1
|
Everett CR, Jiang X, Reus MA, Zhong H, Bitsch M, Plank M, Gallei M, Opel M, Schwartzkopf M, Roth SV, Müller-Buschbaum P. Printed Thin Magnetic Films via Ternary Hybrid Diblock Copolymer Films Containing Magnetic Iron Oxide and Nickel Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:71060-71069. [PMID: 39661934 DOI: 10.1021/acsami.4c18920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Ternary hybrid thin films composed of a diblock copolymer templating two types of nanoparticles (NPs) expand the functionality of binary systems, which renders them interesting for magnetic sensing or magnetic data storage applications. Herein, one-pot slot-die printed hybrid polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) thin films are prepared with iron oxide (magnetite, Fe3O4, d = 20 nm) and nickel NPs (Ni, d = 46 nm) in one step by the advanced slot-die coating technique, which facilitates upscaling of fabrication. The evolution of the hybrid film morphology is probed with in situ grazing-incidence small-angle X-ray scattering and compared to that of a PS-b-PMMA thin film without NPs. Additionally, scanning electron microscopy and atomic force microscopy are used to analyze the surface morphology of hybrid films with an increasing NP content after deposition. It is found that different from the pure PS-b-PMMA thin film drying kinetics with five stages, the ternary hybrid film formation can be divided into four stages that are attributed first to the wet film, solvent evaporation, a subsequent rapid coalescence and microphase separation, and finally the dry film. The magnetic properties of the hybrid thin films are investigated with a superconducting quantum interference device magnetometer. All hybrid films are ferrimagnetic and with increasing nickel weight percent in the hybrid film, while the iron oxide weight percent is kept constant, the magnetic properties of the film are modulated accordingly.
Collapse
Affiliation(s)
- Christopher R Everett
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
| | - Xinyu Jiang
- Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
| | - Manuel A Reus
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
| | - Huaying Zhong
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
| | - Martin Bitsch
- Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany
| | - Martina Plank
- Ernst-Berl-Institute for Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Markus Gallei
- Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany
- Saarene, Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123 Saarbrücken, Germany
| | - Matthias Opel
- Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meissner-Straße 8, 85748 Garching, Germany
| | | | - Stephan V Roth
- Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Peter Müller-Buschbaum
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
| |
Collapse
|
2
|
Kuschlan S, Chiarcos R, Laus M, Pérez-Murano F, Llobet J, Fernandez-Regulez M, Bonafos C, Perego M, Seguini G, De Michielis M, Tallarida G. Periodic Arrays of Dopants in Silicon by Ultralow Energy Implantation of Phosphorus Ions through a Block Copolymer Thin Film. ACS APPLIED MATERIALS & INTERFACES 2023; 15:57928-57940. [PMID: 37314734 PMCID: PMC10739587 DOI: 10.1021/acsami.3c03782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
In this work, block copolymer lithography and ultralow energy ion implantation are combined to obtain nanovolumes with high concentrations of phosphorus atoms periodically disposed over a macroscopic area in a p-type silicon substrate. The high dose of implanted dopants grants a local amorphization of the silicon substrate. In this condition, phosphorus is activated by solid phase epitaxial regrowth (SPER) of the implanted region with a relatively low temperature thermal treatment preventing diffusion of phosphorus atoms and preserving their spatial localization. Surface morphology of the sample (AFM, SEM), crystallinity of the silicon substrate (UV Raman), and position of the phosphorus atoms (STEM- EDX, ToF-SIMS) are monitored during the process. Electrostatic potential (KPFM) and the conductivity (C-AFM) maps of the sample surface upon dopant activation are compatible with simulated I-V characteristics, suggesting the presence of an array of not ideal but working p-n nanojunctions. The proposed approach paves the way for further investigations on the possibility to modulate the dopant distribution within a silicon substrate at the nanoscale by changing the characteristic dimension of the self-assembled BCP film.
