1
|
Wang M, Yang C, Deng H, Du Y, Xiao L, Shi X. Programmable Electrical Signals Induce Anisotropic Assembly of Multilayer Chitosan Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38317428 DOI: 10.1021/acs.langmuir.3c02639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Multilayer hydrogels are widely used in biomedical-related fields due to their complex and variable spatial structures. Various strategies have been developed for preparing multilayer hydrogels, among which electrically induced self-assembly provides a simple and effective method for multilayer hydrogel fabrication. By application of an oscillatory electrical signal sequence, multilayer hydrogels with distinct boundaries can be formed according to the provided programmable signals. In this work, we establish an electrical field in microfluidics combined with polarized light microscopy for in situ visualization of anisotropic construction of multilayer chitosan hydrogel. The noninvasive, real-time birefringence images allow us to monitor the orientation within the hydrogel in response to electrical signals. An increased birefringence was observed from the solution-gel side to the electrode surface side, and a brief electrical signal interruption did not affect the anisotropic assembly process. This understanding of the oscillatory electrical signal-induced hydrogel anisotropy assembly allows us to fabricate chitosan hydrogels with a complex and spatially varying structure.
Collapse
Affiliation(s)
- Manya Wang
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Chen Yang
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Hongbing Deng
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Yumin Du
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Ling Xiao
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| |
Collapse
|
2
|
Kumar A, Sood A, Agrawal G, Thakur S, Thakur VK, Tanaka M, Mishra YK, Christie G, Mostafavi E, Boukherroub R, Hutmacher DW, Han SS. Polysaccharides, proteins, and synthetic polymers based multimodal hydrogels for various biomedical applications: A review. Int J Biol Macromol 2023; 247:125606. [PMID: 37406894 DOI: 10.1016/j.ijbiomac.2023.125606] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Nature-derived or biologically encouraged hydrogels have attracted considerable interest in numerous biomedical applications owing to their multidimensional utility and effectiveness. The internal architecture of a hydrogel network, the chemistry of the raw materials involved, interaction across the interface of counter ions, and the ability to mimic the extracellular matrix (ECM) govern the clinical efficacy of the designed hydrogels. This review focuses on the mechanistic viewpoint of different biologically driven/inspired biomacromolecules that encourages the architectural development of hydrogel networks. In addition, the advantage of hydrogels by mimicking the ECM and the significance of the raw material selection as an indicator of bioinertness is deeply elaborated in the review. Furthermore, the article reviews and describes the application of polysaccharides, proteins, and synthetic polymer-based multimodal hydrogels inspired by or derived from nature in different biomedical areas. The review discusses the challenges and opportunities in biomaterials along with future prospects in terms of their applications in biodevices or functional components for human health issues. This review provides information on the strategy and inspiration from nature that can be used to develop a link between multimodal hydrogels as the main frame and its utility in biomedical applications as the primary target.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Garima Agrawal
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India.
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Yogendra Kumar Mishra
- Smart Materials, Mads Clausen Institute, University of Southern Denmark, Alsion 2, Sønderborg 6400, Denmark
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France.
| | - Dietmar W Hutmacher
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| |
Collapse
|
3
|
Preparation of robust and fully bio-based modified paper via mussel-inspired layer-by-layer assembly of chitosan and carboxymethyl cellulose for food packaging. Int J Biol Macromol 2022; 222:1238-1249. [PMID: 36181888 DOI: 10.1016/j.ijbiomac.2022.09.243] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022]
Abstract
A green and facile method was proposed to prepare robust and fully bio-based modified paper in this study, which involved in layer-by-layer deposition of chitosan (CS) and mussel adhesive protein-mimetic polymer (dopamine-grafted carboxymethyl cellulose, CMC-g-DA) on paper surface and subsequent oxidative cross-linking by sodium periodate. The mechanical, barrier and antibacterial properties of the cross-linked multilayer-modified paper significantly improved with the increased bilayer numbers. Compared with unmodified paper, cross-linked (CS/CMC-g-DA)6 multilayer-modified paper exhibited 71.6 % improvement in tensile strength, 69.2 % and 56.3 % decline in air and water vapor permeability, as well as above 90 % antibacterial efficiency against S. aureus and E. coli. Particularly, the cross-linked multilayer-modified paper maintained outstanding functional stability even after suffering from vigorously corrosive treatment. The obtained functional paper effectively extended the shelf-life of Agaricus bisporus to 6 days under ambient conditions. We believed that the prepared robust functional paper in this study will have promising application prospect in food packaging field.
Collapse
|
4
|
Hemocompatibility challenge of membrane oxygenator for artificial lung technology. Acta Biomater 2022; 152:19-46. [PMID: 36089235 DOI: 10.1016/j.actbio.2022.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022]
Abstract
The artificial lung (AL) technology is one of the membrane-based artificial organs that partly augments lung functions, i.e. blood oxygenation and CO2 removal. It is generally employed as an extracorporeal membrane oxygenation (ECMO) device to treat acute and chronic lung-failure patients, and the recent outbreak of the COVID-19 pandemic has re-emphasized the importance of this technology. The principal component in AL is the polymeric membrane oxygenator that facilitates the O2/CO2 exchange with the blood. Despite the considerable improvement in anti-thrombogenic biomaterials in other applications (e.g., stents), AL research has not advanced at the same rate. This is partly because AL research requires interdisciplinary knowledge in biomaterials and membrane technology. Some of the promising biomaterials with reasonable hemocompatibility - such as emerging fluoropolymers of extremely low surface energy - must first be fabricated into membranes to exhibit effective gas exchange performance. As AL membranes must also demonstrate high hemocompatibility in tandem, it is essential to test the membranes using in-vitro hemocompatibility experiments before in-vivo test. Hence, it is vital to have a reliable in-vitro experimental protocol that can be reasonably correlated with the in-vivo results. However, current in-vitro AL studies are unsystematic to allow a consistent comparison with in-vivo results. More specifically, current literature on AL biomaterial in-vitro hemocompatibility data are not quantitatively comparable due to the use of unstandardized and unreliable protocols. Such a wide gap has been the main bottleneck in the improvement of AL research, preventing promising biomaterials from reaching clinical trials. This review summarizes the current state-of-the-art and status of AL technology from membrane researcher perspectives. Particularly, most of the reported in-vitro experiments to assess AL membrane hemocompatibility are compiled and critically compared to suggest the most reliable method suitable for AL biomaterial research. Also, a brief review of current approaches to improve AL hemocompatibility is summarized. STATEMENT OF SIGNIFICANCE: The importance of Artificial Lung (AL) technology has been re-emphasized in the time of the COVID-19 pandemic. The utmost bottleneck in the current AL technology is the poor hemocompatibility of the polymer membrane used for O2/CO2 gas exchange, limiting its use in the long-term. Unfortunately, most of the in-vitro AL experiments are unsystematic, irreproducible, and unreliable. There are no standardized in-vitro hemocompatibility characterization protocols for quantitative comparison between AL biomaterials. In this review, we tackled this bottleneck by compiling the scattered in-vitro data and suggesting the most suitable experimental protocol to obtain reliable and comparable hemocompatibility results. To the best of our knowledge, this is the first review paper focusing on the hemocompatibility challenge of AL technology.
