1
|
Tian Z, Li S, Chen Y, Li L, An Z, Zhang Y, Tong A, Zhang H, Liu Z, An B. Self-Healing Coating with a Controllable Release of Corrosion Inhibitors by Using Multifunctional Zinc Oxide Quantum Dots as Valves. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47188-47197. [PMID: 36217257 DOI: 10.1021/acsami.2c16151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As an intelligent response system, self-healing anticorrosion materials containing nanocontainers have aroused increasing demands. It is highly expected that the nanocontainers can rapidly respond on corrosion signals to efficiently release corrosion inhibitors, meanwhile to avoid an undesirable leakage before the local corrosion happening. Herein, zinc oxide quantum dot (ZnO-QD)-sealed hollow mesoporous TiO2 nanocontainers loading with 14.2% benzotriazole (BTA) inhibitor have been successfully prepared [hollow mesoporous titanium dioxide nanospheres (HMTNs)-BTA@ZnO-QDs]. ZnO-QDs play the multifunctional roles on anticorrosion of the self-healing coating. The corrosion tests of coatings on the carbon steel well demonstrate that ZnO-QDs can not only act as a valve to seal and release BTA on the time but also act as a precursor to produce the protective film of Zn(OH)2 by the reaction of Zn2+ ions with OH- around the cathode region to inhibit the corrosion of carbon steel. After being soaked in 3.5% NaCl solution for 30 days, the |Z|0.01 Hz value of the coating with HMTNs-BTA@ZnO-QDs still maintains at 2.87 × 107 Ω cm2. Once the defects are formed in the coating, the acid-responsive ZnO-QD valves are rapidly decomposed to release BTA inhibitor; meanwhile, the resulted Zn(OH)2 layer prevent the carbon steel substrate from corrosion in the cathode area. Therefore, it could be promising that the present design of the nanocontainers matching with the multifunctional ZnO-QDs can offer a valuable strategy to construct the self-healing and anticorrosion coatings with a multiresponse to the corrosion environment.
Collapse
Affiliation(s)
- Zhaowen Tian
- Key Laboratory of Energy Materials and Electrochemistry Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Suning Li
- Key Laboratory of Energy Materials and Electrochemistry Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Yiqing Chen
- State Key Laboratory of Metal Material for Marine Equipment and Application, Anshan 114009, China
| | - Lixiang Li
- Key Laboratory of Energy Materials and Electrochemistry Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Zhizheng An
- Key Laboratory of Energy Materials and Electrochemistry Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Yanqiu Zhang
- Key Laboratory of Energy Materials and Electrochemistry Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Anqi Tong
- Key Laboratory of Energy Materials and Electrochemistry Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Han Zhang
- Key Laboratory of Energy Materials and Electrochemistry Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and College of Chemistry, Tianjin 300071, China
| | - Baigang An
- Key Laboratory of Energy Materials and Electrochemistry Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| |
Collapse
|
2
|
F. De Castro P, Minko S, Vinokurov V, Cherednichenko K, Shchukin DG. Long-Term Autonomic Thermoregulating Fabrics Based on Microencapsulated Phase Change Materials. ACS APPLIED ENERGY MATERIALS 2021; 4:12789-12797. [PMID: 35128339 PMCID: PMC8806139 DOI: 10.1021/acsaem.1c02170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/18/2021] [Indexed: 06/14/2023]
Abstract
Microcapsules loaded with n-docosane as phase change material (mPCMs) for thermal energy storage with a phase change transition temperature in the range of 36-45 °C have been employed to impregnate cotton fabrics. Fabrics impregnated with 8 wt % of mPCMs provided 11 °C of temperature buffering effect during heating. On the cooling step, impregnated fabrics demonstrated 6 °C temperature increase for over 100 cycles of switching on/off of the heating source. Similar thermoregulating performance was observed for impregnated fabrics stored for 4 years (1500 days) at room temperature. Temperature buffering effect increased to 14 °C during heating cycle and temperature increase effect reached 9 °C during cooling cycle in the aged fabric composites. Both effects remained stable in aged fabrics for more than 100 heating/cooling cycles. Our study demonstrates high potential use of the microencapsulated n-docosane for thermal management applications, including high-technical textiles, footwear materials, and building thermoregulating covers and paints with high potential for commercial applications.
