1
|
Boakye-Yiadom KO, Chen Q, Teng Y, Zhang C, Hu B, Zhang XQ. Injectable Gelled Multiple Emulsion for Glucose-Responsive Insulin Delivery. Adv Healthc Mater 2024; 13:e2304195. [PMID: 38994658 DOI: 10.1002/adhm.202304195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/26/2024] [Indexed: 07/13/2024]
Abstract
A glucose-responsive insulin delivery system that sustains blood glucose equilibrium for an extended duration can address the low therapeutic window of insulin in diabetes treatment. Herein, insulin is loaded in a water-in-oil-in-water (W1/O/W2) gelled multiple emulsion using poly (4-vinylphenylboronic acid) (PVPBA) homopolymer as an effective emulsifier. The gelled multiple emulsion exhibits a high encapsulation efficiency (99%), enhanced stability and remarkable shear-thinning behavior, making it easy to inject. Under hyperglycemic conditions, the gelled emulsion system instantly binds to glucose molecules and reduces the hydrogen bonds of the PVPBA homopolymer, resulting in insulin release. In a streptozotocin-induced type 1 diabetic mouse model, a single subcutaneous injection of the gelled emulsion rapidly responds to high blood glucose concentration (BGC) and release insulin in a glucose dependent manner, thus prolonging the antihyperglycemic effect compared with free insulin.
Collapse
Affiliation(s)
- Kofi Oti Boakye-Yiadom
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qijing Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yilong Teng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenshuang Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Hu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xue-Qing Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Lee J, Hernandez KC, Kim S, Herrera-Alonso M. Solute Stabilization Effects of Nanoparticles Containing Boronic Acids in the Absence of Binding Pairs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15328-15337. [PMID: 37844211 DOI: 10.1021/acs.langmuir.3c02181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Boronic acids are widely used in materials science because of their ability to reversibly bind with diol and catechol moieties through dynamic covalent interactions in a pH- and oxidative-dependent manner. Considerably fewer studies focus on property modulation of boronic acid-based materials in the absence of a biding pair. Herein, we discuss the effects of the boronic acid-containing polymer block length on solute release kinetics from nanoparticles in a stimuli-responsive manner for on-demand delivery. In this study, ABC-type linear amphiphiles of poly(d,l-lactide) and poly(2-methacryloyloxyethyl phosphorylcholine) containing a middle block functionalized with 3-aminophenylboronic acid were synthesized by a combination of ring-opening and controlled free radical polymerizations. Nile red-loaded nanoparticles were self-assembled using a multi-inlet vortex mixer in a well-controlled manner. Release was evaluated at pH above and below the pKa of the boronic acid and in the presence of hydrogen peroxide. Our results show that release kinetics from nanoparticles incorporating a boronic acid-functionalized interlayer were slower than those without it, and the rate could be modulated according to pH and oxidative conditions. These effects can be attributed to several factors, including the hydrophobicity of the boronic acid block as well as hydrogen bonding interactions existing between locally confined boronic acids. While boronic acids are generally utilized as boronic/boronate esters, their stabilizing effects in the absence of appropriate binding pairs are relevant and should be considered in the design of boronic acid-based technologies.
Collapse
Affiliation(s)
- Jeonghun Lee
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Karla Cureño Hernandez
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sunghoon Kim
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Margarita Herrera-Alonso
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
3
|
Karishma S, Rajvanshi K, Kumar H, Basavaraj MG, Mani E. Oil-in-Water Emulsions Stabilized by Hydrophilic Homopolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13430-13440. [PMID: 37699434 DOI: 10.1021/acs.langmuir.3c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Most of the polymeric emulsifiers have diblock and triblock copolymer architecture containing hydrophilic and hydrophobic domains. In this work, we show that hydrophilic homopolymers can be effective stabilizers of oil-in-water emulsions. Using polyethelyne oxide and poly(vinylpyrrolidone) as model hydrophilic homopolymers and n-decane and n-hexane as model nonpolar phases, we show that high-molecular weight polymers can stabilize emulsions over 24 h beyond a threshold concentration. We highlight the role of the molecular weight and concentration of the polymer in the stability of emulsions through kinetic measurements of emulsion volume, microscopic analysis, interfacial tension, and dilational rheology. We explain the mechanism of stabilization to stem from buoyancy-driven creaming of emulsion drops and film drainage and dilational elasticity of the interface in relation to the molecular weights and concentrations of polymers. This study demonstrates that water-soluble homopolymers can stabilize oil-in-water emulsions and open avenues for the use of eco-friendly biopolymers, which are inherently hydrophilic, as an alternative to synthetic emulsifiers.
