1
|
Dey S, Bhat A, Janani G, Shandilya V, Gupta R, Mandal BB. Microfluidic human physiomimetic liver model as a screening platform for drug induced liver injury. Biomaterials 2024; 310:122627. [PMID: 38823194 DOI: 10.1016/j.biomaterials.2024.122627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
The pre-clinical animal models often fail to predict intrinsic and idiosyncratic drug induced liver injury (DILI), thus contributing to drug failures in clinical trials, black box warnings and withdrawal of marketed drugs. This suggests a critical need for human-relevant in vitro models to predict diverse DILI phenotypes. In this study, a porcine liver extracellular matrix (ECM) based biomaterial ink with high printing fidelity, biocompatibility and tunable rheological and mechanical properties is formulated for supporting both parenchymal and non-parenchymal cells. Further, we applied 3D printing and microfluidic technology to bioengineer a human physiomimetic liver acinus model (HPLAM), recapitulating the radial hepatic cord-like structure with functional sinusoidal microvasculature network, biochemical and biophysical properties of native liver acinus. Intriguingly, the human derived hepatic cells incorporated HPLAM cultured under physiologically relevant microenvironment, acts as metabolic biofactories manifesting enhanced hepatic functionality, secretome levels and biomarkers expression over several weeks. We also report that the matured HPLAM reproduces dose- and time-dependent hepatotoxic response of human clinical relevance to drugs typically recognized for inducing diverse DILI phenotypes as compared to conventional static culture. Overall, the developed HPLAM emulates in vivo like functions and may provide a useful platform for DILI risk assessment to better determine safety and human risk.
Collapse
Affiliation(s)
- Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Amritha Bhat
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - G Janani
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Vartik Shandilya
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Raghvendra Gupta
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Biman B Mandal
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Del Bianco L, Spizzo F, Lanaro F, Coïsson M, Agostinacchio F, Greco G, Pugno NM, Motta A. Silk Fibroin Film Decorated with Ultralow FeCo Content by Sputtering Deposition Results in a Flexible and Robust Biomaterial for Magnetic Actuation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51364-51375. [PMID: 39259945 DOI: 10.1021/acsami.4c12853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Magnetically responsive soft biomaterials are at the forefront of bioengineering and biorobotics. We have created a magnetic hybrid material by coupling silk fibroin─i.e., a natural biopolymer with an optimal combination of biocompatibility and mechanical robustness─with the FeCo alloy, the ferromagnetic material with the highest saturation magnetization. The material is in the form of a 6 μm-thick silk fibroin film, coated with a FeCo layer (nominal thickness: 10 nm) grown by magnetron sputtering deposition. The sputtering deposition technique is versatile and eco-friendly and proves effective for growing the magnetic layer on the biopolymer substrate, also allowing one to select the area to be decorated. The hybrid material is biocompatible, lightweight, flexible, robust, and water-resistant. Electrical, structural, mechanical, and magnetic characterization of the material, both as-prepared and after being soaked in water, have provided information on the adhesion between the silk fibroin substrate and the FeCo layer and on the state of internal mechanical stresses. The hybrid film exhibits a high magnetic bending response under a magnetic field gradient, thanks to an ultralow fraction of the FeCo component (less than 0.1 vol %, i.e., well below 1 wt %). This reduces the risk of adverse health effects and makes the material suitable for bioactuation applications.
Collapse
Affiliation(s)
- Lucia Del Bianco
- Department of Physics and Earth Science, University of Ferrara, I-44122 Ferrara, Italy
| | - Federico Spizzo
- Department of Physics and Earth Science, University of Ferrara, I-44122 Ferrara, Italy
- Istituto Nazionale di Fisica Nucleare, Ferrara Division, I-44122 Ferrara, Italy
| | - Filippo Lanaro
- Department of Physics and Earth Science, University of Ferrara, I-44122 Ferrara, Italy
| | - Marco Coïsson
- INRIM, Advanced Materials and Life Sciences Division, Str. delle Cacce, 91, I-10135 Torino, Italy
| | - Francesca Agostinacchio
- BIOtech Research Center, Department of Industrial Engineering, University of Trento, I-38123, Trento, Italy
| | - Gabriele Greco
- Laboratory for Bioinspired, Bionic, Nano, Meta, Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, I-38123 Trento, Italy
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Nicola M Pugno
- Laboratory for Bioinspired, Bionic, Nano, Meta, Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, I-38123 Trento, Italy
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Antonella Motta
- BIOtech Research Center, Department of Industrial Engineering, University of Trento, I-38123, Trento, Italy
| |
Collapse
|
3
|
Aikman EL, Rao AP, Jia Y, Fussell EE, Trumbull KE, Sampath J, Stoppel WL. Impact of crystalline domains on long-term stability and mechanical performance of anisotropic silk fibroin sponges. J Biomed Mater Res A 2024; 112:1451-1471. [PMID: 38469675 DOI: 10.1002/jbm.a.37703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
Sponge-like materials made from regenerated silk fibroin biopolymers are a tunable and advantageous platform for in vitro engineered tissue culture and in vivo tissue regeneration. Anisotropic, three-dimensional (3D) silk fibroin sponge-like scaffolds can mimic the architecture of contractile muscle. Herein, we use silk fibroin solution isolated from the cocoons of Bombyx mori silkworms to form aligned sponges via directional ice templating in a custom mold with a slurry of dry ice and ethanol. Hydrated tensile mechanical properties of these aligned sponges were evaluated as a function of silk polymer concentration (3% or 5%), freezing time (50% or 100% ethanol), and post-lyophilization method for inducing crystallinity (autoclaving, water annealing). Hydrated static tensile tests were used to determine Young's modulus and ultimate tensile strength across sponge formulations at two strain rates to evaluate rate dependence in the calculated parameters. Results aligned with previous reports in the literature for isotropic silk fibroin sponge-like scaffolds, where the method by which beta-sheets were formed and level of beta-sheet content (crystallinity) had the greatest impact on static parameters, while polymer concentration and freezing rate did not significantly impact static mechanical properties. We estimated the crystalline organization using molecular dynamics simulations to show that larger crystalline regions may be responsible for strength at low strain amplitudes and brittleness at high strain amplitudes in the autoclaved sponges. Within the parameters evaluated, extensional Young's modulus is tunable in the range of 600-2800 kPa. Dynamic tensile testing revealed the linear viscoelastic region to be between 0% and 10% strain amplitude and 0.2-2 Hz frequencies. Long-term stability was evaluated by hysteresis and fatigue tests. Fatigue tests showed minimal change in the storage and loss modulus of 5% silk fibroin sponges for more than 6000 min of continuous mechanical stimulation in the linear regime at 10% strain amplitude and 1 Hz frequency. Furthermore, we confirmed that these mechanical properties hold when decellularized extracellular matrix is added to the sponges and when the mechanical property assessments were performed in cell culture media. We also used nano-computed tomography (nano-CT) and simulations to explore pore interconnectivity and tortuosity. Overall, these results highlight the potential of anisotropic, sponge-like silk fibroin scaffolds for long-term (>6 weeks) contractile muscle culture with an in vitro bioreactor system that provides routine mechanical stimulation.
Collapse
Affiliation(s)
- Elizabeth L Aikman
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Asha P Rao
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Yinhao Jia
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Emily E Fussell
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Kayleigh E Trumbull
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Janani Sampath
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Whitney L Stoppel
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
De Giorgio G, Matera B, Vurro D, Manfredi E, Galstyan V, Tarabella G, Ghezzi B, D'Angelo P. Silk Fibroin Materials: Biomedical Applications and Perspectives. Bioengineering (Basel) 2024; 11:167. [PMID: 38391652 PMCID: PMC10886036 DOI: 10.3390/bioengineering11020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
The golden rule in tissue engineering is the creation of a synthetic device that simulates the native tissue, thus leading to the proper restoration of its anatomical and functional integrity, avoiding the limitations related to approaches based on autografts and allografts. The emergence of synthetic biocompatible materials has led to the production of innovative scaffolds that, if combined with cells and/or bioactive molecules, can improve tissue regeneration. In the last decade, silk fibroin (SF) has gained attention as a promising biomaterial in regenerative medicine due to its enhanced bio/cytocompatibility, chemical stability, and mechanical properties. Moreover, the possibility to produce advanced medical tools such as films, fibers, hydrogels, 3D porous scaffolds, non-woven scaffolds, particles or composite materials from a raw aqueous solution emphasizes the versatility of SF. Such devices are capable of meeting the most diverse tissue needs; hence, they represent an innovative clinical solution for the treatment of bone/cartilage, the cardiovascular system, neural, skin, and pancreatic tissue regeneration, as well as for many other biomedical applications. The present narrative review encompasses topics such as (i) the most interesting features of SF-based biomaterials, bare SF's biological nature and structural features, and comprehending the related chemo-physical properties and techniques used to produce the desired formulations of SF; (ii) the different applications of SF-based biomaterials and their related composite structures, discussing their biocompatibility and effectiveness in the medical field. Particularly, applications in regenerative medicine are also analyzed herein to highlight the different therapeutic strategies applied to various body sectors.
Collapse
Affiliation(s)
- Giuseppe De Giorgio
- IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Biagio Matera
- Center of Dental Medicine, Department of Medicine and Surgery, University of Parma, Via Gramsci 14/A, 43126 Parma, Italy
| | - Davide Vurro
- IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Edoardo Manfredi
- Center of Dental Medicine, Department of Medicine and Surgery, University of Parma, Via Gramsci 14/A, 43126 Parma, Italy
| | - Vardan Galstyan
- IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via Vivarelli 10, 41125 Modena, Italy
| | - Giuseppe Tarabella
- IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Benedetta Ghezzi
- IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy
- Center of Dental Medicine, Department of Medicine and Surgery, University of Parma, Via Gramsci 14/A, 43126 Parma, Italy
| | - Pasquale D'Angelo
- IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| |
Collapse
|
5
|
Kaewchuchuen J, Matthew SAL, Phuagkhaopong S, Bimbo LM, Seib FP. Functionalising silk hydrogels with hetero- and homotypic nanoparticles. RSC Adv 2024; 14:3525-3535. [PMID: 38259992 PMCID: PMC10801455 DOI: 10.1039/d3ra07634b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Despite many reports detailing silk hydrogels, the development of composite silk hydrogels with homotypic and heterotypic silk nanoparticles and their impact on material mechanics and biology have remained largely unexplored. We hypothesise that the inclusion of nanoparticles into silk-based hydrogels enables the formation of homotropic and heterotropic material assemblies. The aim was to explore how well these systems allow tuning of mechanics and cell adhesion to ultimately control the cell-material interface. We utilised nonporous silica nanoparticles as a standard reference and compared them to nanoparticles derived from Bombyx mori silk and Antheraea mylitta (tasar) silk (approximately 100-150 nm in size). Initially, physically cross-linked B. mori silk hydrogels were prepared containing silica, B. mori silk nanoparticles, or tasar silk nanoparticles at concentrations of either 0.05% or 0.5% (w/v). The initial modulus (stiffness) of these nanoparticle-functionalised silk hydrogels was similar. Stress relaxation was substantially faster for nanoparticle-modified silk hydrogels than for unmodified control hydrogels. Increasing the concentrations of B. mori silk and silica nanoparticles slowed stress relaxation, while the opposite trend was observed for hydrogels modified with tasar nanoparticles. Cell attachment was similar for all hydrogels, but proliferation during the initial 24 h was significantly improved with the nanoparticle-modified hydrogels. Overall, this study demonstrates the manufacture and utilisation of homotropic and heterotropic silk hydrogels.