Collapse
Affiliation(s)
- Paula F. De Castro
- Leitat
Technological Center, C/Innovació 2, 08225, Terrassa, Barcelona Spain
| | - Sergiy Minko
- Department
of Chemistry, University of Georgia, 0305 Dawson Hall, Athens, Georgia 30602, United States
| | | | | | - Dmitry G. Shchukin
- Gubkin
University, 65/1 Leninsky Prospect,19991, Moscow, Russia
- Stephenson
Institute for Renewable Energy, University
of Liverpool, Chadwick Building, Peach Street, Liverpool L69 7ZF, United Kingdom
| |
Collapse
|
3
|
Anti-corrosion and wear-resistant coating of waterborne epoxy resin by concrete- like three-dimensional functionalized framework fillers. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116748] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Ekeocha J, Ellingford C, Pan M, Wemyss AM, Bowen C, Wan C. Challenges and Opportunities of Self-Healing Polymers and Devices for Extreme and Hostile Environments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008052. [PMID: 34165832 DOI: 10.1002/adma.202008052] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/21/2020] [Indexed: 06/13/2023]
Abstract
Engineering materials and devices can be damaged during their service life as a result of mechanical fatigue, punctures, electrical breakdown, and electrochemical corrosion. This damage can lead to unexpected failure during operation, which requires regular inspection, repair, and replacement of the products, resulting in additional energy consumption and cost. During operation in challenging, extreme, or harsh environments, such as those encountered in high or low temperature, nuclear, offshore, space, and deep mining environments, the robustness and stability of materials and devices are extremely important. Over recent decades, significant effort has been invested into improving the robustness and stability of materials through either structural design, the introduction of new chemistry, or improved manufacturing processes. Inspired by natural systems, the creation of self-healing materials has the potential to overcome these challenges and provide a route to achieve dynamic repair during service. Current research on self-healing polymers remains in its infancy, and self-healing behavior under harsh and extreme conditions is a particularly untapped area of research. Here, the self-healing mechanisms and performance of materials under a variety of harsh environments are discussed. An overview of polymer-based devices developed for a range of challenging environments is provided, along with areas for future research.
Collapse
Affiliation(s)
- James Ekeocha
- International Institute for Nanocomposites Manufacturing (IINM), University of Warwick, Coventry, CV4 7AL, UK
| | - Christopher Ellingford
- International Institute for Nanocomposites Manufacturing (IINM), University of Warwick, Coventry, CV4 7AL, UK
| | - Min Pan
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Alan M Wemyss
- International Institute for Nanocomposites Manufacturing (IINM), University of Warwick, Coventry, CV4 7AL, UK
| | - Christopher Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Chaoying Wan
- International Institute for Nanocomposites Manufacturing (IINM), University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
5
|
Olivieri F, Castaldo R, Cocca M, Gentile G, Lavorgna M. Mesoporous silica nanoparticles as carriers of active agents for smart anticorrosive organic coatings: a critical review. NANOSCALE 2021; 13:9091-9111. [PMID: 33982729 DOI: 10.1039/d1nr01899j] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mesoporous silica nanoparticles (MSN) have attracted increasing interest for their applicability as smart nanocarriers of corrosion inhibitors, due to their porous structure, resistance to main corrosive environments and good compatibility with polymer coatings. In this review, the main synthetic routes to obtain MSN with tailored textural properties, the design of different loading and stimuli-induced release strategies, the development of advanced organic nanocomposite coatings with MSN and the validation of their anticorrosive performances are reviewed and compared. Through a critical analysis of the literature, the most promising research trends and perspectives to exploit the highly interesting properties of MSN in advanced organic coatings are proposed.
Collapse
Affiliation(s)
- Federico Olivieri
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, Italy.
| | - Rachele Castaldo
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, Italy.
| | - Mariacristina Cocca
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, Italy.
| | - Gennaro Gentile
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, Italy.
| | - Marino Lavorgna
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, 80055, Portici, Italy
| |
Collapse
|
6
|
Amini M, Naderi R, Mahdavian M, Badiei A. Release of lanthanum cations loaded into piperazine-modified SBA-15 to inhibit the mild steel corrosion. MICROPOROUS AND MESOPOROUS MATERIALS 2021; 315:110908. [DOI: 10.1016/j.micromeso.2021.110908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
|
7
|
Xavier JR. High protection performance of vanadium pentoxide-embedded polyfuran/epoxy coatings on mild steel. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03400-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Dement’eva OV. Mesoporous Silica Container Particles: New Approaches and New Opportunities. COLLOID JOURNAL 2020. [DOI: 10.1134/s1061933x20050038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Židov B, Lin Z, Stojanović I, Xu L. Impact of inhibitor loaded mesoporous silica nanoparticles on waterborne coating performance in various corrosive environments. J Appl Polym Sci 2020. [DOI: 10.1002/app.49614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Bruno Židov