Collapse
Affiliation(s)
- Stefano Kuschlan
- CNR-IMM,
Unit of Agrate Brianza, Via C. Olivetti 2, Agrate Brianza I-20864, Italy
- Università
del Piemonte Orientale ‘‘A. Avogadro’’, Viale T. Michel 11, Alessandria I-15121, Italy
| | - Riccardo Chiarcos
- Università
del Piemonte Orientale ‘‘A. Avogadro’’, Viale T. Michel 11, Alessandria I-15121, Italy
| | - Michele Laus
- Università
del Piemonte Orientale ‘‘A. Avogadro’’, Viale T. Michel 11, Alessandria I-15121, Italy
| | | | - Jordi Llobet
- Institute
of Microelectronics of Barcelona (IMB-CNM, CSIC), Bellaterra 08193, Spain
| | | | - Caroline Bonafos
- CEMES-CNRS,
Université de Toulouse, CNRS, Toulouse 31055, France
| | - Michele Perego
- CNR-IMM,
Unit of Agrate Brianza, Via C. Olivetti 2, Agrate Brianza I-20864, Italy
| | - Gabriele Seguini
- CNR-IMM,
Unit of Agrate Brianza, Via C. Olivetti 2, Agrate Brianza I-20864, Italy
| | - Marco De Michielis
- CNR-IMM,
Unit of Agrate Brianza, Via C. Olivetti 2, Agrate Brianza I-20864, Italy
| | - Graziella Tallarida
- CNR-IMM,
Unit of Agrate Brianza, Via C. Olivetti 2, Agrate Brianza I-20864, Italy
| |
Collapse
|
3
|
Baumgarten N, Mumtaz M, Merino DH, Solano E, Halila S, Bernard J, Drockenmuller E, Fleury G, Borsali R. Interface Manipulations Using Cross-Linked Underlayers and Surface-Active Diblock Copolymers to Extend Morphological Diversity in High-χ Diblock Copolymer Thin Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23736-23748. [PMID: 37134266 DOI: 10.1021/acsami.3c02247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Top and bottom interfaces of high-χ cylinder-forming polystyrene-block-maltoheptaose (PS-b-MH) diblock copolymer (BCP) thin films are manipulated using cross-linked copolymer underlayers and a fluorinated phase-preferential surface-active polymer (SAP) additive to direct the self-assembly (both morphology and orientation) of BCP microdomains into sub-10 nm patterns. A series of four photo-cross-linkable statistical copolymers with various contents of styrene, a 4-vinylbenzyl azide cross-linker, and a carbohydrate-based acrylamide are processed into 15 nm-thick cross-linked passivation layers on silicon substrates. A partially fluorinated analogue of the PS-b-MH phase-preferential SAP additive is designed to tune the surface energy of the top interface. The self-assembly of PS-b-MH thin films on top of different cross-linked underlayers and including 0-20 wt % of SAP additive is investigated by atomic force microscopy and synchrotron grazing incidence small-angle X-ray scattering analysis. The precise manipulation of the interfaces of ca. 30 nm thick PS-b-MH films not only allows the control of the in-plane/out-of-plane orientation of hexagonally packed (HEX) cylinders but also promotes epitaxial order-order transitions from HEX cylinders to either face-centered orthorhombic or body-centered cubic spheres without modifying the volume fraction of both blocks. This general approach paves the way for the controlled self-assembly of other high-χ BCP systems.
Collapse
Affiliation(s)
- Noémie Baumgarten
- Univ Lyon, Université Lyon 1, INSA de Lyon, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003, Lyon, France
| | | | - Daniel Hermida Merino
- Dutch-Belgian Beamline, Netherlands Organization for Scientific Research, European Synchrotron Radiation Facility, F-38000 Grenoble, France
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, E36310 Vigo, Galicia, Spain
| | - Eduardo Solano
- NCD-SWEET Beamline, ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain
| | - Sami Halila
- Univ Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
| | - Julien Bernard
- Univ Lyon, Université Lyon 1, INSA de Lyon, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003, Lyon, France
| | - Eric Drockenmuller
- Univ Lyon, Université Lyon 1, INSA de Lyon, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003, Lyon, France
| | - Guillaume Fleury
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | |
Collapse
|
4
|
Pula P, Leniart A, Majewski PW. Solvent-assisted self-assembly of block copolymer thin films. SOFT MATTER 2022; 18:4042-4066. [PMID: 35608282 DOI: 10.1039/d2sm00439a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solvent-assisted block copolymer self-assembly is a compelling method for processing and advancing practical applications of these materials due to the exceptional level of the control of BCP morphology and significant acceleration of ordering kinetics. Despite substantial experimental and theoretical efforts devoted to understanding of solvent-assisted BCP film ordering, the development of a universal BCP patterning protocol remains elusive; possibly due to a multitude of factors which dictate the self-assembly scenario. The aim of this review is to aggregate both seminal reports and the latest progress in solvent-assisted directed self-assembly and to provide the reader with theoretical background, including the outline of BCP ordering thermodynamics and kinetics phenomena. We also indicate significant BCP research areas and emerging high-tech applications where solvent-assisted processing might play a dominant role.