Collapse
Affiliation(s)
- Jirada Kaewchuchuen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| | - Saphia A L Matthew
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| | - Suttinee Phuagkhaopong
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University Bangkok Thailand
| | - Luis M Bimbo
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra 3000-548 Coimbra Portugal
- CNC - Center for Neuroscience and Cell Biology, Rua Larga, University of Coimbra 3004-504 Coimbra Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, Rua Larga, University of Coimbra 3004-504 Coimbra Portugal
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
- Fraunhofer Institute for Molecular Biology & Applied Ecology Branch Bioresources, Ohlebergsweg 12 35392 Giessen Germany
- Friedrich Schiller University Jena, Institute of Pharmacy Lessingstr. 8 07743 Jena Germany +49 3641 9 499 00
| |
Collapse
|
6
|
Sandau KC, Arrigali EM, Serban BA, Serban MA. Colorimetric Properties of Bombyx mori Silk Fibroin. ACS Biomater Sci Eng 2023; 9:6623-6631. [PMID: 37931249 DOI: 10.1021/acsbiomaterials.3c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Recent reports highlighted several novel applications for the Bombyx mori silk fibroin (SF), as edible coatings for the preservation of food freshness, smart labels, or packaging materials. This study complements these reports and additionally describes the colorimetric sensing properties of the natural protein that could be explored to enhance the practical value of such applications. Our data show that in response to pH changes, reconstituted SF is able to undergo visible color changes that correlate with the intensity of the stimuli, regardless of its physical format or physical cross-linking state. The intensity of the developed color was proportional to the extent of the protein's hydrolytic degradation. We also found that these pH-driven color changes were reversible and interchangeable, with colorless samples at neutral pH, purple in acidic environments, and yellow under basic conditions. Our mechanistic studies identified tryptophan as being responsible for these colorimetric responses, which could be further intensified by the presence of ionized tyrosine functionalities. In addition, we determined that SF's sensing properties also applied to ultraviolet light exposure. Finally, we showed that the innate sensing capabilities of activated SF can be enhanced via the covalent incorporation of additional tryptophan into the protein. Overall, our results further support the utility of SF for sensing applications.
Collapse
Affiliation(s)
- Kolton C Sandau
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, Montana 59812, United States
| | - Elizabeth M Arrigali
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, Montana 59812, United States
| | - Bogdan A Serban
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, Montana 59812, United States
| | - Monica A Serban
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, Montana 59812, United States
| |
Collapse
|
7
|
Bokhari N, Yasmeen A, Ali A, Khalid H, Wang R, Bashir M, Sharif F. Silk Meshes Coated with Chitosan-Bioactive Phytochemicals Activate Wound Healing Genes In Vitro. Macromol Biosci 2023; 23:e2300039. [PMID: 37203244 DOI: 10.1002/mabi.202300039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/15/2023] [Indexed: 05/20/2023]
Abstract
Meshes from natural silk are hand knitted and surface functionalized to facilitate hernia repair and other load bearing, tissue applications. Purified organic silk is - hand knitted and then coated with chitosan (CH)/bacterial cellulose (BC) blend polymer using four phytochemicals such as pomegranate (PG) peel, Nigella sativa (NS) seed, Licorice root (LE), and Bearberry leaf extracts (BE) separately. Characterizations using GCMS analysis shows the presence of bioactive chemicals in the extracts. Scanning electron microcopy (SEM) shows that the surface is coated with the composite polymer t. Fourier transform infrared spectroscopy (FTIR) shows significant elements found in CH, BC, and phytochemicals in plant extracts with no chemical changes. Tensile strength of the coated meshes is higher to support tissue as implants. The release kinetics suggest sustained release of phytochemical extracts. In vitro studies confirmed the noncytotoxic, biocompatible, wound healing potential of the meshes. Furthermore, gene expression analysis of 3-wound healing genes shows marked increase in the in vitro cell cultures due to the presence of extracts. These results suggest that the composite meshes can efficiently support hernia closure while facilitating wound/tissue healing and combating bacterial infections. Therefore, these meshes can be good candidates for fistula and cleft palate repair.
Collapse
Affiliation(s)
- Natasha Bokhari
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
- Department of Chemistry, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Abida Yasmeen
- Department of Chemistry, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Asif Ali
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Ghent, 9000, Belgium
| | - Hamad Khalid
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Rong Wang
- Biomedical Polymer Research Group, Cixi Institute of, Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 99 Xuelin Road, Cixi, Ningbo, 315000, China
| | - Mustehsan Bashir
- Department of Plastic, Reconstructive Surgery and Burn Unit, King Edward Medical University, Lahore, 54000, Pakistan
| | - Faiza Sharif
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| |
Collapse
|
8
|
Roblin NV, DeBari MK, Shefter SL, Iizuka E, Abbott RD. Development of a More Environmentally Friendly Silk Fibroin Scaffold for Soft Tissue Applications. J Funct Biomater 2023; 14:jfb14040230. [PMID: 37103320 PMCID: PMC10143335 DOI: 10.3390/jfb14040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
A push for environmentally friendly approaches to biomaterials fabrication has emerged from growing conservational concerns in recent years. Different stages in silk fibroin scaffold production, including sodium carbonate (Na2CO3)-based degumming and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)-based fabrication, have drawn attention for their associated environmental concerns. Environmentally friendly alternatives have been proposed for each processing stage; however, an integrated green fibroin scaffold approach has not been characterized or used for soft tissue applications. Here, we show that the combination of sodium hydroxide (NaOH) as a substitute degumming agent with the popular "aqueous-based" alternative silk fibroin gelation method yields fibroin scaffolds with comparable properties to traditional Na2CO3-degummed aqueous-based scaffolds. The more environmentally friendly scaffolds were found to have comparable protein structure, morphology, compressive modulus, and degradation kinetics, with increased porosity and cell seeding density relative to traditional scaffolds. Human adipose-derived stem cells showed high viability after three days of culture while seeded in each scaffold type, with uniform cell attachment to pore walls. Adipocytes from human whole adipose tissue seeded into scaffolds were found to have similar levels of lipolytic and metabolic function between conditions, in addition to a healthy unilocular morphology. Results indicate that our more environmentally friendly methodology for silk scaffold production is a viable alternative and well suited to soft tissue applications.
Collapse
Affiliation(s)
- Nathan V Roblin
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Megan K DeBari
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sandra L Shefter
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Erica Iizuka
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rosalyn D Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
9
|
Croft AS, Spessot E, Bhattacharjee P, Yang Y, Motta A, Wöltje M, Gantenbein B. Biomedical applications of silk and its role for intervertebral disc repair. JOR Spine 2022; 5:e1225. [PMID: 36601376 PMCID: PMC9799090 DOI: 10.1002/jsp2.1225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/10/2022] [Accepted: 09/10/2022] [Indexed: 12/30/2022] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is the main contributor to chronic low back pain. To date, the present therapies mainly focus on treating the symptoms caused by IDD rather than addressing the problem itself. For this reason, researchers have searched for a suitable biomaterial to repair and/or regenerate the IVD. A promising candidate to fill this gap is silk, which has already been used as a biomaterial for many years. Therefore, this review aims first to elaborate on the different origins from which silk is harvested, the individual composition, and the characteristics of each silk type. Another goal is to enlighten why silk is so suitable as a biomaterial, discuss its functionalization, and how it could be used for tissue engineering purposes. The second part of this review aims to provide an overview of preclinical studies using silk-based biomaterials to repair the inner region of the IVD, the nucleus pulposus (NP), and the IVD's outer area, the annulus fibrosus (AF). Since the NP and the AF differ fundamentally in their structure, different therapeutic approaches are required. Consequently, silk-containing hydrogels have been used mainly to repair the NP, and silk-based scaffolds have been used for the AF. Although most preclinical studies have shown promising results in IVD-related repair and regeneration, their clinical transition is yet to come.
Collapse
Affiliation(s)
- Andreas S. Croft
- Tissue Engineering for Orthopaedic & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
| | - Eugenia Spessot
- Department of Industrial Engineering and BIOtech Research CenterUniversity of TrentoTrentoItaly
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine UnitTrentoItaly
| | - Promita Bhattacharjee
- Department of Chemical SciencesSSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of LimerickLimerickIreland
| | - Yuejiao Yang
- Department of Industrial Engineering and BIOtech Research CenterUniversity of TrentoTrentoItaly
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine UnitTrentoItaly
- INSTM, Trento Research Unit, Interuniversity Consortium for Science and Technology of MaterialsTrentoItaly
| | - Antonella Motta
- Department of Industrial Engineering and BIOtech Research CenterUniversity of TrentoTrentoItaly
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine UnitTrentoItaly
- INSTM, Trento Research Unit, Interuniversity Consortium for Science and Technology of MaterialsTrentoItaly
| | - Michael Wöltje
- Institute of Textile Machinery and High Performance Material TechnologyDresdenGermany
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedic & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department of Orthopaedic Surgery & Traumatology, InselspitalBern University Hospital, Medical Faculty, University of BernBernSwitzerland
| |
Collapse
|
10
|
Zhu T, Zhu J, Lu S, Mo X. Evaluation of electrospun PCL diol-based elastomer fibers as a beneficial matrix for vascular tissue engineering. Colloids Surf B Biointerfaces 2022; 220:112963. [DOI: 10.1016/j.colsurfb.2022.112963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
|
11
|
Fountain JN, Hawker MJ, Hartle L, Wu J, Montanari V, Sahoo JK, Davis LM, Kaplan DL, Kumar K. Towards Non-stick Silk: Tuning the Hydrophobicity of Silk Fibroin Protein. Chembiochem 2022; 23:e202200429. [PMID: 35998090 PMCID: PMC9830957 DOI: 10.1002/cbic.202200429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Indexed: 02/03/2023]
Abstract
Silk fibroin protein is a biomaterial with excellent biocompatibility and low immunogenicity. These properties have catapulted the material as a leader for extensive use in stents, catheters, and wound dressings. Modulation of hydrophobicity of silk fibroin protein to further expand the scope and utility however has been elusive. We report that installing perfluorocarbon chains on the surface of silk fibroin transforms this water-soluble protein into a remarkably hydrophobic polymer that can be solvent-cast. A clear relationship emerged between fluorine content of the modified silk and film hydrophobicity. Water contact angles of the most decorated silk fibroin protein exceeded that of Teflon®. We further show that water uptake in prefabricated silk bars is dramatically reduced, extending their lifetimes, and maintaining mechanical integrity. These results highlight the power of chemistry under moderate conditions to install unnatural groups onto the silk fibroin surface and will enable further exploration into applications of this versatile biomaterial.
Collapse
Affiliation(s)
| | - Morgan J. Hawker
- Department of Chemistry and Biochemistry, California State University, Fresno, Fresno, CA 93740
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Lauren Hartle
- Department of Chemistry, Tufts University, Medford, MA 02155
- Present address: Prime Impact Fund, Cambridge, MA 02139
| | - Junqi Wu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | | | | | - Luke M. Davis
- Department of Chemistry, Tufts University, Medford, MA 02155
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Krishna Kumar
- Department of Chemistry, Tufts University, Medford, MA 02155
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| |
Collapse
|
12
|
Deng N, Li J, Lyu H, Huang R, Liu H, Guo C. Degradable silk-based soft actuators with magnetic responsiveness. J Mater Chem B 2022; 10:7650-7660. [PMID: 36128873 DOI: 10.1039/d2tb01328b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Soft actuators with stimuli-responsiveness have great potential in biomedical applications such as drug delivery and minimally invasive surgery. In this study, protein-based soft actuators with magnetic actuation are fabricated using naturally occurring silk proteins and synthesized Fe3O4 magnetic nanoparticles (NPs). Briefly, magnetic silk films are first prepared by solution casting of a mixture containing silk proteins, synthesized Fe3O4 NPs, and glycerol. The molecular structures of the magnetic silk films are characterized by FTIR spectroscopy, which show that the β-sheet content in the films is about 20%. The mechanical tests show that the magnetic silk films can be stretched to over 200% under wet conditions and Young's modulus is estimated to be 4.89 ± 0.69 MPa, matching the stiffness of soft tissues. Furthermore, the enzymatic degradability, good biocompatibility, and in vivo X-ray visibility of the films are demonstrated by the in vitro enzymatic degradation test, in vivo biocompatibility test, and micro-CT imaging, respectively. Degradable silk-based soft actuators with magnetic responsiveness are successfully prepared by thermal forming or plastic molding of the magnetic silk films. The fabricated soft actuators can be actuated and move with precise locomotive gaits in solutions using a magnet. In addition, the retention of the soft actuators and localized drug delivery in gastrointestinal tracts by attaching a magnet to the abdominal skin are demonstrated using model systems. The degradable silk-based soft actuators provide many opportunities for improving current therapeutic strategies in biomedicine.
Collapse
Affiliation(s)
- Niping Deng
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.,School of Engineering, Westlake University, Hangzhou 310024, China.
| | - Jinghang Li
- School of Engineering, Westlake University, Hangzhou 310024, China.
| | - Hao Lyu
- School of Engineering, Westlake University, Hangzhou 310024, China.
| | - Ruochuan Huang
- School of Engineering, Westlake University, Hangzhou 310024, China.
| | - Haoran Liu
- School of Engineering, Westlake University, Hangzhou 310024, China.
