1
|
Xu H, Chen S, Zhao YF, Wang F, Guo F. MOF-Based Membranes for Remediated Application of Water Pollution. Chempluschem 2024; 89:e202400027. [PMID: 38369654 DOI: 10.1002/cplu.202400027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Membrane separation plays a crucial role in the current increasingly complex energy environment. Membranes prepared by metal-organic framework (MOF) materials usually possess unique advantages in common, such as uniform pore size, ultra-high porosity, enhanced selectivity and throughput, and excellent adsorption property, which have been contributed to the separation fields. In this comprehensive review, we summarize various designs and synthesized strategies of free-standing MOF and composite MOF-based membranes for water treatment. Special emphases are given not only on the effects of MOF on membrane performance, removal efficiencies, and elimination mechanisms, but also on the importance of MOF-based membranes for the applications of oily and micro-pollutant removal, adsorption, separation, and catalysis. The challenges and opportunities in the future for the industrial implementation of MOF-based membranes are also discussed.
Collapse
Affiliation(s)
- Huan Xu
- School of art and design, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Shuyuan Chen
- School of art and design, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Ye-Fan Zhao
- School of art and design, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Fangfang Wang
- School of art and design, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Fan Guo
- School of art and design, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
2
|
Oh H, Lee G, Oh M. A Drop-and-Drain Method for Convenient and Efficient Fabrication of MOF/Fiber Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306543. [PMID: 38196152 DOI: 10.1002/smll.202306543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/29/2023] [Indexed: 01/11/2024]
Abstract
The fabrication of flexible composites by integrating metal-organic frameworks (MOFs) with flexible substrates is a critical strategy for developing advanced materials with excellent feasibility and processability. These flexible MOF-based composites play a particularly important role in the separation and purification processes. However, several drawbacks remain challenge to overcome such as long processing time, high-cost, complicated processes, or harsh reaction conditions. In this paper, a convenient and efficient method is reported for fabricating MOF/fiber composites using a simple drop-and-drain (D&D) process. By exploiting the electrostatic interactions between the positively charged MOF particles and negatively charged fiber-based flexible substrates, a uniform coating of MOF on flexible fibers are achieved. This is accomplished by allowing the MOF ink to drop and drain through a substrate using a custom-made Teflon cell. Additionally, the D&D method enables the production of multiple layers of composites in a single-step process. UiO-66 and ZIF-8 submicroparticles and various substrates such as cotton-pad, cotton-fabric, nylon-fabric, PET-fabric, and filter-paper are employed to create flexible MOF/fiber composites. These composites demonstrate outstanding capacities for capturing negatively charged organic dyes, including methyl orange and indigo carmine. Furthermore, the MOF/fiber composites can be reused for dye capture after a simple washing process.
Collapse
Affiliation(s)
- Hyunjeong Oh
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Gihyun Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Moonhyun Oh
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
3
|
Zhang L, Peng L, Lu Y, Ming X, Sun Y, Xu X, Xia Y, Pang K, Fang W, Huang N, Xu Z, Ying Y, Liu Y, Fu Y, Gao C. Sub-second ultrafast yet programmable wet-chemical synthesis. Nat Commun 2023; 14:5015. [PMID: 37596259 PMCID: PMC10439120 DOI: 10.1038/s41467-023-40737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023] Open
Abstract
Wet-chemical synthesis via heating bulk solution is powerful to obtain nanomaterials. However, it still suffers from limited reaction rate, controllability, and massive consumption of energy/reactants, particularly for the synthesis on specific substrates. Herein, we present an innovative wet-interfacial Joule heating (WIJH) approach to synthesize various nanomaterials in a sub-second ultrafast, programmable, and energy/reactant-saving manner. In the WIJH, Joule heat generated by the graphene film (GF) is confined at the substrate-solution interface. Accompanied by instantaneous evaporation of the solvent, the temperature is steeply improved and the precursors are concentrated, thereby synergistically accelerating and controlling the nucleation and growth of nanomaterials on the substrate. WIJH leads to a record high crystallization rate of HKUST-1 (~1.97 μm s-1), an ultralow energy cost (9.55 × 10-6 kWh cm-2) and low precursor concentrations, which are up to 5 orders of magnitude faster, -6 and -2 orders of magnitude lower than traditional methods, respectively. Moreover, WIJH could handily customize the products' amount, size, and morphology via programming the electrified procedures. The as-prepared HKUST-1/GF enables the Joule-heating-controllable and low-energy-required capture and liberation towards CO2. This study opens up a new methodology towards the superefficient synthesis of nanomaterials and solvent-involved Joule heating.
Collapse
Affiliation(s)
- Lin Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Li Peng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuanchao Lu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xin Ming
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuxin Sun
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyi Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuxing Xia
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kai Pang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenzhang Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ning Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Yingjun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, China.
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, China.
| |
Collapse
|
4
|
Asadi V, Marandi A, Kardanpour R, Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Mirzaei R. Carbonic Anhydrase-Embedded ZIF-8 Electrospun PVA Fibers as an Excellent Biocatalyst Candidate. ACS OMEGA 2023; 8:17809-17818. [PMID: 37251154 PMCID: PMC10210226 DOI: 10.1021/acsomega.3c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
There is a growing concern that the increasing concentration of CO2 in the atmosphere contributes to a potential negative impact on global climate change. To deal with this problem, developing a set of innovative, practical technologies is essential. In the present study, maximizing the CO2 utilization and precipitation as CaCO3 was evaluated. In this manner, bovine carbonic anhydrase (BCA) was embedded into the microporous zeolite imidazolate framework, ZIF-8, via physical absorption and encapsulation. Running as crystal seeds, these nanocomposites (enzyme-embedded MOFs) were in situ grown on the cross-linked electrospun polyvinyl alcohol (CPVA). The prepared composites displayed much higher stability against denaturants, high temperatures, and acidic media than free BCA, and BCA immobilized into or on ZIF-8. During 37 days of storage period study, BCA@ZIF-8/CPVA and BCA/ZIF-8/CPVA maintained more than 99 and 75% of their initial activity, respectively. The composition of BCA@ZIF-8 and BCA/ZIF-8 with CPVA improved stability for consecutive usage in recovery reactions, recycling easiness, and greater control over the catalytic process. The amounts of calcium carbonate obtained by one mg each of fresh BCA@ZIF-8/CPVA and BCA/ZIF-8/CPVA were 55.45 and 49.15 mg, respectively. The precipitated calcium carbonate by BCA@ZIF-8/CPVA reached 64.8% of the initial run, while this amount was 43.6% for BCA/ZIF-8/CPVA after eight cycles. These results indicated that the BCA@ZIF-8/CPVA and BCA/ZIF-8/CPVA fibers could be efficiently applied to CO2 sequestration.
