1
|
Chen X, Holze R. Polymer Electrolytes for Supercapacitors. Polymers (Basel) 2024; 16:3164. [PMID: 39599254 PMCID: PMC11598227 DOI: 10.3390/polym16223164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Because of safety concerns associated with the use of liquid electrolytes and electrolyte solutions, options for non-liquid materials like gels and polymers to be used as ion-conducting electrolytes have been explored intensely, and they attract steadily growing interest from researchers. The low ionic conductivity of most hard and soft solid materials was initially too low for practical applications in supercapacitors, which require low internal resistance of a device and, consequently, highly conducting materials. Even if an additional separator may not be needed when the solid electrolyte already ensures reliable separation of the electrodes, the electrolytes prepared as films or membranes as thin as practically acceptable, resistance may still be too high even today. Recent developments with gel electrolytes sometimes approach or even surpass liquid electrolyte solutions, in terms of effective conductance. This includes materials based on biopolymers, renewable raw materials, materials with biodegradability, and better environmental compatibility. In addition, numerous approaches to improving the electrolyte/electrode interaction have yielded improvements in effective internal device resistance. Reported studies are reviewed, material combinations are sorted out, and trends are identified.
Collapse
Affiliation(s)
- Xuecheng Chen
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Rudolf Holze
- Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing 210096, China
- Department of Electrochemistry, Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
- Chemnitz University of Technology, D-09107 Chemnitz, Germany
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
2
|
Yu D, Min J, Lin F, Madsen LA. Mechanically and Thermally Robust Gel Electrolytes Built from A Charged Double Helical Polymer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312513. [PMID: 38288908 DOI: 10.1002/adma.202312513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/26/2024] [Indexed: 03/16/2024]
Abstract
Polymer electrolytes have received tremendous interest in the development of solid-state batteries, but often fall short in one or more key properties required for practical applications. Herein, a rigid gel polymer electrolyte prepared by immobilizing a liquid mixture of a lithium salt and poly(ethylene glycol) dimethyl ether with only 8 wt% poly(2,2'-disulfonyl-4,4'-benzidine terephthalamide) (PBDT) is reported. The high charge density and rigid double helical structure of PBDT lead to formation of a nanofibrillar structure that endows this electrolyte with stronger mechanical properties, wider temperature window, and higher battery rate capability compared to all other poly(ethylene oxide) (PEO)-based electrolytes. The ion transport mechanism in this rigid polymer electrolyte is systematically studied using multiple complementary techniques. Li/LiFePO4 cells show excellent capacity retention over long-term cycling, with thermal cycling reversibility between ambient temperature and elevated temperatures, demonstrating compelling potential for solid-state batteries targeting fast charging at high temperatures and slower discharging at ambient temperature.
Collapse
Affiliation(s)
- Deyang Yu
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Jungki Min
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Feng Lin
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Louis A Madsen
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| |
Collapse
|
3
|
Shamshina JL, Berton P. Renewable Biopolymers Combined with Ionic Liquids for the Next Generation of Supercapacitor Materials. Int J Mol Sci 2023; 24:ijms24097866. [PMID: 37175574 PMCID: PMC10177905 DOI: 10.3390/ijms24097866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The search for biocompatible and renewable materials for the next generation of energy devices has led to increasing interest in using biopolymers as a matrix component for the development of electric double-layer capacitors (EDLCs). However, using biopolymers as host matrices presents limitations in performance and scalability. At the same time, ionic liquids (ILs) have shown exceptional properties as non-aqueous electrolytes. This review intends to highlight the progress in integrating ILs and biopolymers for EDLC. While ILs have been used as solvents to process biopolymers and electrolyte materials, biopolymers have been utilized to provide novel chemistries of electrolyte materials via one of the following scenarios: (1) acting as host polymeric matrices for IL-support, (2) performing as polymeric fillers, and (3) serving as backbone polymer substrates for synthetic polymer grafting. Each of these scenarios is discussed in detail and supported with several examples. The use of biopolymers as electrode materials is another topic covered in this review, where biopolymers are used as a source of carbon or as a flexible support for conductive materials. This review also highlights current challenges in materials development, including improvements in robustness and conductivity, and proper dispersion and compatibility of biopolymeric and synthetic polymeric matrices for proper interface bonding.
Collapse
Affiliation(s)
- Julia L Shamshina
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Paula Berton
- Chemical and Petroleum Engineering Department, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
4
|
Zhang Z, Zhao R, Wang S, Meng J. Recent advances in bio-inspired ionic liquid-based interfacial materials from preparation to application. Front Bioeng Biotechnol 2023; 11:1117944. [PMID: 36741752 PMCID: PMC9892770 DOI: 10.3389/fbioe.2023.1117944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Natural creatures always display unique and charming functions, such as the adhesion of mussels and the lubrication of Nepenthes, to maintain their life activities. Bio-inspired interfacial materials infused with liquid, especially for ionic liquids (ILs), have been designed and prepared to meet the emerging and rising needs of human beings. In this review, we first summarize the recent development of bio-inspired IL-based interfacial materials (BILIMs), ranging from the synthesis strategy to the design principle. Then, we discuss the advanced applications of BILIMs from anti-adhesive aspects (e.g., anti-biofouling, anti-liquid fouling, and anti-solid fouling) to adhesive aspects (e.g., biological sensor, adhesive tape, and wound dressing). Finally, the current limitations and future prospects of BILIMs are provided to feed the actual needs.
Collapse
Affiliation(s)
- Zhe Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ran Zhao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Qingdao Casfuture Research Institute Co., Ltd., Qingdao, China
| | - Jingxin Meng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Qingdao Casfuture Research Institute Co., Ltd., Qingdao, China
- Binzhou Institute of Technology, Binzhou, China
| |
Collapse
|
5
|
Fan X, Zhong C, Liu J, Ding J, Deng Y, Han X, Zhang L, Hu W, Wilkinson DP, Zhang J. Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes. Chem Rev 2022; 122:17155-17239. [PMID: 36239919 DOI: 10.1021/acs.chemrev.2c00196] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ever-increasing demand for flexible and portable electronics has stimulated research and development in building advanced electrochemical energy devices which are lightweight, ultrathin, small in size, bendable, foldable, knittable, wearable, and/or stretchable. In such flexible and portable devices, semi-solid/solid electrolytes besides anodes and cathodes are the necessary components determining the energy/power performances. By serving as the ion transport channels, such semi-solid/solid electrolytes may be beneficial to resolving the issues of leakage, electrode corrosion, and metal electrode dendrite growth. In this paper, the fundamentals of semi-solid/solid electrolytes (e.g., chemical composition, ionic conductivity, electrochemical window, mechanical strength, thermal stability, and other attractive features), the electrode-electrolyte interfacial properties, and their relationships with the performance of various energy devices (e.g., supercapacitors, secondary ion batteries, metal-sulfur batteries, and metal-air batteries) are comprehensively reviewed in terms of materials synthesis and/or characterization, functional mechanisms, and device assembling for performance validation. The most recent advancements in improving the performance of electrochemical energy devices are summarized with focuses on analyzing the existing technical challenges (e.g., solid electrolyte interphase formation, metal electrode dendrite growth, polysulfide shuttle issue, electrolyte instability in half-open battery structure) and the strategies for overcoming these challenges through modification of semi-solid/solid electrolyte materials. Several possible directions for future research and development are proposed for going beyond existing technological bottlenecks and achieving desirable flexible and portable electrochemical energy devices to fulfill their practical applications. It is expected that this review may provide the readers with a comprehensive cross-technology understanding of the semi-solid/solid electrolytes for facilitating their current and future researches on the flexible and portable electrochemical energy devices.