- Energy Institute Hrvoje Požar Zagreb Croatia
| | - Zhifeng Lin
- State Key Laboratory for Marine Corrosion and Protection Luoyang Ship Material Research Institute (LSMRI) Qingdao People's Republic of China
| | - Ivan Stojanović
- Faculty of Mechanical Engineering and Naval Architecture University of Zagreb Zagreb Croatia
| | - Likun Xu
- State Key Laboratory for Marine Corrosion and Protection Luoyang Ship Material Research Institute (LSMRI) Qingdao People's Republic of China
| |
Collapse
|
10
|
Cui L, Feng X, Liu W, Liu H, Qin Q, Wu S, He S, Pang X, Men D, Zhu C. Cell Type-Dependent Specificity and Anti-Inflammatory Effects of Charge-Reversible MSNs-COS-CMC for Targeted Drug Delivery in Cervical Carcinoma. Mol Pharm 2020; 17:1910-1921. [PMID: 32223247 DOI: 10.1021/acs.molpharmaceut.0c00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The surface charge of nanocarriers inevitably affects drug delivery efficiency; however, the cancer cell specificity, anti-inflammatory effects, and charge-reversal points remain to be further addressed in biomedical applications. The aim of this study was to comprehensively assess the cancer cell specificity of DOX-loaded mesoporous silica-chitosan oligosaccharide-carboxymethyl chitosan nanoparticles (DOX@MSNs-COS-CMC) in MCF-7 and HeLa cells, inhibit the production of inflammatory cytokines, and improve the drug accumulation in the tumor site. Intracellular results reveal that the retention time prolonged to 48 h in both HeLa and MCF-7 cells at pH 7.4. However, DOX@MSNs-COS-CMC exhibited a cell type-dependent cytotoxicity and enhanced intracellular uptake in HeLa cells at pH 6.5, due to the clathrin-mediated endocytosis and macropinocytosis in HeLa cells in comparison with the vesicular transport in MCF-7 cells. Moreover, Pearson's correlation coefficient value significantly decreased to 0.25 after 8 h, prompting endosomal escape and drug delivery into the HeLa nucleus. After the treatment of MSNs-COS-CMC at 200 μg/mL, the inflammatory cytokines IL-6 and TNF-α level decreased by 70% and 80%, respectively. Tumor inhibition of DOX@MSNs-COS-CMC was 0.4 times higher than free DOX, alleviating cardiotoxicity and inflammation in the HeLa xenograft tumor model. Charge-reversible DOX@MSNs-COS-CMC could be a possible candidate for clinical therapy of cervical carcinoma.
Collapse
Affiliation(s)
- Lan Cui
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiayi Feng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Qian Qin
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.,Bio & Soft Matter, Institute of Condensed Matter and Nanosciences, Universite Catholique de Louvain, Croix du Sud 1/L7.04.02, B-1348 Louvain-la-Neuve, Belgium
| | - Shuangxia Wu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Suqin He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.,Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xinchang Pang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Chengshen Zhu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
11
|
Tang G, Ren T, Yan Z, Ma L, Hou X, Huang X. Preparation and anticorrosion resistance of a self‐curing epoxy nanocomposite coating based on mesoporous silica nanoparticles loaded with perfluorooctyl triethoxysilane. J Appl Polym Sci 2020. [DOI: 10.1002/app.49072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gongwen Tang
- The Institute of Seawater Desalination and Multipurpose Utilization MNR (Tianjin) China
| | - Tingting Ren
- The Institute of Seawater Desalination and Multipurpose Utilization MNR (Tianjin) China
| | - Zhishan Yan
- The Institute of Seawater Desalination and Multipurpose Utilization MNR (Tianjin) China
| | - Linrong Ma
- The Institute of Seawater Desalination and Multipurpose Utilization MNR (Tianjin) China
| | - Xiangyu Hou
- The Institute of Seawater Desalination and Multipurpose Utilization MNR (Tianjin) China
| | - Xin Huang
- The Institute of Seawater Desalination and Multipurpose Utilization MNR (Tianjin) China
| |
Collapse
|
12
|
P PV, Al-Maadeed M. Self-Repairing Composites for Corrosion Protection: A Review on Recent Strategies and Evaluation Methods. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2754. [PMID: 31461982 PMCID: PMC6747806 DOI: 10.3390/ma12172754] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/03/2022]
Abstract
The use of self-healing coatings to protect metal substrates, such as aluminum alloys, stainless steel, carbon steel, and Mg alloys from corrosion is an important aspect for protecting metals and for the economy. During the past decade, extensive transformations on self-healing strategies were introduced in protective coatings, including the use of green components. Scientists used extracts of henna leaves, aloe vera, tobacco, etc. as corrosion inhibitors, and cellulose nanofibers, hallyosite nanotubes, etc. as healing agent containers. This review gives a concise description on the need for self-healing protective coatings for metal parts, the latest extrinsic self-healing strategies, and the techniques used to follow-up the self-healing process to control the corrosion of metal substrates. Common techniques, such as accelerated salt immersion test and electrochemical impedance spectroscopy (EIS), for evaluating the self-healing process in protective coatings are explained. We also show recent advancements procedures, such as scanning vibrating electrode technique (SVET) and scanning electrochemical microscopy (SECM), as successful techniques in evaluating the self-healing process in protective coatings.
Collapse
Affiliation(s)
- Poornima Vijayan P
- Department of Chemistry, Sree Narayana College for Women, Kollam, Kerala 691001, India
| | - Mariam Al-Maadeed
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar.