Collapse
Affiliation(s)
- S Karishma
- Polymer Engineering and Colloid Science Lab, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Kirti Rajvanshi
- Polymer Engineering and Colloid Science Lab, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Hemant Kumar
- Polymer Engineering and Colloid Science Lab, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Madivala G Basavaraj
- Polymer Engineering and Colloid Science Lab, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ethayaraja Mani
- Polymer Engineering and Colloid Science Lab, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
4
|
Yang S, Xu Z, Zhao T, Zhang T, Zhao Y. Emulsion-templated, hydrophilic and underwater oleophobic PVA aerogels with enhanced mechanical property. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Xie J, Liu C, Gui H, Ding Y, Yao C, Zhang T. Nanofibrous, hierarchically porous poly(ether sulfone) xerogels templated from gel emulsions for removing organic vapors and particulate matters. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Emulsion-based, flexible and recyclable aerogel composites for latent heat storage. J Colloid Interface Sci 2022; 627:72-80. [PMID: 35841710 DOI: 10.1016/j.jcis.2022.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022]
Abstract
Although emulsion-based, phase change material-encapsulated monolithic composites are promising for latent heat storage, their rigidity and non-recyclability imposed by the relatively dense covalent crosslinking hinder the composites from real applications. Herein, we report the fabrication of aerogel composites with flexibility and recyclability from cellulose nanocrystal-stabilized, octadecane-encapsulated Pickering emulsions solidified using physical gelation. The resulting monolithic composites exhibited controllable external shapes, and the introduction of poly(vinyl alcohol) significantly reduced the leakage of the encapsulated octadecane. The aerogel composites showed flexibility at temperature over 30 °C, and robust compressive behavior, without fracture at 70% compressive strain. The composites possessed similar heat storage (melting) temperature and heat release (crystallization) temperature to that of bulk octadecane, high heat capacity (up to 253 J.g-1) and high reusability, without obvious deterioration in heat capacity after 100 heating-cooling cycles. Moreover, the aerogel composites exhibited recyclability, simply by dissolving the composites in hot water to form emulsions and then by freeze drying to form aerogel composites. The flexibility and recyclability, together with robust compression, controllable external shapes, high heat capacity and good reusability, make the aerogel composites to be excellent candidates for latent heat storage.
Collapse
|
7
|
Li T, Liu J, Sun XL, Wan WM, Xiao L, Qian Q. Boronic acid-containing polymeric nanomaterials via polymerization induced self-assembly as fructose sensor. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Emulsion-templated, hydrophilic-oleophobic aerogels with flexibility, stretchability and recyclability. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Xu M, Ma L, Li Q, Wu J, Wan Z, Ngai T, Yang X. Robust and highly adaptable high internal phase gel emulsions stabilized solely by a natural saponin hydrogelator glycyrrhizic acid. Food Funct 2022; 13:280-289. [PMID: 34889340 DOI: 10.1039/d1fo01656c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a new class of high internal phase gel emulsions (gel-HIPEs) that are mechanically robust, adaptable, and processable. They can be synthesized facilely by using the natural food-grade saponin glycyrrhizic acid (GA) as the sole stabilizer, which is shown to be versatile for various oils. The structural properties of these HIPEs including appearance, viscoelasticity and processability are well controlled by simply changing the concentration of GA nanofibrils. When the GA nanofibril concentration exceeds 0.3 wt%, the unique gel-HIPEs can be produced through the formation of fibrillar hydrogel networks in the continuous phase. When the nanofibril concentration only increases to 5 wt%, it is surprising to see that these gel-HIPEs display an extremely high mechanical strength, and the storage moduli as well as the yield stress values can reach 408.5 kPa and 3340 Pa (or even more), respectively. We conjecture that such remarkable mechanical performance is mainly attributed to the highly viscoelastic GA nanofibrillar networks in the continuous phase of gel-HIPEs, which can actively trap the nanofibril-coated emulsion droplets and thus strengthen the gel matrix. Consequently, the robust gel-HIPEs can be used as a solid template to fabricate stable porous materials without the need for crosslinking of the continuous phase, and the open- and closed-cell foam microstructures are controlled by the nanofibril concentration. Furthermore, the nanofibril-based HIPEs are promising long-term delivery vehicles with controlled-release properties for lipophilic active cargoes, since the strong fibrillar networks at the droplet surfaces and in the continuous phase can effectively retard the active release.