Collapse
|
5
|
Niu B, Zhai Z, Wang J, Li C. Preparation of ZIF-8/PAN composite nanofiber membrane and its application in acetone gas monitoring. NANOTECHNOLOGY 2023; 34:245710. [PMID: 36927654 DOI: 10.1088/1361-6528/acc4ca] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Znic-based metal-organic framework materials (ZIF-8) show great potential and excellent performance in the fields of sensing and catalysis. However, powdered metal-organic framework makes it easy to lose in the process of application. Herein, we use a simple blending electrostatic spinning method to combine ZIF-8 particles with polyacrylonitrile (PAN) nanofibers. ZIF-8/PAN composite nanofiber membrane. The ZIF-8/PAN nanofiber membrane is characterized by scanning electron microscope (SEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and N2adsorption-desorption. The results show that the ZIF-8/PAN nanofiber membrane has the characteristic peaks of XRD and FTIR, which are consistent with those of simulated ZIF-8. The specific surface area of ZIF-8/PAN nanofiber membrane increases from 13.5371 to 711.4171 m2g-1due to the introduction of ZIF-8 particles. The sensor using the nanofiber membrane as the gas sensing layer shows good response and linear correlation to different concentrations of acetone gas. The minimum detection limit of the sensor for acetone is 51.9 ppm. The blank control shows that the response of the sensor to acetone is mainly due to the introduction of ZIF-8 particles. In addition, the sensor also shows a good cyclic response to acetone.
Collapse
Affiliation(s)
- Ben Niu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, People's Republic of China
| | - Zhenyu Zhai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, People's Republic of China
| | - Jiaona Wang
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing Key Laboratory of Clothing Materials R and D and Assessment, Beijing 100029, People's Republic of China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, People's Republic of China
| |
Collapse
|
6
|
Yu F, Cen L, Lei C, Zhu F, Zhou L, Zhu H, Yu B. Fabrication of recyclable UiO-66-NH2/PVDF hybrid fibrous membrane for Cr(VI) removal in wastewater. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
7
|
Chen D, Huang Q, Ding J, Li TT, Yu D, Nie H, Qian J, Yang Z. Heteroepitaxial metal-organic frameworks derived cobalt and nitrogen codoped carbon nanosheets to boost oxygen reduction. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Pu M, Ye D, Wan J, Xu B, Sun W, Li W. Zinc-based metal–organic framework nanofibers membrane ZIF-65/PAN as efficient peroxymonosulfate activator to degrade aqueous ciprofloxacin. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Couzon N, Dhainaut J, Campagne C, Royer S, Loiseau T, Volkringer C. Porous textile composites (PTCs) for the removal and the decomposition of chemical warfare agents (CWAs) – A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Li SC, Hu BC, Shang LM, Ma T, Li C, Liang HW, Yu SH. General Synthesis and Solution Processing of Metal-Organic Framework Nanofibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202504. [PMID: 35580346 DOI: 10.1002/adma.202202504] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Indexed: 06/15/2023]
Abstract
By virtue of their extraordinarily high surface areas, ordered pore structures, various compositions, and rich functionality, metal-organic frameworks (MOFs) are of great interest in diverse fields such as gas separation, sensing, catalysis, energy, environment science, and biomedicine. However, the difficulty in processing MOF crystals and controlling the MOF superstructure is emerging as a critical issue in their application. Herein, it is reported that a robust template, i.e., nanofibrillated cellulose (NFC), can be used for the synthesis of MOF materials with 1D nanofiber morphology. NFC@MOF core-shell nanofibers with a uniform network structure and high aspect ratios can be prepared by use of this template. The small crystal size, flexibility, and good dispersity of the NFC@MOF nanofibers make it convenient for the macroscale assembly and solution processing of MOF materials. A proof-of-concept study is demonstrated wherein freestanding MOF nanofiber membranes represent good performance in applications of water treatment and heterogeneous catalysis reaction. This general synthesis and solution-processing strategy may herald a new era in promoting the industrial application of MOFs.
Collapse
Affiliation(s)
- Si-Cheng Li
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Bi-Cheng Hu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Li-Mei Shang
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Tao Ma
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Li
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Hai-Wei Liang
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
11
|
Deji Z, Zhang X, Liu P, Wang X, Abulaiti K, Huang Z. Electrospun UiO-66-F 4/polyacrylonitrile nanofibers for efficient extraction of perfluoroalkyl and polyfluoroalkyl substances in environmental media. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128494. [PMID: 35739675 DOI: 10.1016/j.jhazmat.2022.128494] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/15/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a family of emerging contaminants which are widely present in environment. In this work, novel UiO-66-F4/polyacrylonitrile (UiO-66-F4/PAN) hybrid nanofibers were firstly prepared via blend electrospinning or in-situ growth method for the pipette-tip solid phase extraction of PFASs. Characterizations demonstrate the as-synthesized UiO-66-F4/PAN nanofibers have good chemical and thermal stability, possess large surface area (248 m²/g) and mesoporous framework structure. Several extraction factors including the amount of adsorbent, pH and ionic strength of sample solution, extraction time and eluent were investigated and the optimum conditions are 20 mg of the selected sorbent, adjusting to pH 5 and adding 4% w/v NaCl to sample solution, extraction for 12 min (3 min × 4). The good adsorption affinity of UiO-66-F4/PAN for PFASs can be attributed to the extensive adsorption sites and multiple interactions including hydrophobic interaction, hydrogen bonding and F-F interaction. Low limit of detection (0.008-0.076 µg/L), limit of quantification (0.010-0.163 µg/L) and recoveries (70.84-113.57%) for 9 PFASs with relative standard deviations < 15% were achieved. When applied in the analysis of target PFASs in lake water, tap water, beverage, and shrimp muscle samples, this method could achieve robust and accurate results with sufficient sensitivity for nine PFASs.
