1002/adma.201904635] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/17/2019] [Indexed: 05/17/2023]
Abstract
Carbon nitride (CN), a 2D material composed of only carbon (C) and nitrogen (N), which are linked by strong covalent bonds, has been used as a metal-devoid and visible-light-active photocatalyst owing to its magnificent optoelectronic and physicochemical properties including suitable bandgap, adjustable energy-band positions, tailor-made surface functionalities, low cost, metal-free nature, and high thermal, chemical, and mechanical stabilities. CN-based materials possess a lot of advantages over conventional metal-based inorganic photocatalysts including ease of synthesis and processing, versatile functionalization or doping, flexibility for surface engineering, low cost, sustainability, and recyclability without any leaching of toxic metals from photocorrosion. Carbon nitrides and their hybrid materials have emerged as attractive candidates for CO2 capture and its reduction into clean and green low-carbon fuels and valuable chemical feedstock by using sustainable and intermittent renewable energy sources of sunlight and electricity through the heterogeneous photo(electro)catalysis. Here, the latest research results in this field are summarized, including implementation of novel functionalized nanostructured CNs and their hybrid heterostructures in meeting the stringent requirements to raise the efficiency of the CO2 reduction process by using state-of-the-art photocatalysis, electrocatalysis, photoelectrocatalysis, and feedstock reactions. The research in this field is primarily focused on advancement in the synthesis of nanostructured and functionalized CN-based hybrid heterostructured materials. More importantly, the recent past has seen a surge in studies focusing significantly on exploring the mechanism of their application perspectives, which include the behavior of the materials for the absorption of light, charge separation, and pathways for the transport of CO2 during the reduction process.
Collapse
Affiliation(s)
- Siddulu Naidu Talapaneni
- Global Innovative Center for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment (FEBE), The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment (FEBE), The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - In Young Kim
- Global Innovative Center for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment (FEBE), The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Khalid AlBahily
- SABIC Corporate Research and Development Center at KAUST, Saudi Basic Industries Corporation, Thuwal, 23955, Saudi Arabia
| | - Ala'a H Al-Muhtaseb
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khod, Muscat, 123, Oman
| | - Ajay S Karakoti
- Global Innovative Center for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment (FEBE), The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ehsan Tavakkoli
- New South Wales Department of Primary Industries, Wagga Wagga Agricultural Institute, Pine Gully Road, Wagga Wagga, NSW, 2650, Australia
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment (FEBE), The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
21
|
Wang J, Haghighatbin MA, Shen W, Mi L, Cui H. Metal Ion-Mediated Potential-Resolved Ratiometric Electrochemiluminescence Bioassay for Efficient Determination of miR-133a in Early Diagnosis of Acute Myocardial Infarction. Anal Chem 2020; 92:7062-7070. [DOI: 10.1021/acs.analchem.0c00377] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jue Wang
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mohammad A. Haghighatbin
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wen Shen
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Lan Mi
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hua Cui
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
22
|
Mondal TK, Saha SK. Interesting photoluminescence behaviour in graphitic carbon nitride quantum dots attached to PbCrO4 colloidal nanostructures. NEW J CHEM 2020. [DOI: 10.1039/d0nj03609a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly luminescent graphitic carbon nitride quantum dots (CNQDs) are synthesized by a facile one-step hydrothermal route and studied the photoluminescence behaviour during in situ formation of CNQD–PbCrO4 nano-composite.
Collapse
Affiliation(s)
- Tapas Kumar Mondal
- School of Materials Sciences
- Indian Association for the Cultivation of Science Jadavpur
- Kolkata
- India
| | - Shyamal K. Saha
- School of Materials Sciences
- Indian Association for the Cultivation of Science Jadavpur
- Kolkata
- India
| |
Collapse
|
23
|
Hu L, Wu Y, Xu M, Gu W, Zhu C. Recent advances in co-reaction accelerators for sensitive electrochemiluminescence analysis. Chem Commun (Camb) 2020; 56:10989-10999. [DOI: 10.1039/d0cc04371k] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In electrochemiluminescence sensing platforms, co-reaction accelerators are specific materials used to catalyze the dissociation of co-reactants into active radicals, which can significantly boost the ECL emission of luminophores.