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou 310024, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| |
Collapse
|
13
|
Regulation of Adipose Progenitor Cell Expansion in a Novel Micro-Physiological Model of Human Adipose Tissue Mimicking Fibrotic and Pro-Inflammatory Microenvironments. Cells 2022; 11:cells11182798. [PMID: 36139371 PMCID: PMC9496930 DOI: 10.3390/cells11182798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
The expansion of adipose progenitor cells (APCs) plays an important role in the regeneration of the adipose tissue in physiological and pathological situations. The major role of CD26-expressing APCs in the generation of adipocytes has recently been highlighted, revealing that the CD26 APC subtype displays features of multipotent stem cells, giving rise to CD54- and CD142-expressing preadipocytes. However, a relevant human in vitro model to explore the regulation of the APC subpopulation expansion in lean and obese adipose tissue microenvironments is still lacking. In this work, we describe a novel adipose tissue model, named ExAdEx, that can be obtained from cosmetic surgery wastes. ExAdEx products are adipose tissue units maintaining the characteristics and organization of adipose tissue as it presents in vivo. The model was viable and metabolically active for up to two months and could adopt a pathological-like phenotype. The results revealed that inflammatory and fibrotic microenvironments differentially regulated the expansion of the CD26 APC subpopulation and its CD54 and CD142 APC progenies. The approach used significantly improves the method of generating adipose tissue models, and ExAdEx constitutes a relevant model that could be used to identify pathways promoting the expansion of APCs in physiological and pathological microenvironments.
Collapse
|
14
|
Zhang W, Wauthier E, Lanzoni G, Hani H, Yi X, Overi D, Shi L, Simpson S, Allen A, Suitt C, Ezzell JA, Alvaro D, Cardinale V, Gaudio E, Carpino G, Prestwich G, Dominguez-Bendala J, Gerber D, Mathews K, Piedrahita J, Adin C, Sethupathy P, He Z, Reid LM. Patch grafting of organoids of stem/progenitors into solid organs can correct genetic-based disease states. Biomaterials 2022; 288:121647. [PMID: 36030102 PMCID: PMC10495116 DOI: 10.1016/j.biomaterials.2022.121647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
Patch grafting, a novel strategy for transplantation of stem/progenitor organoids into porcine livers, has been found successful also for organoid transplantation into other normal or diseased solid organs in pigs and mice. Each organoid contained ∼100 cells comprised of biliary tree stem cells (BTSCs), co-hepato/pancreatic stem/progenitors, and partnered with early lineage stage mesenchymal cells (ELSMCs), angioblasts and precursors to endothelia and stellate cells. Patch grafting enabled transplantation into livers or pancreases of ≥108th (pigs) or ≥106th-7th (mice) organoids/patch. Graft conditions fostered expression of multiple matrix-metalloproteinases (MMPs), especially secretory isoforms, resulting in transient loss of the organ's matrix-dictated histological features, including organ capsules, and correlated with rapid integration within a week of organoids throughout the organs and without emboli or ectopic cell distribution. Secondarily, within another week, there was clearance of graft biomaterials, followed by muted expression of MMPs, restoration of matrix-dictated histology, and maturation of donor cells to functional adult fates. The ability of patch grafts of organoids to rescue hosts from genetic-based disease states was demonstrated with grafts of BTSC/ELSMC organoids on livers, able to rescue NRG/FAH-KO mice from type I tyrosinemia, a disease caused by absence of fumaryl acetoacetate hydrolase. With the same grafts, if on pancreas, they were able to rescue NRG/Akita mice from type I diabetes, caused by a mutation in the insulin 2 gene. The potential of patch grafting for cell therapies for solid organs now requires translational studies to enable its adaptation and uses for clinical programs.
Collapse
Affiliation(s)
- Wencheng Zhang
- Department of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill, NC 27599, USA; Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China.
| | - Eliane Wauthier
- Department of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill, NC 27599, USA.
| | - Giacomo Lanzoni
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA.
| | - Homayoun Hani
- Department of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill, NC 27599, USA.
| | - Xianwen Yi
- Department of Surgery, UNC School of Medicine, Chapel Hill, NC 27599, USA.
| | - Diletta Overi
- Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Roma RM, Italy.
| | - Lei Shi
- Department of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill, NC 27599, USA.
| | - Sean Simpson
- Department of Molecular Biomedical Sciences, North Carolina State College of Veterinary Medicine, Raleigh, NC 27606, USA; The Comparative Medicine Institute, North Carolina State College of Veterinary Medicine, Raleigh, NC 27606, USA; Department of Comparative Veterinary Anatomy, North Carolina State College of Veterinary Medicine, Raleigh, NC 27606, USA.
| | - Amanda Allen
- Department of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill, NC 27599, USA.
| | - Carolyn Suitt
- Center on Gastrointestinal Disease Biology (CGIBD) Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | - Jennifer Ashley Ezzell
- Department of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill, NC 27599, USA.
| | - Domenico Alvaro
- Center on Gastrointestinal Disease Biology (CGIBD) Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Roma RM, Italy.
| | - Eugenio Gaudio
- Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Roma RM, Italy.
| | - Guido Carpino
- Translational and Precision Medicine, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Roma RM, Italy.
| | - Glenn Prestwich
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, 00135, Italy.
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA.
| | - David Gerber
- Department of Surgery, UNC School of Medicine, Chapel Hill, NC 27599, USA.
| | - Kyle Mathews
- Department of Clinical Sciences, North Carolina State College of Veterinary Medicine, Raleigh, NC 27606, USA.
| | - Jorge Piedrahita
- Department of Molecular Biomedical Sciences, North Carolina State College of Veterinary Medicine, Raleigh, NC 27606, USA; The Comparative Medicine Institute, North Carolina State College of Veterinary Medicine, Raleigh, NC 27606, USA; Department of Comparative Veterinary Anatomy, North Carolina State College of Veterinary Medicine, Raleigh, NC 27606, USA.
| | - Christopher Adin
- Department of Clinical Sciences, North Carolina State College of Veterinary Medicine, Raleigh, NC 27606, USA.
| | - Praveen Sethupathy
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China.
| | - Lola M Reid
- Department of Cell Biology and Physiology, UNC School of Medicine, Chapel Hill, NC 27599, USA; Cornell University College of Veterinary Medicine, T7 006D Veterinary Research Tower, Box 17, Ithaca, NY 14853, USA.
| |
Collapse
|
15
|
Liu S, Gao X, Wang Y, Wang J, Qi X, Dong K, Shi D, Wu X, Guo C. Baicalein-loaded silk fibroin peptide nanofibers protect against cisplatin-induced acute kidney injury: fabrication, characterization and mechanism. Int J Pharm 2022; 626:122161. [PMID: 36058409 DOI: 10.1016/j.ijpharm.2022.122161] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/14/2022] [Accepted: 08/28/2022] [Indexed: 10/14/2022]
Abstract
Silk fibroin (SF) is a natural polymeric biomaterial widely used in the preparation of drug delivery systems. Herein, silk fibroin peptide (SFP) was self-assembled into nanofibers, encapsulated a poorly water-soluble drug baicalein (SFP/BA NFs), and then used to protect against cisplatin-induced acute kidney injury (AKI). Specifically, the SFP/BA NFs significantly enhanced the aqueous dispersity, storage stability, and in vitro antioxidant activity of BA. SFP/BA NFs increased the drug uptake and localization to mitochondria. In vitro results demonstrated that SFP/BA NFs can relieve the cisplatin-induced HK-2 cell damage, and inhibit the cisplatin-induced accumulation of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) disruption. Mechanism studies demonstrated that SFP/BA NFs may exert nephroprotective effects by inhibiting both the cisplatin-induced DNA damage and the cGAS/STING pathway activation. In vivo results showed that cisplatin treatment resulted in decreased body weight, increased serum creatinine (SCr), and increased blood urea nitrogen (BUN) levels, while SFP/BA NFs reversed the above symptoms. Furthermore, SFP/BA NFs reversed the cisplatin-induced abnormal changes of antioxidant enzymes (e.g., SOD and GSH), and inhibited the cisplatin-induced DNA damage as well as the activation of cGAS/TING. Above all, our results revealed the potential of SFP/BA NFs to protect against cisplatin-induced AKI.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xintao Gao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yaqi Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou 014030, China
| | - Xueju Qi
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kehong Dong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266273, Shandong, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266273, Shandong, China.
| |
Collapse
|
16
|
Hausken KG, Frevol RL, Dowdle KP, Young AN, Talusig JM, Holbrook CC, Rubin BK, Murphy AR. Quantitative Functionalization of the Tyrosine Residues in Silk Fibroin through an Amino‐Tyrosine Intermediate. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kian G. Hausken
- Department of Chemistry Western Washington University 516 High St. Bellingham WA 98225‐9150 USA
| | - Romane L. Frevol
- Department of Chemistry Western Washington University 516 High St. Bellingham WA 98225‐9150 USA
| | - Kimberly P. Dowdle
- Department of Chemistry Western Washington University 516 High St. Bellingham WA 98225‐9150 USA
| | - Aleena N. Young
- Department of Chemistry Western Washington University 516 High St. Bellingham WA 98225‐9150 USA
| | - Jeremy M. Talusig
- Department of Chemistry Western Washington University 516 High St. Bellingham WA 98225‐9150 USA
| | - Carolynne C. Holbrook
- Department of Chemistry Western Washington University 516 High St. Bellingham WA 98225‐9150 USA
| | - Benjamin K. Rubin
- Department of Chemistry Western Washington University 516 High St. Bellingham WA 98225‐9150 USA
| | - Amanda R. Murphy
- Department of Chemistry Western Washington University 516 High St. Bellingham WA 98225‐9150 USA
| |
Collapse
|
17
|
Rogal J, Roosz J, Teufel C, Cipriano M, Xu R, Eisler W, Weiss M, Schenke‐Layland K, Loskill P. Autologous Human Immunocompetent White Adipose Tissue-on-Chip. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104451. [PMID: 35466539 PMCID: PMC9218765 DOI: 10.1002/advs.202104451] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/03/2022] [Indexed: 05/07/2023]
Abstract
Obesity and associated diseases, such as diabetes, have reached epidemic proportions globally. In this era of "diabesity", white adipose tissue (WAT) has become a target of high interest for therapeutic strategies. To gain insights into mechanisms of adipose (patho-)physiology, researchers traditionally relied on animal models. Leveraging Organ-on-Chip technology, a microphysiological in vitro model of human WAT is introduced: a tailored microfluidic platform featuring vasculature-like perfusion that integrates 3D tissues comprising all major WAT-associated cellular components (mature adipocytes, organotypic endothelial barriers, stromovascular cells including adipose tissue macrophages) in an autologous manner and recapitulates pivotal WAT functions, such as energy storage and mobilization as well as endocrine and immunomodulatory activities. A precisely controllable bottom-up approach enables the generation of a multitude of replicates per donor circumventing inter-donor variability issues and paving the way for personalized medicine. Moreover, it allows to adjust the model's degree of complexity via a flexible mix-and-match approach. This WAT-on-Chip system constitutes the first human-based, autologous, and immunocompetent in vitro adipose tissue model that recapitulates almost full tissue heterogeneity and can become a powerful tool for human-relevant research in the field of metabolism and its associated diseases as well as for compound testing and personalized- and precision medicine applications.