Collapse
Affiliation(s)
- Xiayue Fan
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
| | - Jie Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Jia Ding
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Yida Deng
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Xiaopeng Han
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Lei Zhang
- Energy, Mining & Environment, National Research Council of Canada, Vancouver, British ColumbiaV6T 1W5, Canada
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
| | - David P Wilkinson
- Department of Chemical and Biochemical Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1W5, Canada
| | - Jiujun Zhang
- Energy, Mining & Environment, National Research Council of Canada, Vancouver, British ColumbiaV6T 1W5, Canada
- Department of Chemical and Biochemical Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1W5, Canada
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou350108, China
| |
Collapse
|
6
|
Electrochemical and Ion Transport Studies of Li+ Ion-Conducting MC-Based Biopolymer Blend Electrolytes. Int J Mol Sci 2022; 23:ijms23169152. [PMID: 36012415 PMCID: PMC9409367 DOI: 10.3390/ijms23169152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
A facile methodology system for synthesizing solid polymer electrolytes (SPEs) based on methylcellulose, dextran, lithium perchlorate (as ionic sources), and glycerol (such as a plasticizer) (MC:Dex:LiClO4:Glycerol) has been implemented. Fourier transform infrared spectroscopy (FTIR) and two imperative electrochemical techniques, including linear sweep voltammetry (LSV) and electrical impedance spectroscopy (EIS), were performed on the films to analyze their structural and electrical properties. The FTIR spectra verify the interactions between the electrolyte components. Following this, a further calculation was performed to determine free ions (FI) and contact ion pairs (CIP) from the deconvolution of the peak associated with the anion. It is verified that the electrolyte containing the highest amount of glycerol plasticizer (MDLG3) has shown a maximum conductivity of 1.45 × 10−3 S cm−1. Moreover, for other transport parameters, the mobility (μ), number density (n), and diffusion coefficient (D) of ions were enhanced effectively. The transference number measurement (TNM) of electrons (tel) was 0.024 and 0.976 corresponding to ions (tion). One of the prepared samples (MDLG3) had 3.0 V as the voltage stability of the electrolyte.
Collapse
|
7
|
Aziz SB, Dannoun EMA, Abdalrahman AA, Abdulwahid RT, Al-Saeedi SI, Brza MA, Nofal MM, Abdullah RM, Hadi JM, Karim WO. Characteristics of Methyl Cellulose Based Solid Polymer Electrolyte Inserted with Potassium Thiocyanate as K + Cation Provider: Structural and Electrical Studies. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5579. [PMID: 36013716 PMCID: PMC9414175 DOI: 10.3390/ma15165579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
The attention to a stable and ionic conductive electrolyte is driven by the limitations of liquid electrolytes, particularly evaporation and leakage, which restrain their widespread use for electrochemical device applications. Solid polymer electrolyte (SPE) is considered to be a potential alternative since it possesses high safety compared to its counterparts. However, it still suffers from low device efficiency due to an incomplete understanding of the mechanism of ion transport parameters. Here, we present a simple in situ solution casting method for the production of polymer-based electrolytes using abundantly available methylcellulose (MC) doped at different weight percentages of potassium thiocyanate (KSCN) salt. Fourier transform infrared (FTIR), and electrochemical impedance spectroscopy (EIS) methods were used to characterize the prepared samples. Based on EIS simulation and FTIR deconvolution associated with the SCN anion peak, various ion transport parameters were determined. The host MC medium and KSCN salt have a strong interaction, which was evident from both peak shifting and intensity alteration of FTIR spectra. From the EIS modeling, desired electric circuits correlated with ion movement and chain polarization were drawn. The highest ionic conductivity of 1.54 × 10-7 S cm-1 is determined from the fitted EIS curve for the film doped with 30 wt.% of KSCN salt. From the FTIR deconvoluted peak, free ions, ions in contact with one another, and ion aggregates were separated. The extracted ion transport parameters from the EIS method and FTIR spectra of the SCN anion band confirm that both increased carrier concentration and their mobility were crucial in improving the overall conductivity of the electrolyte. The dielectric investigations were further used to understand the conductivity of the films. High dielectric constants were observed at low frequencies for all MC:KSCN systems. The dispersion with a high dielectric constant in the low-frequency band is ascribed to the dielectric polarization. The wide shift of M″ peak towards the high frequency was evidenced by the MC-based electrolyte impregnated with 30 wt.% of KSCN salt, revealing the improved ionic movement assisted with chain segmental motion. The AC conductivity pattern was influenced by salt concentration.
Collapse
Affiliation(s)
- Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq
- The Development Center for Research and Training (DCRT), University of Human Development, Sulaimani 46001, Iraq
| | - Elham M. A. Dannoun
- Associate Chair of the Department of Mathematics and Science, Woman Campus, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
| | - Ari A. Abdalrahman
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - Rebar T. Abdulwahid
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq
- Department of Physics, College of Education, University of Sulaimani, Old Campus, Sulaimani 46001, Iraq
| | - Sameerah I. Al-Saeedi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamad A. Brza
- Medical Physics Department, College of Medicals and Applied Science, Charmo University, Sulaimani 46023, Iraq
| | - Muaffaq M. Nofal
- Department of Mathematics and Science, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
| | - Ranjdar M. Abdullah
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - Jihad M. Hadi
- Nursing Department, College of Nursing, University of Human Development, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - Wrya O. Karim
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq
| |
Collapse
|
8
|
Fu X, Chen Y, Wang W, Yu D. Self-adhesive and anti-fatigue cellulose-polyacrylate ionogels prepared by ultraviolet curing used as biopotential electrodes. Int J Biol Macromol 2022; 218:533-542. [PMID: 35902012 DOI: 10.1016/j.ijbiomac.2022.07.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 11/25/2022]
Abstract
Conductive hydrogels have been extensively studied because of flexibility and skin-like capability to be used as biopotential electrodes for wearable health monitoring. However, they may suffer from poor mechanical properties and stability problems when used in practical applications caused by water evaporation. Herein, we prepared self-adhesive, transparent, flexible and robust ionic gels that can conformal contact with the skin used as biopotential electrodes for precise health monitoring. Cellulose based iogels were prepared by dissolving cellulose using [Bmim]Cl at 100 °C followed by in situ Ultraviolet light photopolymerization of acrylic acid by adding a mixture of acrylic acid and 2-hydroxy-2-methylpropiophenone. Cellulose/polyacrylic acid-based ionic gels-2 (BCELIG-2) has a Young's modulus of 0.2 MPa, a strain at break of 226 %, a modulus of elasticity of 0.1 MPa, and a toughness of 22.5 MJ m-3. Fixing the strain at 40 %, the ionic gels can recover to their original length after ten tensile-unloading cycles. They can accurately detect subtle physical motions such as arterial pulsations, which can provide important cardiovascular information.