Collapse
Affiliation(s)
- Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials
- School of Materials Science and Engineering
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry, Central China Normal University
- Wuhan 430079
- P. R. China
| | - Miao Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry, Central China Normal University
- Wuhan 430079
- P. R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry, Central China Normal University
- Wuhan 430079
- P. R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry, Central China Normal University
- Wuhan 430079
- P. R. China
| |
Collapse
|
24
|
Gold nanoclusters enhanced electrochemiluminescence of g-C3N4 for protein kinase activity analysis and inhibition. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Chen H, Liu X, Yin C, Li W, Qin X, Chen C. A dual-signal output ratiometric electrochemiluminescent sensor for NADH detection. Analyst 2019; 144:5215-5222. [PMID: 31359014 DOI: 10.1039/c9an00758j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ratiometric electrochemiluminescence (ECL) has attracted great attention in the field of electrochemical analysis. In this study, a dual-signal-output ratiometric ECL sensor was developed for the detection of nicotinamide adenine dinucleotide (NADH). Nitrogen-doped graphene quantum dots (NGQDs) exhibit double ECL signal output capability, without the requirement of additional coreactants. NADH can amplify the anodic ECL response of NGQDs, while it can diminish the cathodic ECL response of NGQDs. Based on the principle between relative enhancing ECL intensity ratio and NADH concentrations, the constructed ratiometric ECL sensor was applied to NADH assays, with a wide concentration range of 10-400 μM and a low limit of detection (LOD) of 2.5 μM (S/N = 3). Furthermore, the proposed method was applied for the determination of spiked NADH, which was proved to be feasible in the biological sample matrix. The proposed strategy of modulating multiple-ECL signals of the single NGQD emitter not only provides a new ECL system for the accurate detection of NADH but also broadens the design pathway for ratiometric sensing fabrication.
Collapse
Affiliation(s)
- Hongjun Chen
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, 417000, P. R. China
| | | | | | | | | | | |
Collapse
|
26
|
Ma X, Chen D, Tu X, Gao F, Xie Y, Dai R, Lu L, Wang X, Qu F, Yu Y, Huang X, Liu G. Ratiometric electrochemical sensor for sensitive detection of sunset yellow based on three-dimensional polyethyleneimine functionalized reduced graphene oxide aerogels@Au nanoparticles/SH-β-cyclodextrin. NANOTECHNOLOGY 2019; 30:475503. [PMID: 31349242 DOI: 10.1088/1361-6528/ab3601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrochemical methods have been deemed effective strategies for the detection of dye additive sunset yellow (SY) owing to their low cost, good stability, and high sensitivity. However, the application of the existing sensors with single electrical signal response is limited by their inadequate sensitivity and large background interference. Herein, a ratiometric electrochemical strategy with a dual signal was developed to detect SY. The strategy had an intrinsic built-in correction to the effects from the system, and thus reduced the influence of environmental change. 3D polyethyleneimine functionalized reduced graphene oxide aerogels@Au nanoparticles/SH-β-cyclodextrin (PEI-rGAs@AuNPs/SH-β-CD) was used as the sensing material due to its 3D macroporous microstructure with high specific surface area and excellent electronic conductivity. Guest molecule methylene blue (MB) was chosen as a probe molecule, which formed an inclusion host-guest complex with a SH-β-CD host in advance. The target molecule SY displaced MB from the CD cavities, resulting in the decrease of MB current and the increase of SY current. With the logarithmic value of ISY/IMB as the readout signal, the detection limit of the developed ratiometric electrochemical sensor reached as low as 0.3 nM, confirming the excellent sensitivity. Furthermore, this strategy exhibited good selectivity and repeatability, and could be used for the detection of SY in a real sample.