Collapse
Affiliation(s)
- Przemyslaw Pula
- Department of Chemistry, University of Warsaw, Warsaw 02089, Poland.
| | - Arkadiusz Leniart
- Department of Chemistry, University of Warsaw, Warsaw 02089, Poland.
| | - Pawel W Majewski
- Department of Chemistry, University of Warsaw, Warsaw 02089, Poland.
| |
Collapse
|
5
|
Giammaria TJ, Laus M, Chiarcos R, Ober CK, Seguini G, Perego M. Influence of spin casting solvent on the self‐assembly of silicon‐containing block copolymer thin films via high temperature thermal treatment. POLYM INT 2022. [DOI: 10.1002/pi.6362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | - Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT) Universitá del Piemonte Orientale ‘A. Avogadro’ Alessandria Italy
| | - Riccardo Chiarcos
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT) Universitá del Piemonte Orientale ‘A. Avogadro’ Alessandria Italy
| | - Christopher K Ober
- Department of Materials Science and Engineering Cornell University New York NY USA
| | | | | |
Collapse
|
6
|
Residual changes and thickness effects in glass-forming polymer thin films after solvent vapor annealing. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Nguyen HM, Mader AV, De S, Vapaavuori J. Understanding nanodomain morphology formation in dip-coated PS- b-PEO thin films. NANOSCALE ADVANCES 2021; 3:4996-5007. [PMID: 36132348 PMCID: PMC9418883 DOI: 10.1039/d1na00263e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/02/2021] [Indexed: 06/15/2023]
Abstract
Block copolymer (BCP) thin films prepared by dip-coating are increasingly investigated, owing to the many promising application areas, the facility, and the industrial scalability of this technique. Yet, the effect of different dip-coating parameters on BCP nanostructure formation is still underdeveloped and the results of previous literature are limited to a few block copolymers. Here, we study the effect of the withdrawal rate and solvent selectivity on the morphology evolution of dip-coated polystyrene-b-poly(ethylene oxide) thin films by applying a wide range of dip-coating speeds and altering the volume ratio of the tetrahydrofuran-water solvent system. The dip-coated films were characterized using atomic force microscopy and ellipsometry. The nanodomain morphology, its feature sizes, its spanning, and the degree of ordering were investigated with regard to different dip-coating parameters. Notably, we have obtained a hexagonally packed BCP pattern with long-range order without the need for post-annealing processes. Overall, a solid understanding of the parameters affecting the formed surface patterns and their interplay was attained and explained, extending the knowledge of this field to more materials.
Collapse
Affiliation(s)
- Hoang M Nguyen
- Department of Chemistry and Materials Science, Aalto University Espoo 02150 Finland
| | - Ariane V Mader
- Department of Chemistry and Materials Science, Aalto University Espoo 02150 Finland
| | - Swarnalok De
- Department of Chemistry and Materials Science, Aalto University Espoo 02150 Finland
| | - Jaana Vapaavuori
- Department of Chemistry and Materials Science, Aalto University Espoo 02150 Finland
| |
Collapse
|
8
|
Seguini G, Zanenga F, Cannetti G, Perego M. Thermodynamics and ordering kinetics in asymmetric PS-b-PMMA block copolymer thin films. SOFT MATTER 2020; 16:5525-5533. [PMID: 32500912 DOI: 10.1039/d0sm00441c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The ordering kinetics of standing cylinder-forming polystyrene-block-poly(methyl methacrylate) block copolymers (molecular weight: 39 kg mol-1) close to the order-disorder transition is experimentally investigated following the temporal evolution of the correlation length at different annealing temperatures. The growth exponent of the grain-coarsening process is determined to be 1/2, signature of a curvature-driven ordering mechanism. The measured activation enthalpy and the resulting Meyer-Neldel temperature for this specific copolymer along with the data already known for PS-b-PMMA block copolymers in strong segregation limit allow investigation of the interplay between the ordering kinetics and the thermodynamic driving force during the grain coarsening. These findings unveil various phenomena concomitantly occurring during the thermally activated ordering kinetics at segmental, single chain, and collective levels.