Collapse
Affiliation(s)
- Xueli Fu
- Key Laboratory of Science and Technology of Eco-Textile, College of Chemistry, Chemical Engineering & Biotechnology, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Yixiang Chen
- Key Laboratory of Science and Technology of Eco-Textile, College of Chemistry, Chemical Engineering & Biotechnology, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Wei Wang
- Key Laboratory of Science and Technology of Eco-Textile, College of Chemistry, Chemical Engineering & Biotechnology, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Dan Yu
- Key Laboratory of Science and Technology of Eco-Textile, College of Chemistry, Chemical Engineering & Biotechnology, Ministry of Education, Donghua University, Shanghai 201620, China.
| |
Collapse
|
9
|
Choi W, Abraham A, Ko J, Son JG, Cho J, Sang BI, Yeom B. Anisotropic Alignment of Bacterial Nanocellulose Ionogels for Unconventionally High Combination of Stiffness and Damping. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30056-30066. [PMID: 35737510 DOI: 10.1021/acsami.2c05500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ionogels are emerging materials for advanced electrochemical devices; however, their mechanical instability to external stresses has raised concerns about their safety. This study reports aligned bacterial nanocellulose (BC) ionogel films swelled with the model ionic liquid (IL) of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) for an unprecedented combination of high stiffness and high energy dissipation without significant loss of ionic conductivity. The aligned BC ionogel films are prepared through wet-state stretching methods, followed by drying and swelling by ILs. The aligned ionogel films exhibit significantly improved dynamic mechanical properties, overcoming the mechanical conventional limit of traditional materials by 2.0 times at 25 °C and by a maximum of 4.0 times at 0 °C. Additionally, the same samples exhibit relatively high ionic conductivities of 0.16 mS cm-1 at 20 °C and 0.45 mS cm-1 at 60 °C with storage moduli over 10 GPa. The synergistic effect of the mechanical reinforcements by alignment of the BC nanofibers and the plasticizing effects by ILs could be attributed to the significant enhancement of dynamic mechanical properties and the retention of ionic conductivities. These results will lead to a deeper understanding of the material design for mechanically superior ionogel systems with increasing demands for advanced electronic and electrochemical devices.
Collapse
Affiliation(s)
- Wonseok Choi
- Department of Chemical Engineering, Hanyang University Seoul 04763, Republic of Korea
| | - Amith Abraham
- Department of Chemical Engineering, Hanyang University Seoul 04763, Republic of Korea
| | - Jongkuk Ko
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jeong Gon Son
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Jinhan Cho
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Byoung-In Sang
- Department of Chemical Engineering, Hanyang University Seoul 04763, Republic of Korea
| | - Bongjun Yeom
- Department of Chemical Engineering, Hanyang University Seoul 04763, Republic of Korea
| |
Collapse
|
10
|
Aziz SB, Dannoun EMA, Abdulwahid RT, Kadir MFZ, Nofal MM, Al-Saeedi SI, Murad AR. The Study of Ion Transport Parameters in MC-Based Electrolyte Membranes Using EIS and Their Applications for EDLC Devices. MEMBRANES 2022; 12:membranes12020139. [PMID: 35207061 PMCID: PMC8877585 DOI: 10.3390/membranes12020139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
A solution cast technique was utilized to create a plasticized biopolymer-based electrolyte system. The system was prepared from methylcellulose (MC) polymer as the hosting material and potassium iodide (KI) salt as the ionic source. The electrolyte produced with sufficient conductivity was evaluated in an electrochemical double-layer capacitor (EDLC). Electrolyte systems’ electrical, structural, and electrochemical properties have been examined using various electrochemical and FTIR spectroscopic techniques. From the electrochemical impedance spectroscopy (EIS), a maximum ionic conductivity of 5.14 × 10−4 S cm−1 for the system with 50% plasticizer was recorded. From the EEC modeling, the ion transport parameters were evaluated. The extent of interaction between the components of the prepared electrolyte was investigated using Fourier transformed infrared spectroscopy (FTIR). For the electrolyte system (MC-KI-glycerol), the tion and electrochemical windows were 0.964 and 2.2 V, respectively. Another electrochemical property of electrolytes is transference number measurement (TNM), in which the ion predominantly responsibility was examined in an attempt to track the transport mechanism. The non-Faradaic nature of charge storing was proved from the absence of a redox peak in the cyclic voltammetry profile (CV). Several decisive parameters have been specified, such as specific capacitance (Cs), coulombic efficiency (η), energy density (Ed), and power density (Pd) at the first cycle, which were 68 F g−1, 67%, 7.88 Wh kg−1, and 1360 Wh kg−1, respectively. Ultimately, during the 400th cycle, the series resistance ESR varied from 70 to 310 ohms.
Collapse
Affiliation(s)
- Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab, Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq;
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Kurdistan Regional Government, Sulaimani 46001, Iraq
- Correspondence:
| | - Elham M. A. Dannoun
- Associate Chair of the Department of Mathematics and Science, Woman Campus, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Rebar T. Abdulwahid
- Hameed Majid Advanced Polymeric Materials Research Lab, Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq;
- Department of Physics, College of Education, University of Sulaimani, Old Campus, Sulaimani 46001, Iraq
| | - Mohd F. Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Muaffaq M. Nofal
- Department of Mathematics and Science, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Sameerah I. Al-Saeedi
- Department of Chemistry, College of Science, Princess Nuourah Bint Abdulrahman University, Riyadh 11362, Saudi Arabia;
| | - Ary R. Murad
- Department of Pharmaceutical Chemistry, College of Medical and Applied Sciences, Charmo University, Chamchamal, Sulaimani 46023, Iraq;
| |
Collapse
|
11
|
Raghavan A, Ghosh S. Recent Advancements on Biopolymer‐ Based Flexible Electrolytes for Next‐Gen Supercaps and Batteries: A Brief Sketch. ChemistrySelect 2021. [DOI: 10.1002/slct.202103291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Akshaya Raghavan
- Polymers & Functional Materials division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sutapa Ghosh
- Polymers & Functional Materials division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
12
|
Hopson C, Villar-Chavero MM, Domínguez JC, Alonso MV, Oliet M, Rodriguez F. Cellulose ionogels, a perspective of the last decade: A review. Carbohydr Polym 2021; 274:118663. [PMID: 34702482 DOI: 10.1016/j.carbpol.2021.118663] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/04/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022]
Abstract
Cellulose ionogels have been extensively studied due to the variability of their properties and applications. The capability of trapping an ionic liquid in a biodegradable solid matrix without losing its properties makes this type of material a promising substitute for fossil fuel-derived materials. The possibility to formulate ionogels chemically or physically, to choose between different ionic liquids, cellulose types, and the possibility to add a wide range of additives, make these ionogels an adaptable material that can be modified for each target application in many fields such as medicine, energy storage, electrochemistry, etc. The aim of this review is to show its versatility and to provide a summary picture of the advances in the field of cellulose ionogels formulation (chemical or physical methods), as well as their potential applications, so this review will serve as a stimulus for research on these materials in the future.