Collapse
|
5
|
Sheng X, Wang A, Wang Z, Liu H, Wang J, Li C. Advanced Surface Modification for 3D-Printed Titanium Alloy Implant Interface Functionalization. Front Bioeng Biotechnol 2022; 10:850110. [PMID: 35299643 PMCID: PMC8921557 DOI: 10.3389/fbioe.2022.850110] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
With the development of three-dimensional (3D) printed technology, 3D printed alloy implants, especially titanium alloy, play a critical role in biomedical fields such as orthopedics and dentistry. However, untreated titanium alloy implants always possess a bioinert surface that prevents the interface osseointegration, which is necessary to perform surface modification to enhance its biological functions. In this article, we discuss the principles and processes of chemical, physical, and biological surface modification technologies on 3D printed titanium alloy implants in detail. Furthermore, the challenges on antibacterial, osteogenesis, and mechanical properties of 3D-printed titanium alloy implants by surface modification are summarized. Future research studies, including the combination of multiple modification technologies or the coordination of the structure and composition of the composite coating are also present. This review provides leading-edge functionalization strategies of the 3D printed titanium alloy implants.
Collapse
Affiliation(s)
- Xiao Sheng
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Ao Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Chen Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| |
Collapse
|
6
|
Huang T, Yin J, Tang H, Zhang Z, Liu D, Liu S, Xu Z, Li N. Improved permeability and antifouling performance of Tröger's base polymer-based ultrafiltration membrane via zwitterionization. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Yin S, Xu Y, Wang Z, Wei Z, Xu T, Zhao W, Zhao C. Molecularly-imprinted hydrogel beads via self-sacrificing micro-reactors as safe and selective bilirubin adsorbents. J Mater Chem B 2021; 10:2534-2543. [PMID: 34786576 DOI: 10.1039/d1tb01895g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For patients who are suffering from liver dysfunction or metabolic obstruction, excessive bilirubin (BIL) in their bodies may cause jaundice with irreversible cerebral injury. Traditional exchange transfusion and photodynamic therapy pose a risk of serious adverse reactions or limited curative effects. Therefore, as a generally used treatment, hemoperfusion (HP) purifies patients' blood with solid adsorbents. However, the development of clinical BIL absorbents is greatly impeded by low selectivity and unsatisfactory blood compatibility. Herein, inspired by oviparity, we propose BIL-imprinted poly(acrylic acid-co-sodium p-styrenesulfonate)-reduced graphene oxide (PAA-SS-rGO@BIL) hydrogel beads as BIL adsorbents via self-sacrificing micro-reactors. In the micro-reactors, cross-linked polymerization is achieved and a solidified gel is formed. The received hydrogel beads show outstanding selective adsorption capabilities toward BIL due to the recognition sites, and π-π and hydrophobic interactions. Such hydrogel beads possess superior blood compatibility owing to their bioinspired heparin-mimicking gel structure. Simulated BIL selective adsorption experiments in vitro demonstrate that the BIL concentrations in the plasma of a patient with severe jaundice can be restored to a moderate level within 3 hours. Therefore, hydrogel beads offer new options for clinical BIL adsorption.
Collapse
Affiliation(s)
- Shiqi Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yinghui Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhoujun Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhiwei Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Tao Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China. .,College of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
8
|
Lu D, Jin Y, Wang X, Xie L, Liu Q, Chen Y, Wang H, Lei Z. Heparin-like anticoagulant polypeptides with tunable activity: Synthesis, characterization, anticoagulative properties and clot solubilities in vitro. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112405. [PMID: 34579917 DOI: 10.1016/j.msec.2021.112405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/05/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022]
Abstract
Due to the uncontrollable anticoagulant activity and limited source, Heparin, which is commonly used in clinical anticoagulation therapies, faces the risk of spontaneous bleeding and thrombocytopenia. Herein, a series of anionic poly(amino acid) s poly (l-Serine-ran-L-Glutamic acid-ran-L-Cysteine-SO3) (PSEC-SO3) were prepared by the controlled Ring Opening Polymerization (ROP) of N-Carboxyanhydrides (NCAs). The anticoagulant activities of PSEC-SO3 can be regulated by simply adjusting the feeding ratio of monomers. In vitro tests show that these polypeptides can effectively prolong the Activated Partical Thromboplastin Time (APTT) and inhibit Factor IIa and Factor Xa, but has no significant effect on Prothrombin Time (PT) and Thrombin Time (TT), which indicates that PSEC-SO3 mainly act on the intrinsic pathway. In summary, the activity-tunable heparin-like polypeptides are expected to have good application prospects in the anticoagulant field.
Collapse
Affiliation(s)
- Dedai Lu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Yuanyuan Jin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiangya Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Liyuan Xie
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Qianqian Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yamin Chen
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hui Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
9
|
Yildirimkaraman O, Özenler S, Gunay US, Durmaz H, Yıldız ÜH. Electroactive Nanogel Formation by Reactive Layer-by-Layer Assembly of Polyester and Branched Polyethylenimine via Aza-Michael Addition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10902-10913. [PMID: 34477388 DOI: 10.1021/acs.langmuir.1c01070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We here demonstrate the utilization of reactive layer-by-layer (rLBL) assembly to form a nanogel coating made of branched polyethylenimine (BPEI) and alkyne containing polyester (PE) on a gold surface. The rLBL is generated by the rapid aza-Michael addition reaction of the alkyne group of PE and the -NH2 groups of BPEI by yielding a homogeneous gel coating on the gold substrate. The thickness profile of the nanogel revealed that a 400 nm thick coating is formed by six multilayers of rLBL, and it exhibits 50 nm roughness over 8 μm distance. The LBL characteristics were determined via depth profiling analysis by X-ray photoelectron spectroscopy, and it has been shown that a 70-100 nm periodic increase in gel thickness is a consequence of consecutive cycles of rLBL. A detailed XPS analysis was performed to determine the yield of the rLBL reaction: the average yield was deduced as 86.4% by the ratio of the binding energies at 286.26 eV, (C═CN-C bond) and 283.33 eV, (C≡C triple bond). The electrochemical characterization of the nanogels ascertains that up to the six-multilayered rLBL of BPEI-PE is electroactive, and the nanogel permeability had led to drive mass and charge transfer effectively. These results promise that nanogel formation by rLBL films may be a straightforward modification of electrodes approach, and it exhibits potential for the application of soft biointerfaces.