Collapse
Affiliation(s)
- Gabriele Seguini
- IMM-CNR, Unit of Agrate Brianza, Via C. Olivetti 2, I-20864 Agrate Brianza, Italy.
| | - Fabio Zanenga
- IMM-CNR, Unit of Agrate Brianza, Via C. Olivetti 2, I-20864 Agrate Brianza, Italy.
| | - Gianluca Cannetti
- IMM-CNR, Unit of Agrate Brianza, Via C. Olivetti 2, I-20864 Agrate Brianza, Italy.
| | - Michele Perego
- IMM-CNR, Unit of Agrate Brianza, Via C. Olivetti 2, I-20864 Agrate Brianza, Italy.
| |
Collapse
|
9
|
Qi Y, Nathani A, Zhang J, Song Z, Sharma CS, Varshney SK. Synthesis of amphiphilic poly(ethylene glycol)-block-poly(methyl methacrylate) containing trityl ether acid cleavable junction group and its self-assembly into ordered nanoporous thin films. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractA strategy for the synthesis of well defined poly(ethylene glycol)-block-poly(methyl methacrylate) diblock copolymers containing trityl ether acid cleavable junctions is demonstrated. This approach is achieved by using a combination of poly(ethylene glycol) macroinitiator containing a trityl ether end group, which is susceptible to acid cleavage, and atom transfer radical polymerization technique. The trityl ether linkage between blocks can be readily cleaved in solution or in solid phase under very mild acid condition, which has been confirmed by 1H NMR. These diblock copolymers have been used to successfully fabricate nanoporous thin films by acid cleavage of trityl ether junction followed by complete removal of poly(ethylene glycol) block. The fabricated nanoporous thin films may have a wide range of application such as Recessed Nanodisk-array electrode (RNE) or as a template to fabricate nanoelectrode array for senor applications.
Collapse
Affiliation(s)
- Yinghua Qi
- Polymer Source Inc., 124 Avro Street, Dorval (Montreal), Quebec H9P 2X8, Canada
| | - Akash Nathani
- Creative & Advanced Research Based On Nanomaterials (CARBON) Lab, Department of Chemical engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Telangana, India
| | - Jianxin Zhang
- Polymer Source Inc., 124 Avro Street, Dorval (Montreal), Quebec H9P 2X8, Canada
| | - Zhengji Song
- Polymer Source Inc., 124 Avro Street, Dorval (Montreal), Quebec H9P 2X8, Canada
| | - Chandra Shekhar Sharma
- Creative & Advanced Research Based On Nanomaterials (CARBON) Lab, Department of Chemical engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Telangana, India
| | - Sunil K. Varshney
- Polymer Source Inc., 124 Avro Street, Dorval (Montreal), Quebec H9P 2X8, Canada
| |
Collapse
|
10
|
Sparnacci K, Chiarcos R, Gianotti V, Laus M, Giammaria TJ, Perego M, Munaò G, Milano G, De Nicola A, Haese M, Kreuzer LP, Widmann T, Müller-Buschbaum P. Effect of Trapped Solvent on the Interface between PS- b-PMMA Thin Films and P(S- r-MMA) Brush Layers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7777-7787. [PMID: 31967449 DOI: 10.1021/acsami.9b20801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The orientation of block copolymer (BCP) features in thin films can be obtained by spin-coating a BCP solution on a substrate surface functionalized by a polymer brush layer of the appropriate random copolymer (RCP). Although this approach is well established, little work reporting the amount and distribution of residual solvent in the polymer film after the spin-coating process is available. Moreover, no information can be found on the effect of trapped solvent on the interface between the BCP film and RCP brush. In this work, systems consisting of poly(styrene)-b-poly(methyl methacrylate) thin films deposited on poly(styrene-r-methyl methacrylate) brush layers are investigated by combining neutron reflectivity (NR) experiments with simulation techniques. An increase in the amount of trapped solvent is observed by NR as the BCP film thickness increases accompanied by a significant decrease of the interpenetration length between the BCP and RCP, thus suggesting that the interpenetration between grafted chains and block copolymer chains is hampered by the solvent. Hybrid particle-field molecular dynamics simulations of the analyzed system confirm the experimental observations and demonstrate a clear correlation between the interpenetration length and the amount of trapped solvent.