Collapse
Affiliation(s)
- Cynthia Hopson
- Chemical Engineering and Materials Department, Complutense University of Madrid, Av. Complutense S/N, 28040 Madrid, Spain.
| | - M Mar Villar-Chavero
- Chemical Engineering and Materials Department, Complutense University of Madrid, Av. Complutense S/N, 28040 Madrid, Spain
| | - Juan C Domínguez
- Chemical Engineering and Materials Department, Complutense University of Madrid, Av. Complutense S/N, 28040 Madrid, Spain
| | - M Virginia Alonso
- Chemical Engineering and Materials Department, Complutense University of Madrid, Av. Complutense S/N, 28040 Madrid, Spain
| | - Mercedes Oliet
- Chemical Engineering and Materials Department, Complutense University of Madrid, Av. Complutense S/N, 28040 Madrid, Spain
| | - Francisco Rodriguez
- Chemical Engineering and Materials Department, Complutense University of Madrid, Av. Complutense S/N, 28040 Madrid, Spain
| |
Collapse
|
13
|
Rajapaksha HGN, Perera KS, Vidanapathurana KP. Novel study on a safe, low-cost natural rubber: Mg-based solid polymer electrolyte for energy storage. J RUBBER RES 2021. [DOI: 10.1007/s42464-021-00132-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Polysaccharides for sustainable energy storage - A review. Carbohydr Polym 2021; 265:118063. [PMID: 33966827 DOI: 10.1016/j.carbpol.2021.118063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/22/2022]
Abstract
The increasing amount of electric vehicles on our streets as well as the need to store surplus energy from renewable sources such as wind, solar and tidal parks, has brought small and large scale batteries into the focus of academic and industrial research. While there has been huge progress in performance and cost reduction in the past years, batteries and their components still face several environmental issues including safety, toxicity, recycling and sustainability. In this review, we address these challenges by showcasing the potential of polysaccharide-based compounds and materials used in batteries. This particularly involves their use as electrode binders, separators and gel/solid polymer electrolytes. The review contains a historical section on the different battery technologies, considerations about safety on batteries and requirements of polysaccharide components to be used in different types of battery technologies. The last sections cover opportunities for polysaccharides as well as obstacles that prevent their wider use in battery industry.
Collapse
|
15
|
Ge Y, Bu X, Wang L, Wu L, Ma X, Diao W, Lu D. Ultratough and recoverable ionogels based on multiple interpolymer hydrogen bonding as durable electrolytes for flexible solid‐state supercapacitor. J Appl Polym Sci 2020. [DOI: 10.1002/app.50259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yongxin Ge
- College of Materials Science and Engineering Nanjing Tech University Nanjing P. R. China
| | - Ximan Bu
- College of Materials Science and Engineering Nanjing Tech University Nanjing P. R. China
| | - Lei Wang
- College of Science Nanjing Forestry University Nanjing P. R. China
| | - Linlin Wu
- College of Materials Science and Engineering Nanjing Tech University Nanjing P. R. China
| | - Xiaofeng Ma
- College of Science Nanjing Forestry University Nanjing P. R. China
| | - Wenjing Diao
- College of Materials Science and Engineering Nanjing Tech University Nanjing P. R. China
| | - Duyou Lu
- College of Materials Science and Engineering Nanjing Tech University Nanjing P. R. China
| |
Collapse
|
16
|
Migliorini L, Santaniello T, Borghi F, Saettone P, Comes Franchini M, Generali G, Milani P. Eco-Friendly Supercapacitors Based on Biodegradable Poly(3-Hydroxy-Butyrate) and Ionic Liquids. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2062. [PMID: 33086532 PMCID: PMC7603249 DOI: 10.3390/nano10102062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 11/30/2022]
Abstract
The interest for biodegradable electronic devices is rapidly increasing for application in the field of wearable electronics, precision agriculture, biomedicine, and environmental monitoring. Energy storage devices integrated on polymeric substrates are of particular interest to enable the large-scale on field use of complex devices. This work presents a novel class of eco-friendly supercapacitors based on biodegradable poly(3-hydroxybutyrrate) PHB, ionic liquids, and cluster-assembled gold electrodes. By electrochemical characterization, we demonstrate the possibility of tuning the supercapacitor energetic performance according to the type and amount of the ionic liquid employed. Our devices based on hydrophobic plastic materials are stable under cyclic operation and resistant to moisture exposure.
Collapse
Affiliation(s)
- Lorenzo Migliorini
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Physics Department, University of Milan, 20133 Milano, Italy; (L.M.); (T.S.); (F.B.)
| | - Tommaso Santaniello
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Physics Department, University of Milan, 20133 Milano, Italy; (L.M.); (T.S.); (F.B.)
| | - Francesca Borghi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Physics Department, University of Milan, 20133 Milano, Italy; (L.M.); (T.S.); (F.B.)
| | - Paolo Saettone
- Bio-On spa, Via Santa Margherita al Colle 10/3, 40136 Bologna, Italy; (P.S.); (G.G.)
| | - Mauro Comes Franchini
- Bio-On spa, Via Santa Margherita al Colle 10/3, 40136 Bologna, Italy; (P.S.); (G.G.)