Collapse
Affiliation(s)
- Xue Ma
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of functional materials and agricultural applied chemistry, College of Science, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mohammadi A, Khalili B, Haghayegh AS. A novel chromone based colorimetric sensor for highly selective detection of copper ions: Synthesis, optical properties and DFT calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117193. [PMID: 31174147 DOI: 10.1016/j.saa.2019.117193] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/18/2019] [Accepted: 05/26/2019] [Indexed: 05/19/2023]
Abstract
In this work, a new chromone based colorimetric sensor (ChrCS) was developed for highly selective detection of copper ions in semi-aqueous media. Evaluation of color and spectral changes displayed by the developed sensor shows that the sensor can be applied to detect copper ions in the presence of other competing metal ions and anions. The developed sensor, which contains biologically active chromone ring, shows excellent selectivity at microlevel for Cu2+ with a color change from colorless to yellow. Job's plot based on spectroscopic data showed the complex formation between ChrCS and Cu2+ ions has the stoichiometric ratio of 1:1 (ChrCS-Cu2+ complex). In addition, the binding constant of the ChrCS to Cu2+ was determined using the Benesi-Hildebrand equation. Furthermore, the test papers of the developed ChrCS were successfully prepared and employed to detect different concentration Cu2+ (10-3 M to 10-7 M) in aqueous solution. Importantly, sensor ChrCS was applied to detect Cu2+ ions in real water samples. To better understand the optical character of ChrCS and the effect of metal ion titration, density functional theory (DFT) calculations at the B3LYP/6-31 + G(d,p) level were performed for ChrCS and its complex ChrCS-Cu2+. Furthermore, on the basis of the Job's plot analysis DFT calculations, and reversible nature of the developed sensor, the sensing mechanism was demonstrated.
Collapse
Affiliation(s)
- Asadollah Mohammadi
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran.
| | - Behzad Khalili
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| | | |
Collapse
|
28
|
Wei J, Zhao P, Chen L, Tian L, Wu H, Dong Y, Chi Y, Zhou S. Electrochemiluminescence for Characterizing the Polymerization Process during Graphitic Carbon Nitride Synthesis. ChemElectroChem 2019; 6:3742-3746. [DOI: 10.1002/celc.201900987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Indexed: 11/27/2024]
Abstract
AbstractThe physicochemical properties and application performances of graphitic carbon nitride (g‐CN) are highly dependent on its polymerization degree, thus a facile method for screening the polymerization degree is highly desired. Here, electrochemiluminescence (ECL) is creatively employed as an effective tool to achieve this goal. Extension of π‐system and change in pedant groups during g‐CN polymerization process are characterized by g‐CN nanosheets/dissolved oxygen (CNNS/O2) and Ru(bpy)32+/CNNS co‐reactant ECL systems, respectively. Linear intensity enhancement along with positive shift in the onset and peak potentials of cathodic CNNS/O2 ECL, as well as linear intensity decreasing in anodic Ru(bpy)32+/CNNS ECL, are observed during polymerization of dicyandiamide to g‐CN, suggesting the feasibility of ECL on studying the polymerization degree. The ECL method would provide a promising prospect for novel properties exploration and application performances optimization of g‐CN.
Collapse
Affiliation(s)
- Jingjing Wei
- College of Chemical Engineering Huaqiao University Xiamen 361021 P. R China
| | - Panpan Zhao
- College of Chemical Engineering Huaqiao University Xiamen 361021 P. R China
| | - Lichan Chen
- College of Chemical Engineering Huaqiao University Xiamen 361021 P. R China
| | - Libing Tian
- College of Chemical Engineering Huaqiao University Xiamen 361021 P. R China
| | - Haishan Wu
- Key Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education, College of Chemistry Fuzhou University Fuzhou Fujian 350108 P. R China
| | - Yongqiang Dong
- Key Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education, College of Chemistry Fuzhou University Fuzhou Fujian 350108 P. R China
| | - Yuwu Chi
- Key Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education, College of Chemistry Fuzhou University Fuzhou Fujian 350108 P. R China
| | - Shu‐Feng Zhou
- College of Chemical Engineering Huaqiao University Xiamen 361021 P. R China
| |
Collapse
|
29
|
Hu FX, Wang J, Chen S, Rao Q. Enhanced electrochemiluminescence from reduced graphene oxide-CdTe quantum dots for highly selective determination of copper ion. LUMINESCENCE 2019; 34:666-672. [PMID: 31243864 DOI: 10.1002/bio.3649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/17/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022]
Abstract
An electrochemiluminescence (ECL) sensor based on reduced graphene oxide-CdTe quantum dots (RGO-CdTe QDs) composites for detecting copper ion (Cu2+ ) was proposed. The ECL behaviours of the RGO-CdTe QD modified electrode were investigated with H2 O2 as the co-reactant. Quantitative detection of Cu2+ was realized as Cu2+ could effectively quench the ECL signal of the RGO-CdTe QDs. A wide linear range of 1.00 × 10-14 to 1.00 × 10-4 M (R = 0.9953) was obtained under optimized conditions, and a detection limit (S/N = 3) was achieved of as low as 3.33 × 10-15 M. The proposed sensor also exhibited good stability and selectivity for the detection of copper ions. Finally, the analytical application of the proposed sensor was also evaluated using river water.