Collapse
Affiliation(s)
- Julia Rogal
- Department for Microphysiological Systems, Institute of Biomedical EngineeringEberhard Karls University TübingenÖsterbergstr. 3Tübingen72074Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGBNobelstr. 12Stuttgart70569Germany
| | - Julia Roosz
- NMI Natural and Medical Sciences Institute at the University of TübingenMarkwiesenstr. 55Reutlingen72770Germany
| | - Claudia Teufel
- Department for Microphysiological Systems, Institute of Biomedical EngineeringEberhard Karls University TübingenÖsterbergstr. 3Tübingen72074Germany
| | - Madalena Cipriano
- Department for Microphysiological Systems, Institute of Biomedical EngineeringEberhard Karls University TübingenÖsterbergstr. 3Tübingen72074Germany
- 3R‐Center for In vitro Models and Alternatives to Animal TestingEberhard Karls University TübingenÖsterbergstr. 3Tübingen72074Germany
| | - Raylin Xu
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGBNobelstr. 12Stuttgart70569Germany
- Harvard Medical School (HMS)25 Shattuck StBostonMA02115USA
| | - Wiebke Eisler
- Clinic for PlasticReconstructiveHand and Burn SurgeryBG Trauma CenterEberhard Karls University TübingenSchnarrenbergstraße 95Tübingen72076Germany
| | - Martin Weiss
- NMI Natural and Medical Sciences Institute at the University of TübingenMarkwiesenstr. 55Reutlingen72770Germany
- Department of Women's HealthEberhard Karls University TübingenCalwerstrasse 7Tübingen72076Germany
| | - Katja Schenke‐Layland
- NMI Natural and Medical Sciences Institute at the University of TübingenMarkwiesenstr. 55Reutlingen72770Germany
- Department of Medicine/CardiologyCardiovascular Research LaboratoriesDavid Geffen School of Medicine at UCLA675 Charles E. Young Drive South, MRL 3645Los AngelesCA90095USA
- Cluster of Excellence iFIT (EXC2180) “Image‐Guided and Functionally Instructed Tumor Therapies”Eberhard Karls University TuebingenRöntgenweg 11Tuebingen72076Germany
- Department for Medical Technologies and Regenerative MedicineInstitute of Biomedical EngineeringEberhard Karls University TübingenSilcherstr. 7/1Tübingen72076Germany
| | - Peter Loskill
- Department for Microphysiological Systems, Institute of Biomedical EngineeringEberhard Karls University TübingenÖsterbergstr. 3Tübingen72074Germany
- NMI Natural and Medical Sciences Institute at the University of TübingenMarkwiesenstr. 55Reutlingen72770Germany
- 3R‐Center for In vitro Models and Alternatives to Animal TestingEberhard Karls University TübingenÖsterbergstr. 3Tübingen72074Germany
| |
Collapse
|
18
|
Wu X, Ge L, Shen G, He Y, Xu Z, Li D, Mu C, Zhao L, Zhang W. 131I-Labeled Silk Fibroin Microspheres for Radioembolic Therapy of Rat Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21848-21859. [PMID: 35507826 DOI: 10.1021/acsami.2c00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transarterial radioembolization (TARE) is a promising technology in hepatocellular carcinoma (HCC) therapy, which utilizes radionuclide-labeled microspheres to achieve arterial embolization and internal irradiation. However, the therapeutic effect of liver cancer can be affected by low radionuclide labeling rate and stability, as well as poor biocompatibility, and non-biodegradability of microspheres. Here, 131I-labeled silk fibroin microspheres (131I-SFMs) were developed as radioembolization material for effective TARE therapy against HCC. Silk fibroin rich in 10.03% of tyrosine was extracted from silkworm cocoons and then emulsified and genipin-crosslinked to prepare SFMs. SFMs show a good settlement rate, biodegradability, hemocompatibility, and low cytotoxicity. Afterward, 131I-SFMs were obtained by radiolabeling 131I onto the SFMs through the chloramine-T method. 131I-SFMs possess a high 131I labeling rate of over 84% and good radioactive stability and are thus conducive to internal radiotherapy. Significantly, 131I-SFMs with diameters around 11 μm were successfully radioembolized at the hepatic artery. 131I-SFMs were diffused in the liver, indicating the favorable biodistribution and biosafety in vivo. Based on the combination of embolization and local radiotherapy, the administration of 131I-SFMs shows a favorable inhibitive effect against the progression of HCC. Overall, the newly developed 131I-SFMs as radioembolization microspheres provide a promising application for effective TARE therapy against liver cancer.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Guohua Shen
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Ying He
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Zhilang Xu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Lei Zhao
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Wenjie Zhang
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
19
|
Han Q, Zheng T, Zhang L, Wu N, Liang J, Wu H, Li G. Metformin loaded injectable silk fibroin microsphere for the treatment of spinal cord injury. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:747-768. [PMID: 34865608 DOI: 10.1080/09205063.2021.2014113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The repair of spinal cord injury is a great challenge in clinical. Improving the microenvironment of the injured site is the key strategy for accelerating axon regeneration and synaptic formation. Herein, a kind of silk fibroin microspheres functionalized by metformin through dopamine was developed using water-in-oil emulsification-diffusion method and surface modification technique, and the effect on cortical neuron was evaluated. The results showed that the microspheres showed a uniform size distribution with the diameter of around 60 μm and a concave structure. Moreover, the microspheres possessed good injectability and stability. In addition, the metformin could be successfully immobilized in the silk fibroin microspheres. The cell culture results displayed that the growth and morphology of cortical neurons on the microspheres with metformin concentration of 5 mg/mL and 10 mg/mL were obviously better than that on other samples. Notably, the spread area of single cortical cell on silk fibroin microspheres was increased with the ascending metformin concentration. Therefore, the results indicated that the metformin loaded silk fibroin microsphere could obviously improve the growth and spreading behavior of cortical neuron. The study may provide an important experimental basis for the development of drug loaded injectable biomaterials scaffolds for the treatment of spinal cord injury and have great potential for spinal cord regeneration.
Collapse
Affiliation(s)
- Qi Han
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, P.R. China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, P.R. China
| | - Tiantian Zheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, P.R. China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, P.R. China
| | - Linhui Zhang
- School of Medical, Nantong University, Nantong, P.R. China
| | - Ningling Wu
- School of Medical, Nantong University, Nantong, P.R. China
| | - Jiaqi Liang
- School of Medical, Nantong University, Nantong, P.R. China
| | - Hong Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, P.R. China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, P.R. China
| | - Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, P.R. China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, P.R. China
| |
Collapse
|
20
|
Ghanbari E, Mehdipour A, Khazaei M, Khoshfeterat AB, Niknafs B. A review of recent advances on osteogenic applications of Silk fibroin as a potential bio-scaffold in bone tissue engineering. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2032707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Elham Ghanbari
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Behrooz Niknafs
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Bioengineered models of Parkinson's disease using patient-derived dopaminergic neurons exhibit distinct biological profiles in a 3D microenvironment. Cell Mol Life Sci 2022; 79:78. [PMID: 35044538 PMCID: PMC8908880 DOI: 10.1007/s00018-021-04047-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 01/21/2023]
Abstract
Three-dimensional (3D) in vitro culture systems using human induced pluripotent stem cells (hiPSCs) are useful tools to model neurodegenerative disease biology in physiologically relevant microenvironments. Though many successful biomaterials-based 3D model systems have been established for other neurogenerative diseases, such as Alzheimer's disease, relatively few exist for Parkinson's disease (PD) research. We employed tissue engineering approaches to construct a 3D silk scaffold-based platform for the culture of hiPSC-dopaminergic (DA) neurons derived from healthy individuals and PD patients harboring LRRK2 G2019S or GBA N370S mutations. We then compared results from protein, gene expression, and metabolic analyses obtained from two-dimensional (2D) and 3D culture systems. The 3D platform enabled the formation of dense dopamine neuronal network architectures and developed biological profiles both similar and distinct from 2D culture systems in healthy and PD disease lines. PD cultures developed in 3D platforms showed elevated levels of α-synuclein and alterations in purine metabolite profiles. Furthermore, computational network analysis of transcriptomic networks nominated several novel molecular interactions occurring in neurons from patients with mutations in LRRK2 and GBA. We conclude that the brain-like 3D system presented here is a realistic platform to interrogate molecular mechanisms underlying PD biology.
Collapse
|
22
|
Wang X, Guo C, Guo L, Wang M, Liu M, Song Y, Jiao H, Wei X, Zhao Z, Kaplan DL. Radially Aligned Porous Silk Fibroin Scaffolds as Functional Templates for Engineering Human Biomimetic Hepatic Lobules. ACS APPLIED MATERIALS & INTERFACES 2022; 14:201-213. [PMID: 34929079 DOI: 10.1021/acsami.1c18215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioengineering functional hepatic tissue constructs that physiologically replicate the human native liver tissue in vitro is sought for clinical research and drug discovery. However, the intricate architecture and specific biofunctionality possessed by the native liver tissue remain challenging to mimic in vitro. In the present study, a versatile strategy to fabricate lobular-like silk protein scaffolds with radially aligned lamellar sheets, interconnected channels, and a converging central cavity was designed and implemented. A proof-of-concept study to bioengineer biomimetic hepatic lobules was conducted through coculturing human hepatocytes and primary endothelial cells on these lobular-like scaffolds. Relatively long-term viability of hepatocyte/endothelial cells was found along with cell alignment and organization in vitro. The hepatocytes showed special epithelial polarity and bile duct formation, similar to the liver plate, while the aligned endothelial cells generated endothelial networks, similar to natural hepatic sinuses. This endowed the three-dimensional (3D) tissue constructs with the capability to recapitulate hepatic-like parenchymal-mesenchymal growth patterns in vitro. More importantly, the cocultured hepatocytes outperformed monocultures or monolayer cultures, displaying significantly enhanced hepatocyte functions, including functional gene expression, albumin (ALB) secretion, urea synthesis, and metabolic activity. Thus, this functional unit with a biomimetic phenotype provides a novel technology for bioengineering biomimetic hepatic lobules in vitro, with potential utility as a building block for bioartificial liver (BAL) engineering or as a robust tool for drug metabolism investigation.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Chengchen Guo
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310023, China
| | - Lina Guo
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Mingqi Wang
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Ming Liu
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Yizhe Song
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Hui Jiao
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Xiaoqing Wei
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Zinan Zhao
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - David L Kaplan
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
23
|
Kornmuller A, Flynn LE. Development and characterization of matrix-derived microcarriers from decellularized tissues using electrospraying techniques. J Biomed Mater Res A 2021; 110:559-575. [PMID: 34581474 DOI: 10.1002/jbm.a.37306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/27/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022]
Abstract
Stirred bioreactor systems integrating microcarriers represent a promising approach for therapeutic cell manufacturing. While a variety of microcarriers are commercially available, current options do not integrate the tissue-specific composition of the extracellular matrix (ECM), which can play critical roles in directing cell function. The current study sought to generate microcarriers comprised exclusively of ECM from multiple tissue sources. More specifically, porcine decellularized dermis, porcine decellularized myocardium, and human decellularized adipose tissue were digested with α-amylase to obtain ECM suspensions that could be electrosprayed into liquid nitrogen to generate 3D microcarriers that were stable over a range of ECM concentrations without the need for chemical crosslinking or other additives. Characterization studies confirmed that all three microcarrier types had similar soft and compliant mechanical properties and were of a similar size range, but that their composition varied depending on the native tissue source. In vivo testing in immunocompetent mice revealed that the microcarriers integrated into the host tissues, supporting the infiltration of host cells including macrophages and endothelial cells at 2 weeks post-implantation. In vitro cell culture studies validated that the novel microcarriers supported the attachment of tissue-specific stromal cell populations under dynamic culture conditions within spinner flasks, with a significant increase in live cell numbers observed over 1 week on the dermal- and adipose-derived microcarriers. Overall, the findings demonstrate the versatility of the electrospraying methods and support the further development of the microcarriers as cell culture and delivery platforms.
Collapse
Affiliation(s)
- Anna Kornmuller
- School of Biomedical Engineering, Amit Chakma Engineering Building, The University of Western Ontario, London, Ontario, Canada
| | - Lauren E Flynn
- School of Biomedical Engineering, Amit Chakma Engineering Building, The University of Western Ontario, London, Ontario, Canada.,Department of Chemical & Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
24
|
Engineering a 3D Vascularized Adipose Tissue Construct Using a Decellularized Lung Matrix. Biomimetics (Basel) 2021; 6:biomimetics6030052. [PMID: 34562876 PMCID: PMC8482279 DOI: 10.3390/biomimetics6030052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 01/16/2023] Open
Abstract
Critically sized defects in subcutaneous white adipose tissue result in extensive disfigurement and dysfunction and remain a reconstructive challenge for surgeons; as larger defect sizes are correlated with higher rates of complications and failure due to insufficient vascularization following implantation. Our study demonstrates, for the first time, a method to engineer perfusable, pre-vascularized, high-density adipose grafts that combine patient-derived adipose cells with a decellularized lung matrix (DLM). The lung is one of the most vascularized organs with high flow, low resistance, and a large blood-alveolar interface separated by a thin basement membrane. For our work, the large volume capacity within the alveolar compartment was repurposed for high-density adipose cell filling, while the acellular vascular bed provided efficient graft perfusion throughout. Both adipocytes and hASCs were successfully delivered and remained in the alveolar space even after weeks of culture. While adipose-derived cells maintained their morphology and functionality in both static and perfusion DLM cultures, perfusion culture offered enhanced outcomes over static culture. Furthermore, we demonstrate that endothelial cells seamlessly integrate into the acellular vascular tree of the DLM with adipocytes. These results support that the DLM is a unique platform for creating vascularized adipose tissue grafts for large defect filling.