Collapse
Affiliation(s)
- Zhuoma Deji
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Xin Zhang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Peng Liu
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Xin Wang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Kadila Abulaiti
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Zhenzhen Huang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
12
|
Couzon N, Ferreira M, Duval S, El-Achari A, Campagne C, Loiseau T, Volkringer C. Microwave-Assisted Synthesis of Porous Composites MOF-Textile for the Protection against Chemical and Nuclear Hazards. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21497-21508. [PMID: 35471817 DOI: 10.1021/acsami.2c03247] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Since the emergence of chemical, biological, radiological, and nuclear risks, significant efforts have been made to create efficient personal protection equipment. Recently, metal-organic framework (MOF) materials have emerged as new promising candidates for the capture and degradation of various threats, like chemical warfare agents (CWAs) or radioactive species. Herein, we report a new synthesis method of MOF-textile composites by microwave irradiation, with direct anchoring of MOFs on textiles. The resistance of the composite has been tested using normed abrasion measurements, and non-stable samples were optimized. The protection capacity of the MOF-textile composite has been tested against dimethyl 4-nitrophenyl phosphate, a common CWA simulant, showing short degradation half-life (30 min). Radiological/nuclear protection has also been tested through uranium uptake (up to 15 mg g-1 adsorbent) and the capture of Kr or Xe gas at 0.9 and 2.9 cm3/g, respectively.
Collapse
Affiliation(s)
- Nelly Couzon
- Univ. Lille, CNRS, Centrale Lille, UMR 8181─UCCS─Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Manuela Ferreira
- Univ. Lille, ENSAIT, ULR 2461─GEMTEX─Génie et Matériaux Textiles, Lille F-59000, France
| | - Sylvain Duval
- Univ. Lille, CNRS, Centrale Lille, UMR 8181─UCCS─Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Ahmida El-Achari
- Univ. Lille, ENSAIT, ULR 2461─GEMTEX─Génie et Matériaux Textiles, Lille F-59000, France
| | - Christine Campagne
- Univ. Lille, ENSAIT, ULR 2461─GEMTEX─Génie et Matériaux Textiles, Lille F-59000, France
| | - Thierry Loiseau
- Univ. Lille, CNRS, Centrale Lille, UMR 8181─UCCS─Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Christophe Volkringer
- Univ. Lille, CNRS, Centrale Lille, UMR 8181─UCCS─Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| |
Collapse
|
13
|
In situ growth of UIO-66-NH2 on thermally stabilized electrospun polyacrylonitrile nanofibers for visible-light driven Cr (VI) photocatalytic reduction. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Adil HI, Thalji MR, Yasin SA, Saeed IA, Assiri MA, Chong KF, Ali GAM. Metal-organic frameworks (MOFs) based nanofiber architectures for the removal of heavy metal ions. RSC Adv 2022; 12:1433-1450. [PMID: 35425211 PMCID: PMC8979196 DOI: 10.1039/d1ra07034g] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/08/2021] [Indexed: 12/16/2022] Open
Abstract
Environmental heavy metal ions (HMIs) accumulate in living organisms and cause various diseases. Metal-organic frameworks (MOFs) have proven to be promising and effective materials for removing heavy metal ions from contaminated water because of their high porosity, remarkable physical and chemical properties, and high specific surface area. MOFs are self-assembling metal ions or clusters with organic linkers. Metals are used as dowel pins to build two-dimensional or three-dimensional frameworks, and organic linkers serve as carriers. Modern research has mainly focused on designing MOFs-based materials with improved adsorption and separation properties. In this review, for the first time, an in-depth look at the use of MOFs nanofiber materials for HMIs removal applications is provided. This review will focus on the synthesis, properties, and recent advances and provide an understanding of the opportunities and challenges that will arise in the synthesis of future MOFs-nanofiber composites in this area. MOFs decorated on nanofibers possess rapid adsorption kinetics, a high adsorption capacity, excellent selectivity, and good reusability. In addition, the substantial adsorption capacities are mainly due to interactions between the target ions and functional binding groups on the MOFs-nanofiber composites and the highly ordered porous structure.
Collapse
Affiliation(s)
| | | | - Suhad A Yasin
- College of Science, University of Duhok Duhok 42001 Iraq
| | | | - Mohammed A Assiri
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Abha Kingdom of Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Kwok Feng Chong
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang Gambang 26300 Kuantan Malaysia
| | - Gomaa A M Ali
- Chemistry Department, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| |
Collapse
|
15
|
Yang J, Liu CL, Ding YN, Sun TC, Bai XH, Cao ZK, Ramakrishna S, Zhang J, Long YZ. Synergistic antibacterial polyacrylonitrile/gelatin nanofibers coated with metal-organic frameworks for accelerating wound repair. Int J Biol Macromol 2021; 189:698-704. [PMID: 34453981 DOI: 10.1016/j.ijbiomac.2021.08.175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 12/16/2022]
Abstract
Bacterial infections prolong the wound healing time and increase the suffering of patients, thus it is important to develop wound dressing that can inhibit bacterial infection. Herein, we use two methods including "doping method" and "secondary growth method" to prepare ZIF-8@gentamicin embedded in and coated on polyacrylonitrile/gelatin (PG) nanofibers, separately. Composite nanofibers prepared by the secondary growth method achieve higher drug loading than that of the doping method, and the release rate can be adjusted by pH. Simultaneously increasing drug loading and regulating its release rate are achieved in the secondary growth method, which cannot be achieved by the doping method. Furthermore, synergistic antibacterial property occurs in the composite nanofibers prepared by the secondary growth method, and gentamicin loaded on ZIF-8 promotes the antibacterial effect, which shows better antibacterial effect than the doping method. As a result, during the wound infection of mouse, composite nanofibers prepared by the secondary growth method exhibit a faster recovery effect than the doping method, which effectively shortened the wound healing time from 21 days to 16 days.