Collapse
Affiliation(s)
| | - Sezer Özenler
- Department of Chemistry, Izmir Institute of Technology, Izmir, 35430, Turkey
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstraße 3, Erlangen, D-91058, Germany
| | - Ufuk Saim Gunay
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Hakan Durmaz
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Ümit Hakan Yıldız
- Department of Chemistry, Izmir Institute of Technology, Izmir, 35430, Turkey
- Department of Polymer Science and Engineering, Izmir Institute of Technology, Izmir, 35430, Turkey
| |
Collapse
|
10
|
Zhao C, Zhou L, Chiao M, Yang W. Antibacterial hydrogel coating: Strategies in surface chemistry. Adv Colloid Interface Sci 2020; 285:102280. [PMID: 33010575 DOI: 10.1016/j.cis.2020.102280] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Hydrogels have emerged as promising antimicrobial materials due to their unique three-dimensional structure, which provides sufficient capacity to accommodate various materials, including small molecules, polymers and particles. Coating substrates with antibacterial hydrogel layers has been recognized as an effective strategy to combat bacterial colonization. To prevent possible delamination of hydrogel coatings from substrates, it is crucial to attach hydrogel layers via stronger links, such as covalent bonds. To date, various surface chemical strategies have been developed to introduce hydrogel coatings on different substrates. In this review, we first give a brief introduction of the major strategies for designing antibacterial coatings. Then, we summarize the chemical methods used to fix the antibacterial hydrogel layer on the substrate, which include surface-initiated graft crosslinking polymerization, anchoring the hydrogel layer on the surface during crosslinking, and chemical crosslinking of layer-by-layer coating. The reaction mechanisms of each method and matched pretreatment strategies are systemically documented with the aim of introducing available protocols to researchers in related fields for designing hydrogel-coated antibacterial surfaces.
Collapse
|
11
|
Anticoagulant dialyzer with enhanced Ca2+ chelation and hydrophilicity for heparin free hemodialysis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Shi Z, Jin L, He C, Li Y, Jiang C, Wang H, Zhang J, Wang J, Zhao W, Zhao C. Hemocompatible magnetic particles with broad-spectrum bacteria capture capability for blood purification. J Colloid Interface Sci 2020; 576:1-9. [PMID: 32408158 DOI: 10.1016/j.jcis.2020.04.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Pathogen capture and removal from whole blood is a new strategy for extracorporeal blood purification, especially in initial treatment of sepsis before pathogen identification. Herein, hemocompatible magnetic particles with broad-spectrum bacteria capture capability were proposed for pathogen removal from whole blood, omitting the necessity of pathogen identification. Firstly, we designed and synthesized a new kind of imidazolium-based ionic liquid with good antibacterial activity, and polydopamine coating was utilized as a hemocompatible platform to immobilize ionic liquids on Fe3O4 nanoparticles, forming the hemocompatible magnetic particles (Fe3O4@PDA-IL). The magnetic particles exhibited good hemocompatibility and performed well in the removal of various species of clinically significant pathogens from human whole blood, including S. aureus, E. coli, and the hard-to-treat bacteria of P. aeruginosa and Methicillin-resistant S. aureus, which are the most common pathogens in bloodstream infections. Besides, the Fe3O4@PDA-IL particles were also capable to remove bacterial endotoxins from blood, inhibiting further aggravation of sepsis. Overall, we demonstrated the application of hemocompatible magnetic particles in the removal of pathogens and bacterial endotoxins from whole blood via electrostatic and hydrophobic interactions, without significant effects on blood cells or the activation of coagulation and complement, addressing the feasibility of using imidazolium-based ionic liquids for bacteria capture and removal from whole blood. It would contribute to the development of magnetic separation-based approaches to remove bacteria and bacterial endotoxin for extracorporeal blood purification, especially in initial sepsis therapy before pathogen identification.
Collapse
Affiliation(s)
- Zhenqiang Shi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Lunqiang Jin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yupei Li
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China; Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610225, China
| | - Chunji Jiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hui Wang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Jue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jingxia Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; Radiation Chemistry Department, Sichuan Institute of Atomic Energy, Chengdu 610101, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
13
|
Zhang J, Yan B, He C, Hao Y, Sun S, Zhao W, Zhao C. Urease-Immobilized Magnetic Graphene Oxide as a Safe and Effective Urea Removal Recyclable Nanocatalyst for Blood Purification. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Bingqing Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yuanyuan Hao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shudong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
14
|
Seidi F, Zhao W, Xiao H, Jin Y, Zhao C. Layer‐by‐Layer Assembly for Surface Tethering of Thin‐Hydrogel Films: Design Strategies and Applications. CHEM REC 2020; 20:857-881. [DOI: 10.1002/tcr.202000007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Farzad Seidi
- Provincial Key Lab of Pulp & Paper Sci and Tech, and Joint International Research Lab of Lignocellulosic Functional MaterialsNanjing Forestry University Nanjing 210037 China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials EngineeringSichuan University Chengdu 610065 China
| | - Huining Xiao
- Department of Chemical EngineeringUniversity of New Brunswick Fredericton NB E3B 5 A3 Canada
| | - Yongcan Jin
- Provincial Key Lab of Pulp & Paper Sci and Tech, and Joint International Research Lab of Lignocellulosic Functional MaterialsNanjing Forestry University Nanjing 210037 China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials EngineeringSichuan University Chengdu 610065 China
| |
Collapse
|
15
|
Immobilization of heparin-mimetic biomacromolecules on Fe3O4 nanoparticles as magnetic anticoagulant via mussel-inspired coating. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110516. [DOI: 10.1016/j.msec.2019.110516] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/15/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022]
|
16
|
Yang Y, Yin S, He C, Wu X, Yin J, Zhang J, Ma L, Zhao W, Cheng C, Zhao C. Construction of Kevlar nanofiber/graphene oxide composite beads as safe, self-anticoagulant, and highly efficient hemoperfusion adsorbents. J Mater Chem B 2020; 8:1960-1970. [PMID: 32067017 DOI: 10.1039/c9tb02789k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently emerged hemoperfusion absorbents, e.g. ion-exchange resin, activated carbon, and other porous materials, provide numerous novel possibilities to cure chronic liver failure (CLF) and renal failure (CRF). However, the limited adsorption performance and unsatisfactory blood compatibility significantly impede the development of the absorbents. Hence, designing safe and self-anticoagulant hemoperfusion absorbents with robust toxin clearance remains a considerable challenge. Here, brand new Kevlar-based composite gel beads for hemoperfusion are prepared by interface assembly based on π-π interaction. First, Kevlar nanofiber-graphene oxide (K-GO) beads are produced by liquid-liquid phase separation. Then, sodium p-styrenesulfonate (SS) is adsorbed onto the K-GO interface by π-π interaction and initiated to achieve the composite gel (K-GO/PSS) beads with an interfacial crosslinked structure. Such composite gel beads possess superior mechanical strength and self-anticoagulation capability, owing to the dual-network structure and heparin-mimicking gel structure, respectively. Furthermore, the K-GO/PSS beads show robust adsorption capacities for different kinds of toxins due to their strong charge and π-π interactions. A simulated hemoperfusion experiment in vitro demonstrates that the concentrations of the toxins in the blood can be restored to normal values within 30 minutes. In general, we envision that such composite gel beads will provide new strategies for future clinical CLF and CRF treatments.