Collapse
Affiliation(s)
- Katia Sparnacci
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT) , Universitá del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11 , 15121 Alessandria , Italy
| | - Riccardo Chiarcos
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT) , Universitá del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11 , 15121 Alessandria , Italy
| | - Valentina Gianotti
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT) , Universitá del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11 , 15121 Alessandria , Italy
| | - Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT) , Universitá del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11 , 15121 Alessandria , Italy
| | - Tommaso J Giammaria
- University Grenoble-Alpes, CEA, LETI , 17 avenue de Martyrs , Grenoble FR 38054 , France
| | - Michele Perego
- Laboratorio MDM, IMM-CNR , Via C. Olivetti 2 , 20864 Agrate Brianza , Italy
| | - Gianmarco Munaò
- Dipartimento di Chimica e Biologia , Università di Salerno , Via Giovanni Paolo II, 132 , I-84084 Fisciano , SA , Italy
| | - Giuseppe Milano
- Department of Organic Materials Science , Yamagata University , 4-3-16 Jonan Yonezawa , Yamagata , Yamagata-ken 992-8510 , Japan
| | - Antonio De Nicola
- Department of Organic Materials Science , Yamagata University , 4-3-16 Jonan Yonezawa , Yamagata , Yamagata-ken 992-8510 , Japan
| | - Martin Haese
- Helmholtz-Zentrum Geesthacht at Heinz Maier-Leibnitz Zentrum , Lichtenbergstr. 1 , 85747 Garching , Germany
| | - Lucas P Kreuzer
- Lehrstuhl für Funktionelle Materialien, Physik-Department , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Tobias Widmann
- Lehrstuhl für Funktionelle Materialien, Physik-Department , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik-Department , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
- Heinz Maier-Leibnitz Zentrum (MLZ) , Technische Universität München , Lichtenbergstr. 1 , 85748 Garching , Germany
| |
Collapse
|
11
|
Qian M, Song Z, Ding G, Hu Z, Liu J. Molecular orientation and stability of poly(3-hexylthiophene) nanogratings affected by the fabricated solvent vapor. RSC Adv 2019; 9:28648-28656. [PMID: 35529666 PMCID: PMC9071210 DOI: 10.1039/c9ra05693a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/29/2019] [Indexed: 01/04/2023] Open
Abstract
During the nanoimprinting lithography (NIL) process, the role of solvent vapor in fabricating the pattern structure and inducing the molecular alignment of nanoimprinted polymer film has been attracting significant attention. We demonstrate here that the molecular orientation and thermal stability of poly(3-hexylthiophene) (P3HT) nanograting film can be affected obviously by the fabricated solvent vapor. A solvent-vapor nanoimprinting lithography (SV-NIL) technique based on a polydimethylsiloxane (PDMS) template is employed to fabricate a P3HT nanograting structure film successfully and solvent vapor is offered by chlorobenzene, chloroform and carbon disulphide, respectively. The molecular orientation of the polymer film is carefully characterized by grazing incidence wide angle X-ray diffraction (GIWAXD) measurements to investigate the effect of various solvent vapors on the molecular orientation of the P3HT nanograting film. For the P3HT nanograting film fabricated by chloroform and chlorobenzene solvent, the edge-on molecular orientation of the typical form II crystallographic structure is induced. However, this indicates that there are both the face-on molecular orientations of the form II and form I crystallographic conformation present for the P3HT nanograting film fabricated by carbon disulphide solvent. Therefore, the fabricated solvent vapor plays a significant role in determining the formation of the molecular orientation of the polymer nanostructure. Then, the role of thermal annealing in the stability of the molecular orientation was investigated for the P3HT nanograting film after a fixed temperature. As for the annealed nanograting film fabricated by chlorobenzene and chloroform solvent vapor, a single edge-on molecular orientation mode of the form I crystallographic structure has been obtained. However, for the annealed nanograting film fabricated by the carbon disulphide solvent, the edge-on and face-on molecular orientations of the form I crystallographic structure are still retained. This indicates that the stability of the form II crystallographic conformation is mainly dependent on the thermal annealing process. Therefore, after the annealing process, the final determining of the molecular alignment and crystallographic conformation depends significantly on the orientation type of the nanograting film before the annealing history, and it can be further inferred that the molecular orientation of the annealed polymer film is still affected by the fabricated solvent vapor significantly. Thus this will provide new understanding and guidance for the research of the topographical structure and molecular alignment of conjugated polymers.