Collapse
Affiliation(s)
- Jun Yang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Chun-Li Liu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Yi-Ning Ding
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Tian-Cai Sun
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Xiao-Han Bai
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Zhi-Kai Cao
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Jun Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China.
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
16
|
Kujawa J, Al-Gharabli S, Muzioł TM, Knozowska K, Li G, Dumée LF, Kujawski W. Crystalline porous frameworks as nano-enhancers for membrane liquid separation – Recent developments. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Min T, Sun X, Zhou L, Du H, Zhu Z, Wen Y. Electrospun pullulan/PVA nanofibers integrated with thymol-loaded porphyrin metal-organic framework for antibacterial food packaging. Carbohydr Polym 2021; 270:118391. [PMID: 34364632 DOI: 10.1016/j.carbpol.2021.118391] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/26/2021] [Indexed: 01/01/2023]
Abstract
Pathogenic microorganisms posed perniciousness for postharvest fruits and vegetables, as well as brought potential risks for human health. In this work, pullulan/polyvinyl alcohol (PUL/PVA) nanofibers incorporated with thymol-loaded porphyrin metal-organic framework nanoparticles (THY@PCN-224 NPs) were developed for antibacterial food packaging. PCN-224 MOFs not only act as thymol loading carriers but also highly produce singlet oxygen (1O2) with bactericidal activity. PUL/PVA nanofiber was a promising sustainable substrate because of its good flexibility, biocompatibility and biodegradability. The loading capacity of PCN-224 for thymol was about 20%. The THY@PCN/PUL/PVA nanofibers exhibited synergistic antibacterial activities against E. coli (~99%) and S. aureus (~98%) under light irradiation. The cell viability assays and fruit preservation study demonstrated good biosafety of the polymeric film. The results suggested that this novel nanofiber has potential application prospects for food packaging.
Collapse
Affiliation(s)
- Tiantian Min
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoli Sun
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, China
| | - Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haiyu Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhu Zhu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
18
|
Molco M, Laye F, Samperio E, Ziv Sharabani S, Fourman V, Sherman D, Tsotsalas M, Wöll C, Lahann J, Sitt A. Performance Fabrics Obtained by In Situ Growth of Metal-Organic Frameworks in Electrospun Fibers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12491-12500. [PMID: 33661621 PMCID: PMC8034771 DOI: 10.1021/acsami.0c22729] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/21/2021] [Indexed: 05/29/2023]
Abstract
Metal-organic frameworks (MOFs) exhibit an exceptional surface area-to-volume ratio, variable pore sizes, and selective binding, and hence, there is an ongoing effort to advance their processability for broadening their utilization in different applications. In this work, we demonstrate a general scheme for fabricating freestanding MOF-embedded polymeric fibers, in which the fibers themselves act as microreactors for the in situ growth of the MOF crystals. The MOF-embedded fibers are obtained via a two-step process, in which, initially, polymer solutions containing the MOF precursors are electrospun to obtain microfibers, and then, the growth of MOF crystals is initiated and performed via antisolvent-induced crystallization. Using this approach, we demonstrate the fabrication of composite microfibers containing two types of MOFs: copper (II) benzene-1,3,5-tricarboxylic acid (HKUST-1) and zinc (II) 2-methylimidazole (ZIF-8). The MOF crystals grow from the fiber's core toward its outer rims, leading to exposed MOF crystals that are well rooted within the polymer matrix. The MOF fibers obtained using this method can reach lengths of hundreds of meters and exhibit mechanical strength that allows arranging them into dense, flexible, and highly durable nonwoven meshes. We also examined the use of the MOF fiber meshes for the immobilization of the enzymes catalase and horse radish peroxidase (HRP), and the enzyme-MOF fabrics exhibit improved performance. The MOF-embedded fibers, demonstrated in this work, hold promise for different applications including separation of specific chemical species, selective catalysis, and sensing and pave the way to new MOF-containing performance fabrics and active membranes.
Collapse
Affiliation(s)
- Maya Molco
- School
of Chemistry and the Tel-Aviv University Center for NanoScience and
Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Fabrice Laye
- Institute
of Functional Interfaces (IFG), Karlsruhe
Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Enrique Samperio
- Institute
of Functional Interfaces (IFG), Karlsruhe
Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Shiran Ziv Sharabani
- School
of Chemistry and the Tel-Aviv University Center for NanoScience and
Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Victor Fourman
- School
of Mechanical Engineering, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Dov Sherman
- School
of Mechanical Engineering, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Manuel Tsotsalas
- Institute
of Functional Interfaces (IFG), Karlsruhe
Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Christof Wöll
- Institute
of Functional Interfaces (IFG), Karlsruhe
Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Joerg Lahann
- Institute
of Functional Interfaces (IFG), Karlsruhe
Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Amit Sitt
- School
of Chemistry and the Tel-Aviv University Center for NanoScience and
Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
19
|
Yang X, Zhou Y, Sun Z, Yang C, Tang D. Polydopamine assists the continuous growth of zeolitic imidazolate framework-8 on electrospun polyacrylonitrile fibers as efficient adsorbents for the improved removal of Cr( vi). NEW J CHEM 2021. [DOI: 10.1039/d1nj03080a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PDA coating assists the growth of ZIF-8 particles on PAN fibers to fabricate composite ZIF-8@PDA/PAN fibers as efficient adsorbents for Cr(vi) removal.