Collapse
|
25
|
Zhang W, Lanzoni G, Hani H, Overi D, Cardinale V, Simpson S, Pitman W, Allen A, Yi X, Wang X, Gerber D, Prestwich G, Lozoya O, Gaudio E, Alvaro D, Tokaz D, Dominguez-Bendala J, Adin C, Piedrahita J, Mathews K, Sethupathy P, Carpino G, He Z, Wauthier E, Reid LM. Patch grafting, strategies for transplantation of organoids into solid organs such as liver. Biomaterials 2021; 277:121067. [PMID: 34517276 DOI: 10.1016/j.biomaterials.2021.121067] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/28/2022]
Abstract
Epithelial cell therapies have been at an impasse because of inefficient methods of transplantation to solid organs. Patch grafting strategies were established enabling transplantation of ≥107th organoids/patch of porcine GFP+ biliary tree stem/progenitors into livers of wild type hosts. Grafts consisted of organoids embedded in soft (~100 Pa) hyaluronan hydrogels, both prepared in serum-free Kubota's Medium; placed against target sites; covered with a silk backing impregnated with more rigid hyaluronan hydrogels (~700 Pa); and use of the backing to tether grafts with sutures or glue to target sites. Hyaluronan coatings (~200-300 Pa) onto the serosal surface of the graft served to minimize adhesions with neighboring organs. The organ's clearance of hyaluronans enabled restoration of tissue-specific paracrine and systemic signaling, resulting in return of normal hepatic histology, with donor parenchymal cells uniformly integrated amidst host cells and that had differentiated to mature hepatocytes and cholangiocytes. Grafts containing donor mature hepatocytes, partnered with endothelia, and in the same graft biomaterials as for stem/progenitor organoids, did not engraft. Engraftment occurred if porcine liver-derived mesenchymal stem cells (MSCs) were co-transplanted with donor mature cells. RNA-seq analyses revealed that engraftment correlated with expression of matrix-metalloproteinases (MMPs), especially secreted isoforms that were found expressed strongly by organoids, less so by MSCs, and minimally, if at all, by adult cells. Engraftment with patch grafting strategies occurred without evidence of emboli or ectopic cell distribution. It was successful with stem/progenitor organoids or with cells with a source(s) of secreted MMP isoforms and offers significant potential for enabling cell therapies for solid organs.
Collapse
Affiliation(s)
- Wencheng Zhang
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA; Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, 1800 Yuntai Rd, Pudong New Area, Shanghai, 200123, China
| | - Giacomo Lanzoni
- Diabetes Research Institute, U. Miami Leonard M. Miller School of Medicine, 1450 N.W. 10th Avenue, Miami, FL, 33136, USA
| | - Homayoun Hani
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University, Piazzale Aldo Moro, 5, 00185, Roma RM, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Piazzale Aldo Moro, 5, 00185, Roma RM, Italy
| | - Sean Simpson
- Department of Molecular Biomedical Sciences, NCSU Colleage of Veterinary Medicine, Raleigh, NC, 27606, USA; The Comparative Medicine Institute, NCSU College of Veterinary Medicine, Raleigh, NC, 27606, USA; Department of Comparative Veterinary Anatomy, NCSU College of Veterinary Medicine, Raleigh, NC, 27606, USA
| | - Wendy Pitman
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, T7 006D Veterinary Research Tower, Box 17, Ithaca, NY, 14853, USA
| | - Amanda Allen
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA
| | - Xianwen Yi
- Departments of Surgery, UNC School of Medicine, Chapel Hill, NC, 27599, USA
| | - Xicheng Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, 1800 Yuntai Rd, Pudong New Area, Shanghai, 200123, China
| | - David Gerber
- Departments of Surgery, UNC School of Medicine, Chapel Hill, NC, 27599, USA
| | - Glenn Prestwich
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Oswaldo Lozoya
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA; Department of Biomedical Engineering, UNC School of Medicine, Chapel Hill, NC, 27599, USA.
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University, Piazzale Aldo Moro, 5, 00185, Roma RM, Italy
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Piazzale Aldo Moro, 5, 00185, Roma RM, Italy
| | - Debra Tokaz
- Department of Population Health and Pathobiology, NCSU College of Veterinary Medicine, Raleigh, NC, 27606, USA
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, U. Miami Leonard M. Miller School of Medicine, 1450 N.W. 10th Avenue, Miami, FL, 33136, USA
| | - Christopher Adin
- Department of Clinical Sciences, NCSU College of Veterinary Medicine, Raleigh, NC, 27606, USA
| | - Jorge Piedrahita
- Department of Molecular Biomedical Sciences, NCSU Colleage of Veterinary Medicine, Raleigh, NC, 27606, USA; The Comparative Medicine Institute, NCSU College of Veterinary Medicine, Raleigh, NC, 27606, USA; Department of Comparative Veterinary Anatomy, NCSU College of Veterinary Medicine, Raleigh, NC, 27606, USA
| | - Kyle Mathews
- Department of Clinical Sciences, NCSU College of Veterinary Medicine, Raleigh, NC, 27606, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, T7 006D Veterinary Research Tower, Box 17, Ithaca, NY, 14853, USA
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Roma, Italy
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, 1800 Yuntai Rd, Pudong New Area, Shanghai, 200123, China
| | - Eliane Wauthier
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA
| | - Lola M Reid
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
26
|
Abstract
Silk fibroin has been explored as a suitable biomaterial due to its biocompatibility, tunable degradability, low toxicity, and mechanical properties. To harness silk fibroin's innate properties, it is purified from native silkworm cocoons by removing proteins and debris that have the potential to cause inflammatory responses. Typically, within the purification and fabrication steps, chemical solvents, energy-intensive equipment, and large quantities of water are used to reverse engineer silk fibroin into an aqueous solution and then process into the final material format. Gentler, green methods for extraction and fabrication have been developed that reduce or remove the need for harmful chemical additives and energy-inefficient equipment while still producing mechanically robust biomaterials. This review will focus on the alternative green processing and fabrication methods that have proven useful in creating silk fibroin materials for a range of applications including consumer and medical materials.
Collapse
Affiliation(s)
- Megan K DeBari
- Materials Science and Engineering Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Claude I King
- Biomedical Engineering Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Tahlia A Altgold
- Materials Science and Engineering Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Biomedical Engineering Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rosalyn D Abbott
- Biomedical Engineering Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
27
|
Kochhar D, DeBari MK, Abbott RD. The Materiobiology of Silk: Exploring the Biophysical Influence of Silk Biomaterials on Directing Cellular Behaviors. Front Bioeng Biotechnol 2021; 9:697981. [PMID: 34239865 PMCID: PMC8259510 DOI: 10.3389/fbioe.2021.697981] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Biophysical properties of the extracellular environment dynamically regulate cellular fates. In this review, we highlight silk, an indispensable polymeric biomaterial, owing to its unique mechanical properties, bioactive component sequestration, degradability, well-defined architectures, and biocompatibility that can regulate temporospatial biochemical and biophysical responses. We explore how the materiobiology of silks, both mulberry and non-mulberry based, affect cell behaviors including cell adhesion, cell proliferation, cell migration, and cell differentiation. Keeping in mind the novel biophysical properties of silk in film, fiber, or sponge forms, coupled with facile chemical decoration, and its ability to match functional requirements for specific tissues, we survey the influence of composition, mechanical properties, topography, and 3D geometry in unlocking the body's inherent regenerative potential.
Collapse
Affiliation(s)
- Dakshi Kochhar
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Megan K. DeBari
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
28
|
The Inflammatory Profile of Obesity and the Role on Pulmonary Bacterial and Viral Infections. Int J Mol Sci 2021; 22:ijms22073456. [PMID: 33810619 PMCID: PMC8037155 DOI: 10.3390/ijms22073456] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity is a globally increasing health problem, entailing diverse comorbidities such as infectious diseases. An obese weight status has marked effects on lung function that can be attributed to mechanical dysfunctions. Moreover, the alterations of adipocyte-derived signal mediators strongly influence the regulation of inflammation, resulting in chronic low-grade inflammation. Our review summarizes the known effects regarding pulmonary bacterial and viral infections. For this, we discuss model systems that allow mechanistic investigation of the interplay between obesity and lung infections. Overall, obesity gives rise to a higher susceptibility to infectious pathogens, but the pathogenetic process is not clearly defined. Whereas, viral infections often show a more severe course in obese patients, the same patients seem to have a survival benefit during bacterial infections. In particular, we summarize the main mechanical impairments in the pulmonary tract caused by obesity. Moreover, we outline the main secretory changes within the expanded adipose tissue mass, resulting in chronic low-grade inflammation. Finally, we connect these altered host factors to the influence of obesity on the development of lung infection by summarizing observations from clinical and experimental data.
Collapse
|
29
|
Seib FP. Emerging Silk Material Trends: Repurposing, Phase Separation and Solution-Based Designs. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1160. [PMID: 33804578 PMCID: PMC7957590 DOI: 10.3390/ma14051160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022]
Abstract
Silk continues to amaze. This review unravels the most recent progress in silk science, spanning from fundamental insights to medical silks. Key advances in silk flow are examined, with specific reference to the role of metal ions in switching silk from a storage to a spinning state. Orthogonal thermoplastic silk molding is described, as is the transfer of silk flow principles for the triggering of flow-induced crystallization in other non-silk polymers. Other exciting new developments include silk-inspired liquid-liquid phase separation for non-canonical fiber formation and the creation of "silk organelles" in live cells. This review closes by examining the role of silk fabrics in fashioning facemasks in response to the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| |
Collapse
|
30
|
Carvalho CR, Chang W, Silva‐Correia J, Reis RL, Oliveira JM, Kohn J. Engineering Silk Fibroin-Based Nerve Conduit with Neurotrophic Factors for Proximal Protection after Peripheral Nerve Injury. Adv Healthc Mater 2021; 10:e2000753. [PMID: 33169544 DOI: 10.1002/adhm.202000753] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/15/2020] [Indexed: 12/11/2022]
Abstract
Artificial nerve conduits capable of adequately releasing neurotrophic factors are extensively studied to bridge nerve defects. However, the lack of neurotrophic factors in the proximal area and their visible effects in axonal retrograde transport following nerve injury is one of the factors causing an incomplete nerve regeneration. Herein, an advanced conduit made of silk fibroin is produced, which can incorporate growth factors and promote an effective regeneration after injury. For that, enzymatically crosslinked silk fibroin-based conduits are developed to be used as a platform for the controlled delivery of neurotrophic factors. Nerve growth factor and glial-cell line derived neurotrophic factor (GDNF) are incorporated using two different methodologies: i) crosslinking and ii) absorption method. The release profile is measured by ELISA technique. The bioactivity of the neurotrophic factors is evaluated in vitro by using primary dorsal root ganglia. When implanted in a 10 mm sciatic nerve defect in rats, GDNF-loaded silk fibroin conduits reveal retrograde neuroprotection as compared to autografts and plain silk fibroin conduit. Therefore, the novel design presents a substantial improvement of retrograde trafficking, neurons' protection, and motor nerve reinnervation.