Collapse
Affiliation(s)
- Fang Xin Hu
- Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou, China
| | - Juanli Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Shihong Chen
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Qianghai Rao
- Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
30
|
Qin X, Xu X, Lu J, Zhu Y. Highly efficient electrochemiluminescence of quinoline and isoquinoline in aqueous solution. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
31
|
Hu Y, Liu Y, Wang S, Guo Z, Hu Y, Xie H. A Novel Surface-Tethered Double-Signal Electrochemiluminescence Sensor Based on Luminol@Au and CdS Quantum Dots for Mercury Ion Detection. ChemistrySelect 2019. [DOI: 10.1002/slct.201802150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yunxia Hu
- Faculty of Materials Science and Chemical Engineering; State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| | - Yuan Liu
- Faculty of Materials Science and Chemical Engineering; State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| | - Sui Wang
- Faculty of Materials Science and Chemical Engineering; State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| | - Zhiyong Guo
- Faculty of Materials Science and Chemical Engineering; State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| | - Yufang Hu
- Faculty of Materials Science and Chemical Engineering; State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| | - Hongzhen Xie
- Faculty of Materials Science and Chemical Engineering; State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| |
Collapse
|
32
|
Desai ML, Basu H, Singhal RK, Saha S, Kailasa SK. Ultra-small two dimensional MXene nanosheets for selective and sensitive fluorescence detection of Ag+ and Mn2+ ions. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.12.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Zhu R, Zhang Y, Fang X, Cui X, Wang J, Yue C, Fang W, Zhao H, Li Z. In situ sulfur-doped graphitic carbon nitride nanosheets with enhanced electrogenerated chemiluminescence used for sensitive and selective sensing of l-cysteine. J Mater Chem B 2019; 7:2320-2329. [DOI: 10.1039/c9tb00301k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, in situ sulfur-doped carbon nitride nanosheets (S-g-C3N4 NSs) are used for the sensitive and selective sensing of l-cysteine (l-Cys) based on the competitive coordination chemistry of Cu2+ between l-Cys and S-g-C3N4 NSs.
Collapse
Affiliation(s)
- Ruifeng Zhu
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road
- Beijing
- China
| | - Yuhua Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road
- Beijing
- China
| | - Xian Fang
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road
- Beijing
- China
| | - Xiaoqing Cui
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road
- Beijing
- China
| | - Jing Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road
- Beijing
- China
| | - Chaochao Yue
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road
- Beijing
- China
| | - Wenhui Fang
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road
- Beijing
- China
| | - Hong Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road
- Beijing
- China
| | - Zengxi Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road
- Beijing
- China
| |
Collapse
|
34
|
Kaur N, Mehta A, Mishra A, Chaudhary S, Rawat M, Basu S. Amphiphilic carbon dots derived by cationic surfactant for selective and sensitive detection of metal ions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 95:72-77. [PMID: 30573272 DOI: 10.1016/j.msec.2018.10.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 09/29/2018] [Accepted: 10/15/2018] [Indexed: 11/16/2022]
Abstract
Carbon Dots (CDs) the kind of recently exposed fluorescent nanomaterials have become increasingly popular in the precedent decade due to their distinctive physical and optical properties. Relating to above recognition for the first time we present the synthesis of CDs by cationic surfactant, Cetylpyridinium Bromide (CPB). Due to good carbon content amphiphilicity, and existence of heteroaromatic π system, CPB reveals three advantageous properties including a good carbon source, stabilizing agent, and contributing fluorophore in the CDs system. The as prepared CDs synthesized by hydrothermal technique reveals excellent fluorescent properties having strong green emission at 525 nm when excited over 470 nm. The FTIR results showed the presence of CC, CO, NH, CH and OH bonds. The presence of hydrophilic groups such as carboxyl and hydroxyl groups present on the surface confer them water solubility. The HRTEM results revealed the size of prepared CDs to be in the range of 7-10 nm. The XPS spectrum confirms the presence of Carbon, Oxygen and Nitrogen, suggesting that the CDs have good purity and very little impurities. Latterly CDs were used for the selective and sensitive detection towards Fe2+ ions. Also the as prepared CDs were utilized for real sample analysis.