Collapse
Affiliation(s)
- Xu Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuhong Zhou
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhaojie Sun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Chunhui Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Dongyan Tang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
20
|
Mirzaei R, Bahadori M, Kardanpour R, Rafiei S, Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Mirazimi SE. Preparation and characterization of nanofibrous metal-organic frameworks as efficient catalysts for the synthesis of cyclic carbonates in solvent-free conditions. Dalton Trans 2021; 50:10567-10579. [PMID: 34263897 DOI: 10.1039/d1dt01336j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Environmental concerns, particularly global warming, represent serious threats to public health globally. Metal-organic frameworks (MOFs) are innovative materials with prominent features such as ultrahigh surface area, high porosity and tunable cavities, which make them unique materials both in adsorption of carbon dioxide and catalysis. The design of new nanocomposites by using metal-organic frameworks as building materials has received broad attention recently. Here, nanocrystals of two unique MOF structures (UiO-66 and ZIF-67) were incorporated into electrospun polyvinyl alcohol (PVA) and polystyrene (PS) fibers (noted as MOFibers) by an ex situ method, to transform non-toxic, abundant, economical and renewable CO2 gas to cyclic carbonates in a solvent-free medium. In order to improve the composites' performance, different electrospinning parameters, including applied voltage, flow rate, collection distance, PVA and PS weight fraction in solution, and MOF weight fraction relative to the polymer, were intensively investigated. The synthesized samples were characterized by multiple techniques, such as FTIR, XRD, SEM, UV-vis and TGA, as well as N2 and CO2 adsorption measurement. It was found that all of the composites show properties combining the advantages of MOFs and polymers, such as thermal, chemical, and mechanical stability, structural flexibility, lightweight, adsorption performance and catalytic properties. Additionally, all systems were environment-friendly and the PVA/MOF fibers were easily separated and recycled for consecutive cycles.
Collapse
Affiliation(s)
- Razieh Mirzaei
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Islamic Republic of Iran.
| | - Mehrnaz Bahadori
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Islamic Republic of Iran.
| | - Reihaneh Kardanpour
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Islamic Republic of Iran.
| | - Sara Rafiei
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Islamic Republic of Iran.
| | - Shahram Tangestaninejad
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Islamic Republic of Iran.
| | - Majid Moghadam
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Islamic Republic of Iran.
| | - Valiollah Mirkhani
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Islamic Republic of Iran.
| | - Iraj Mohammadpoor-Baltork
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Islamic Republic of Iran.
| | - Seyed Erfan Mirazimi
- Laboratory for Mechanical and Physical Properties of Solids, Central Laboratory of Isfahan University, Islamic Republic of Iran
| |
Collapse
|
21
|
Kabtamu DM, Wu YN, Li F. Hierarchically porous metal-organic frameworks: synthesis strategies, structure(s), and emerging applications in decontamination. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122765. [PMID: 32438242 DOI: 10.1016/j.jhazmat.2020.122765] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs) with high porosity have received much attention as promising materials for many applications owing to their unique properties. However, to date, most of the reported MOFs have microporous structures, which slow down diffusion/mass transfer and limit the accessibility of bulky molecules to its internal surface. Thus, it is crucial to develop an efficient way to create larger pores (mesoporous and/or macroporous) into microporous MOFs to form hierarchical porous metal-organic frameworks (HP-MOFs), which facilitate the diffusion and mass transfer of guest molecules. HP-MOFs are excellent and promising candidates for environmental applications under the background of environmental contaminations. In this review paper, we are primarily focusing on the latest progress in the preparation of HP-MOFs by employing template-assisted and template-free synthetic approaches for environmental cleaning applications. Particularly, the adsorptive purification of the most common toxic substances, including gases, dyes, heavy metal ions, and antibiotics from the environment using HP-MOFs as adsorbents is briefly discussed. The overall results clearly showed that the superiority of HP-MOFs compared with conventional microporous MOFs. Finally, we summarize the remaining challenges and provide personal perspectives on possible future development of HP-MOFs.
Collapse
Affiliation(s)
- Daniel Manaye Kabtamu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Department of Chemistry, Debre Berhan University, Po. Box: 445, Debre Berhan, Ethiopia
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Fengting Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
22
|
Yang X, Zhou Y, Sun Z, Yang C, Tang D. Effective strategy to fabricate ZIF-8@ZIF-8/polyacrylonitrile nanofibers with high loading efficiency and improved removing of Cr(VI). Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125292] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Jiamjirangkul P, Inprasit T, Intasanta V, Pangon A. Metal organic framework-integrated chitosan/poly(vinyl alcohol) (PVA) nanofibrous membrane hybrids from green process for selective CO2 capture and filtration. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115650] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Yao A, Jiao X, Chen D, Li C. Bio-Inspired Polydopamine-Mediated Zr-MOF Fabrics for Solar Photothermal-Driven Instantaneous Detoxification of Chemical Warfare Agent Simulants. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18437-18445. [PMID: 32202409 DOI: 10.1021/acsami.9b22242] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-detoxifying fabrics are desirable forms for protection against chemical warfare agents (CWAs). Zirconium-based metal-organic frameworks (Zr-MOFs) have emerged as one of the fastest catalysts for nerve-agent hydrolysis, but there is still a lack of reliable methods to integrate them onto fibrous supports, and instantaneous detoxification remains challenging for MOF/fiber composites. Herein, we report a bio-inspired polydopamine (PDA)-mediated strategy for the preparation of Zr-MOF (UiO-66-NH2)-coated nanofiber membranes, which are capable of photothermally catalyzing the degradation of CWA simulants. UiO-66-NH2 nanocrystalline coating with high mass loading, perfect coverage, and good adhesion is readily formed on polyamide (PA)-6 nanofibers with the precoated PDA layer. The prepared PA-6@PDA@UiO-66-NH2 nanofibers display almost an order of magnitude higher turnover frequency (TOF) for the hydrolysis of the nerve agent simulant dimethyl 4-nitrophenylphosphate (DMNP) when irradiated under simulated solar light, with a half-life of only 0.5 min. Such a hydrolysis rate is significantly higher compared to that of the corresponding UiO-66-NH2 powder and UiO-66-NH2/fiber composites reported so far. This strategy may be easily generalized to other MOF/fiber pairs to achieve even higher performance and opens up new opportunities for solar photothermal catalysis in CWA protection.
Collapse
Affiliation(s)
- Aonan Yao
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Xiuling Jiao
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Dairong Chen
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Cheng Li
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| |
Collapse
|
25
|
Abstract
Metal–organic frameworks (MOFs) have been of great interest for their outstanding properties, such as large surface area, low density, tunable pore size and functionality, excellent structural flexibility, and good chemical stability. A significant advancement in the preparation of MOF thin films according to the needs of a variety of applications has been achieved in the past decades. Yet there is still high demand in advancing the understanding of the processes to realize more scalable, controllable, and greener synthesis. This review provides a summary of the current progress on the manufacturing of MOF thin films, including the various thin-film deposition processes, the approaches to modify the MOF structure and pore functionality, and the means to prepare patterned MOF thin films. The suitability of different synthesis techniques under various processing environments is analyzed. Finally, we discuss opportunities for future development in the manufacturing of MOF thin films.