Collapse
Affiliation(s)
- Cristiana R. Carvalho
- 3B's Research Group‐Biomaterials Biodegradables and Biomimetics Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine University of Minho Barco Guimarães 4805‐017 Portugal
| | - Wei Chang
- New Jersey Center for Biomaterials Rutgers The State University of New Jersey Piscataway NJ 08854 USA
| | - Joana Silva‐Correia
- 3B's Research Group‐Biomaterials Biodegradables and Biomimetics Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine University of Minho Barco Guimarães 4805‐017 Portugal
| | - Rui L. Reis
- 3B's Research Group‐Biomaterials Biodegradables and Biomimetics Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine University of Minho Barco Guimarães 4805‐017 Portugal
| | - Joaquim M. Oliveira
- 3B's Research Group‐Biomaterials Biodegradables and Biomimetics Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine University of Minho Barco Guimarães 4805‐017 Portugal
| | - Joachim Kohn
- New Jersey Center for Biomaterials Rutgers The State University of New Jersey Piscataway NJ 08854 USA
| |
Collapse
|
31
|
Zhu H, Qiao X, Liu W, Wang C, Zhao Y. Microglia Play an Essential Role in Synapse Development and Neuron Maturation in Tissue-Engineered Neural Tissues. Front Neurosci 2020; 14:586452. [PMID: 33328858 PMCID: PMC7717954 DOI: 10.3389/fnins.2020.586452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/15/2020] [Indexed: 12/04/2022] Open
Abstract
In the process of constructing engineered neural tissues, we often use mixed primary neural cells, which contain microglia in the cell culture. However, the role that microglia play in the construction of engineered neural tissue has not been well studied. Here, we generated three-dimensional (3D) engineered neural tissues by silk fibroin/collagen composite scaffolds and primary mixed cortical cells. We depleted microglial cells by magnetic separation. Then, we analyzed the neural growth, development, mature and synapse-related gene, and protein expressions compared with the control engineered neural tissues with the microglia-depleted engineered neural tissues. We found that the engineered neural tissues constructed by magnetic separation to remove microglia showed a decrease in the number of synaptic proteins and mature neurons. These findings link microglia to neuron and synaptic maturation and suggest the importance of microglia in constructing engineered neural tissues in vitro.
Collapse
Affiliation(s)
- Huimin Zhu
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and BiologicalInterdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Xin Qiao
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and BiologicalInterdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Wei Liu
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and BiologicalInterdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Changyong Wang
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and BiologicalInterdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Yuwei Zhao
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and BiologicalInterdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
32
|
Heichel DL, Vy NCH, Ward SP, Adamson DH, Burke KA. Controlled radical polymerization of hydrophilic and zwitterionic brush-like polymers from silk fibroin surfaces. J Mater Chem B 2020; 8:10392-10406. [PMID: 33112356 DOI: 10.1039/d0tb01990a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bombyx mori silk fibroin is a fibrous protein whose tunable properties and biocompatibility have resulted in its utility in a wide-variety of applications, including as drug delivery vehicles, wound dressings, and tissue engineering scaffolds. Control of protein and cell attachment is vital to the performance of biomaterials, but silk fibroin is mostly hydrophobic and interacts nonspecifically with cells and proteins. Silk functionalised with hydrophilic polymers reduces attachment, but the low number of reactive sites makes achieving a uniform conjugation a persistent challenge. This work presents a new approach to grow brush-like polymers from the surface of degradable silk films, where the films were enriched with hydroxyl groups, functionalised with an initiator, and finally reacted with acrylate monomers using atom transfer radical polymerisation. Two different routes to hydroxyl enrichment were investigated, one involving reaction with ethylene oxide (EO) and the other using a two-step photo-catalysed oxidation reaction. Both routes increased surface hydrophilicity, and hydrophilic monomers containing either uncharged (poly(ethylene glycol), PEG) pendant groups or zwitterionic pendant groups were polymerised from the surfaces. The initial processing of the films to induce beta sheet structures was found to impact the success of the polymerizations. Compared to the EO modified or unmodified silk surfaces, the oxidation reaction resulted in more polymer conjugation and the surfaces appear more uniform. Mesenchymal stem cell and protein attachment were the lowest on polymers grown from oxidised surfaces. PEG-containing brush-like polymers displayed lower protein attachment than surfaces conjugated with PEG using a previously reported "grafting to" method, but polymers containing zwitterionic side chains displayed both the lowest contact angles and the lowest cell and protein attachment. This finding may arise from the interactions of the zwitterionic pendant groups through their permanent dipoles and is an important finding because PEG is susceptible to oxidative damage that can reduce efficacy over time. These modified silk materials with lower cell and protein attachments are envisioned to find utility when enhanced diffusion around surfaces is required, such as in drug delivery implants.
Collapse
Affiliation(s)
- Danielle L Heichel
- Polymer Program, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, CT 06269-3136, USA
| | - Ngoc Chau H Vy
- Polymer Program, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, CT 06269-3136, USA
| | - Shawn P Ward
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road Unit 3060, Storrs, CT 06269-3060, USA
| | - Douglas H Adamson
- Polymer Program, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, CT 06269-3136, USA and Department of Chemistry, University of Connecticut, 55 North Eagleville Road Unit 3060, Storrs, CT 06269-3060, USA
| | - Kelly A Burke
- Polymer Program, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, CT 06269-3136, USA and Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Road Unit 3222, Storrs, CT 06269-3222, USA. and Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road Unit 3247, Storrs, CT 06269-3247, USA
| |
Collapse
|
33
|
Interactions of N-acetyl-D-glucosamine-conjugated silk fibroin with lectins, cytoskeletal proteins and cardiomyocytes. Colloids Surf B Biointerfaces 2020; 198:111406. [PMID: 33250416 DOI: 10.1016/j.colsurfb.2020.111406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/31/2020] [Accepted: 10/07/2020] [Indexed: 01/04/2023]
Abstract
We have reported that cytoskeletal proteins such as desmin and vimentin are expressed on the surface of muscle, mesenchymal and cancer cells, and possess N-acetyl-β-D-glucosamine (β-GlcNAc) residue-binding properties. As cell-recognizable β-GlcNAc residue-bearing biopolymer, we prepared glycoconjugates (SF-GlcNAc) composed of silk fibroin (SF) and monosaccharide N-acetyl-D-glucosamine (GlcNAc) by chemical modification using cyanuric chloride. The covalent immobilization of GlcNAc into SF was assessed by 1H-NMR measurements. The 1H-NMR spectrum of SF-GlcNAc conjugates showed new peaks attributed to the methyl protons of the N-acetyl group in GlcNAc, and the integration of these peaks revealed that the GlcNAc content in the conjugates was 9 wt%. The existence of β-GlcNAc residues in SF-GlcNAc was examined by the criteria using lectins such as wheat germ agglutinin (WGA). Addition of WGA to SF-GlcNAc solution caused an increase in the turbidity of the solution due to lectin-mediated aggregation. Solid-phase lectin binding assay based on the biotin-avidin interaction showed that biotinylated succinylated WGA bound more strongly onto SF-GlcNAc conjugate-coated wells compared to SF-coated well. Following the establishment of the existence of β-GlcNAc residues in SF-GlcNAc, the interaction of SF-GlcNAc with desmin was examined by enzyme-linked immunosorbent assay using anti-desmin antibody. The stronger binding of desmin was observed for SF-GlcNAc conjugate-coated wells compared to SF-coated wells. The use of SF-GlcNAc conjugates as a substrate for culturing desmin-expressing human cardiac myocytes demonstrated an increase in the numbers of attached cells and proliferating cells on the conjugate-coated wells compared to SF-coated wells. These results suggest that the immobilization of monosaccharide GlcNAc is a useful method for the versatile functionalization of SF as an application in tissue engineering.
Collapse
|
34
|
McCarthy M, Brown T, Alarcon A, Williams C, Wu X, Abbott RD, Gimble J, Frazier T. Fat-On-A-Chip Models for Research and Discovery in Obesity and Its Metabolic Comorbidities. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:586-595. [PMID: 32216545 PMCID: PMC8196547 DOI: 10.1089/ten.teb.2019.0261] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
Abstract
The obesity epidemic and its associated comorbidities present a looming challenge to health care delivery throughout the world. Obesity is characterized as a sterile inflammatory process within adipose tissues leading to dysregulated secretion of bioactive adipokines such as adiponectin and leptin, as well as systemic metabolic dysfunction. The majority of current obesity research has focused primarily on preclinical animal models in vivo and two-dimensional cell culture models in vitro. Neither of these generalized approaches is optimal due to interspecies variability, insufficient accuracy with respect to predicting human outcomes, and failure to recapitulate the three-dimensional (3D) microenvironment. Consequently, there is a growing demand and need for more sophisticated microphysiological systems to reproduce more physiologically accurate human white and brown/beige adipose depots. To address this research need, human and murine cell lines and primary cultures are being combined with bioscaffolds to create functional 3D environments that are suitable for metabolically active adipose organoids in both static and perfusion bioreactor cultures. The development of these technologies will have considerable impact on the future pace of discovery for novel small molecules and biologics designed to prevent and treat metabolic syndrome and obesity in humans. Furthermore, when these adipose tissue models are integrated with other organ systems they will have applicability to obesity-related disorders such as diabetes, nonalcoholic fatty liver disease, and osteoarthritis. Impact statement The current review article summarizes the advances made within the organ-onchip field, as it pertains to adipose tissue models of obesity and obesity-related syndromes, such as diabetes, non-alcoholic fatty liver disease, and osteoarthritis. As humanized 3D adipose-derived constructs become more accessible to the research community, it is anticipated that they will accelerate and enhance the drug discovery pipeline for obesity, diabetes, and metabolic diseases by reducing the preclinical evaluation process and improving predictive accuracy. Such developments, applications, and usages of existing technologies can change the paradigm of personalized medicine and create substantial progress in our approach to modern medicine.
Collapse
Affiliation(s)
| | - Theodore Brown
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Andrea Alarcon
- LaCell LLC, New Orleans, Louisiana, USA
- Obatala Sciences, Inc., New Orleans, Louisiana, USA
| | | | - Xiying Wu
- LaCell LLC, New Orleans, Louisiana, USA
- Obatala Sciences, Inc., New Orleans, Louisiana, USA
| | - Rosalyn D. Abbott
- Materials Science and Engineering Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Jeffrey Gimble
- LaCell LLC, New Orleans, Louisiana, USA
- Obatala Sciences, Inc., New Orleans, Louisiana, USA
| | - Trivia Frazier
- LaCell LLC, New Orleans, Louisiana, USA
- Obatala Sciences, Inc., New Orleans, Louisiana, USA
| |
Collapse
|
35
|
Xiao W, Zhang J, Qu X, Chen K, Gao H, He J, Ma T, Li B, Liao X. Fabrication of protease XIV-loaded microspheres for cell spreading in silk fibroin hydrogels. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:128. [PMID: 33247786 DOI: 10.1007/s10856-020-06466-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/12/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Due to their excellent mechanical strength and biocompatibility, silk fibroin(SF) hydrogels can serve as ideal scaffolds. However, their slow rate of natural degradation limits the space available for cell proliferation, which hinders their application. In this study, litchi-like calcium carbonate@hydroxyapatite (CaCO3@HA) porous microspheres loaded with proteases from Streptomyces griseus (XIV) were used as drug carriers to regulate the biodegradation rate of SF hydrogels. The results showed that litchi-like CaCO3@HA microspheres with different phase compositions could be prepared by changing the hydrothermal reaction time. The CaCO3@HA microspheres controlled the release of Ca ions, which was beneficial for the osteogenic differentiation of mesenchymal stem cells (MSCs). The adsorption and release of protease XIV from the CaCO3@HA microcarriers indicated that the loading and release amount can be controlled with the initial drug concentration. The weight loss test and SEM observation showed that the degradation of the fibroin hydrogel could be controlled by altering the amount of protease XIV-loaded CaCO3@HA microspheres. A three-dimensional (3D) cell encapsulation experiment proved that incorporation of the SF hydrogel with protease XIV-loaded microspheres promoted cell dispersal and spreading, suggesting that the controlled release of protease XIV can regulate hydrogel degradation. SF hydrogels incorporated with protease XIV-loaded microspheres are suitable for cell growth and proliferation and are expected to serve as excellent bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Wenqian Xiao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Jing Zhang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xiaohang Qu
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Ke Chen
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Haiming Gao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Jisu He
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Tao Ma
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Bo Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China.
| |
Collapse
|
36
|
A Multifunctional Antibacterial and Osteogenic Nanomedicine: QAS-Modified Core-Shell Mesoporous Silica Containing Ag Nanoparticles. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4567049. [PMID: 33015165 PMCID: PMC7520689 DOI: 10.1155/2020/4567049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/21/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022]
Abstract
Treatments for infectious bone defects such as periodontitis require antibacterial and osteogenic differentiation capabilities. Nanotechnology has prompted the development of multifunctional material. In this research, we aim to synthesize a nanoparticle that can eliminate periodontal pathogenic microorganisms and simultaneously stimulate new bone tissue regeneration and mineralization. QAS-modified core-shell mesoporous silica containing Ag nanoparticles (Ag@QHMS) was successfully synthesized through the classic hydrothermal method and surface quaternary ammonium salt functionalization. The Ag@QHMS in vitro antibacterial activity was explored via coculture with Staphylococcus aureus, Escherichia coli, and Porphyromonas gingivalis biofilms. Bone mesenchymal stem cells (BMSCs) were selected for observing cytotoxicity, apoptosis, and osteogenic differentiation. Ag@QHMS showed a good sustained release profile of Ag+ and a QAS-grafted mesoporous structure. Compared with the single-contact antibacterial activity of QHMS, Ag@QHMS exhibited a more efficient and stable concentration-dependent antimicrobial efficacy; the minimum inhibitory concentration was within 100 μg/ml, which was below the BMSC biocompatibility concentration (200 μg/ml). Thus, apoptosis would not occur while promoting the increased expression of osteogenic-associated factors, such as runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN), bone sialoprotein (BSP), and collagen type 1 (COL-1). A safe concentration of particles can stimulate cell alkaline phosphatase and matrix calcium salt deposition. The dual antibacterial effect from the direct contact killing of QAS and the sustained release of Ag nanoparticles, along with the Ag-promoted osteogenic differentiation, had been verified and utilized in Ag@QHMS. This system demonstrates the potential for utilizing pluripotent biomaterials to treat complex lesions.