Collapse
Affiliation(s)
- Mengyue Xu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Lulu Ma
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qing Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Jiahao Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China.
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.,Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China. .,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China.
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
10
|
Gui H, Zhang T, Ji S, Guan G, Guo Q. Nanofibrous, porous monoliths formed from gelating high internal phase emulsions using syndiotactic polystyrene. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Gui H, Ji S, Zhang T, Zhao Y, Guo Q. Nanofibrous, hypercrosslinked polymers with multiscale pores through post-crosslinking of emulsion-templated syndiotactic polystyrene aerogels. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Tatry MC, Qiu Y, Lapeyre V, Garrigue P, Schmitt V, Ravaine V. Sugar-responsive Pickering emulsions mediated by switching hydrophobicity in microgels. J Colloid Interface Sci 2019; 561:481-493. [PMID: 31740129 DOI: 10.1016/j.jcis.2019.11.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022]
Abstract
HYPOTHESIS Pickering emulsions stabilized by soft and responsive microgels can demulsify on demand upon microgel collapse. The concept has been explored with simple model microgels such as poly(N-isopropylacrylamide) (pNIPAM) and their derivatives, but the role of functionalization is largely unexplored. EXPERIMENTS Saccharide-responsive phenylboronic-modified microgels are used as Pickering emulsion stabilizers. Emulsion stability and microgel organization at drop surface are studied as a function of saccharide concentration. Better insight into their behavior at interfaces is gained through adsorption kinetics and Langmuir film studies at air-water interface. FINDINGS The functionalization of water-swollen microgels by phenylboronic functions imparts some hydrophobicity to the structure, at the origin of additional internal cross-links analogous which rigidify the structure compared to non-functionalized microgels, as proved by their slow adsorption kinetics and poor interfacial compressibility. Upon boronate ester formation with diol groups of the saccharide, the hydrophobic character of the phenylboronic acid decreases, increasing the adsorption kinetics and their interfacial compressibility. Emulsions are stable in the presence of saccharide, given the high deformability of the yet-hydrophilic microgels, and mechanically unstable with less deformable particles in low saccharide concentration. The hydrophobic-hydrophilic switch acts as a trigger to tune the microgel stabilizing properties.
Collapse
Affiliation(s)
- Marie-Charlotte Tatry
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France; Centre de Recherche Paul Pascal, UMR 5031, Université de Bordeaux, CNRS, 115 Avenue du Dr A. Schweitzer, 33600 Pessac, France
| | - Yating Qiu
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Véronique Lapeyre
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Patrick Garrigue
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Véronique Schmitt
- Centre de Recherche Paul Pascal, UMR 5031, Université de Bordeaux, CNRS, 115 Avenue du Dr A. Schweitzer, 33600 Pessac, France.