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Gianluca Generali
- Bio-On spa, Via Santa Margherita al Colle 10/3, 40136 Bologna, Italy; (P.S.); (G.G.)
| | - Paolo Milani
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Physics Department, University of Milan, 20133 Milano, Italy; (L.M.); (T.S.); (F.B.)
| |
Collapse
|
17
|
Compatible Solid Polymer Electrolyte Based on Methyl Cellulose for Energy Storage Application: Structural, Electrical, and Electrochemical Properties. Polymers (Basel) 2020; 12:polym12102257. [PMID: 33019543 PMCID: PMC7601219 DOI: 10.3390/polym12102257] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 11/16/2022] Open
Abstract
Compatible green polymer electrolytes based on methyl cellulose (MC) were prepared for energy storage electrochemical double-layer capacitor (EDLC) application. X-ray diffraction (XRD) was conducted for structural investigation. The reduction in the intensity of crystalline peaks of MC upon the addition of sodium iodide (NaI) salt discloses the growth of the amorphous area in solid polymer electrolytes (SPEs). Impedance plots show that the uppermost conducting electrolyte had a smaller bulk resistance. The highest attained direct current DC conductivity was 3.01 × 10-3 S/cm for the sample integrated with 50 wt.% of NaI. The dielectric analysis suggests that samples in this study showed non-Debye behavior. The electron transference number was found to be lower than the ion transference number, thus it can be concluded that ions are the primary charge carriers in the MC-NaI system. The addition of a relatively high concentration of salt into the MC matrix changed the ion transfer number from 0.75 to 0.93. From linear sweep voltammetry (LSV), the green polymer electrolyte in this work was actually stable up to 1.7 V. The consequence of the cyclic voltammetry (CV) plot suggests that the nature of charge storage at the electrode-electrolyte interfaces is a non-Faradaic process and specific capacitance is subjective by scan rates. The relatively high capacitance of 94.7 F/g at a sweep rate of 10 mV/s was achieved for EDLC assembly containing a MC-NaI system.
Collapse
|
18
|
Kim SK, Yoon Y, Ryu JH, Kim JH, Ji S, Song W, Myung S, Lim J, Jung HK, Lee SS, Lee J, An KS. Recyclable High-Performance Polymer Electrolyte Based on a Modified Methyl Cellulose-Lithium Trifluoromethanesulfonate Salt Composite for Sustainable Energy Systems. CHEMSUSCHEM 2020; 13:376-384. [PMID: 31758646 DOI: 10.1002/cssc.201902756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Although energy-storage devices based on Li ions are considered as the most prominent candidates for immediate application in the near future, concerns with regard to their stability, safety, and environmental impact still remain. As a solution, the development of all-solid-state energy-storage devices with enhanced stability is proposed. A new eco-friendly polymer electrolyte has been synthesized by incorporating lithium trifluoromethanesulfonate into chemically modified methyl cellulose (LiTFS-LiSMC). The transparent and flexible electrolyte exhibits a good conductivity of near 1 mS cm-1 . An all-solid-state supercapacitor fabricated from 20 wt % LiTFS-LiSMC shows comparable specific capacitances to a standard liquid-electrolyte supercapacitor and an excellent stability even after 20 000 charge-discharge cycles. The electrolyte is also compatible with patterned carbon, which enables the simple fabrication of micro-supercapacitors. In addition, the LiTFS-LiSMC electrolyte can be recycled and reused more than 20 times with negligible change in its performance. Thus, it is a promising material for sustainable energy-storage devices.
Collapse
Affiliation(s)
- Seong K Kim
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon, 34114, Korea
- Department of Advanced Materials and Chemical Engineering, Hannam University, 70 Hannamro, Daejeon, 34430, Korea
| | - Yeoheung Yoon
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon, 34114, Korea
| | - Ji Hyung Ryu
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon, 34114, Korea
| | - Jeong Hui Kim
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon, 34114, Korea
| | - Seulgi Ji
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon, 34114, Korea
| | - Wooseok Song
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon, 34114, Korea
| | - Sung Myung
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon, 34114, Korea
| | - Jongsun Lim
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon, 34114, Korea
| | - Ha-Kyun Jung
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon, 34114, Korea
| | - Sun Sook Lee
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon, 34114, Korea
| | - Jiseok Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Korea
| | - Ki-Seok An
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon, 34114, Korea
| |
Collapse
|
19
|
Fox RJ, Yu D, Hegde M, Kumbhar AS, Madsen LA, Dingemans TJ. Nanofibrillar Ionic Polymer Composites Enable High-Modulus Ion-Conducting Membranes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40551-40563. [PMID: 31507155 DOI: 10.1021/acsami.9b10921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polymer electrolyte membranes (PEMs) with high volume fractions of ionic liquids (IL) and high modulus show promise for enabling next-generation gas separations, and electrochemical energy storage and conversion applications. Herein, we present a conductive polymer-IL composite based on a sulfonated all-aromatic polyamide (sulfo-aramid, PBDT) and a model IL, which we term a PBDT-IL composite. The polymer forms glassy and high-aspect-ratio hierarchical nanofibrils, which enable fabrication of PEMs with both high volume fractions of IL and high elastic modulus. We report direct evidence for nanofibrillar networks that serve as matrices for dispersed ILs using atomic force microscopy and small- and wide-angle X-ray scattering. These supramolecular nanofibrils form through myriad noncovalent interactions to produce a physically cross-linked glassy network, which boasts the best combination of room-temperature modulus (0.1-2 GPa) and ionic conductivity (8-4 mS cm-1) of any polymer-IL electrolyte reported to date. The ultrahigh thermomechanical properties of our PBDT-IL composites provide high moduli (∼1 GPa) at temperatures up to 200 °C, enabling a wide device operation window with stable mechanical properties. Together, the high-performance nature of sulfo-aramids in concert with the inherent properties of ILs imparts PBDT-IL composites with nonflammability and thermal stability up to 350 °C. Thus, nanofibrillar ionic networks based on sulfo-aramids and ILs represent a new design paradigm affording PEMs with exceptionally high moduli at exceedingly low polymer concentrations. This new design strategy will drive the development of new high-performance conductive membranes that can be used for the design of gas separation membranes and in electrochemical applications, such as fuel cells and Li-metal batteries.
Collapse
Affiliation(s)
| | - Deyang Yu
- Department of Chemistry and Macromolecules Innovation Institute , Virginia Polytechnic Institute and State University , Blacksburg , Virginia 24061 , United States
| | | | | | - Louis A Madsen
- Department of Chemistry and Macromolecules Innovation Institute , Virginia Polytechnic Institute and State University , Blacksburg , Virginia 24061 , United States
| | | |
Collapse
|
20
|
Luo J, Li Y, Zhang H, Wang A, Lo WS, Dong Q, Wong N, Povinelli C, Shao Y, Chereddy S, Wunder S, Mohanty U, Tsung CK, Wang D. A Metal-Organic Framework Thin Film for Selective Mg 2+ Transport. Angew Chem Int Ed Engl 2019; 58:15313-15317. [PMID: 31478284 DOI: 10.1002/anie.201908706] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Indexed: 01/12/2023]
Abstract
The incompatibility between the anode and the cathode chemistry limits the used of Mg as an anode. This issue may be addressed by separating the anolyte and the catholyte with a membrane that only allows for Mg2+ transport. Mg-MOF-74 thin films were used as the separator for this purpose. It was shown to meet the needs of low-resistance, selective Mg2+ transport. The uniform MOF thin films supported on Au substrate with thicknesses down to ca. 202 nm showed an intrinsic resistance as low as 6.4 Ω cm2 , with the normalized room-temperature ionic conductivity of ca. 3.17×10-6 S cm-1 . When synthesized directly onto a porous anodized aluminum oxide (AAO) support, the resulting films were used as a standalone membrane to permit stable, low-overpotential Mg striping and plating for over 100 cycles at a current density of 0.05 mA cm-2 . The film was effective in blocking solvent molecules and counterions from crossing over for extended period of time.