Collapse
Affiliation(s)
- Menxiang Qian
- College of Chemistry and Materials Science, Huaibei Normal University Huaibei 235000 China
- Anhui Key Laboratory of Energetic Materials Anhui 235000 China
| | - Zhanhua Song
- College of Chemistry and Materials Science, Huaibei Normal University Huaibei 235000 China
- Anhui Key Laboratory of Energetic Materials Anhui 235000 China
| | - Guangzhu Ding
- College of Chemistry and Materials Science, Huaibei Normal University Huaibei 235000 China
- Anhui Key Laboratory of Energetic Materials Anhui 235000 China
| | - Zhijun Hu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University Suzhou 215123 China
| | - Jieping Liu
- College of Chemistry and Materials Science, Huaibei Normal University Huaibei 235000 China
- Anhui Key Laboratory of Energetic Materials Anhui 235000 China
| |
Collapse
|
12
|
Cheng X, Böker A, Tsarkova L. Temperature-Controlled Solvent Vapor Annealing of Thin Block Copolymer Films. Polymers (Basel) 2019; 11:E1312. [PMID: 31390732 PMCID: PMC6722758 DOI: 10.3390/polym11081312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 12/05/2022] Open
Abstract
Solvent vapor annealing is as an effective and versatile alternative to thermal annealing to equilibrate and control the assembly of polymer chains in thin films. Here, we present scientific and practical aspects of the solvent vapor annealing method, including the discussion of such factors as non-equilibrium conformational states and chain dynamics in thin films in the presence of solvent. Homopolymer and block copolymer films have been used in model studies to evaluate the robustness and the reproducibility of the solvent vapor processing, as well as to assess polymer-solvent interactions under confinement. Advantages of utilizing a well-controlled solvent vapor environment, including practically interesting regimes of weakly saturated vapor leading to poorly swollen states, are discussed. Special focus is given to dual temperature control over the set-up instrumentation and to the potential of solvo-thermal annealing. The evaluated insights into annealing dynamics derived from the studies on block copolymer films can be applied to improve the processing of thin films of crystalline and conjugated polymers as well as polymer composite in confined geometries.
Collapse
Affiliation(s)
- Xiao Cheng
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Larisa Tsarkova
- Deutsches Textilforschungszentrum Nord-West (DNTW), Adlerstr. 1, 47798 Krefeld, Germany.
- Chair of Colloid Chemistry, Department of Chemistry, Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia.
| |
Collapse
|
13
|
Kizhnyaev VN, Pokatilov FA, Shabalin AI, Zhitov RG. Conetworks on the base of polystyrene with poly(methyl methacrylate) paired polymers. E-POLYMERS 2019. [DOI: 10.1515/epoly-2019-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractIt is found that forced (reactive) blending of polystyrene (PS) with polymethylmethacrylate (PMMA) involves the covalent binding of heterogeneous macromolecules to afford the paired polymers. For this purpose, the “anchor” N-H unsubstituted tetrazole or oxirane functional groups are preliminarily introduced in the structure of both polymers in a small amount that leads to a covalent binding of the heterogeneous macromolecules. The reaction between the modified PS and PMMA is carried out in dimethylformamide (DMF), toluene and dichloroethane (DCE) at a high total concentration of polymers (10-20 g dL-1). The process is accompanied by gel-formation to deliver cross-linked paired polymers It is established that the highest rate of the paired polymer is attained in the DCE medium, while the lowest rate is observed in DMF. For paired polymers synthesized in DMF, two glass transition temperatures (Tg) of 92°C and 104°C correspond to the original PS and PMMA, respectively. The products of forced blending of PS and PMMA in toluene have one averaged Tg value (99°C), whereas those obtained in DCE show no pronounced glass transition region at 90 ÷ 115°C. In toluene or DCE, the paired polymers are formed, which represent single-phase systems having one glass transition region.