| | - Valérie Ravaine
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
| |
Collapse
|
13
|
Gui H, Zhang T, Guo Q. Nanofibrous, Emulsion-Templated Syndiotactic Polystyrenes with Superhydrophobicity for Oil Spill Cleanup. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36063-36072. [PMID: 31549499 DOI: 10.1021/acsami.9b10467] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A series of syndiotactic polystyrene (sPS) monoliths with controllable shapes, nanofibrous structures, hierarchical pores, superhydrophobicity, high specific surface area, and high strength have been fabricated for the first time by solidifying nonaqueous high internal phase emulsions (HIPEs) through crystallization-induced gelation. The nonaqueous HIPEs were formed by dispersing glycerol in 1,2,4-trichlorobenzene stabilized by sulfonated sPS at a high temperature of 120 °C, and with sPS in the continuous phase, these HIPEs were solidified by cooling at room temperature to obtain sPS monoliths. The shapes of the sPS monoliths were controllable, and excitedly, nanofibrous structures were found at void walls, with fiber diameters ranging from 20 to 100 nm. The sPS monoliths exhibited pores in different scales: emulsion-templated voids at nearly 10 μm with pore throats ranging from 1 to 2 μm and macropores and mesopores between nanofibers, enabling the monoliths to exhibit extremely high specific surface area of up to 420 m2·g-1. The porous sPS monoliths were robust, and they did not fail even at a compressive strain of 70%, with Young's moduli ranging from 157.7 to 2638.0 kPa. The monoliths were superhydrophobic and oleophilic, with water contact angles over 150° and with oils absorbed rapidly. The superhydrophobicity and oleophilicity enabled the porous sPS monoliths to absorb bulk oils on the water surface, underwater oils, and even oils within oil-in-water emulsions. The monoliths absorbed a large amount of organic solvents, edible oils, and fuel oils with equilibrium liquid uptakes up to 81.3, 44.4, and 41.9 g·g-1 for chloroform, olive oil, and diesel, respectively. The liquid absorption was rapid, and the monoliths exhibited a relatively high reusability. These porous sPS monoliths were demonstrated to be a candidate for the applications of oil/water separation and/or oil spill cleanup.
Collapse
Affiliation(s)
- Haoguan Gui
- College of Textile and Clothing Engineering , Soochow University , Suzhou 215123 , China
- Institute for Frontier Materials , Deakin University , Locked Bag 20000 , Geelong 3220 , Victoria , Australia
| | - Tao Zhang
- College of Textile and Clothing Engineering , Soochow University , Suzhou 215123 , China
| | - Qipeng Guo
- Institute for Frontier Materials , Deakin University , Locked Bag 20000 , Geelong 3220 , Victoria , Australia
| |
Collapse
|
14
|
Lee ALZ, Voo ZX, Chin W, Ono RJ, Yang C, Gao S, Hedrick JL, Yang YY. Injectable Coacervate Hydrogel for Delivery of Anticancer Drug-Loaded Nanoparticles in vivo. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13274-13282. [PMID: 29595244 DOI: 10.1021/acsami.7b14319] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, bortezomib (BTZ, a cytotoxic water-insoluble anticancer drug) was encapsulated in micellar nanoparticles having a catechol-functionalized polycarbonate core through a pH-sensitive covalent bond between phenylboronic acid (PBA) in BTZ and catechol, and these drug-loaded micelles were incorporated into hydrogels to form micelle/hydrogel composites. A series of injectable, biodegradable hydrogels with readily tunable mechanical properties were formed and optimized for sustained delivery of the BTZ-loaded micelles through ionic coacervation between PBA-functionalized polycarbonate/poly(ethylene glycol) (PEG) "ABA" triblock copolymer and a cationic one having guanidinium- or thiouronium-functionalized polycarbonate as "A" block. An in vitro release study showed the pH dependence in BTZ release. At pH 7.4, the BTZ release from the micelle/hydrogel composite remained low at 7%, whereas in an acidic environment, ∼85% of BTZ was released gradually over 9 days. In vivo studies performed in a multiple myeloma MM.1S xenograft mouse model showed that the tumor progression of mice treated with BTZ-loaded micelle solution was similar to that of the control group, whereas those treated with the BTZ-loaded micelle/hydrogel composite resulted in significant delay in the tumor progression. The results demonstrate that this hydrogel has great potential for use in subcutaneous and sustained delivery of drug-loaded micelles with superior therapeutic efficacy.