Collapse
Affiliation(s)
- Ye Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Shiqi Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jiarui Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Lang Ma
- Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
17
|
Wang L, Gong T, Brown Z, Gu Y, Teng K, Ye W, Ming W. Preparation of Ascidian-Inspired Hydrogel Thin Films to Selectively Induce Vascular Endothelial Cell and Smooth Muscle Cell Growth. ACS APPLIED BIO MATERIALS 2020; 3:2068-2077. [DOI: 10.1021/acsabm.9b01190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lingren Wang
- Engineering Center for Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
- Department of Chemistry and Biochemistry, Georgia Southern University, P.O. Box 8064, Statesboro, Georgia 30460, United States
| | - Tao Gong
- Engineering Center for Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Zachary Brown
- Department of Chemistry and Biochemistry, Georgia Southern University, P.O. Box 8064, Statesboro, Georgia 30460, United States
| | - Yelian Gu
- Engineering Center for Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Kangwen Teng
- Engineering Center for Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Wei Ye
- Engineering Center for Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Weihua Ming
- Department of Chemistry and Biochemistry, Georgia Southern University, P.O. Box 8064, Statesboro, Georgia 30460, United States
| |
Collapse
|
18
|
Liu S, Cao Y, Wu Z, Chen H. Reactive films fabricated using click sulfur(vi)–fluoride exchange reactions via layer-by-layer assembly. J Mater Chem B 2020; 8:5529-5534. [DOI: 10.1039/d0tb00908c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a novel and efficient method to generate tunable multifunctional polymer films with a wide range of potential biomedical applications using the “sulfur(vi)–fluoride exchange” (SuFEx) click reaction.
Collapse
Affiliation(s)
- Shengjie Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu Province
- Soochow University
- Suzhou 215123
| | - Yanping Cao
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu Province
- Soochow University
- Suzhou 215123
| | - Zhaoqiang Wu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu Province
- Soochow University
- Suzhou 215123
| | - Hong Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu Province
- Soochow University
- Suzhou 215123
| |
Collapse
|
19
|
Ghiorghita CA, Bucatariu F, Dragan ES. Influence of cross-linking in loading/release applications of polyelectrolyte multilayer assemblies. A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110050. [DOI: 10.1016/j.msec.2019.110050] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 10/26/2022]
|
20
|
Lv C, Chen S, Xie Y, Wei Z, Chen L, Bao J, He C, Zhao W, Sun S, Zhao C. Positively-charged polyethersulfone nanofibrous membranes for bacteria and anionic dyes removal. J Colloid Interface Sci 2019; 556:492-502. [DOI: 10.1016/j.jcis.2019.08.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/19/2022]
|
21
|
Zheng Y, Yin M, Yang X, Li Y, Shen J, Guo S. Biocompatible shape‐memory poly(vinyl chloride) with a tunable switching temperature via a plasticization effect. J Appl Polym Sci 2019. [DOI: 10.1002/app.47992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu Sichuan 610065 People's Republic of China
| | - Min Yin
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu Sichuan 610065 People's Republic of China
| | - Xue Yang
- Center of Gerontology and GeriatricsNational Clinical Research Center for Geriatrics, West China Hospital, Sichuan University Chengdu 610041 People's Republic of China
| | - Ying Li
- Center of Gerontology and GeriatricsNational Clinical Research Center for Geriatrics, West China Hospital, Sichuan University Chengdu 610041 People's Republic of China
| | - Jiabin Shen
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu Sichuan 610065 People's Republic of China
| | - Shaoyun Guo
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu Sichuan 610065 People's Republic of China
| |
Collapse
|
22
|
Hu M, Cui Z, Li J, Zhang L, Mo Y, Dlamini DS, Wang H, He B, Li J, Matsuyama H. Ultra-low graphene oxide loading for water permeability, antifouling and antibacterial improvement of polyethersulfone/sulfonated polysulfone ultrafiltration membranes. J Colloid Interface Sci 2019; 552:319-331. [DOI: 10.1016/j.jcis.2019.05.065] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 01/04/2023]
|
23
|
Ji H, Xu H, Jin L, Song X, He C, Liu X, Xiong L, Zhao W, Zhao C. Surface engineering of low-fouling and hemocompatible polyethersulfone membranes via in-situ ring-opening reaction. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Layer-by-layer assembly as a robust method to construct extracellular matrix mimic surfaces to modulate cell behavior. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Li T, Lü S, Yan J, Bai X, Gao C, Liu M. An Environment-Friendly Fertilizer Prepared by Layer-by-Layer Self-Assembly for pH-Responsive Nutrient Release. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10941-10950. [PMID: 30802026 DOI: 10.1021/acsami.9b01425] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Layer-by-layer (LBL) self-assembly based on natural polysaccharides is drawing significant attention in various applications. However, its application in fertilizers is limited. In this study, LBL electrostatic self-assembly technology was employed to prepare an environment-responsive fertilizer with natural polyelectrolyte layers of chitosan and lignosulfonate deposited on polydopamine-coated ammonium zinc phosphate. The morphology of the fertilizer was evaluated by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The composition and self-assembly process of the fertilizer were characterized by elemental analysis, Fourier transform infrared spectroscopy, UV-vis absorption spectroscopy, zeta potential analysis, thermal analysis, X-ray photoelectron spectroscopy, and inductively coupled plasma atomic emission spectroscopy. Excellent pH-responsive behavior was observed by the nutrient release results. In an alkaline medium at room temperature, the nutrient release rate can be clearly accelerated compared with that in acidic and neutral media. Moreover, pot experiments showed that the fertilizer can effectively promote plant growth. The pH-responsive environment-friendly fertilizer can control nutrient release and avoid excessive release of nutrients, showing promising applications in modern green and sustainable agriculture and horticulture.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Shaoyu Lü
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Jia Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Xiao Bai
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273100 , People's Republic of China
| | - Chunmei Gao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Mingzhu Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , People's Republic of China
| |
Collapse
|
26
|
Lu J, Zhuang W, Li L, Zhang B, Yang L, Liu D, Yu H, Luo R, Wang Y. Micelle-Embedded Layer-by-Layer Coating with Catechol and Phenylboronic Acid for Tunable Drug Loading, Sustained Release, Mild Tissue Response, and Selective Cell Fate for Re-endothelialization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10337-10350. [PMID: 30753784 DOI: 10.1021/acsami.9b01253] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tunable/sustained drug loading/releasing are of significance in addressing low cytotoxicity, long-term performance, and localized mild healing response in biomedical applications. With an ingenious design, a self-healing sandwiched layer-by-layer (LBL) coating was constructed by using chitosan/heparin as adopted polyelectrolytes with embedding of micelles, in which the chitosan backbone was grafted with catechol and the micelle was modified with exposed phenylboronic acid, endowing the coating with enhanced stability by abundant interactions among coating components (e.g., boric acid ester bond formation, weak intermolecular cross-linking, π-π interactions, and H-bonding). Moreover, rapamycin and atorvastatin calcium were selected as drug candidates and loaded into micelles, followed by drug-releasing behavior study. It was found that the LBL coating maintained a linear growth mode up to 30 cycles, giving a favorable tunability of coating construction and drug loading. The coating could also support sustained release of payloads and provide wild tissue response. With the systematic in vitro and in vivo study, such catechol-phenylboronic acid-enhanced LBL coating with drug loading would also address enhanced antiplatelet adhesion/activation and direct cell fate of endothelial cells and smooth muscle cells via tuning of coating cycles and loaded drugs. With modular assembly, such coating indicated potential for achieving enhanced re-endothelialization for vascular implants.