- Materials Science and Technology Program, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
13
|
Shchukina E, Shchukin DG. Nanocontainer-Based Active Systems: From Self-Healing Coatings to Thermal Energy Storage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8603-8611. [PMID: 30810043 PMCID: PMC7155170 DOI: 10.1021/acs.langmuir.9b00151] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/15/2019] [Indexed: 06/01/2023]
Abstract
We highlight the development of nanocontainer-based active materials started in 2006 at the Max Planck Institute of Colloids and Interfaces under the supervision of Prof. Helmuth Möhwald. The active materials encapsulated in the nanocontainers with controlled shell permeability have been first applied for self-healing coatings with controlled release of the corrosion inhibitor. The nanocontainers have been added to the paint formulation matrix at 5-10 wt % concentration, which resulted in attaining a coating-autonomous self-healing ability. This research idea has attracted the attention of many scientists around the world (>1500 publications during the last 10 years) and has already been transferred to the commercialization level. The current trend in nanocontainer-based active systems is devoted to the multifunctionality of the capsules which can combine self-healing, antibacterial, thermal, and other functionalities into one host matrix. This article summarizes the previous research done in the area of nanocontainer-based active materials together with future perspectives of capsule-based materials with antifouling or thermoregulating activity.
Collapse
|
14
|
Xiong P, Jia Z, Zhou W, Yan J, Wang P, Yuan W, Li Y, Cheng Y, Guan Z, Zheng Y. Osteogenic and pH stimuli-responsive self-healing coating on biomedical Mg-1Ca alloy. Acta Biomater 2019; 92:336-350. [PMID: 31085364 DOI: 10.1016/j.actbio.2019.05.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/26/2019] [Accepted: 05/09/2019] [Indexed: 11/30/2022]
Abstract
Various coatings have been used to slow down the corrosion rate of biomedical magnesium alloys. However, these coatings usually act only as passive barriers. It is much more desirable to endow such coatings with active, biocorrosion-responsive self-repairing capacity. In the present work, a self-healing coating system (denoted as "silk-PA") was constructed in the form of a sandwich architecture of fluoride precoating (bottom), silk-phytic acid (PA) coating (middle), and silk fibroin coating (top). Here, PA was loaded in the middle coating as a corrosion inhibitor by harnessing its strong chelating ability toward dissolving Mg2+ and Ca2+ ions. The self-healing property was evaluated by scratch and SVET tests, and the corrosion resistance was evaluated by in vitro immersion and electrochemical measurements. The results showed that the silk-PA manifested intriguing self-healing capacity with pH responsiveness, hence profiting the corrosion resistance of the Mg-1Ca alloy. The biocompatibility and osteogenic activity of the coating system were further evaluated using MC3T3-E1 cells, and it demonstrated favorable responses in multiple cellular behaviors, i.e., adherence, spreading, proliferation, and differentiation. These findings open new opportunities in the study of self-healing coatings for protection against corrosion in biomedical Mg alloys. STATEMENT OF SIGNIFICANCE: In the present study, a self-healing coating system with pH stimuli-responsiveness and osteogenic activity was fabricated on Mg-1Ca alloy by integrating a silk fibroin barrier coating, a silk fibrin/phytic acid composite coating, and a fluoride precoating. This coating system demonstrated interesting self-healing ability as compared to traditional surface modification layers. Furthermore, the self-healing ability enhanced the corrosion resistance of biomedical magnesium alloys, while effective compositions of the coating system endowed the substrate with osteogenic activity. This work provides some new insights into smart surface modification for biomedical Mg alloys.
Collapse
Affiliation(s)
- Pan Xiong
- Biomed-X Center, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhaojun Jia
- Biomed-X Center, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Department of Orthopaedic and Traumatology, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Wenhao Zhou
- Biomed-X Center, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jianglong Yan
- Biomed-X Center, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Pei Wang
- Biomed-X Center, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Wei Yuan
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yangyang Li
- Biomed-X Center, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yan Cheng
- Biomed-X Center, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhenpeng Guan
- Orthopedics Department, Peking University Shougang Hospital, No. 9 Jinyuanzhuang Rd, Shijingshan District, Beijing 100144, China.
| | - Yufeng Zheng
- Biomed-X Center, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
15
|
Electrochemical fabrication of superhydrophobic passive films on aeronautic steel surface. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Abstract
Research activity concerning nanoporous zeolites has grown considerably in recent decades. The structural porosity of zeolites provides versatile functional properties such as molecular selectivity, ion and molecule storage capacity, high surface area, and pore volume which combined with excellent thermal and chemical stability can extend its application fields in several industrial sectors. In such a context, anti-corrosion zeolite coatings are an emerging technology able to offer a reliable high performing and environmental friendly alternative to conventional chromate-based protective coatings. In this article, a focused overview on anti-corrosion performances of sol-gel composite zeolite coatings is provided. The topic of this review is addressed to assess the barrier and self-healing properties of composite zeolite coating. Based on results available in the literature, a property–structure relationship of this class of composites is proposed summarizing, furthermore, the competing anti-corrosion active and passive protective mechanisms involved during coating degradation. Eventually, a brief summary and a future trend evaluation is also reported.