Collapse
|
26
|
Dou Y, Zhang W, Kaiser A. Electrospinning of Metal-Organic Frameworks for Energy and Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902590. [PMID: 32042570 PMCID: PMC7001619 DOI: 10.1002/advs.201902590] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/01/2019] [Indexed: 05/05/2023]
Abstract
Herein, recent developments of metal-organic frameworks (MOFs) structured into nanofibers by electrospinning are summarized, including the fabrication, post-treatment via pyrolysis, properties, and use of the resulting MOF nanofiber architectures. The fabrication and post-treatment of the MOF nanofiber architectures are described systematically by two routes: i) the direct electrospinning of MOF-polymer nanofiber composites, and ii) the surface decoration of nanofiber structures with MOFs. The unique properties and performance of the different types of MOF nanofibers and their derivatives are explained in respect to their use in energy and environmental applications, including air filtration, water treatment, gas storage and separation, electrochemical energy conversion and storage, and heterogeneous catalysis. Finally, challenges with the fabrication of MOF nanofibers, limitations for their use, and trends for future developments are presented.
Collapse
Affiliation(s)
- Yibo Dou
- Department of Energy Conversion and StorageTechnical University of DenmarkAnker Engelunds Vej, Building 301DK‐2800Kongens LyngbyDenmark
| | - Wenjing Zhang
- Department of Environmental EngineeringTechnical University of DenmarkMiljøvej 113DK‐2800Kongens LyngbyDenmark
| | - Andreas Kaiser
- Department of Energy Conversion and StorageTechnical University of DenmarkAnker Engelunds Vej, Building 301DK‐2800Kongens LyngbyDenmark
| |
Collapse
|
27
|
Wang X, Xu W, Gu J, Yan X, Chen Y, Guo M, Zhou G, Tong S, Ge M, Liu Y, Chen C. MOF-based fibrous membranes adsorb PM efficiently and capture toxic gases selectively. NANOSCALE 2019; 11:17782-17790. [PMID: 31552990 DOI: 10.1039/c9nr05795a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Air pollution is harmful to the functioning of the lungs, heart, and brain even at low concentrations of particle matter (PM) and toxic gases. Purification methods and materials have made tremendous progress to improve the purity of air to adhere to national quality standards. Metal-organic frameworks (MOFs) have an excellent gas adsorption capacity due to their high specific surface area and porous structure, but the intrinsic fragility of MOF crystals limits their application. In this study, we selected appropriate organic ligands to prepare MOF-surface-grown fibrous membranes using an electrospinning technique, which have an excellent ability to adsorb PM and capture toxic gases selectively. The efficiency of the MOF-surface-grown fibrous membranes to remove PM reached 99.99%, even for fine PM. More importantly, under low partial pressure and complex gas composition conditions, the fibrous membrane was able to selectively adsorb SO2. The concentration of SO2 dropped from 7300 ppb to 40 ppb. Interestingly, the MOF-surface-grown fibrous membrane had a higher purification capacity toward O3 than toward SO2. The concentration of O3 rapidly dropped from 3000 ppb to 7 ppb, which was far below national air quality standards (81 ppb). The MOF-surface-grown fibrous membrane was able to adsorb toxic atmospheric gases selectively, while not being influenced by the presence of other gases, such as CO2 and O2. MOF-based fibrous membranes prepared using a simple and inexpensive electrospinning technique have wide potential for practical use in the field of environmental protection and air purification.
Collapse
Affiliation(s)
- Xiaoyu Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Liu Y, Wang J, Li T, Zhao Z, Pang W. Base-free Pd-MOF catalyzed the Suzuki-Miyaura cross-coupling reaction of arenediazonium tetrafluoroborate salts with arylboronic acids. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Dahal B, Mukhiya T, Ojha GP, Muthurasu A, Chae SH, Kim T, Kang D, Kim HY. In-built fabrication of MOF assimilated B/N co-doped 3D porous carbon nanofiber network as a binder-free electrode for supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.171] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Hao Z, Wu J, Wang C, Liu J. Electrospun Polyimide/Metal-Organic Framework Nanofibrous Membrane with Superior Thermal Stability for Efficient PM 2.5 Capture. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11904-11909. [PMID: 30829470 DOI: 10.1021/acsami.8b22415] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Particulate matter (PM) pollution is a serious threat to human health. Zeolitic imidazolate framework-8 (ZIF-8) is a kind of metal-organic framework, and ZIF-8 not only can capture PM2.5 efficiently but also possesses excellent chemical and thermal stability. In this study, ZIF-8-modified soluble polyimide (PI) nanofibrous membranes were prepared via an electrospinning process. As a result, the PI-ZIF membrane shows high PM2.5 filtration efficiency (up to 96.6 ± 2.9%), superior thermal stability (up to 300 °C), good transmittance, excellent mechanical properties, and low pressure drop. The prepared PI-ZIF membrane with excellent comprehensive property shows a promising application in PM2.5 capture, especially in harsh conditions.
Collapse
Affiliation(s)
- Zhimin Hao
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry , Beihang University , Beijing 100191 , P. R. China
| | - Juntao Wu
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry , Beihang University , Beijing 100191 , P. R. China
| | - Chaolu Wang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry , Beihang University , Beijing 100191 , P. R. China
| | - Jingang Liu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology , China University of Geosciences , Beijing 100083 , P. R. China
| |
Collapse
|
31
|
Zhang L, Chen H, Bai X, Wang S, Li L, Shao L, He W, Li Y, Wang T, Zhang X, Chen J, Fu Y. Fabrication of 2D metal-organic framework nanosheet@fiber composites by spray technique. Chem Commun (Camb) 2019; 55:8293-8296. [PMID: 31249996 DOI: 10.1039/c9cc02614b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A feasible and rapid one-step strategy has been developed to fabricate 2D metal-organic framework nanosheet (MOF-NS)@fiber composites at room temperature by spray technique, through which five kinds of MOF-NS@fiber were successfully prepared. The representative nanoscale CuBDC were synthesized on the surface of carbon fibers with homogeneous dispersion and high coverage.