Collapse
Affiliation(s)
- Navneet Kaur
- Dept. of Nanotechnology, Sri Guru Granth Sahib World University, India
| | - Akansha Mehta
- School of Chemistry and Biochemistry, Thapar University, India
| | - Amit Mishra
- School of Chemistry and Biochemistry, Thapar University, India
| | - Savita Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Mohit Rawat
- Dept. of Nanotechnology, Sri Guru Granth Sahib World University, India.
| | - Soumen Basu
- School of Chemistry and Biochemistry, Thapar University, India.
| |
Collapse
|
35
|
Zhou J, Nie L, Zhang B, Zou G. Spectrum-Resolved Triplex-Color Electrochemiluminescence Multiplexing Immunoassay with Highly-Passivated Nanocrystals as Tags. Anal Chem 2018; 90:12361-12365. [PMID: 30350603 DOI: 10.1021/acs.analchem.8b04424] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nanocrystals (NCs) were extensively employed in optical-multiplexing with their size-dependent and narrow waveband photoluminescence (PL). Herein, to achieve NCs-based novel optical-multiplexing strategy with improved sensitivity, a spectrum-resolved triplex-color electrochemiluminescence (ECL) multiplexing immunoassay (MIA) was proposed for the first time by extensively exploring the color-different monochromatic ECL from dual-stabilizers-capped CdTe and CdSe NCs and the inherent lower background of ECL than PL. As a proof of concept, carcinoembryonic antigen (CEA), prostate specific antigen (PSA), and alpha fetoprotein (AFP) were adopted as model analytes and formed three antigen-NCs pairs at the glassy carbon electrode surface via a one-pot immune-reaction with CdSe(550), CdTe(650), and CdTe(776) NCs as tags, respectively. The spectral ECL responses of three antigen-NCs pairs were simultaneously measured via one-pot ECL assay, and the maximum ECL intensity of each tag was directly utilized to determine corresponding antigen without any assistance from either optical filters or signal deconvolution. This ECL-MIA displayed negligible cross-reactivity, high color-selectivity, and excellent sensitivity with limits of detection down to 1, 10, and 0.01 pg/mL for CEA, PSA, and AFP, respectively, which might provide a promising alternative to NCs PL multiplexing.
Collapse
|
36
|
Lv Y, Zhou Z, Shen Y, Zhou Q, Ji J, Liu S, Zhang Y. Coupled Fluorometer-Potentiostat System and Metal-Free Monochromatic Luminophores for High-Resolution Wavelength-Resolved Electrochemiluminescent Multiplex Bioassay. ACS Sens 2018; 3:1362-1367. [PMID: 29882407 DOI: 10.1021/acssensors.8b00292] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The sensitive simultaneous detection of multiple biomarkers is critical for the early diagnosis of diseases. Electrochemiluminescence (ECL) offers outstanding advantages, e.g., low background, over other optical sensing techniques. However, multiplexed ECL bioassay is hindered not only by the lack of generally available ECL spectrometers but also by the limited number of biocompatible monochromatic ECL luminophores for decades. Herein, we report addressing these issues by re-examination of the recent tabletop spectrofluorometer coupled potentiostat as a high-resolution ECL spectrum acquisition system and using carbon nitrides as monochromatic luminophores. A wavelength-resolved multiplexing ECL biosensor is demonstrated to simultaneously detect CA19-9 and mesothelin, two pancreatic cancer biomarkers, at a single-electrode interface. This work could initiate new opportunities for more general multiplex ECL biosensors with competitive performances.