Collapse
|
27
|
Jia Z, Xiu P, Roohani-Esfahani SI, Zreiqat H, Xiong P, Zhou W, Yan J, Cheng Y, Zheng Y. Triple-Bioinspired Burying/Crosslinking Interfacial Coassembly Strategy for Layer-by-Layer Construction of Robust Functional Bioceramic Self-Coatings for Osteointegration Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4447-4469. [PMID: 30609379 DOI: 10.1021/acsami.8b20429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zhaojun Jia
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong China
| | - Peng Xiu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China
| | - Seyed-Iman Roohani-Esfahani
- Biomaterials and Tissue Engineering Research Unit, School of AMME, The University of Sydney, Sydney 2006, Australia
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of AMME, The University of Sydney, Sydney 2006, Australia
| | - Pan Xiong
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Wenhao Zhou
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jianglong Yan
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yan Cheng
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
28
|
Tu MM, Xu JJ, Qiu YR. Surface hemocompatible modification of polysulfone membrane via covalently grafting acrylic acid and sulfonated hydroxypropyl chitosan. RSC Adv 2019; 9:6254-6266. [PMID: 35517280 PMCID: PMC9062722 DOI: 10.1039/c8ra10573a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/05/2019] [Indexed: 12/29/2022] Open
Abstract
In this study, acrylic acid (AA) and sulfonated hydroxypropyl chitosan (SHPCS) were covalently grafted on the PSf membrane surface to improve its hemocompatibility.
Collapse
Affiliation(s)
- Ming-Ming Tu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- PR China
| | - Jing-Jie Xu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- PR China
| | - Yun-Ren Qiu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- PR China
| |
Collapse
|
29
|
Ma L, Zhou M, He C, Li S, Fan X, Nie C, Luo H, Qiu L, Cheng C. Graphene-based advanced nanoplatforms and biocomposites from environmentally friendly and biomimetic approaches. GREEN CHEMISTRY 2019. [DOI: 10.1039/c9gc02266j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Environmentally friendly and biomimetic approaches to fabricate graphene-based advanced nanoplatforms and biocomposites for biomedical applications are summarized in this review.
Collapse
Affiliation(s)
- Lang Ma
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Mi Zhou
- College of Biomass Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chao He
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Shuang Li
- Functional Materials
- Department of Chemistry
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Xin Fan
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Chuanxiong Nie
- Department of Chemistry and Biochemistry
- Freie Universitat Berlin
- Berlin 14195
- Germany
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Li Qiu
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Chong Cheng
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| |
Collapse
|
30
|
He C, Ji H, Qian Y, Wang Q, Liu X, Zhao W, Zhao C. Heparin-based and heparin-inspired hydrogels: size-effect, gelation and biomedical applications. J Mater Chem B 2019; 7:1186-1208. [DOI: 10.1039/c8tb02671h] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The size-effect, fabrication methods and biomedical applications of heparin-based and heparin-inspired hydrogels are reviewed.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Haifeng Ji
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Yihui Qian
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Qian Wang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Xiaoling Liu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Weifeng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Changsheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
31
|
Nabeel F, Rasheed T, Bilal M, Li C, Yu C, Iqbal HMN. Bio-Inspired Supramolecular Membranes: A Pathway to Separation and Purification of Emerging Pollutants. SEPARATION AND PURIFICATION REVIEWS 2018. [DOI: 10.1080/15422119.2018.1500919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Faran Nabeel
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| | - Tahir Rasheed
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Chuanlong Li
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| | - Chunyang Yu
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| |
Collapse
|
32
|
An Q, Huang T, Shi F. Covalent layer-by-layer films: chemistry, design, and multidisciplinary applications. Chem Soc Rev 2018; 47:5061-5098. [PMID: 29767189 DOI: 10.1039/c7cs00406k] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covalent layer-by-layer (LbL) assembly is a powerful method used to construct functional ultrathin films that enables nanoscopic structural precision, componential diversity, and flexible design. Compared with conventional LbL films built using multiple noncovalent interactions, LbL films prepared using covalent crosslinking offer the following distinctive characteristics: (i) enhanced film endurance or rigidity; (ii) improved componential diversity when uncharged species or small molecules are stably built into the films by forming covalent bonds; and (iii) increased structural diversity when covalent crosslinking is employed in componential, spacial, or temporal (labile bonds) selective manners. In this review, we document the chemical methods used to build covalent LbL films as well as the film properties and applications achievable using various film design strategies. We expect to translate the achievement in the discipline of chemistry (film-building methods) into readily available techniques for materials engineers and thus provide diverse functional material design protocols to address the energy, biomedical, and environmental challenges faced by the entire scientific community.
Collapse
Affiliation(s)
- Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | | | | |
Collapse
|
33
|
Hwang J, Choi D, Choi M, Seo Y, Son J, Hong J, Choi J. Synthesis and Characterization of Functional Nanofilm-Coated Live Immune Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17685-17692. [PMID: 29741355 DOI: 10.1021/acsami.8b04275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Layer-by-layer (LbL) assembly techniques have been extensively studied in cell biology because of their simplicity of preparation and versatility. The applications of the LbL platform technology using polysaccharides, silicon, and graphene have been investigated. However, the applications of the above-mentioned technology using living cells remain to be fully understood. This study demonstrates a living cell-based LbL platform using various types of living cells. In addition, it confirms that the surplus charge on the outer surface of the coated cells can be used to bind the target protein. We develop a living cell-based LbL platform technology by stacking layers of hyaluronic acid (HA) and poly-l-lysine (PLL). The HA/PLL stacking results in three bilayers with a thickness of 4 ± 1 nm on the cell surface. Furthermore, the multilayer nanofilms on the cells are completely degraded after 3 days of the application of the LbL method. We also evaluate and visualize three bilayers of the nanofilm on adherent (AML-12 cells)-, nonadherent (trypsin-treated AML-12 cells)-, and circulation type [peripheral blood mononuclear cells (PBMCs)] cells by analyzing the zeta potential, cell viability, and imaging via scanning electron microscopy and confocal microscopy. Finally, we study the cytotoxicity of the nanofilm and characteristic functions of the immune cells after the nanofilm coating. The multilayer nanofilms are not acutely cytotoxic and did not inhibit the immune response of the PBMCs against stimulant. We conclude that a two bilayer nanofilm would be ideal for further study in any cell type. The living cell-based LbL platform is expected to be useful for a variety of applications in cell biology.