Collapse
Affiliation(s)
- Valery N. Kizhnyaev
- Department of Chemistry, Irkutsk State University, K. Marksa st. 1, Irkutsk 664003, Irkutsk, Russia
| | - Fedor A. Pokatilov
- Department of Chemistry, Irkutsk State University, K. Marksa st. 1, Irkutsk 664003, Irkutsk, Russia
| | - Alexey I. Shabalin
- Department of Chemistry, Irkutsk State University, K. Marksa st. 1, Irkutsk 664003, Irkutsk, Russia
| | - Roman G. Zhitov
- Department of Chemistry, Irkutsk State University, K. Marksa st. 1, Irkutsk 664003, Irkutsk, Russia
| |
Collapse
|
14
|
Ogieglo W, Stenbock-Fermor A, Juraschek TM, Bogdanova Y, Benes N, Tsarkova LA. Synergic Swelling of Interactive Network Support and Block Copolymer Films during Solvent Vapor Annealing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9950-9960. [PMID: 30070855 DOI: 10.1021/acs.langmuir.8b02304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report the effect of "interactive" polymer network (PN) supports on the solvent-vapor processing of thin polymer films. Densely cross-linked surface-attached network exhibits under experimental time scale a glassy swelling behavior with the conformational states and solvent-uptake clearly sensitive to the degree of solvent vapor saturation in the atmosphere. Pretreatment of the thermally cured PN films by complete immersion or by swelling in saturated chloroform vapors facilitates relaxation of the residual stresses and induces irreversible changes to the network structure as revealed by the swelling/deswelling tests. The presence of a polymer film on top of the PN support results in a mutual influence of the layers on the respective swelling kinetics, steady-state solvent uptake, and chain dynamics. Using UV-vis ellipsometry, we revealed a significantly faster swelling and higher solvent uptake of glassy PN layer below a polymer film as compared to a single PN layer on silicon substrate. Remarkably, the swelling of the network support continues to increase even when the overall swelling of the bilayer is in a steady-state regime. Block copolymer films on PN supports exhibit a faster ordering dynamics and exceptional stability toward dewetting as compared to similar films on silicon wafers. The mechanical stress produced by continuously swelling PN is suggested to account for the enhanced segmental dynamics even at low solvent concentration in the block copolymer film. Apart from novel insights into dynamics of solvent uptake by heterogeneous polymer films, these results might be useful in developing novel approaches toward fast-processing/annealing of functional polymer films and fibers.
Collapse
Affiliation(s)
- Wojciech Ogieglo
- DWI-Leibniz-Institut für Interaktive Materialien , Forckenbeckstraße 50 , 52056 Aachen , Germany
| | - Anja Stenbock-Fermor
- DWI-Leibniz-Institut für Interaktive Materialien , Forckenbeckstraße 50 , 52056 Aachen , Germany
| | - Thomas M Juraschek
- DWI-Leibniz-Institut für Interaktive Materialien , Forckenbeckstraße 50 , 52056 Aachen , Germany
| | - Yulia Bogdanova
- Chair of Colloid Chemistry, Faculty of Chemistry , Moscow State University , 1-3 Leninskiye Gory , 119991 Moscow , Russia
| | - Nieck Benes
- Membrane Science and Technology Cluster/Films in Fluids Group, Faculty of Science and Technology , University of Twente , 7500 AE Enschede , The Netherlands
| | - Larisa A Tsarkova
- Chair of Colloid Chemistry, Faculty of Chemistry , Moscow State University , 1-3 Leninskiye Gory , 119991 Moscow , Russia
- Deutsches Textilforschungszentrum Nord-West gGmbH (DTNW) , Adlerstraße 1 , 47798 Krefeld , Germany
| |
Collapse
|
15
|
Giammaria TJ, Ferrarese Lupi F, Seguini G, Sparnacci K, Antonioli D, Gianotti V, Laus M, Perego M. Effect of Entrapped Solvent on the Evolution of Lateral Order in Self-Assembled P(S-r-MMA)/PS-b-PMMA Systems with Different Thicknesses. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31215-31223. [PMID: 28195457 DOI: 10.1021/acsami.6b14332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Block copolymers (BCPs) are emerging as a cost-effective nanofabrication tool to complement conventional optical lithography because they self-assemble in highly ordered polymeric templates with well-defined sub-20-nm periodic features. In this context, cylinder-forming polystyrene-block-poly(methyl methacrylate) BCPs are revealed as an interesting material of choice because the orientation of the nanostructures with respect to the underlying substrate can be effectively controlled by a poly(styrene-random-methyl methacrylate) random copolymer (RCP) brush layer grafted to the substrate prior to BCP deposition. In this work, we investigate the self-assembly process and lateral order evolution in RCP + BCP systems consisting of cylinder-forming PS-b-PMMA (67 kg mol-1, PS fraction of ∼70%) films with thicknesses of 30, 70, 100, and 130 nm deposited on RCP brush layers having thicknesses ranging from 2 to 20 nm. The self-assembly process is promoted by a rapid thermal processing machine operating at 250 °C for 300 s. The level of lateral order is determined by measuring the correlation length (ξ) in the self-assembled BCP films. Moreover, the amount of solvent (Φ) retained in the RCP + BCP systems is measured as a function of the thicknesses of the RCP and BCP layers, respectively. In the 30-nm-thick BCP films, an increase in Φ as a function of the thickness of the RCP brush layer significantly affects the self-assembly kinetics and the final extent of the lateral order in the BCP films. Conversely, no significant variations of ξ are observed in the 70-, 100-, and 130-nm-thick BCP films with increasing Φ.