Collapse
Affiliation(s)
- Liying Zhang
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Huan Chen
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China. and Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, College of Life Science, Tarim University, Xinjiang Uygur Autonomous Region, Alaer, 843300, P. R. China.
| | - Xiaojue Bai
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Sha Wang
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Linlin Li
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Lei Shao
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Wenxiu He
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Yunong Li
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Tieqiang Wang
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Xuemin Zhang
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Junyi Chen
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, College of Life Science, Tarim University, Xinjiang Uygur Autonomous Region, Alaer, 843300, P. R. China.
| | - Yu Fu
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| |
Collapse
|
32
|
Process Evaluation of the Metal-Organic Frameworks for the Application of Personal Protective Equipment with Filtration Function. Polymers (Basel) 2018; 10:polym10121386. [PMID: 30961311 PMCID: PMC6401797 DOI: 10.3390/polym10121386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 02/05/2023] Open
Abstract
Metal-organic frameworks (MOFs) have been regarded as an ideal material for the development of functional textiles with filtration function. Such functional textiles with filtration function can be further used to develop personal protective equipment, such as protective masks. This paper focuses on the comparisons of different processes when applying MOFs to conventional textiles. Two different processes existing in the literature, namely the electrospinning method and hot-pressing method, are discussed in this paper. Materials loaded with MOFs developed with these two processes are evaluated and compared, regarding the adsorption of dyes in water and the removal of pollutants. Experiment results indicate that the hot-pressing method is more advantageous when applying MOF to textiles, in terms of adsorption and removal efficiency.
Collapse
|
33
|
Leus K, Krishnaraj C, Verhoeven L, Cremers V, Dendooven J, Ramachandran RK, Dubruel P, Van Der Voort P. Catalytic carpets: Pt@MIL-101@electrospun PCL, a surprisingly active and robust hydrogenation catalyst. J Catal 2018. [DOI: 10.1016/j.jcat.2018.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Yan Z, Wu M, Hu B, Yao M, Zhang L, Lu Q, Pang J. Electrospun UiO-66/polyacrylonitrile nanofibers as efficient sorbent for pipette tip solid phase extraction of phytohormones in vegetable samples. J Chromatogr A 2018; 1542:19-27. [DOI: 10.1016/j.chroma.2018.02.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/12/2018] [Accepted: 02/17/2018] [Indexed: 01/04/2023]
|
35
|
Shangguan J, Bai L, Li Y, Zhang T, Liu Z, Zhao G, Liu Y. Layer-by-layer decoration of MOFs on electrospun nanofibers. RSC Adv 2018; 8:10509-10515. [PMID: 35540460 PMCID: PMC9078903 DOI: 10.1039/c8ra01260a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/08/2018] [Indexed: 12/01/2022] Open
Abstract
The design and fabrication of novel organic–inorganic nanocomposite membranes using metal–organic frameworks as building blocks have attracted numerous scientists. Here, HKUST-1 particles were decorated on crosslinked polymer nanofibers through a layer-by-layer method. The immersion sequence, the crosslinking and the number of the deposition cycles have a significant impact on the formation of the HKUST-1 decorated nanofibrous membranes. Moreover, it has been shown that such a membrane could be applied as a catalyst for visual detection of hydrogen peroxide. A layer-by-layer method was introduced to fabricate MOF-decorated electrospun nanofibers, which could be used for visual detection of hydrogen peroxide.![]()
Collapse
Affiliation(s)
- Jinhong Shangguan
- Shanxi Province Key Laboratory of Functional Nanocomposites
- School of Materials Science and Engineering
- North University of China
- Taiyuan 030051
- China
| | - Lu Bai
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan 030051
- China
| | - Yang Li
- Shanxi Province Key Laboratory of Functional Nanocomposites
- School of Materials Science and Engineering
- North University of China
- Taiyuan 030051
- China
| | - Tao Zhang
- Shanxi Province Key Laboratory of Functional Nanocomposites
- School of Materials Science and Engineering
- North University of China
- Taiyuan 030051
- China
| | - Zhicheng Liu
- Shanxi Province Key Laboratory of Functional Nanocomposites
- School of Materials Science and Engineering
- North University of China
- Taiyuan 030051
- China
| | - Guizhe Zhao
- Shanxi Province Key Laboratory of Functional Nanocomposites
- School of Materials Science and Engineering
- North University of China
- Taiyuan 030051
- China
| | - Yaqing Liu
- Shanxi Province Key Laboratory of Functional Nanocomposites
- School of Materials Science and Engineering
- North University of China
- Taiyuan 030051
- China
| |
Collapse
|
36
|
Gu Y, Wu YN, Li L, Chen W, Li F, Kitagawa S. Controllable Modular Growth of Hierarchical MOF-on-MOF Architectures. Angew Chem Int Ed Engl 2017; 56:15658-15662. [DOI: 10.1002/anie.201709738] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Yifan Gu
- College of Environmental Science and Engineering; State Key Laboratory of Pollution Control and Resource Reuse; Tongji University; Siping Rd 1239 200092 Shanghai China
| | - Yi-nan Wu
- College of Environmental Science and Engineering; State Key Laboratory of Pollution Control and Resource Reuse; Tongji University; Siping Rd 1239 200092 Shanghai China
| | - Liangchun Li
- Shanghai Key Lab of Chemical Assessment and Sustainability; School of Chemical Science and Engineering; Tongji University; Siping Rd 1239 200092 Shanghai China
| | - Wei Chen
- College of Environmental Science and Engineering; State Key Laboratory of Pollution Control and Resource Reuse; Tongji University; Siping Rd 1239 200092 Shanghai China
| | - Fengting Li
- College of Environmental Science and Engineering; State Key Laboratory of Pollution Control and Resource Reuse; Tongji University; Siping Rd 1239 200092 Shanghai China
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
37
|
Gu Y, Wu YN, Li L, Chen W, Li F, Kitagawa S. Controllable Modular Growth of Hierarchical MOF-on-MOF Architectures. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709738] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yifan Gu