Collapse
Affiliation(s)
- Jangsun Hwang
- School of Integrative Engineering , Chung-Ang University , Seoul 06974 , Republic of Korea
| | - Daheui Choi
- Department of Chemical and Biomolecular Engineering , Yonsei University , Seoul 03722 , Republic of Korea
| | - Moonhyun Choi
- Department of Chemical and Biomolecular Engineering , Yonsei University , Seoul 03722 , Republic of Korea
| | - Youngmin Seo
- Center for Biomaterials, Biomedical Research Institute , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | - Jaewoo Son
- School of Integrative Engineering , Chung-Ang University , Seoul 06974 , Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering , Yonsei University , Seoul 03722 , Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering , Chung-Ang University , Seoul 06974 , Republic of Korea
| |
Collapse
|
34
|
Im BG, Do M, Kim Y, Cho M, Jang JH. BiFACIAL ( Biomimetic Freestanding Anisotropic Catechol- Interfaces with Asymmetrically Layered) Films as Versatile Extracellular Matrix Substitutes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7602-7613. [PMID: 28910078 DOI: 10.1021/acsami.7b10023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biological naïve extracellular matrices (ECMs) exhibit anisotropic functions in their physical, chemical, and morphological properties. Representative examples include anisotropic skin layers or blood vessels simultaneously facing multiphasic environments. Here, anisotropically multifunctional structures called BiFACIAL ( biomimetic freestanding anisotropic catechol- interfaces with asymmetrically layered) films were developed simply by contacting two polysaccharide solutions of heparin-catechol (Hep-C) and chitosan-catechol (Chi-C). Such anisotropic characters were due to controlling catechol cross-linking by alkaline pH, resulting in a trimodular structure: a rigid yet porous Hep-C exterior, nonporous interfacial zone, and soft/highly porous Chi-C interior. The anisotropic features of each layer, including the porosity, rigidity, rheology, composition, and ionic strength, caused the BiFACIAL films to show spontaneously biased stimuli responses and differential behaviors against biological substances (e.g., blood plasma). The films could be created in situ in live animals and imitated the structural/functional aspects of the representative anisotropic tissues (e.g., skin and blood vessels), providing valuable ECM-like platforms for the creation of favorable environments or for tissue regeneration or disease treatment by effectively manipulating cellular behaviors.
Collapse
Affiliation(s)
- Byung Gee Im
- Department of Chemical and Biomolecular Engineering , Yonsei University , 50 Yonsei-ro , Seodaemun-gu , Seoul 120-749 , Korea
| | - Minjae Do
- Department of Chemical and Biomolecular Engineering , Yonsei University , 50 Yonsei-ro , Seodaemun-gu , Seoul 120-749 , Korea
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Korea
| | - Yoojin Kim
- Department of Chemical and Biomolecular Engineering , Yonsei University , 50 Yonsei-ro , Seodaemun-gu , Seoul 120-749 , Korea
| | - Mira Cho
- Department of Chemical and Biomolecular Engineering , Yonsei University , 50 Yonsei-ro , Seodaemun-gu , Seoul 120-749 , Korea
| | - Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering , Yonsei University , 50 Yonsei-ro , Seodaemun-gu , Seoul 120-749 , Korea
| |
Collapse
|
35
|
Song X, Wang K, Tang CQ, Yang WW, Zhao WF, Zhao CS. Design of Carrageenan-Based Heparin-Mimetic Gel Beads as Self-Anticoagulant Hemoperfusion Adsorbents. Biomacromolecules 2018; 19:1966-1978. [PMID: 29425448 DOI: 10.1021/acs.biomac.7b01724] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The currently used hemoperfusion adsorbents such as activated carbon and ion-exchange resin show dissatisfactory hemocompatibility, and a large dose of injected heparin leads to the increasing cost and the risk of systematic bleeding. Natural polysaccharide adsorbents commonly have good biocompatibility, but their application is restricted by the poor mechanical strength and low content of functional groups. Herein, we developed an efficient, self-anticoagulant and blood compatible hemoperfusion adsorbent by imitating the structure and functional groups of heparin. Carrageenan and poly(acrylic acid) (PAA) cross-linked networks were built up by the combination of phase inversion of carrageenan and post-cross-linking of AA, and the formed dual-network structure endowed the beads with improved mechanical properties and controlled swelling ratios. The beads exhibited low protein adsorption amounts, low hemolysis ratios, low cytotoxicity, and suppressed complement activation and contact activation levels. Especially, the activated partial thromboplastin time, prothrombin time, and thrombin time of the gel beads were prolonged over 13, 18, and 4 times than those of the control. The self-anticoagulant and biocompatible beads showed good adsorption capacities toward exogenous toxins (560.34 mg/g for heavy metal ions) and endogenous toxins (14.83 mg/g for creatinine, 228.16 mg/g for bilirubin, and 18.15 mg/g for low density lipoprotein (LDL)), thus, highlighting their potential usage for safe and efficient blood purification.
Collapse
Affiliation(s)
- Xin Song
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu , 610065 , People's Republic of China
| | - Kang Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu , 610065 , People's Republic of China
| | - Cheng-Qiang Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu , 610065 , People's Republic of China
| | - Wen-Wen Yang
- College of Foreign Languages , University of Electronic Science and Technology , Chengdu , 611731 , People's Republic of China
| | - Wei-Feng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu , 610065 , People's Republic of China.,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials , Donghua University , Shanghai , 201620 , People's Republic of China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu , 610065 , People's Republic of China
| |
Collapse
|
36
|
Cheng C, Zhang J, Li S, Xia Y, Nie C, Shi Z, Cuellar-Camacho JL, Ma N, Haag R. A Water-Processable and Bioactive Multivalent Graphene Nanoink for Highly Flexible Bioelectronic Films and Nanofibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30. [PMID: 29226490 DOI: 10.1002/adma.201705452] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/11/2017] [Indexed: 05/05/2023]
Abstract
The capabilities of conductive nanomaterials to be produced in liquid form with well-defined chemical, physical, and biological properties are highly important for the construction of next-generation flexible bioelectronic devices. Although functional graphene nanomaterials can serve as attractive liquid nanoink platforms for the fabrication of bioelectronics, scalable synthesis of graphene nanoink with an integration of high colloidal stability, water processability, electrochemical activity, and especially bioactivity remains a major challenge. Here, a facile and scalable synthesis of supramolecular-functionalized multivalent graphene nanoink (mGN-ink) via [2+1] nitrene cycloaddition is reported. The mGN-ink unambiguously displays a well-defined and flat 2D morphology and shows good water processability and bioactivity. The uniquely chemical, physical, and biological properties of mGN-ink endow the constructed bioelectronic films and nanofibers with high flexibility and durability, suitable conductivity and electrochemical activity, and most importantly, good cellular compatibility and a highly efficient control of stem-cell spreading and orientation. Overall, for the first time, a water-processable and bioactive mGN-ink is developed for the design of flexible and electrochemically active bioelectronic composites and devices, which not only presents manifold possibilities for electronic-cellular applications but also establishes a new pathway for adapting macroscopic usages of graphene nanomaterials in bionic, biomedical, electronic, and even energy fields.