Collapse
Affiliation(s)
- Tommaso Jacopo Giammaria
- Laboratorio MDM, IMM-CNR , Via C. Olivetti 2, 20864 Agrate Brianza, Italy
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte orientale ''A. Avogadro'' , Viale T. Michel 11, 15121 Alessandria, Italy
| | | | - Gabriele Seguini
- Laboratorio MDM, IMM-CNR , Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| | - Katia Sparnacci
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte orientale ''A. Avogadro'' , Viale T. Michel 11, 15121 Alessandria, Italy
| | - Diego Antonioli
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte orientale ''A. Avogadro'' , Viale T. Michel 11, 15121 Alessandria, Italy
| | - Valentina Gianotti
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte orientale ''A. Avogadro'' , Viale T. Michel 11, 15121 Alessandria, Italy
| | - Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte orientale ''A. Avogadro'' , Viale T. Michel 11, 15121 Alessandria, Italy
| | - Michele Perego
- Laboratorio MDM, IMM-CNR , Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| |
Collapse
|
16
|
Posselt D, Zhang J, Smilgies DM, Berezkin AV, Potemkin II, Papadakis CM. Restructuring in block copolymer thin films: In situ GISAXS investigations during solvent vapor annealing. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2016.09.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Frascaroli J, Cianci E, Spiga S, Seguini G, Perego M. Ozone-Based Sequential Infiltration Synthesis of Al 2O 3 Nanostructures in Symmetric Block Copolymer. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33933-33942. [PMID: 27960442 DOI: 10.1021/acsami.6b11340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sequential infiltration synthesis (SIS) provides an original strategy to grow inorganic materials by infiltrating gaseous precursors in polymeric films. Combined with microphase-separated nanostructures resulting from block copolymer (BCP) self-assembly, SIS selectively binds the precursors to only one domain, mimicking the morphology of the original BCP template. This methodology represents a smart solution for the fabrication of inorganic nanostructures starting from self-assembled BCP thin films, in view of advanced lithographic application and of functional nanostructure synthesis. The SIS process using trimethylaluminum (TMA) and H2O precursors in self-assembled PS-b-PMMA BCP thin films was established as a model system, where the PMMA phase is selectively infiltrated. However, the temperature range allowed by polymeric material restricts the available precursors to highly reactive reagents, such as TMA. In order to extend the SIS methodology and access a wide library of materials, a crucial step is the implementation of processes using reactive reagents that are fully compatible with the initial polymeric template. This work reports a comprehensive morphological (SEM, SE, AFM) and physicochemical (XPS) investigation of alumina nanostructures synthesized by means of a SIS process using O3 as oxygen precursor in self-assembled PS-b-PMMA thin films with lamellar morphology. The comparison with the H2O-based SIS process validates the possibility to use O3 as oxygen precursor, expanding the possible range of precursors for the fabrication of inorganic nanostructures.
Collapse
Affiliation(s)
- Jacopo Frascaroli
- Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| | - Elena Cianci
- Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| | - Sabina Spiga
- Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| | - Gabriele Seguini
- Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| | - Michele Perego
- Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| |
Collapse
|
18
|
Majewski PW, Yager KG. Rapid ordering of block copolymer thin films. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:403002. [PMID: 27537062 DOI: 10.1088/0953-8984/28/40/403002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Block-copolymers self-assemble into diverse morphologies, where nanoscale order can be finely tuned via block architecture and processing conditions. However, the ultimate usage of these materials in real-world applications may be hampered by the extremely long thermal annealing times-hours or days-required to achieve good order. Here, we provide an overview of the fundamentals of block-copolymer self-assembly kinetics, and review the techniques that have been demonstrated to influence, and enhance, these ordering kinetics. We discuss the inherent tradeoffs between oven annealing, solvent annealing, microwave annealing, zone annealing, and other directed self-assembly methods; including an assessment of spatial and temporal characteristics. We also review both real-space and reciprocal-space analysis techniques for quantifying order in these systems.
Collapse
Affiliation(s)
- Pawel W Majewski
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA. Department of Chemistry, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|