Collapse
Affiliation(s)
- Ashlynn L Z Lee
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way , Singapore 138669 , Singapore
| | - Zhi Xiang Voo
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way , Singapore 138669 , Singapore
| | - Willy Chin
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way , Singapore 138669 , Singapore
| | - Robert J Ono
- IBM Almaden Research Center , 650 Harry Road , San Jose , California 95120 , United States
| | - Chuan Yang
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way , Singapore 138669 , Singapore
| | - Shujun Gao
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way , Singapore 138669 , Singapore
| | - James L Hedrick
- IBM Almaden Research Center , 650 Harry Road , San Jose , California 95120 , United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way , Singapore 138669 , Singapore
| |
Collapse
|
15
|
Wang S, Li J, Qi M, Gao X, Wang WJ. Toward Maximizing the Mechanical Property of Interconnected Macroporous Polystyrenes Made from High Internal Phase Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14295-14303. [PMID: 29206047 DOI: 10.1021/acs.langmuir.7b03176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Macroporous materials polymerized from high internal phase emulsions (PolyHIPEs) possess well-defined interconnected porous structures and tunable device shapes. This provides interesting property characteristics well-suited for a variety of applications. However, such materials also demonstrate poor mechanical performances, which limit their potential use. As will be demonstrated, this results from the high surfactant content required by PolyHIPEs. Herein, a new approach is introduced for designing a highly efficient polymeric surfactant, which generates interconnected pores in PolyHIPEs through designing an incompatible surfactant and skeleton material. The surfactant also possesses a hyperbranched topology, which combines the strong amphipathy of small molecular surfactants and the nanosphere structure of Pickering emulsifiers to provide an excellent colloidal stability to HIPEs. A hyperbranched polyethylene having pendant sodium sulfonate groups (HBPE-SO3Na) was thus designed and synthesized via chain walking copolymerization of ethylene and 2-trimethylsilyloxyethyl acrylate followed by sulfonation. Stable HIPEs of styrene/divinylbenzene and water at a weight ratio of 1 to 5 were obtained with using HBPE-SO3Na. The polymerization of HIPEs produced interconnected macroporous polystyrenes (PSs) at a substantially lower surfactant content, for example, 0.5 wt % HBPE-SO3Na. The compressive Young's moduli of PolyHIPEs reached 104-111 MPa with 0.5-2 wt % HBPE-SO3Na, which is the first reported case of a PS-based PolyHIPE achieving its theoretical modulus. The PolyHIPE was used to support Au nanoparticles and embed in a column for oxidation of dimethylphenylsilane. A complete conversion of dimethylphenylsilanol was achieved with low column back pressure in a 50 h continuous reaction with no degradation of PolyHIPE integrity and mechanical property.
Collapse
Affiliation(s)
- Song Wang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University , 38 Zheda Road, Hangzhou, Zhejiang 310027, P. R. China
| | - Jiaxu Li
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University , 38 Zheda Road, Hangzhou, Zhejiang 310027, P. R. China
| | - Mengfei Qi
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University , 38 Zheda Road, Hangzhou, Zhejiang 310027, P. R. China
| | - Xiang Gao
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University , 38 Zheda Road, Hangzhou, Zhejiang 310027, P. R. China
| | - Wen-Jun Wang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University , 38 Zheda Road, Hangzhou, Zhejiang 310027, P. R. China
| |
Collapse
|
16
|
Wang Z, Liao S, Wang Y. Supramolecular Polymer Emulsifiers for One-step Complex Emulsions. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-018-2084-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Wang Z, Song J, Zhang S, Xu XQ, Wang Y. Formulating Polyethylene Glycol as Supramolecular Emulsifiers for One-Step Double Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9160-9169. [PMID: 28825306 DOI: 10.1021/acs.langmuir.7b02326] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