Collapse
|
37
|
Chen Z, Zhang Q, Li H, Wei Q, Zhao X, Chen F. Elastin-like polypeptide modified silk fibroin porous scaffold promotes osteochondral repair. Bioact Mater 2020; 6:589-601. [PMID: 33005824 PMCID: PMC7509194 DOI: 10.1016/j.bioactmat.2020.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Silk fibroin (SF) is considered biocompatible and biodegradable for osteochondral repair. However, it lacks a bioactive domain for cell adhesion, proliferation and differentiation, limiting its therapeutic efficacy. To revamp SF as a biomimicking and bioactive microenvironment to regulate cell behaviours, we engineered an elastin-like polypeptide (ELP, Val-Pro-Gly-Xaa-Gly) to modify SF fibers via simple and green dehydrothermal (DHT) treatment. Our results demonstrated that the ELP successfully bound to SF, and the scaffold was reinforced by the fusion of the silk fiber intersections with ELP (S-ELP-DHT) via the DHT treatment. Both bone mesenchymal stem cells (BMSCs) and chondrocytes exhibited improved spreading and proliferation on the S-ELP-DHT scaffolds. The ex vivo and in vivo experiments further demonstrated enhanced mature bone and cartilage tissue formation using the S-ELP-DHT scaffolds compared to the naked SF scaffolds. These results indicated that a recombinant ELP-modified silk scaffold can mimic three-dimensional (3D) cell microenvironment, and improve bone and cartilage regeneration. We envision that our scaffolds have huge clinical potential for osteochondral repair. Elastin-like polypeptide (ELP) modified silk fibroin (SF) scaffold was developed via dehydrothermal treatment (S-ELP-DHT). The S-ELP-DHT scaffold provided a beneficial cell microenvironment for osteochondral repair. Greater mature bone and cartilage tissue formation were achieved. Improved repair efficacy for articular osteochondral defects was confirmed.
Collapse
Affiliation(s)
- Zhuoyue Chen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province, 710069, China
| | - Qiang Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Hongmin Li
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province, 710069, China
| | - Qi Wei
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province, 710069, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- Corresponding author.
| | - Fulin Chen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province, 710069, China
- Corresponding author.
| |
Collapse
|
38
|
Teramoto H, Shirakawa M, Tamada Y. Click Decoration of Bombyx mori Silk Fibroin for Cell Adhesion Control. Molecules 2020; 25:E4106. [PMID: 32911813 PMCID: PMC7570510 DOI: 10.3390/molecules25184106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/28/2020] [Accepted: 09/06/2020] [Indexed: 11/22/2022] Open
Abstract
Silk fibroin produced by the domesticated silkworm, Bombyx mori, has been studied widely as a substrate for tissue engineering applications because of its mechanical robustness and biocompatibility. However, it is often difficult to precisely tune silk fibroin's biological properties due to the lack of easy, reliable, and versatile methodologies for decorating it with functional molecules such as those of drugs, polymers, peptides, and enzymes necessary for specific applications. In this study we applied an azido-functionalized silk fibroin, AzidoSilk, produced by a state-of-the-art biotechnology, genetic code expansion, to produce silk fibroin decorated with cell-repellent polyethylene glycol (PEG) chains for controlling the cell adhesion property of silk fibroin film. Azido groups can act as selective handles for chemical reactions such as a strain-promoted azido-alkyne cycloaddition (SPAAC), known as a click chemistry reaction. We found that azido groups in AzidoSilk film were selectively decorated with PEG chains using SPAAC. The PEG-decorated film demonstrated decreased cell adhesion depending on the lengths of the PEG chains. Azido groups in AzidoSilk can be decomposed by UV irradiation. By partially decomposing azido groups in AzidoSilk film in a spatially controlled manner using photomasks, cells could be spatially arranged on the film. These results indicated that SPAAC could be an easy, reliable, and versatile methodology to produce silk fibroin substrates having adequate biological properties.
Collapse
Affiliation(s)
- Hidetoshi Teramoto
- Silk Materials Research Unit, Division of Biotechnology, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Minori Shirakawa
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan;
| | - Yasushi Tamada
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan;
| |
Collapse
|
39
|
Abdul-Al M, Zaernia A, Sefat F. Biomaterials for breast reconstruction: Promises, advances, and challenges. J Tissue Eng Regen Med 2020; 14:1549-1569. [PMID: 32841503 DOI: 10.1002/term.3121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022]
Abstract
Breast reconstruction is the opportunity that provides the chance of having breast after undergoing surgical removal of the breast tissue due to cancer-related surgery. However, this varies on the stage of the cancer diagnosis and the procedure undertaken. There are many regenerative medicine methods that provide several initiatives and direct solutions to problems such as the development of "bioactive tissue," which can regenerate adipose tissues with similar normal functions and structures. There have been several studies which have previously explored for the improvement of breast reconstruction including different variations of biomaterials, different fabrication and processing techniques, cells as well as growth factors which enable bioengineers and tissue engineers to reconstruct a suitable breast for patients with breast cancer. Many factors such as shape, proper volume, mechanical properties have been studies but very scattered with not adequate solution for existing patients worldwide. This review article aims to cover recent advances in the biomaterials, which can be used for reconstruction of breasts as well as looking at the various factors that might lead to individuals needing reconstruction and the materials that are available. The focus would be to look at the various biomaterials that are available to use for reconstruction, their properties, and their structural integrity.
Collapse
Affiliation(s)
- Mohamed Abdul-Al
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
| | - Amir Zaernia
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK.,Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford, UK
| |
Collapse
|
40
|
Ju J, Hu N, Cairns DM, Liu H, Timko BP. Photo-cross-linkable, insulating silk fibroin for bioelectronics with enhanced cell affinity. Proc Natl Acad Sci U S A 2020; 117:15482-15489. [PMID: 32571918 PMCID: PMC7376572 DOI: 10.1073/pnas.2003696117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bioelectronic scaffolds that support devices while promoting tissue integration could enable tissue hybrids with augmented electronic capabilities. Here, we demonstrate a photo-cross-linkable silk fibroin (PSF) derivative and investigate its structural, electrical, and chemical properties. Lithographically defined PSF films offered tunable thickness and <1-µm spatial resolution and could be released from a relief layer yielding freestanding scaffolds with centimeter-scale uniformity. These constructs were electrically insulating; multielectrode arrays with PSF-passivated interconnects provided stable electrophysiological readouts from HL-1 cardiac model cells, brain slices, and hearts. Compared to SU8, a ubiquitous biomaterial, PSF exhibited superior affinity toward neurons which we attribute to its favorable surface charge and enhanced attachment of poly-d-lysine adhesion factors. This finding is of significant importance in bioelectronics, where tight junctions between devices and cell membranes are necessary for electronic communication. Collectively, our findings are generalizable to a variety of geometries, devices, and tissues, establishing PSF as a promising bioelectronic platform.
Collapse
Affiliation(s)
- Jie Ju
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
- Key Laboratory for Special Functional Materials, Ministry of Education, Henan University, Kaifeng 475004, China
| | - Ning Hu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dana M Cairns
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Haitao Liu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Brian P Timko
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155;
| |
Collapse
|
41
|
McKay TB, Ford A, Wang S, Cairns DM, Parker RN, Deardorff PM, Ghezzi CE, Kaplan DL. Assembly and Application of a Three-Dimensional Human Corneal Tissue Model. ACTA ACUST UNITED AC 2020; 81:e84. [PMID: 31529796 DOI: 10.1002/cptx.84] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cornea provides a functional barrier separating the outside environment from the intraocular environment, thereby protecting posterior segments of the eye from infection and damage. Pathological changes that compromise the structure or integrity of the cornea may occur as a result of injury or disease and can lead to debilitating effects on visual acuity. Over 10 million people worldwide are visually impaired or blind due to corneal opacity. Thus, physiologically relevant in vitro approaches to predict corneal toxicity of chemicals or effective treatments for disease prior to ocular exposure, as well as to study the corneal effects of systemic, chronic conditions, such as diabetes, are needed to reduce use of animal testing and accelerate therapeutic development. We have previously bioengineered an innervated corneal tissue model using silk protein scaffolds to recapitulate the structural and mechanical elements of the anterior cornea and to model the functional aspects of corneal sensation with the inclusion of epithelial, stromal, and neural components. The purpose of this unit is to provide a step-by-step guide for preparation, assembly, and application of this three-dimensional corneal tissue system to enable the study of corneal tissue biology. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Tina B McKay
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Andrew Ford
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Siran Wang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Dana M Cairns
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Rachael N Parker
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Phillip M Deardorff
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Chiara E Ghezzi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
42
|
Leem JW, Fraser MJ, Kim YL. Transgenic and Diet-Enhanced Silk Production for Reinforced Biomaterials: A Metamaterial Perspective. Annu Rev Biomed Eng 2020; 22:79-102. [PMID: 32160010 DOI: 10.1146/annurev-bioeng-082719-032747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Silk fibers, which are protein-based biopolymers produced by spiders and silkworms, are fascinating biomaterials that have been extensively studied for numerous biomedical applications. Silk fibers often have remarkable physical and biological properties that typical synthetic materials do not exhibit. These attributes have prompted a wide variety of silk research, including genetic engineering, biotechnological synthesis, and bioinspired fiber spinning, to produce silk proteins on a large scale and to further enhance their properties. In this review, we describe the basic properties of spider silk and silkworm silk and the important production methods for silk proteins. We discuss recent advances in reinforced silk using silkworm transgenesis and functional additive diets with a focus on biomedical applications. We also explain that reinforced silk has an analogy with metamaterials such that user-designed atypical responses can be engineered beyond what naturally occurring materials offer. These insights into reinforced silk can guide better engineering of superior synthetic biomaterials and lead to discoveries of unexplored biological and medical applications of silk.
Collapse
Affiliation(s)
- Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Malcolm J Fraser
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Young L Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.,Purdue University Center for Cancer Research, Regenstrief Center for Healthcare Engineering, and Purdue Quantum Science and Engineering Institute, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
43
|
Crowe JA, El-Tamer A, Nagel D, Koroleva AV, Madrid-Wolff J, Olarte OE, Sokolovsky S, Estevez-Priego E, Ludl AA, Soriano J, Loza-Alvarez P, Chichkov BN, Hill EJ, Parri HR, Rafailov EU. Development of two-photon polymerised scaffolds for optical interrogation and neurite guidance of human iPSC-derived cortical neuronal networks. LAB ON A CHIP 2020; 20:1792-1806. [PMID: 32314760 DOI: 10.1039/c9lc01209e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recent progress in the field of human induced pluripotent stem cells (iPSCs) has led to the efficient production of human neuronal cell models for in vitro study. This has the potential to enable the understanding of live human cellular and network function which is otherwise not possible. However, a major challenge is the generation of reproducible neural networks together with the ability to interrogate and record at the single cell level. A promising aid is the use of biomaterial scaffolds that would enable the development and guidance of neuronal networks in physiologically relevant architectures and dimensionality. The optimal scaffold material would need to be precisely fabricated with submicron resolution, be optically transparent, and biocompatible. Two-photon polymerisation (2PP) enables precise microfabrication of three-dimensional structures. In this study, we report the identification of two biomaterials that support the growth and differentiation of human iPSC-derived neural progenitors into functional neuronal networks. Furthermore, these materials can be patterned to induce alignment of neuronal processes and enable the optical interrogation of individual cells. 2PP scaffolds with tailored topographies therefore provide an effective method of producing defined in vitro human neural networks for application in influencing neurite guidance and complex network activity.