Collapse
Affiliation(s)
- Yanqin Lv
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Zhixin Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Qing Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Jingjing Ji
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| |
Collapse
|
37
|
Wang H, Pu G, Devaramani S, Wang Y, Yang Z, Li L, Ma X, Lu X. Bimodal Electrochemiluminescence of G-CNQDs in the Presence of Double Coreactants for Ascorbic Acid Detection. Anal Chem 2018; 90:4871-4877. [DOI: 10.1021/acs.analchem.8b00517] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Huan Wang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
- The Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, Qinghai 810007, China
| | - Guiqiang Pu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Samrat Devaramani
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yanfeng Wang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Zhaofan Yang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Linfang Li
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xiaofang Ma
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University,Tianjin 300072, People’s Republic of China
| |
Collapse
|
38
|
Yuan D, Ding L, Sun Z, Li X. MRI/Fluorescence bimodal amplification system for cellular GSH detection and tumor cell imaging based on manganese dioxide nanosheet. Sci Rep 2018; 8:1747. [PMID: 29379132 PMCID: PMC5788857 DOI: 10.1038/s41598-018-20110-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/11/2018] [Indexed: 11/22/2022] Open
Abstract
Here, we report a novel magnetic resonance imaging (MRI)/fluorescence bimodal amplification platform for the detection of glutathione (GSH) on the basis of redoxable manganese dioxide (MnO2) nanosheets, which can be readily applied as a DNA nanocarrier, fluorescence quencher, and intracellular GSH-activated MRI contrast agent. The binding of aptamers that absorbed on the MnO2 nanosheets to their target can facilitating the endocytosis of target-nanoprobes. Once endocytosed, the MnO2 nanosheets can react with cellular GSH, resulting in the disintegration of nanosheets to generate plenty of Mn2+ ions for MRI and releases the primers which were adsorbed on the MnO2 nanosheets. Then the rolling circle amplification (RCA) reaction was initiated to amplify the fluorescence signal. In addition, after treatment with GSH, the MnO2 nanosheets were reduced and then most of the fluorescence was recovered. Therefore, this MnO2 nanoprobe exhibits excellent selectivity, suggesting a potential detection platform for analyzing the glutathione level in cells.
Collapse
Affiliation(s)
- Dandan Yuan
- Center of Cooperative Innovation for Chemical Imaging Functional Probes in Universities of Shandong, College of Chemistry, Shandong Normal University, Jinan, 250014, P. R. China.,Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Research Institute of Biochemical Analysis, Linyi University, Linyi, 276005, P. R. China
| | - Lairong Ding
- Center of Cooperative Innovation for Chemical Imaging Functional Probes in Universities of Shandong, College of Chemistry, Shandong Normal University, Jinan, 250014, P. R. China.,Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Research Institute of Biochemical Analysis, Linyi University, Linyi, 276005, P. R. China
| | - Zhaomei Sun
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Research Institute of Biochemical Analysis, Linyi University, Linyi, 276005, P. R. China
| | - Xuemei Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Research Institute of Biochemical Analysis, Linyi University, Linyi, 276005, P. R. China.
| |
Collapse
|
39
|
Advances in the use of carbonaceous materials for the electrochemical determination of persistent organic pollutants. A review. Mikrochim Acta 2018; 185:112. [DOI: 10.1007/s00604-017-2638-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 01/01/2023]
|
40
|
Jiang J, Lin X, Ding D, Diao G. Graphitic-phase carbon nitride-based electrochemiluminescence sensing analyses: recent advances and perspectives. RSC Adv 2018; 8:19369-19380. [PMID: 35540965 PMCID: PMC9080761 DOI: 10.1039/c8ra02221f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022] Open
Abstract
This review describes the current trends in synthesis methods, signaling strategies, and sensing applications of g-C3N4-based ECL emitters.
Collapse
Affiliation(s)
- Jingjing Jiang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Xinyi Lin
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Dong Ding
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Guowang Diao
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| |
Collapse
|
41
|
A voltammetric sensor for simultaneous determination of lead, cadmium and zinc on an activated carbon fiber rod. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
42
|
Zhuo Y, Wang HJ, Lei YM, Zhang P, Liu JL, Chai YQ, Yuan R. Electrochemiluminescence biosensing based on different modes of switching signals. Analyst 2018; 143:3230-3248. [DOI: 10.1039/c8an00276b] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Electrochemiluminescence (ECL) has attracted much attention in various fields of analysis owing to low background signals, high sensitivity, and excellent controllability.