Collapse
|
17
|
Qian B, Zheng Z, Michailids M, Fleck N, Bilton M, Song Y, Li G, Shchukin D. Mussel-Inspired Self-Healing Coatings Based on Polydopamine-Coated Nanocontainers for Corrosion Protection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10283-10291. [PMID: 30785720 PMCID: PMC7239507 DOI: 10.1021/acsami.8b21197] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/20/2019] [Indexed: 05/22/2023]
Abstract
The mussel-inspired properties of dopamine have attracted immense scientific interest for surface modification of nanoparticles due to the high potential of dopamine functional groups to increase the adhesion of nanoparticles to flat surfaces. Here, we report for the first time a novel type of inhibitor-loaded nanocontainer using polydopamine (PDA) as a pH-sensitive gatekeeper for mesoporous silica nanoparticles (MSNs). The encapsulated inhibitor (benzotriazole) was loaded into MSNs at neutral pH, demonstrating fast release in an acidic environment. The self-healing effect of water-borne alkyd coatings doped with nanocontainers was achieved by both on-demand release of benzotriazole during the corrosion process and formation of the complexes between the dopamine functional groups and iron oxides, thus providing dual self-healing protection for the mild steel substrate. The coatings were characterized by electrochemical impedance spectroscopy, visual observations, and confocal Raman microscopy. In all cases, the coatings with embedded benzotriazole-loaded MSNs with PDA-decorated outer surfaces demonstrated superior self-healing effects on the damaged areas. We anticipate that dopamine-based multifunctional gatekeepers can find application potential not only in intelligent self-healing anticorrosive coatings but also in drug delivery, antimicrobial protection, and other fields.
Collapse
Affiliation(s)
- Bei Qian
- College of Chemistry
and Pharmaceutical Sciences, Qingdao Agricultural
University, 700 Changcheng
Road, Qingdao 266109, P. R. China
- Stephenson Institute for Renewable Energy,
Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Zhaoliang Zheng
- Stephenson Institute for Renewable Energy,
Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Marios Michailids
- Stephenson Institute for Renewable Energy,
Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Nicole Fleck
- Stephenson Institute for Renewable Energy,
Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Matthew Bilton
- Imaging Centre at
Liverpool, University of Liverpool, Liverpool L69 3GL, U.K.
| | - Yan Song
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guoliang Li
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Dmitry Shchukin
- Stephenson Institute for Renewable Energy,
Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
- Northwestern Polytechnical University, Xi’an 710072, P. R. China
- E-mail:
| |
Collapse
|
18
|
Qian B, Michailidis M, Bilton M, Hobson T, Zheng Z, Shchukin D. Tannic complexes coated nanocontainers for controlled release of corrosion inhibitors in self-healing coatings. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.062] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Wang T, Du J, Ye S, Tan L, Fu J. Triple-Stimuli-Responsive Smart Nanocontainers Enhanced Self-Healing Anticorrosion Coatings for Protection of Aluminum Alloy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4425-4438. [PMID: 30608123 DOI: 10.1021/acsami.8b19950] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Novel acid/alkali/corrosion potential triple-stimuli-responsive smart nanocontainers (TSR-SNs) were successfully assembled to regulate the release of an encapsulated corrosion inhibitor, benzotriazole (BTA), by installing specially structured bistable pseudorotaxanes as supramolecular nanovalves onto orifices of mesoporous silica nanoparticles. In normal conditions, BTA molecules were sealed in the mesopores. Upon any stimulus of acid, alkali, or corrosion potential, BTA molecules were quickly released because of the open states of the supramolecular nanovalves. TSR-SNs as smart nanocontainers were added into the SiO2-ZrO2 sol-gel coating to fabricate a stimuli-feedback, corrosion-compensating self-healing anticorrosion coating (SF-SHAC). Compared with the conventional pH-responsive smart nanocontainers synthesized for the SHAC, TSR-SNs not only respond to the pH changes occurring on corrosive microregions but also, and more importantly, feel the corrosion potential of aluminum alloys and give quick feedback. This design avoids wasting smart nanocontainers because of the local-dependent, gradient pH stimulus intensities and obviously enhances the response sensitivity of the SF-SHAC. Electrochemical impedance spectroscopy and salt spray tests prove the excellent physical barrier of the SF-SHAC. Through scanning vibrating electrode technique measurements, the SF-SHAC doped with TSR-SNs demonstrates inhibiting rates for corrosive microcathodic/anodic current densities that are faster than other control SHACs. The new incorporated corrosion potential-responsive function ensures the efficient working efficiency of TSR-SNs and makes full use of the preloaded corrosion inhibitors as repair factors.
Collapse
Affiliation(s)
- Ting Wang
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| | - Juan Du
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| | - Sheng Ye
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
- National Special Superfine Powder Engineering Research Centre , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| | - Linghua Tan
- National Special Superfine Powder Engineering Research Centre , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| | - JiaJun Fu
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| |
Collapse
|
20
|
Shchukina E, Wang H, Shchukin DG. Nanocontainer-based self-healing coatings: current progress and future perspectives. Chem Commun (Camb) 2019; 55:3859-3867. [DOI: 10.1039/c8cc09982k] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nanocontainers add more functionalities to the standard coating formulations.