One-step double emulsions via only one-step emulsification are leading to an attractive branch of emulsion research studies owing to the ease of preparation and reduced surfactant numbers. In addition to controlling the oil/water ratio, exploiting emulsifiers with desirable amphiphilicity that can stabilize both the inner and outer water/oil interfaces is crucial to the formation of one-step double emulsions. In particular, new emulsifiers with saving laborious efforts are highly preferred in consideration of low cost and practical applications. In this work, a commonly used homopolymer, polyethylene glycol (PEG), was attempted as emulsifiers to prepare emulsions via one-step emulsification. PEG is generally considered as a hydrophilic polymer and always anchored with a hydrophobic polymer to make the copolymer amphiphilic. In the water-chloroform binary system, PEG itself exhibits amphiphilic performance and tailors the formation of single emulsions or double W/O/W emulsions on the dependence of the oil/water ratio and the PEG concentration. A possible mechanism as explained by dissipative particle dynamics simulation was proposed to demonstrate the amphiphilic feature and emulsification capability of PEG. The amphiphilicity of PEG was further tuned by interacting with iodine as a result of the formation of a supramolecular complex, which, in turn, led to the conversion from single emulsions to O/W/O double emulsions. It is believed that this line of research provides inspiration for the preparation of controllable emulsions through supramolecular routes.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Jiaqi Song
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Shiming Zhang
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Xiao-Qi Xu
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Yapei Wang
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| |
Collapse
|
18
|
Porous Polystyrene Monoliths and Microparticles Prepared from Core Cross-linked Star (CCS) Polymers-Stabilized Emulsions. Sci Rep 2017; 7:8493. [PMID: 28819128 PMCID: PMC5561027 DOI: 10.1038/s41598-017-09216-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/24/2017] [Indexed: 11/23/2022] Open
Abstract
A hydrophobic CCS polymer of poly(benzyl methacrylate) (PBzMA) was prepared in toluene by reversible addition-fragmentation chain transfer (RAFT)-mediated dispersion polymerization. The CCS polymer, with poly(benzyl methacrylate) as the arm and crosslinked N, N′-bis(acryloyl)cystamine (BAC) as the core, was confirmed by characterization with gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. Three kinds of oils (toluene, anisole and styrene) were chosen to study the emulsification properties of PBzMA CCS polymer. The oils can be emulsified by CCS polymer to form water-in-oil (w/o) emulsions. Moreover, w/o high internal phase emulsions (HIPEs) can be obtained with the increase of toluene and styrene volume fractions from 75% to 80%. Porous polystyrene monolith and microparticles were prepared from the emulsion templates and characterized by the scanning electronic microscopy (SEM). With the internal phase volume fraction increased, open-pore porous monolith was obtained.
Collapse
|
19
|
Xing Y, Peng J, Xu K, Gao S, Gui X, Liang S, Sun L, Chen M. A soluble star-shaped silsesquioxane-cored polymer—towards novel stabilization of pH-dependent high internal phase emulsions. Phys Chem Chem Phys 2017; 19:23024-23033. [DOI: 10.1039/c7cp03325g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A well-defined pH-responsive star-shaped polymer containing poly(N,N-dimethylaminoethyl methacrylate) (PDMA) arms and a cage-like methacryloxypropyl silsesquioxane (CMSQ-T10) core was used as an interfacial stabilizer for emulsions consisting of m-xylene and water.
Collapse
Affiliation(s)
- Yuxiu Xing
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- People's Republic of China
| | - Jun Peng
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- People's Republic of China
| | - Kai Xu
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- People's Republic of China
| | - Shuxi Gao
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- People's Republic of China
| | - Xuefeng Gui
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- People's Republic of China
| | - Shengyuan Liang
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- People's Republic of China
| | - Longfeng Sun
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- People's Republic of China
| | - Mingcai Chen
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- People's Republic of China
| |
Collapse
|
20
|
Zhu Y, Zheng Y, Wang F, Wang A. Fabrication of magnetic macroporous chitosan- g -poly (acrylic acid) hydrogel for removal of Cd 2+ and Pb 2+. Int J Biol Macromol 2016; 93:483-492. [DOI: 10.1016/j.ijbiomac.2016.09.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/07/2016] [Accepted: 09/01/2016] [Indexed: 01/16/2023]
|
21
|
Ma K, An Z. Enzymatically Crosslinked Emulsion Gels Using Star-Polymer Stabilizers. Macromol Rapid Commun 2016; 37:1593-1597. [DOI: 10.1002/marc.201600283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/21/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Kai Ma
- Institute of Nanochemistry and Nanobiology; College of Environmental and Chemical Engineering; Shanghai University; Shanghai 200444 China
- Department of Chemistry; Shanghai University; Shanghai 200444 China
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology; College of Environmental and Chemical Engineering; Shanghai University; Shanghai 200444 China
| |
Collapse
|