Collapse
Affiliation(s)
- Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Hai-Jun Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yan-Mei Lei
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Pu Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Jia-Li Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
43
|
Zou G, Tan X, Long X, He Y, Miao W. Spectrum-Resolved Dual-Color Electrochemiluminescence Immunoassay for Simultaneous Detection of Two Targets with Nanocrystals as Tags. Anal Chem 2017; 89:13024-13029. [DOI: 10.1021/acs.analchem.7b04188] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Guizheng Zou
- School
of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiao Tan
- School
of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaoyan Long
- School
of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yupeng He
- School
of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wujian Miao
- Department
of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
44
|
Song H, Zhang L, Su Y, Lv Y. Recent Advances in Graphitic Carbon Nitride-Based Chemiluminescence, Cataluminescence and Electrochemiluminescence. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0024-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Wang H, Ma Q, Wang Y, Wang C, Qin D, Shan D, Chen J, Lu X. Resonance energy transfer based electrochemiluminescence and fluorescence sensing of riboflavin using graphitic carbon nitride quantum dots. Anal Chim Acta 2017; 973:34-42. [DOI: 10.1016/j.aca.2017.03.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/13/2017] [Accepted: 03/20/2017] [Indexed: 01/06/2023]
|
46
|
Shen YF, Zhang C, Yan CG, Chen HQ, Zhang YJ. Fabrication of porous graphitic carbon nitride-titanium dioxide heterojunctions with enhanced photo-energy conversion activity. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Zhai Q, Li J, Wang E. Recent Advances Based on Nanomaterials as Electrochemiluminescence Probes for the Fabrication of Sensors. ChemElectroChem 2017. [DOI: 10.1002/celc.201600898] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qingfeng Zhai
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 China
| |
Collapse
|
48
|
Zeng Z, Li K, Wei K, Dai Y, Yan L, Guo H, Luo X. Fabrication of porous g-C 3 N 4 and supported porous g-C 3 N 4 by a simple precursor pretreatment strategy and their efficient visible-light photocatalytic activity. CHINESE JOURNAL OF CATALYSIS 2017. [DOI: 10.1016/s1872-2067(17)62763-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Zhu Y, Zhao M, Hu X, Wang X, Wang L. Electrogenerated chemiluminescence behavior of Tb complex and its application in sensitive sensing Cd2+. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Zhou B, Qiu Y, Wen Q, Zhu M, Yang P. Dual Electrochemiluminescence Signal System for In Situ and Simultaneous Evaluation of Multiple Cell-Surface Receptors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2074-2082. [PMID: 28029038 DOI: 10.1021/acsami.6b12411] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A mutiplex cytosensor based on a dual electrochemiluminescence (ECL) signal system was fabricated for in situ and simultaneous detection of the expression levels of multiple cell-surface receptors, mannose and epidermal growth factor receptor (EGFR), using luminol-capped gold nanoparticles (Au@luminol) and CdS quantum dots (CdS QDs) as potential-resolved ECL nanoprobes. Two spatially resolved areas on indium tin oxide (ITO) electrodes were modified with polyaniline (PANI) by electropolymerization, on which gold nanoparticles (AuNPs) were attached to strengthen conductivity and stability of the sensing interface. Human mucin1 protein (MUC1) aptamer was immobilized onto AuNPs for capturing MUC1-positive MCF-7 cells. Au@luminol and CdS QDs as ECL nanoprobes were covalently linked with concanavalin A (ConA) and epidermal growth factor (EGF) to label MCF-7 cells on the two areas of the cytosensor separately. Compared to conventional multiplex biosensor, we demonstrated a novel analysis platform for the simultaneous detection of multiple cell-surface receptors; it could provide two sensitive and potential-resolved ECL signals during one potential scanning and avoid cross-reactivity between the two nanoprobes. The quantification of MCF-7 cells on the two spatially resolved areas could be achieved over the linear range from 102 to 1.0 × 106 cells mL-1 with a detection limit of 20 cells mL-1. This multiplex cytosensor was further applied for simultaneous quantitative evaluation of the expression levels of mannose and EGFR on MCF-7 cells, revealed that the average numbers of mannose and EGFR per captured MCF-7 cell were 1.2 × 106 and 0.86 × 105 with the relative standard deviation of 5.3% and 4.2%, respectively. The multiplex cytosensor was capable of evaluating multiple cell-surface receptors, which would be beneficial to developing a better diagnostic tool for diseases.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Chemistry, Jinan University , Guangzhou 510632, People's Republic of China
| | - Youyi Qiu
- Department of Chemistry, Jinan University , Guangzhou 510632, People's Republic of China
| | - Qingqing Wen
- Department of Chemistry, Jinan University , Guangzhou 510632, People's Republic of China
| | - Mingyao Zhu
- Department of Chemistry, Jinan University , Guangzhou 510632, People's Republic of China
| | - Peihui Yang
- Department of Chemistry, Jinan University , Guangzhou 510632, People's Republic of China
| |
Collapse
|