Collapse
Affiliation(s)
- Jingru Luo
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon St., Chestnut Hill, MA, 02467, USA
| | - Yang Li
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon St., Chestnut Hill, MA, 02467, USA
| | - Haochuan Zhang
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon St., Chestnut Hill, MA, 02467, USA
| | - Ailun Wang
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon St., Chestnut Hill, MA, 02467, USA
| | - Wei-Shang Lo
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon St., Chestnut Hill, MA, 02467, USA
| | - Qi Dong
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon St., Chestnut Hill, MA, 02467, USA
| | - Nicholas Wong
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon St., Chestnut Hill, MA, 02467, USA
| | - Christopher Povinelli
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon St., Chestnut Hill, MA, 02467, USA
| | - Yucai Shao
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon St., Chestnut Hill, MA, 02467, USA
| | - Sumanth Chereddy
- Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Stephanie Wunder
- Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Udayan Mohanty
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon St., Chestnut Hill, MA, 02467, USA
| | - Chia-Kuang Tsung
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon St., Chestnut Hill, MA, 02467, USA
| | - Dunwei Wang
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon St., Chestnut Hill, MA, 02467, USA
| |
Collapse
|
21
|
Luo J, Li Y, Zhang H, Wang A, Lo W, Dong Q, Wong N, Povinelli C, Shao Y, Chereddy S, Wunder S, Mohanty U, Tsung C, Wang D. A Metal–Organic Framework Thin Film for Selective Mg
2+
Transport. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jingru Luo
- Department of Chemistry Boston College Merkert Chemistry Center 2609 Beacon St. Chestnut Hill MA 02467 USA
| | - Yang Li
- Department of Chemistry Boston College Merkert Chemistry Center 2609 Beacon St. Chestnut Hill MA 02467 USA
| | - Haochuan Zhang
- Department of Chemistry Boston College Merkert Chemistry Center 2609 Beacon St. Chestnut Hill MA 02467 USA
| | - Ailun Wang
- Department of Chemistry Boston College Merkert Chemistry Center 2609 Beacon St. Chestnut Hill MA 02467 USA
| | - Wei‐Shang Lo
- Department of Chemistry Boston College Merkert Chemistry Center 2609 Beacon St. Chestnut Hill MA 02467 USA
| | - Qi Dong
- Department of Chemistry Boston College Merkert Chemistry Center 2609 Beacon St. Chestnut Hill MA 02467 USA
| | - Nicholas Wong
- Department of Chemistry Boston College Merkert Chemistry Center 2609 Beacon St. Chestnut Hill MA 02467 USA
| | - Christopher Povinelli
- Department of Chemistry Boston College Merkert Chemistry Center 2609 Beacon St. Chestnut Hill MA 02467 USA
| | - Yucai Shao
- Department of Chemistry Boston College Merkert Chemistry Center 2609 Beacon St. Chestnut Hill MA 02467 USA
| | - Sumanth Chereddy
- Department of Chemistry Temple University Philadelphia PA 19122 USA
| | - Stephanie Wunder
- Department of Chemistry Temple University Philadelphia PA 19122 USA
| | - Udayan Mohanty
- Department of Chemistry Boston College Merkert Chemistry Center 2609 Beacon St. Chestnut Hill MA 02467 USA
| | - Chia‐Kuang Tsung
- Department of Chemistry Boston College Merkert Chemistry Center 2609 Beacon St. Chestnut Hill MA 02467 USA
| | - Dunwei Wang
- Department of Chemistry Boston College Merkert Chemistry Center 2609 Beacon St. Chestnut Hill MA 02467 USA
| |
Collapse
|
22
|
Athir N, Shi L, Shah SAA, Zhang Z, Cheng J, Liu J, Zhang J. Molecular dynamics simulation of thermo-mechanical behaviour of elastomer cross-linked via multifunctional zwitterions. Phys Chem Chem Phys 2019; 21:21615-21625. [DOI: 10.1039/c9cp03221e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coarse-grained (CG) molecular dynamics simulations have been employed to study the thermo-mechanical response of a physically cross-linked network composed of zwitterionic moieties and fully flexible elastomeric polymer chains.
Collapse
Affiliation(s)
- Naveed Athir
- Key Laboratory of Carbon Fiber and Functional Polymers
- Beijing University of Chemical Technology
- Ministry of Education
- Beijing
- P. R. China
| | - Ling Shi
- Key Laboratory of Carbon Fiber and Functional Polymers
- Beijing University of Chemical Technology
- Ministry of Education
- Beijing
- P. R. China
| | - Sayyed Asim Ali Shah
- Key Laboratory of Carbon Fiber and Functional Polymers
- Beijing University of Chemical Technology
- Ministry of Education
- Beijing
- P. R. China
| | - Zhiyu Zhang
- Beijing Engineering Research Center of Advanced Elastomers
- Beijing University of Chemical Technology
- People's Republic of China
| | - Jue Cheng
- Key Laboratory of Carbon Fiber and Functional Polymers
- Beijing University of Chemical Technology
- Ministry of Education
- Beijing
- P. R. China
| | - Jun Liu
- Beijing Engineering Research Center of Advanced Elastomers
- Beijing University of Chemical Technology
- People's Republic of China
| | - Junying Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers
- Beijing University of Chemical Technology
- Ministry of Education
- Beijing
- P. R. China
| |
Collapse
|
23
|
Shahzad S, Shah A, Kowsari E, Iftikhar FJ, Nawab A, Piro B, Akhter MS, Rana UA, Zou Y. Ionic Liquids as Environmentally Benign Electrolytes for High-Performance Supercapacitors. GLOBAL CHALLENGES (HOBOKEN, NJ) 2019; 3:1800023. [PMID: 31565352 PMCID: PMC6383960 DOI: 10.1002/gch2.201800023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/14/2018] [Indexed: 05/07/2023]
Abstract
Electrochemical capacitors (ECs) are a vital class of electrical energy storage (EES) devices that display the capacity of rapid charging and provide high power density. In the current era, interest in using ionic liquids (ILs) in high-performance EES devices has grown exponentially, as this novel versatile electrolyte media is associated with high thermal stability, excellent ionic conductivity, and the capability to withstand high voltages without undergoing decomposition. ILs are therefore potentially useful materials for improving the energy/power performances of ECs without compromising on safety, cyclic stability, and power density. The current review article underscores the importance of ILs as sustainable and high-performance electrolytes for electrochemical capacitors.