Collapse
Affiliation(s)
- Elena Shchukina
- Stephenson Institute for Renewable Energy
- Department of Chemistry
- University of Liverpool
- L69 7ZF Liverpool
- UK
| | - Hongqiang Wang
- Centre for Nanoenergy Materials
- School of Materials Science and Engineering
- Northwestern Polytechnical University
- Xi'an
- P. R. China
| | - Dmitry G. Shchukin
- Stephenson Institute for Renewable Energy
- Department of Chemistry
- University of Liverpool
- L69 7ZF Liverpool
- UK
| |
Collapse
|
21
|
Guo Y, Wang J, Zhang D, Qi T, Li GL. pH-responsive self-healing anticorrosion coatings based on benzotriazole-containing zeolitic imidazole framework. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.10.044] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Anticorrosion Behavior of Zeolite Coatings Obtained by In Situ Crystallization: A Critical Review. MATERIALS 2018; 12:ma12010059. [PMID: 30586947 PMCID: PMC6337192 DOI: 10.3390/ma12010059] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 11/17/2022]
Abstract
Zeolites are crystalline nanoporous aluminosilicates. Thanks to their intrinsically nanoporous structure they are widely used as molecular sieves, for exchanging ions, or, also thanks to the high surface area of these structures, for catalytic applications. Furthermore, thanks to their thermal and chemical stability, in recent years zeolite coatings have been evaluated for application as anti-corrosion coatings. The non-toxicity of this class of coatings makes it possible that they will be an environmentally friendly alternative to conventional chromate-based coatings. This article provides a brief review of the anti-corrosion performance of zeolite coatings, applied by direct synthesis technique to several metals and alloys, as discussed in the literature. After a short description of the microstructure and properties of zeolites, the discussion addresses the research activities related to this topic, as reported in the literature. Comparative analysis of literature results supported the dry-gel conversion method as a promising approach that combines a simplified synthesis procedure with anti-corrosion coating performance. Based on these considerations, an evaluation of future trends is discussed along with the final remarks.
Collapse
|
23
|
pH-Responsive zeolitic imidazole framework nanoparticles with high active inhibitor content for self-healing anticorrosion coatings. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.06.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Huang Y, Deng L, Ju P, Huang L, Qian H, Zhang D, Li X, Terryn HA, Mol JMC. Triple-Action Self-Healing Protective Coatings Based on Shape Memory Polymers Containing Dual-Function Microspheres. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23369-23379. [PMID: 29926725 DOI: 10.1021/acsami.8b06985] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this study, a new self-healing shape memory polymer (SMP) coating was prepared to protect the aluminum alloy 2024-T3 from corrosion by the incorporation of dual-function microspheres containing polycaprolactone and the corrosion inhibitor 8-hydroxyquinoline (8HQ). The self-healing properties of the coatings were investigated via scanning electron microscopy, electrochemical impedance spectroscopy, and scanning electrochemical microscopy following the application of different healing conditions. The results demonstrated that the coating possessed a triple-action self-healing ability enabled by the cooperation of the 8HQ inhibitor, the SMP coating matrix, and the melted microspheres. The coating released 8HQ in a pH-dependent fashion and immediately suppressed corrosion within the coating scratch. After heat treatment, the scratched coating exhibited excellent recovery of its anticorrosion performance, which was attributed to the simultaneous initiation of scratch closure by the shape memory effect of the coating matrix, sealing of the scratch by the melted microspheres, and the synergistic effect of corrosion inhibition by 8HQ.
Collapse
Affiliation(s)
- Yao Huang
- Corrosion and Protection Center, Institute for Advanced Materials and Technology , University of Science and Technology Beijing , Beijing 100083 , China
| | - Leping Deng
- Corrosion and Protection Center, Institute for Advanced Materials and Technology , University of Science and Technology Beijing , Beijing 100083 , China
| | - Pengfei Ju
- Shanghai Aerospace Equipment Manufacturer , Shanghai 200245 , China
| | - Luyao Huang
- Corrosion and Protection Center, Institute for Advanced Materials and Technology , University of Science and Technology Beijing , Beijing 100083 , China
| | - Hongchang Qian
- Corrosion and Protection Center, Institute for Advanced Materials and Technology , University of Science and Technology Beijing , Beijing 100083 , China
| | - Dawei Zhang
- Corrosion and Protection Center, Institute for Advanced Materials and Technology , University of Science and Technology Beijing , Beijing 100083 , China
| | - Xiaogang Li
- Corrosion and Protection Center, Institute for Advanced Materials and Technology , University of Science and Technology Beijing , Beijing 100083 , China
| | - Herman A Terryn
- Department of Materials and Chemistry, Research Group Electrochemical and Surface Engineering , Vrije Universiteit Brussel , Brussels 1050 , Belgium
| | - Johannes M C Mol
- Department of Materials Science and Engineering , Delft University of Technology , Delft 2628 , The Netherlands
| |
Collapse
|
25
|
Iamsaard S, Seidi F, Dararatana N, Crespy D. Redox-Responsive Polymer with Self-Immolative Linkers for the Release of Payloads. Macromol Rapid Commun 2018; 39:e1800071. [PMID: 29748982 DOI: 10.1002/marc.201800071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/02/2018] [Indexed: 01/30/2023]
Abstract
Previous couplings of corrosion inhibitors to redox-responsive polymers via covalent bonding suffer from several drawbacks. It is presented here novel redox-responsive polymer-corrosion inhibitor conjugates that contain self-immolative linkers in their side chains. Very fast redox-induced release of tryptamine, a drug and a corrosion inhibitor, is observed after applying a reductive trigger.