Collapse
Affiliation(s)
- J A Crowe
- School of Life and Health Sciences, Aston University, B4 7ET Birmingham, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhao Y, Ding X, Dong Y, Sun X, Wang L, Ma X, Zhu M, Xu B, Yang Q. Role of the Calcified Cartilage Layer of an Integrated Trilayered Silk Fibroin Scaffold Used to Regenerate Osteochondral Defects in Rabbit Knees. ACS Biomater Sci Eng 2020; 6:1208-1216. [PMID: 33464868 DOI: 10.1021/acsbiomaterials.9b01661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The repair of osteochondral defects remains challenging, given the complexity of native osteochondral tissue and the limited self-repair capacity of cartilage. Osteochondral tissue engineering is a promising strategy. Here, we fabricated a biomimetic osteochondral scaffold using silk fibroin and hydroxyapatite, including a calcified cartilage layer (CCL). We studied the role played by the CCL in terms of cell viability in vivo. We established osteochondral defects in rabbit knees to investigate the effects of CCL-containing scaffolds with or without adipose tissue-derived stem cells (ADSCs). We evaluated osteochondral tissue regeneration by calculating gross observational scores, via histological and immunohistochemical assessments, by performing quantitative biochemical and biomechanical analyses of new osteochondral tissue, and via microcomputed tomography of new bone at 4, 8, and 12 weeks after surgery. In terms of surface roughness and integrity, the CCL + ADSCs group was better than the CCL and the non-CCL + ADSCs groups at all time points tested; the glycosaminoglycan and collagen type II levels of the CCL + ADSCs group were highest, reflecting the important role played by the CCL in cartilage tissue repair. Subchondral bone smoothness was better in the CCL + ADSCs group than in the non-CCL + ADSCs and CCL groups. The CCL promoted smooth subchondral bone regeneration but did not obviously affect bone strength or quality. In conclusion, a biomimetic osteochondral scaffold with a CCL, combined with autologous ADSCs, satisfactorily regenerated a rabbit osteochondral defect. The CCL enhances cartilage and subchondral bone regeneration.
Collapse
Affiliation(s)
- Yanhong Zhao
- Stomatological Hospital of Tianjin Medical University, 12 Qixiangtai Road, Heping District, Tianjin 300070, People's Republic of China
| | - Xiaoming Ding
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, 406 Jiefang Nan Road, Hexi District, Tianjin 300211, People's Republic of China.,Department of Orthopedics, Rizhao Traditional Chinese Medicine Hospital, 35 Haiwang Road, Donggang District, Rizhao, Shandong 276800, People's Republic of China
| | - Yunsheng Dong
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, People's Republic of China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, 406 Jiefang Nan Road, Hexi District, Tianjin 300211, People's Republic of China
| | - Lianyong Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, People's Republic of China
| | - Xinlong Ma
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, 406 Jiefang Nan Road, Hexi District, Tianjin 300211, People's Republic of China
| | - Meifeng Zhu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, People's Republic of China
| | - Baoshan Xu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, 406 Jiefang Nan Road, Hexi District, Tianjin 300211, People's Republic of China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, 406 Jiefang Nan Road, Hexi District, Tianjin 300211, People's Republic of China
| |
Collapse
|
45
|
Guo C, Li C, Vu HV, Hanna P, Lechtig A, Qiu Y, Mu X, Ling S, Nazarian A, Lin SJ, Kaplan DL. Thermoplastic moulding of regenerated silk. NATURE MATERIALS 2020; 19:102-108. [PMID: 31844276 PMCID: PMC6986341 DOI: 10.1038/s41563-019-0560-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 11/08/2019] [Indexed: 05/08/2023]
Abstract
Early insights into the unique structure and properties of native silk suggested that β-sheet nanocrystallites in silk would degrade prior to melting when subjected to thermal processing. Since then, canonical approaches for fabricating silk-based materials typically involve solution-derived processing methods, which have inherent limitations with respect to silk protein solubility and stability in solution, and time and cost efficiency. Here we report a thermal processing method for the direct solid-state moulding of regenerated silk into bulk 'parts' or devices with tunable mechanical properties. At elevated temperature and pressure, regenerated amorphous silk nanomaterials with ultralow β-sheet content undergo thermal fusion via molecular rearrangement and self-assembly assisted by bound water to form a robust bulk material that retains biocompatibility, degradability and machinability. This technique reverses presumptions about the limitations of direct thermal processing of silk into a wide range of new material formats and composite materials with tailored properties and functionalities.
Collapse
Affiliation(s)
- Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| | - Hiep V Vu
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA
| | - Philip Hanna
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Aron Lechtig
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yimin Qiu
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Shengjie Ling
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ara Nazarian
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan, Armenia
| | - Samuel J Lin
- Divisions of Plastic Surgery and Otolaryngology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
46
|
Kukla DA, Stoppel WL, Kaplan DL, Khetani SR. Assessing the compatibility of primary human hepatocyte culture within porous silk sponges. RSC Adv 2020; 10:37662-37674. [PMID: 35515172 PMCID: PMC9057238 DOI: 10.1039/d0ra04954a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/04/2020] [Indexed: 12/24/2022] Open
Abstract
Donor organ shortages have prompted the development of alternative implantable human liver tissues for patients suffering from end-stage liver failure. Purified silk proteins provide desirable features for generating implantable tissues, including sustainable sourcing from insects/arachnids, biocompatibility, tunable mechanical properties and degradation rates, and low immunogenicity upon implantation. While different cell types were previously cultured for weeks within silk-based scaffolds, it remains unclear whether such scaffolds can be used to culture primary human hepatocytes (PHH) isolated from livers. Therefore, here we assessed the compatibility of PHH culture within porous silk scaffolds that enable diffusion of oxygen/nutrients through the pores. We found that incorporation of type I collagen during the fabrication and/or autoclaving of porous silk scaffolds, as opposed to simple adsorption of collagen onto pre-fabricated silk scaffolds, was necessary to enable robust PHH attachment/function. Scaffolds with small pores (73 ± 25 μm) promoted larger PHH spheroids and consequently higher PHH functions than large pores (235 ± 84 μm) for at least 1 month in culture. Further incorporation of supportive fibroblasts into scaffolds enhanced PHH functions up to 5-fold relative to scaffolds with PHHs alone and 2D co-cultures on plastic. Lastly, encapsulating PHHs within protein hydrogels while housed in the silk scaffold led to higher functions than protein hydrogel-only or silk-only controls. In conclusion, porous silk scaffolds containing extracellular matrix proteins can be used for the culture of PHHs ± supportive non-parenchymal cells, which can be further built on in the future to create optimized silk-based liver tissue surrogates for cell-based therapy. Porous silk scaffolds hybridized with extracellular matrix proteins are useful for culture of primary human hepatocytes ± supportive non-parenchymal cells.![]()
Collapse
Affiliation(s)
- David A. Kukla
- Department of Bioengineering
- University of Illinois at Chicago
- Chicago
- USA
| | | | - David L. Kaplan
- Department of Biomedical Engineering
- Tufts University
- Medford
- USA
| | - Salman R. Khetani
- Department of Bioengineering
- University of Illinois at Chicago
- Chicago
- USA
| |
Collapse
|
47
|
Cao F, Zeng B, Zhu Y, Yu F, Wang M, Song X, Cheng X, Chen L, Wang X. Porous ZnO modified silk sutures with dual light defined antibacterial, healing promotion and controlled self-degradation capabilities. Biomater Sci 2020; 8:250-255. [DOI: 10.1039/c9bm01422e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Current sutures have disadvantages such as poor antibacterial activities, low healing effects, and a lack of self-degradation ability.
Collapse
Affiliation(s)
- Fei Cao
- Institute of Translation Medicine
- Nanchang University
- Nanchang
- P.R. China
| | - Bin Zeng
- Institute of Translation Medicine
- Nanchang University
- Nanchang
- P.R. China
| | - Yanglong Zhu
- Department of Orthopedic Surgery
- The Second Affiliated Hospital of Nanchang University
- Nanchang
- P.R. China
| | - Fen Yu
- College of Chemistry
- Nanchang University
- Nanchang
- P.R. China
| | - Manyu Wang
- Institute of Translation Medicine
- Nanchang University
- Nanchang
- P.R. China
| | - Xiangwei Song
- College of Chemistry
- Nanchang University
- Nanchang
- P.R. China
| | - Xinyan Cheng
- College of Chemistry
- Nanchang University
- Nanchang
- P.R. China
| | - Liming Chen
- College of Chemistry
- Nanchang University
- Nanchang
- P.R. China
| | - Xiaolei Wang
- Institute of Translation Medicine
- Nanchang University
- Nanchang
- P.R. China
- College of Chemistry
| |
Collapse
|
48
|
Mohamed MA, Fallahi A, El-Sokkary AM, Salehi S, Akl MA, Jafari A, Tamayol A, Fenniri H, Khademhosseini A, Andreadis ST, Cheng C. Stimuli-responsive hydrogels for manipulation of cell microenvironment: From chemistry to biofabrication technology. Prog Polym Sci 2019; 98. [DOI: 10.1016/j.progpolymsci.2019.101147] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Patamia ED, Ostrovsky-Snider NA, Murphy AR. Photolithographic Masking Method to Chemically Pattern Silk Film Surfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33612-33619. [PMID: 31502441 DOI: 10.1021/acsami.9b10226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A method has been developed for selectively patterning silk surfaces using a photolithographic process to mask off sections of silk films, which allows selective and precise patterning of features down to 40 μm. This process is highly versatile, utilizes only low-cost equipment and can be used to rapidly prototype flat silk substrates with spatially controlled chemical patterns. Here we demonstrate the usefulness of this technique to deposit fluorescent dyes, labeled proteins and conducting polymers or to modify the surface charge of the silk protein in desired regions on a silk film surface.
Collapse
Affiliation(s)
- Evan D Patamia
- Department of Chemistry , Western Washington University , 516 High Street , Bellingham , Washington 98225-9150 , United States
| | - Nicholas A Ostrovsky-Snider
- Department of Chemistry , Western Washington University , 516 High Street , Bellingham , Washington 98225-9150 , United States
| | - Amanda R Murphy
- Department of Chemistry , Western Washington University , 516 High Street , Bellingham , Washington 98225-9150 , United States
| |
Collapse
|
50
|
McKay TB, Parker RN, Hawker MJ, McGill M, Kaplan DL. Silk-Based Therapeutics Targeting Pseudomonas aeruginosa. J Funct Biomater 2019; 10:jfb10030041. [PMID: 31540233 PMCID: PMC6787730 DOI: 10.3390/jfb10030041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) infections may lead to severe damage of the cornea, mucosa, and skin. The highly aggressive nature of P. aeruginosa and the rise in multi-drug resistance, particularly in nosocomial settings, lead to an increased risk for permanent tissue damage and potentially death. Thus, a growing need exists to develop alternative treatments to reduce both the occurrence of bacterial infection and biofilm development, as well as pathological progression post-infection. Silk derived from Bombyx mori silkworms serves as a unique biomaterial that is biocompatible with low immunogenicity and high versatility, and thereby ideal for stabilizing therapeutics. In this study, we assessed the cytotoxicity of P. aeruginosa on human corneal stromal stem cells and two mucosal cell lines (Caco-2 and HT29-MTX). To determine whether antibiotic-immobilized scaffolds can serve as alternative therapeutics to free, diffuse forms, we developed novel gentamicin-conjugated silk films as functional scaffolds and compared antimicrobial effects and free gentamicin. The advantages of generating a surface coating with a covalently-bound antibiotic may reduce potential side-effects associated with free gentamicin, as well as limit the diffusion of the drug. Our results suggest that gentamicin conjugated to native silk and carboxyl-enriched silk inhibits P. aeruginosa growth. Development of stabilized antibiotic treatments with surface toxicity selective against bacteria may serve as an alternative approach to treat active infections, as well as potential prophylactic use as coatings in high-risk cases, such as post-surgical complications or prolonged hospitalization.
Collapse
Affiliation(s)
- Tina B McKay
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Rachael N Parker
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Morgan J Hawker
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Meghan McGill
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| |
Collapse
|