Collapse
Affiliation(s)
- Suniya Shahzad
- Department of ChemistryQuaid‐i‐Azam University45320IslamabadPakistan
| | - Afzal Shah
- Department of ChemistryQuaid‐i‐Azam University45320IslamabadPakistan
- Department of Physical and Environmental SciencesUniversity of Toronto ScarboroughTorontoM1C 1A4Canada
| | - Elaheh Kowsari
- Department of ChemistryAmirkabir University of TechnologyTehran159163‐4311Iran
| | | | - Anum Nawab
- Department of ChemistryQuaid‐i‐Azam University45320IslamabadPakistan
| | - Benoit Piro
- Univ. Paris DiderotSorbonne Paris CitéITODYSUMR 7086 CNRS, 15 rue J‐A de Baïf75205Paris Cedex 13France
| | | | - Usman Ali Rana
- College of EngineeringKing Saud UniversityPO‐BOX 800Riyadh11421Kingdom of Saudi Arabia
| | - Yongjin Zou
- Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilin541004P. R. China
| |
Collapse
|
24
|
Pérez-Madrigal MM, Edo MG, Saborío MG, Estrany F, Alemán C. Pastes and hydrogels from carboxymethyl cellulose sodium salt as supporting electrolyte of solid electrochemical supercapacitors. Carbohydr Polym 2018; 200:456-467. [PMID: 30177187 DOI: 10.1016/j.carbpol.2018.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 11/25/2022]
Abstract
Different carboxymethyl cellulose sodium salt (NaCMC)-based pastes and hydrogels, both containing a salt as supporting electrolyte, have been prepared and characterized as potential solid state electrolyte (SSE) for solid electrochemical supercapacitors (ESCs).The characteristics of the NaCMC-based SSEs have been optimized by examining the influence of five different factors in the capacitive response of poly(3,4-ethylenedioxythiophene) (PEDOT) electrodes: i) the chemical nature of the salt used as supporting electrolyte; ii) the concentration of such salt; iii) the concentration of cellulose used to prepare the paste; iv) the concentration of citric acid employed during NaCMC cross-linking; and v) the treatment applied to recover the supporting electrolyte after washing the hydrogel. The specific capacitance of the device prepared using the optimized hydrogel as SSE is 81.5 and 76.8 F/g by means of cyclic voltammetry and galvanostatic charge/discharge, respectively, these values decreasing to 60.7 and 75.5 F/g when the SSE is the paste.
Collapse
Affiliation(s)
- Maria M Pérez-Madrigal
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Ed. I2, 08019 Barcelona, Spain.
| | - Miquel G Edo
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Ed. I2, 08019 Barcelona, Spain
| | - Maricruz G Saborío
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Ed. I2, 08019 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Francesc Estrany
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Ed. I2, 08019 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, Ed. I2, 08019 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 10-14, 08019 Barcelona, Spain.
| |
Collapse
|
25
|
Abdullah OG, Aziz BK, Aziz SB, Suhail MH. Surfaces modification of methylcellulose: Cobalt nitrate polymer electrolyte by sulfurated hydrogen gas treatment. J Appl Polym Sci 2018. [DOI: 10.1002/app.46676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Omed Gh. Abdullah
- Advanced Materials Research Laboratory, Department of Physics, College of Science; University of Sulaimani; Kurdistan Region 46001 Iraq
- Komar Research Center, Komar University of Science and Technology; Sulaimani, Kurdistan Region 46001 Iraq
| | - Bakhtyar K. Aziz
- Department of Chemistry, College of Science; University of Sulaimani; Kurdistan Region 46001 Iraq
| | - Shujahadeen B. Aziz
- Advanced Materials Research Laboratory, Department of Physics, College of Science; University of Sulaimani; Kurdistan Region 46001 Iraq
- Komar Research Center, Komar University of Science and Technology; Sulaimani, Kurdistan Region 46001 Iraq
| | - Mahdi H. Suhail
- Department of Physics, College of Science; University of Baghdad; Baghdad 10071 Iraq
| |
Collapse
|
26
|
Shi Y, Zhang Q, Zhang Y, Jia L, Xu X. Promising and Reversible Electrolyte with Thermal Switching Behavior for Safer Electrochemical Storage Devices. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7171-7179. [PMID: 29400446 DOI: 10.1021/acsami.7b19726] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A major stumbling block in large-scale adoption of high-energy-density electrochemical devices has been safety issues. Methods to control thermal runaway are limited by providing a one-time thermal protection. Herein, we developed a simple and reversible thermoresponsive electrolyte system that is efficient to shutdown the current flow according to temperature changes. The thermal management is ascribed to the thermally activated sol-gel transition of methyl cellulose solution, associated with the concentration of ions that can move between isolated chains freely or be restricted by entangled molecular chains. We studied the effect of cellulose concentration, substituent types, and operating temperature on the electrochemical performance, demonstrating an obvious capacity loss up to 90% approximately of its initial value. Moreover, this is a cost-effective approach that has the potential for use in practical electrochemical storage devices.
Collapse
Affiliation(s)
- Yunhui Shi
- School of Materials Science and Engineering, Tianjin University , Tianjin 300072, P. R. China
| | - Qian Zhang
- School of Materials Science and Engineering, Tianjin University , Tianjin 300072, P. R. China
| | - Yan Zhang
- School of Materials Science and Engineering, Tianjin University , Tianjin 300072, P. R. China
| | - Limin Jia
- School of Materials Science and Engineering, Tianjin University , Tianjin 300072, P. R. China
| | - Xinhua Xu
- School of Materials Science and Engineering, Tianjin University , Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Composite and Functional Materials , Tianjin 300072, P. R. China
| |
Collapse
|
27
|
Sun N, Gao X, Wu A, Lu F, Zheng L. Mechanically strong ionogels formed by immobilizing ionic liquid in polyzwitterion networks. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.121] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Smith CJ, Wagle DV, O'Neill HM, Evans BR, Baker SN, Baker GA. Bacterial Cellulose Ionogels as Chemosensory Supports. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38042-38051. [PMID: 29016110 DOI: 10.1021/acsami.7b12543] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To fully leverage the advantages of ionic liquids for many applications, it is necessary to immobilize or encapsulate the fluids within an inert, robust, quasi-solid-state format that does not disrupt their many desirable, inherent features. The formation of ionogels represents a promising approach; however, many earlier approaches suffer from solvent/matrix incompatibility, optical opacity, embrittlement, matrix-limited thermal stability, and/or inadequate ionic liquid loading. We offer a solution to these limitations by demonstrating a straightforward and effective strategy toward flexible and durable ionogels comprising bacterial cellulose supports hosting in excess of 99% ionic liquid by total weight. Termed bacterial cellulose ionogels (BCIGs), these gels are prepared using a facile solvent-exchange process equally amenable to water-miscible and water-immiscible ionic liquids. A suite of characterization tools were used to study the preliminary (thermo)physical and structural properties of BCIGs, including no-deuterium nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, and X-ray diffraction. Our analyses reveal that the weblike structure and high crystallinity of the host bacterial cellulose microfibrils are retained within the BCIG. Notably, not only can BCIGs be tailored in terms of shape, thickness, and choice of ionic liquid, they can also be designed to host virtually any desired active, functional species, including fluorescent probes, nanoparticles (e.g., quantum dots, carbon nanotubes), and gas-capture reagents. In this paper, we also present results for fluorescent designer BCIG chemosensor films responsive to ammonia or hydrogen sulfide vapors on the basis of incorporating selective fluorogenic probes within the ionogels. Additionally, a thermometric BCIG hosting the excimer-forming fluorophore 1,3-bis(1-pyrenyl)propane was devised which exhibited a ratiometric (two-color) fluorescence output that responded precisely to changes in local temperature. The ionogel approach introduced here is simple and has broad generality, offering intriguing potential in (bio)analytical sensing, catalysis, membrane separations, electrochemistry, energy storage devices, and flexible electronics and displays.