Collapse
Affiliation(s)
- Supitchaya Iamsaard
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Farzad Seidi
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Naruphorn Dararatana
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| |
Collapse
|
26
|
Michailidis M, Sorzabal-Bellido I, Adamidou EA, Diaz-Fernandez YA, Aveyard J, Wengier R, Grigoriev D, Raval R, Benayahu Y, D'Sa RA, Shchukin D. Modified Mesoporous Silica Nanoparticles with a Dual Synergetic Antibacterial Effect. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38364-38372. [PMID: 29022348 DOI: 10.1021/acsami.7b14642] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Application of mesoporous silica nanoparticles (MSNs) as antifouling/antibacterial carriers is limited and specifically with a dual synergetic effect. In the present work, MSNs modified with quaternary ammonium salts (QASs) and loaded with the biocide Parmetol S15 were synthesized as functional fillers for antifouling/antibacterial coatings. From the family of the MSNs, MCM-48 was selected as a carrier because of its cubic pore structure, high surface area, and high specific pore volume. The QASs used for the surface modification of MCM-48 were dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride and dimethyltetradecyl[3-(triethoxysilyl)propyl]ammonium chloride. The QAS-modified MCM-48 reveals strong covalent bonds between the QAS and the surface of the nanoparticles. The surface functionalization was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis, and ζ-potential measurements. Additional loading of the QAS-modified MCM-48 with a commercially available biocide (Parmetol S15) resulted in a synergetic dual antibacterial/antifouling effect. Either loaded or unloaded QAS-modified MSNs exhibited high antibacterial performance confirming their dual activity. The QAS-modified MCM-48 loaded with the biocide Parmetol S15 killed all exposed bacteria after 3 h of incubation and presented 100% reduction at the antibacterial tests against Gram-negative and Gram-positive bacteria. Furthermore, the QAS-modified MCM-48 without Parmetol S15 presented 77-89% reduction against the exposed Gram-negative bacteria and 78-94% reduction against the exposed Gram-positive bacteria. In addition, the modified MCM-48 was mixed with coating formulations, and its antifouling performance was assessed in a field test trial in northern Red Sea. All synthesized paints presented significant antifouling properties after 5 months of exposure in real seawater conditions, and the dual antifouling effect of the nanoparticles was confirmed.
Collapse
Affiliation(s)
- Marios Michailidis
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool , Crown Street, Liverpool L69 7ZD, U.K
| | - Ioritz Sorzabal-Bellido
- Open Innovation Hub for Antimicrobial Surfaces at the Surface Science Research Centre, University of Liverpool , Oxford Street, L69 3BX Liverpool, U.K
| | - Evanthia A Adamidou
- Manchester Institute of Biotechnology, School of Chemical Engineering and Analytical Science, The University of Manchester , 131 Princess Street, M1 7DN Manchester, U.K
| | - Yuri Antonio Diaz-Fernandez
- Open Innovation Hub for Antimicrobial Surfaces at the Surface Science Research Centre, University of Liverpool , Oxford Street, L69 3BX Liverpool, U.K
| | - Jenny Aveyard
- Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool , Liverpool L69 3GH, U.K
| | - Reut Wengier
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University , Ramat Aviv, Tel Aviv 69978, Israel
| | - Dmitry Grigoriev
- Fraunhofer Institute for Applied Polymer Research IAP Functional Protein Systems/Biotechnology , Geiselbergstrasse 69, 14476 Potsdam-Golm, Germany
| | - Rasmita Raval
- Open Innovation Hub for Antimicrobial Surfaces at the Surface Science Research Centre, University of Liverpool , Oxford Street, L69 3BX Liverpool, U.K
| | - Yehuda Benayahu
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University , Ramat Aviv, Tel Aviv 69978, Israel
| | - Raechelle A D'Sa
- Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool , Liverpool L69 3GH, U.K
| | - Dmitry Shchukin
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool , Crown Street, Liverpool L69 7ZD, U.K
| |
Collapse
|
27
|
Xie ZH, Li D, Skeete Z, Sharma A, Zhong CJ. Nanocontainer-Enhanced Self-Healing for Corrosion-Resistant Ni Coating on Mg Alloy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36247-36260. [PMID: 28945337 DOI: 10.1021/acsami.7b12036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ability to manipulate the functionalization of Ni coating is of great importance in improving the corrosion resistance of magnesium (Mg) alloy for many industrial applications. In the present work, MCM-41 type mesoporous silica nanocontainers (MSNs) loaded with corrosion inhibitor (NaF) were synthesized and employed as smart reinforcements to enhance the integrity and corrosion inhibition of the Ni coating. The incorporation of the F-loaded MSNs (F@MSNs) to enhance the corrosion resistant capacity of a metallic coating is reported for the first time. The mesoporous structures of the as-prepared MSNs and F@MSNs were confirmed by transmission electron microscopy (TEM), small angle X-rays scattering (SAXS), and N2 adsorption-desorption isotherms. The X-ray photoelectron spectroscopy (XPS) data demonstrated the successful immobilization of fluoride ion on the MSNs and formation of a magnesium fluoride (MgF2) protective film at the corrosion sites of the Mg alloy upon soaking in a F@MSNs-containing NaCl solution. The results from potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) for both bare Mg alloy and Ni coatings with and without F@MSNs have revealed a clear decrease in corrosion rate in a corrosive solution for a long-time immersion due to the introduction of F@MSNs. These findings open new opportunities in the exploration of self-healing metallic coatings for highly enhanced anticorrosion protection of Mg alloy.