Collapse
Affiliation(s)
- Chong Cheng
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Jianguang Zhang
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Shuang Li
- Department of Chemistry, Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Yi Xia
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Chuanxiong Nie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, P. R. China
| | - Zhenqiang Shi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, P. R. China
| | - Jose Luis Cuellar-Camacho
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Nan Ma
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513, Teltow, Germany
| | - Rainer Haag
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| |
Collapse
|
37
|
Chen X, Gu H, Lyu Z, Liu X, Wang L, Chen H, Brash JL. Sulfonate Groups and Saccharides as Essential Structural Elements in Heparin-Mimicking Polymers Used as Surface Modifiers: Optimization of Relative Contents for Antithrombogenic Properties. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1440-1449. [PMID: 29231707 DOI: 10.1021/acsami.7b16723] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Blood compatibility is a long sought-after goal in biomaterials research, but remains an elusive one, and in spite of extensive work in this area, there is still no definitive information on the relationship between material properties and blood responses such as coagulation and thrombus formation. Materials modified with heparin-mimicking polymers have shown promise and indeed may be seen as comparable to materials modified with heparin itself. In this work, heparin was conceptualized as consisting of two major structural elements: saccharide- and sulfonate-containing units, and polymers based on this concept were developed. Copolymers of 2-methacrylamido glucopyranose, containing saccharide groups, and sodium 4-vinylbenzenesulfonate, containing sulfonate groups, were graft-polymerized on vinyl-functionalized polyurethane (PU) surfaces by free radical polymerization. This graft polymerization method is simple, and the saccharide and sulfonate contents are tunable by regulating the feed ratio of the monomers. Homopolymer-grafted materials, containing only sulfonate or saccharide groups, showed different effects on cell-surface interactions including platelet adhesion, adhesion and proliferation of vascular endothelial cells, and adhesion and proliferation of smooth muscle cells. The copolymer-grafted materials showed effects due to both sulfonate and saccharide elements with respect to blood responses, and the optimum composition was obtained at a 2:1 ratio of sulfonate to saccharide units (material designated as PU-PS1M1). In cell adhesion experiments, this material showed the lowest platelet and human umbilical vein smooth muscle cell density and the highest human umbilical vein endothelial cell density. Among the materials investigated, PU-PS1M1 also had the longest plasma clotting time. This material was thus shown to be multifunctional with a combination of properties, suggesting thromboresistant behavior in blood contact.
Collapse
Affiliation(s)
- Xianshuang Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Hao Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Zhonglin Lyu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Lei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - John L Brash
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
- Department of Chemical Engineering and School of Biomedical Engineering, McMaster University , Hamilton, Ontario L8S4L7, Canada
| |
Collapse
|
38
|
Fan X, Yang F, Nie C, Yang Y, Ji H, He C, Cheng C, Zhao C. Mussel-Inspired Synthesis of NIR-Responsive and Biocompatible Ag-Graphene 2D Nanoagents for Versatile Bacterial Disinfections. ACS APPLIED MATERIALS & INTERFACES 2018; 10:296-307. [PMID: 29235842 DOI: 10.1021/acsami.7b16283] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Pathogenic bacterial infection has been becoming a global threat toward people's health, especially the massive usage of antibiotics due to the lack of antibacterial agents with less side effects. Developing new nanoagents to fight pathogenic bacteria has provided enormous new possibilities in the treatment of bacterial infections, such as graphene-based two-dimensional (2D) antibacterial nanoagents with different bacterial inhibition capabilities; however, mussel-inspired design of near-infrared (NIR)-responsive and biocompatible Ag-graphene nanoagents possessing efficient and versatile bacterial disinfection activities have rarely been reported. In this study, we developed a new kind of antibacterial nanoagent, dopamine-conjugated polysaccharide sulfate-anchored and -protected Ag-graphene (Ag@G-sodium alginate sulfate ((SAS)) nanocomposite, to combat bacterial infection and contamination in different application fields. Ag@G-SAS exhibited robust antibacterial activity toward both Escherichia coli and Staphylococcus aureus; notably, the nanoagent can significantly inhibit S. aureus infection on wounded pig skin without or with NIR laser. Besides wound disinfection, the 2D Ag@G-SAS can also serve as a good layer-by-layer (LbL) building block for the construction of self-sterilizing coatings on biomedical devices. All of the results verified that the LbL-assembled Ag@G-SAS coating exhibited favorable bactericidal activity, extraordinary blood compatibilities, and good promotion ability for cell proliferation. Owing to the shielding effects of heparin-like polysaccharide sulfates, the Ag@G-SAS nanoagent showed limited cytotoxicity toward mammalian cells. Combining all of the advantages mentioned above, it is believed that the proposed Ag@G-SAS nanoagent and its LbL-assembled coatings may have versatile application potentials to avoid bacterial contaminations in different fields, such as wounded skin, disinfection of biomedical implants and devices, and food packaging sterilization.
Collapse
Affiliation(s)
- Xin Fan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Fan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Chuanxiong Nie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
- Institute für Chemie und Biochemie, Freie Universität Berlin , Takustr. 3, 14195 Berlin, Germany
| | - Ye Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Haifeng Ji
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
- Institute für Chemie und Biochemie, Freie Universität Berlin , Takustr. 3, 14195 Berlin, Germany
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| |
Collapse
|
39
|
Integrating zwitterionic polymer and Ag nanoparticles on polymeric membrane surface to prepare antifouling and bactericidal surface via Schiff-based layer-by-layer assembly. J Colloid Interface Sci 2018; 510:308-317. [DOI: 10.1016/j.jcis.2017.09.071] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 11/23/2022]
|
40
|
A facile way to prepare anti-fouling and blood-compatible polyethersulfone membrane via blending with heparin-mimicking polyurethanes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1035-1045. [DOI: 10.1016/j.msec.2017.04.123] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022]
|
41
|
Negatively charged polysulfone membranes with hydrophilicity and antifouling properties based on in situ cross-linked polymerization. J Colloid Interface Sci 2017; 498:136-143. [DOI: 10.1016/j.jcis.2017.03.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/03/2017] [Accepted: 03/13/2017] [Indexed: 11/21/2022]
|
42
|
Oburn SM, Swenson DC, Mariappan SVS, MacGillivray LR. Supramolecular Construction of an Aldehyde-Cyclobutane via the Solid State: Combining Reversible Imine Formation and Metal-Organic Self-Assembly. J Am Chem Soc 2017; 139:8452-8454. [PMID: 28605202 DOI: 10.1021/jacs.7b04420] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A combination of metal-organic self-assembly and reversible imine formation is used to achieve an organic synthesis via the solid state. Imine bond formation is employed to install a pyridyl to the alkene trans-cinnamaldehyde while Ag(I) ions are used in a second step to assemble the pyridyl-functionalized alkene into a geometry in the solid state for an intermolecular [2 + 2] photodimerization. The alkene undergoes the cycloaddition reaction via a 1D coordination polymer to generate a pyridyl-functionalized cyclobutane stereoselectively and in quantitative yield. Removal of the pyridyl group affords the aldehyde-functionalized cyclobutane α-truxilaldehyde.
Collapse
Affiliation(s)
- Shalisa M Oburn
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52245-1297, United States
| | - Dale C Swenson
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52245-1297, United States
| | | | | |
Collapse
|
43
|
Arlov Ø, Skjåk-Bræk G. Sulfated Alginates as Heparin Analogues: A Review of Chemical and Functional Properties. Molecules 2017; 22:E778. [PMID: 28492485 PMCID: PMC6154561 DOI: 10.3390/molecules22050778] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 01/22/2023] Open
Abstract
Heparin is widely recognized for its potent anticoagulating effects, but has an additional wide range of biological properties due to its high negative charge and heterogeneous molecular structure. This heterogeneity has been one of the factors in motivating the exploration of functional analogues with a more predictable modification pattern and monosaccharide sequence, that can aid in elucidating structure-function relationships and further be structurally customized to fine-tune physical and biological properties toward novel therapeutic applications and biomaterials. Alginates have been of great interest in biomedicine due to their inherent biocompatibility, gentle gelling conditions, and structural versatility from chemo-enzymatic engineering, but display limited interactions with cells and biomolecules that are characteristic of heparin and the other glycosaminoglycans (GAGs) of the extracellular environment. Here, we review the chemistry and physical and biological properties of sulfated alginates as structural and functional heparin analogues, and discuss how they may be utilized in applications where the use of heparin and other sulfated GAGs is challenging and limited.