- College of Environmental Science and Engineering; State Key Laboratory of Pollution Control and Resource Reuse; Tongji University; Siping Rd 1239 200092 Shanghai China
| | - Yi-nan Wu
- College of Environmental Science and Engineering; State Key Laboratory of Pollution Control and Resource Reuse; Tongji University; Siping Rd 1239 200092 Shanghai China
| | - Liangchun Li
- Shanghai Key Lab of Chemical Assessment and Sustainability; School of Chemical Science and Engineering; Tongji University; Siping Rd 1239 200092 Shanghai China
| | - Wei Chen
- College of Environmental Science and Engineering; State Key Laboratory of Pollution Control and Resource Reuse; Tongji University; Siping Rd 1239 200092 Shanghai China
| | - Fengting Li
- College of Environmental Science and Engineering; State Key Laboratory of Pollution Control and Resource Reuse; Tongji University; Siping Rd 1239 200092 Shanghai China
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
38
|
Peterson GW, Lu AX, Epps TH. Tuning the Morphology and Activity of Electrospun Polystyrene/UiO-66-NH 2 Metal-Organic Framework Composites to Enhance Chemical Warfare Agent Removal. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32248-32254. [PMID: 28829565 DOI: 10.1021/acsami.7b09209] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This work investigates the processing-structure-activity relationships that ultimately facilitate the enhanced performance of UiO-66-NH2 metal-organic frameworks (MOFs) in electrospun polystyrene (PS) fibers for chemical warfare agent detoxification. Key electrospinning processing parameters including solvent type (dimethylformamide [DMF]) vs DMF/tetrahydrofuran [THF]), PS weight fraction in solution, and MOF weight fraction relative to PS were varied to optimize MOF incorporation into the fibers and ultimately improve composite performance. It was found that composites spun from pure DMF generally resulted in MOF crystal deposition on the surface of the fibers, while composites spun from DMF/THF typically led to MOF crystal deposition within the fibers. For cases in which the MOF was incorporated on the periphery of the fibers, the composites generally demonstrated better gas uptake (e.g., nitrogen, chlorine) because of enhanced access to the MOF pores. Additionally, increasing both the polymer and MOF weight percentages in the electrospun solutions resulted in larger diameter fibers, with polymer concentration having a more pronounced effect on fiber size; however, these larger fibers were generally less efficient at gas separations. Overall, exploring the electrospinning parameter space resulted in composites that outperformed previously reported materials for the detoxification of the chemical warfare agent, soman. The data and strategies herein thus provide guiding principles applicable to the design of future systems for protection and separations as well as a wide range of environmental remediation applications.
Collapse
Affiliation(s)
- Gregory W Peterson
- Edgewood Chemical Biological Center , 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010-5424, United States
| | - Annie X Lu
- Edgewood Chemical Biological Center , 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010-5424, United States
- Defense Threat Reduction Agency , 8725 John J. Kingman Road, Stop 6201, Fort Belvoir, Virginia 22060-6201, United States
| | | |
Collapse
|
39
|
Yang H, Fei H. A generic and facile strategy to fabricate metal–organic framework films on TiO2 substrates for photocatalysis. Dalton Trans 2017; 46:2751-2755. [DOI: 10.1039/c7dt00082k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a facile and compelling method for the fabrication of metal–organic framework (MOF) thin films on TiO2-coated conductive glass substrates. The functionalized MOF films serve as a robust and efficient catalyst for photo-oxidation of thioanisole, overcoming the defragmentation problem of MOF powders.
Collapse
Affiliation(s)
- Huimin Yang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- P.R. China
| | - Honghan Fei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- P.R. China
| |
Collapse
|
40
|
Lieu TN, Nguyen HTT, Tran NDM, Truong T, Phan NTS. O-Acetyl-Substituted Phenol Ester Synthesis via Direct Oxidative Esterification Utilizing Ethers as an Acylating Source with Cu2(dhtp) Metal–Organic Framework as a Recyclable Catalyst. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b02733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Thien N. Lieu
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, VNU-HCM, 268 Ly Thuong Kiet, District
10, Ho Chi Minh City, Vietnam
| | - Ha T. T. Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, VNU-HCM, 268 Ly Thuong Kiet, District
10, Ho Chi Minh City, Vietnam
| | - Ngoc D. M. Tran
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, VNU-HCM, 268 Ly Thuong Kiet, District
10, Ho Chi Minh City, Vietnam
| | - Thanh Truong
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, VNU-HCM, 268 Ly Thuong Kiet, District
10, Ho Chi Minh City, Vietnam
| | - Nam T. S. Phan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, VNU-HCM, 268 Ly Thuong Kiet, District
10, Ho Chi Minh City, Vietnam
| |
Collapse
|
41
|
Zhang Y, Yuan S, Feng X, Li H, Zhou J, Wang B. Preparation of Nanofibrous Metal–Organic Framework Filters for Efficient Air Pollution Control. J Am Chem Soc 2016; 138:5785-8. [DOI: 10.1021/jacs.6b02553] [Citation(s) in RCA: 449] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuanyuan Zhang
- Key Laboratory of Cluster
Science, Ministry of Education of China, Beijing Key Laboratory of
Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, P. R. China
| | - Shuai Yuan
- Key Laboratory of Cluster
Science, Ministry of Education of China, Beijing Key Laboratory of
Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, P. R. China
| | - Xiao Feng
- Key Laboratory of Cluster
Science, Ministry of Education of China, Beijing Key Laboratory of
Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, P. R. China
| | - Haiwei Li
- Key Laboratory of Cluster
Science, Ministry of Education of China, Beijing Key Laboratory of
Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, P. R. China
| | - Junwen Zhou
- Key Laboratory of Cluster
Science, Ministry of Education of China, Beijing Key Laboratory of
Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, P. R. China
| | - Bo Wang
- Key Laboratory of Cluster
Science, Ministry of Education of China, Beijing Key Laboratory of
Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, P. R. China
| |
Collapse
|