Collapse
Affiliation(s)
- Zhi-Hui Xie
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University , Nanchong 637002, P.R. China
| | - Dan Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University , Nanchong 637002, P.R. China
| | - Zakiya Skeete
- Department of Chemistry, State University of New York at Binghamton , Binghamton, New York 13902, United States
| | - Anju Sharma
- Department of Chemistry, State University of New York at Binghamton , Binghamton, New York 13902, United States
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton , Binghamton, New York 13902, United States
| |
Collapse
|
28
|
Kopeć M, Szczepanowicz K, Warszyński P, Nowak P. Liquid-core polyelectrolyte nanocapsules produced by membrane emulsification as carriers for corrosion inhibitors. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.08.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Liang Y, Wang M, Wang C, Feng J, Li J, Wang L, Fu J. Facile Synthesis of Smart Nanocontainers as Key Components for Construction of Self-Healing Coating with Superhydrophobic Surfaces. NANOSCALE RESEARCH LETTERS 2016; 11:231. [PMID: 27121439 PMCID: PMC4848275 DOI: 10.1186/s11671-016-1444-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
SiO2-imidazoline nanocomposites (SiO2-IMI) owning high loading capacity of corrosion inhibitor, 1-hexadecyl-3-methylimidazolium bromide (HMID), and a special acid/alkali dual-stimuli-accelerated release property have been synthesized via a one-step modified Stöber method. SiO2-IMI were uniformly distributed into the hydrophobic SiO2 sol to construct "host"-"guest" feedback active coating with a superhydrophobic surface (SiO2-IMI@SHSC) on aluminium alloy, AA2024, by dip-coating technique. SiO2-IMI as "guest" components have good compatibility with "host" sol-gel coating, and more importantly, once localized corrosion occurs on the surface of AA2024, SiO2-IMI can simultaneously respond to the increase in environmental pH around corrosive micro-cathodic regions and decrease in pH near micro-anodic regions, promptly releasing HMID to form a compact molecular film on the damaged surface, inhibiting corrosion spread and executing a self-healing function. The scanning vibrating electrode technique (SVET) was applied to illustrate the suppression process of cathodic/anodic corrosion activities. Furthermore, benefiting from the superhydrophobic surface, SiO2-IMI@SHSC remained its protective ability after immersion in 0.5 M NaCl solution for 35 days, which is far superior to the conventional sol-gel coating with the same coating thickness. The facile fabrication method of SiO2-IMI simplifies the construction procedure of SiO2-IMI@SHSC, which have great potential to replace non-environmental chromate conversion coatings for practical use.
Collapse
Affiliation(s)
- Yi Liang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resource Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - MingDong Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Cheng Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Jing Feng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - JianSheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resource Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - LianJun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resource Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - JiaJun Fu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resource Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
| |
Collapse
|
30
|
Siva T, Sathiyanarayanan S. Cationic surfactant assisted synthesis of poly o-methoxy aniline (PoMA) hollow spheres and their self healing performance. RSC Adv 2016. [DOI: 10.1039/c5ra23090j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hollow microspheres of poly(o-methoxy aniline) (PoMA) were prepared in a solution of cetyltrimethylammonium bromide (CTAB) using ammonium persulfate (APS) as oxidant.
Collapse
Affiliation(s)
- T. Siva
- Corrosion and Materials Protection Division
- CSIR-Central Electrochemical Research Institute
- Karaikudi-630006
- India
| | - S. Sathiyanarayanan
- Corrosion and Materials Protection Division
- CSIR-Central Electrochemical Research Institute
- Karaikudi-630006
- India
| |
Collapse
|