Collapse
Affiliation(s)
- Øystein Arlov
- Department of Biotechnology and Nanomedicine, SINTEF Materials and Chemistry, Richard Birkelands vei 3B, 7034 Trondheim, Norway.
| | - Gudmund Skjåk-Bræk
- Department of Biotechnology, Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7034 Trondheim, Norway.
| |
Collapse
|
44
|
Zheng Y, Li Y, Hu X, Shen J, Guo S. Biocompatible Shape Memory Blend for Self-Expandable Stents with Potential Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13988-13998. [PMID: 28382821 DOI: 10.1021/acsami.7b04808] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yu Zheng
- State
Key Laboratory of Polymer Materials Engineering, Institute of Polymer
Research, Sichuan University, Chengdu 610065, Sichuan, P. R. China
| | - Ying Li
- Center
of Gerontology and Geriatrics, National Clinical Research Center for
Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xue Hu
- State
Key Laboratory of Polymer Materials Engineering, Institute of Polymer
Research, Sichuan University, Chengdu 610065, Sichuan, P. R. China
| | - Jiabin Shen
- State
Key Laboratory of Polymer Materials Engineering, Institute of Polymer
Research, Sichuan University, Chengdu 610065, Sichuan, P. R. China
| | - Shaoyun Guo
- State
Key Laboratory of Polymer Materials Engineering, Institute of Polymer
Research, Sichuan University, Chengdu 610065, Sichuan, P. R. China
| |
Collapse
|
45
|
Nie C, Yang Y, Peng Z, Cheng C, Ma L, Zhao C. Aramid nanofiber as an emerging nanofibrous modifier to enhance ultrafiltration and biological performances of polymeric membranes. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.12.070] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Wang R, Song X, Xiang T, Liu Q, Su B, Zhao W, Zhao C. Mussel-inspired chitosan-polyurethane coatings for improving the antifouling and antibacterial properties of polyethersulfone membranes. Carbohydr Polym 2017; 168:310-319. [PMID: 28457454 DOI: 10.1016/j.carbpol.2017.03.092] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/19/2017] [Accepted: 03/28/2017] [Indexed: 02/05/2023]
Abstract
A straightforward mussel-inspired approach was proposed to construct chitosan-polyurethane coatings and load Ag nanoparticles (AgNPs) to endow polyethersulfone (PES) membranes with dual-antibacterial and antifouling properties. The macromolecule O-carboxymethyl chitosan (CMC) was directly reacted with catechol in the absence of carbodiimide chemistry to form the coating and load AgNPs via in situ reduction; while lysine (Lys) was used as a representative small molecule for comparison. Then, PEG-based polyurethane (PU) was used for constructing Lys-Ag-PU and CMC-Ag-PU composite coatings, which substantially improved the protein antifouling property of the membranes. Furthermore, the CMC-Ag-PU coating exhibited superior broad-spectrum antibacterial property towards E. coli and S. aureus than Lys-Ag-PU coating. Meanwhile, the CMC-Ag-PU coating showed sustained antifouling property against bacteria and could reload AgNPs to be regenerated as antibacterial and antifouling coating. This approach is believed to have potential to fabricate reusable antifouling and antibacterial coatings on materials surfaces for aquatic industries.
Collapse
Affiliation(s)
- Rui Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Song
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Tao Xiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Qiang Liu
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Baihai Su
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
47
|
Hoque J, Prakash RG, Paramanandham K, Shome BR, Haldar J. Biocompatible Injectable Hydrogel with Potent Wound Healing and Antibacterial Properties. Mol Pharm 2017; 14:1218-1230. [DOI: 10.1021/acs.molpharmaceut.6b01104] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jiaul Hoque
- Chemical
Biology and Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Relekar G. Prakash
- Chemical
Biology and Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Krishnamoorthy Paramanandham
- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI) Ramagondanahalli, Yelahanka, Bengaluru 560064, India
| | - Bibek R. Shome
- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI) Ramagondanahalli, Yelahanka, Bengaluru 560064, India
| | - Jayanta Haldar
- Chemical
Biology and Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| |
Collapse
|
48
|
A Dual-Bonded Approach for Improving Hydrogel Implant Stability in Cartilage Defects. MATERIALS 2017; 10:ma10020191. [PMID: 28772550 PMCID: PMC5459107 DOI: 10.3390/ma10020191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/22/2017] [Accepted: 02/06/2017] [Indexed: 12/22/2022]
Abstract
Integration and stability of hydrogels and surrounding cartilage/bone tissue is crucial for both immediate functionality and long-term performance of the tissue. In this work, chondroitin sulphate (CS) a polysaccharide found in cartilage and other tissues was used to synthesize a tough hydrogel that was chemically functionalized with methacrylate and aldehyde groups, bonding to surrounding tissue via a dual-bonded approach. The hydrogel can not only chemically anchor onto implanted titanium at the subchondral bone, but also on cartilage tissue via the Schiff-base reaction. In vitro experiments confirmed that the strategy improved hydrogel implant stability with cartilage tissue, was favorable for chondrocyte attachment, and has the potential to quickly and effectively repair cartilage defects and maintain joint functionality for a long time.
Collapse
|
49
|
One-pot synthesis of highly hemocompatible polyurethane/polyethersulfone composite membranes. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-1922-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Cheng C, Li S, Thomas A, Kotov NA, Haag R. Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chem Rev 2017; 117:1826-1914. [PMID: 28075573 DOI: 10.1021/acs.chemrev.6b00520] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Functional graphene nanomaterials (FGNs) are fast emerging materials with extremely unique physical and chemical properties and physiological ability to interfere and/or interact with bioorganisms; as a result, FGNs present manifold possibilities for diverse biological applications. Beyond their use in drug/gene delivery, phototherapy, and bioimaging, recent studies have revealed that FGNs can significantly promote interfacial biointeractions, in particular, with proteins, mammalian cells/stem cells, and microbials. FGNs can adsorb and concentrate nutrition factors including proteins from physiological media. This accelerates the formation of extracellular matrix, which eventually promotes cell colonization by providing a more beneficial microenvironment for cell adhesion and growth. Furthermore, FGNs can also interact with cocultured cells by physical or chemical stimulation, which significantly mediate their cellular signaling and biological performance. In this review, we elucidate FGNs-bioorganism interactions and summarize recent advancements on designing FGN-based two-dimensional and three-dimensional architectures as multifunctional biological platforms. We have also discussed the representative biological applications regarding these FGN-based bioactive architectures. Furthermore, the future perspectives and emerging challenges will also be highlighted. Due to the lack of comprehensive reviews in this emerging field, this review may catch great interest and inspire many new opportunities across a broad range of disciplines.
Collapse
Affiliation(s)
- Chong Cheng
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Shuang Li
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Arne Thomas
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|