Collapse
Affiliation(s)
- Chip J Smith
- Department of Chemistry, University of Missouri-Columbia , Columbia, Missouri 65211, United States
| | - Durgesh V Wagle
- Department of Chemistry, University of Missouri-Columbia , Columbia, Missouri 65211, United States
| | | | | | - Sheila N Baker
- Department of Chemistry, University of Missouri-Columbia , Columbia, Missouri 65211, United States
| | - Gary A Baker
- Department of Chemistry, University of Missouri-Columbia , Columbia, Missouri 65211, United States
| |
Collapse
|
29
|
Liu B, Huang Y, Cao H, Song A, Lin Y, Wang M, Li X. A high-performance and environment-friendly gel polymer electrolyte for lithium ion battery based on composited lignin membrane. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3814-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
30
|
Simotwo SK, Chinnam PR, Wunder SL, Kalra V. Highly Durable, Self-Standing Solid-State Supercapacitor Based on an Ionic Liquid-Rich Ionogel and Porous Carbon Nanofiber Electrodes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:33749-33757. [PMID: 28929732 DOI: 10.1021/acsami.7b07479] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A high-performance, self-standing solid-state supercapacitor is prepared by incorporating an ionic liquid (IL)-rich ionogel made with 95 wt % IL (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) and 5 wt % methyl cellulose, a polymer matrix, into highly interconnected 3-D activated carbon nanofiber (CNF) electrodes. The ionogel exhibits strong mechanical properties with a storage modulus of 5 MPa and a high ionic conductivity of 5.7 mS cm-1 at 25 °C. The high-surface-area CNF-based electrode (2282 m2 g-1), obtained via an electrospinning technique, exhibits hierarchical porosity generated both in situ during pyrolysis and ex situ via KOH activation. The porous architecture of the CNF electrodes facilitates the facile percolation of the soft but mechanically durable ionogel film, thereby enabling intimate contact between porous nanofibers and the gel electrolyte interface. The supercapacitor demonstrates promising capacitive characteristics, including a gravimetric capacitance of 153 F g-1, a high specific energy density of 65 W h kg-1, and high cycling stability, with a capacitance fade of only 4% after 20 000 charge-discharge cycles at 1 A g-1. Moreover, device-level areal capacitances for the gel IL cell of 122 and 151 mF cm-2 are observed at electrode mass loadings of 3.20 and 5.10 mg cm-2, respectively.
Collapse
Affiliation(s)
- Silas K Simotwo
- Department of Chemical and Biological Engineering, Drexel University , 3141 Chestnut Street, 19104 Philadelphia, Pennsylvania, United States
| | - Parameswara Rao Chinnam
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Stephanie L Wunder
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Vibha Kalra
- Department of Chemical and Biological Engineering, Drexel University , 3141 Chestnut Street, 19104 Philadelphia, Pennsylvania, United States
| |
Collapse
|
31
|
|
32
|
Aziz SB, Rasheed MA, Ahmed HM. Synthesis of Polymer Nanocomposites Based on [Methyl Cellulose] (1-x):(CuS) x (0.02 M ≤ x ≤ 0.08 M) with Desired Optical Band Gaps. Polymers (Basel) 2017; 9:E194. [PMID: 30970875 PMCID: PMC6431969 DOI: 10.3390/polym9060194] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 11/16/2022] Open
Abstract
In this paper, the sample preparation of polymer nanocomposites based on methyl cellulose (MC) with small optical bandgaps has been discussed. Copper monosulfide (CuS) nanoparticles have been synthesized from the sodium sulphide (Na₂S) and copper chloride (CuCl₂) salts. Distinguishable localized surface resonance plasmon (LSRP) absorption peaks for CuS nanoparticles within the 680⁻1090 nm scanned wavelength range were observed for the samples. An absorption edge (Ed) was found to be widely shifted to a lower photon energy region. A linear relationship between the refractive index of the samples and the CuS fraction was utilized to describe the distribution of the particle. The optical bandgap of MC was reduced from 6.2 to 2.3 eV upon the incorporation of 0.08 M of CuS nanoparticles. The optical dielectric loss, as an alternative method, was used successfully to estimate the optical bandgap. Moreover, the electronic transition type was identified by using Tauc's extrapolation method. The plots of the optical dielectric constant and energy bandgap as a function of the CuS concentration were utilized to examine the validity of the Penn model. For the nanocomposite samples, the Urbach energy was found to be increased, which can be evidence for a large possible number of bands-to-tail and tail-to-tail transitions. However, from the X-ray diffraction (XRD) analysis, it was also found that the synthesized CuS nanoparticles disrupted the crystallinity phase of the MC polymer. Finally, fourier transform infrared (FTIR) spectroscopy for the samples was also performed. Significant decreases of transmittance intensity as well as band shifting in the FTIR spectra were observed for the doped samples.
Collapse
Affiliation(s)
- Shujahadeen B Aziz
- Advanced Materials Research Lab., School of Science-Department of Physics, Faculty of Science and Science Education, University of Sulaimani, Qlyasan Street, Sulaymaniyah 46001, Kurdistan Regional Government, Iraq.
| | - Mariwan A Rasheed
- DevelopmentCenter for Research and Training (DCRT), University of Human Development, Qrga Street, Sulaymaniyah 46001, Kurdistan Regional Government, Iraq.
| | - Hameed M Ahmed
- Advanced Materials Research Lab., School of Science-Department of Physics, Faculty of Science and Science Education, University of Sulaimani, Qlyasan Street, Sulaymaniyah 46001, Kurdistan Regional Government, Iraq.
| |
Collapse
|
33
|
Navarrete-Astorga E, Rodríguez-Moreno J, Dalchiele EA, Schrebler R, Leyton P, Ramos-Barrado JR, Martín F. A transparent solid-state ion gel for supercapacitor device applications. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-016-3494-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Peng N, Lv R, Jin T, Na B, Liu H, Zhou H. Thermal and strain-induced phase separation in an ionic liquid plasticized polylactide. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|