1
|
Zhang C, Shi B, He J, Zhou L, Park S, Doshi S, Shang Y, Deng K, Giordano M, Qi X, Cui S, Liu L, Ni C, Fu KK. Carbon Additive Manufacturing with a Near-Replica "Green-to-Brown" Transformation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208230. [PMID: 37162379 DOI: 10.1002/adma.202208230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/22/2023] [Indexed: 05/11/2023]
Abstract
Nanocomposites containing nanoscale materials offer exciting opportunities to encode nanoscale features into macroscale dimensions, which produces unprecedented impact in material design and application. However, conventional methods cannot process nanocomposites with a high particle loading, as well as nanocomposites with the ability to be tailored at multiple scales. A composite architected mesoscale process strategy that brings particle loading nanoscale materials combined with multiscale features including nanoscale manipulation, mesoscale architecture, and macroscale formation to create spatially programmed nanocomposites with high particle loading and multiscale tailorability is reported. The process features a low-shrinking (<10%) "green-to-brown" transformation, making a near-geometric replica of the 3D design to produce a "brown" part with full nanomaterials to allow further matrix infill. This demonstration includes additively manufactured carbon nanocomposites containing carbon nanotubes (CNTs) and thermoset epoxy, leading to multiscale CNTs tailorability, performance improvement, and 3D complex geometry feasibility. The process can produce nanomaterial-assembled architectures with 3D geometry and multiscale features and can incorporate a wide range of matrix materials, such as polymers, metals, and ceramics, to fabricate nanocomposites for new device structures and applications.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of Material Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Baohui Shi
- Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA
- College of Textiles and Clothing, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jinlong He
- Department of Mechanical Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Lyu Zhou
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Soyeon Park
- Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Sagar Doshi
- Center for Composite Materials, University of Delaware, Newark, DE, 19716, USA
| | - Yuanyuan Shang
- Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA
- College of Textiles and Clothing, Qingdao University, Qingdao, Shandong, 266071, China
| | - Kaiyue Deng
- Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Marc Giordano
- Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Xiangjun Qi
- College of Textiles and Clothing, Qingdao University, Qingdao, Shandong, 266071, China
| | - Shuang Cui
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Ling Liu
- Department of Mechanical Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Chaoying Ni
- Department of Material Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Center for Composite Materials, University of Delaware, Newark, DE, 19716, USA
| | - Kun Kelvin Fu
- Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA
- Center for Composite Materials, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
2
|
Krishnakumar A, Kadian S, Heredia Rivera U, Chittiboyina S, Lelièvre SA, Rahimi R. Organ-on-a-Chip Platform with an Integrated Screen-Printed Electrode Array for Real-Time Monitoring Trans-Epithelial Barrier and Bubble Formation. ACS Biomater Sci Eng 2023; 9:1620-1628. [PMID: 36763005 DOI: 10.1021/acsbiomaterials.2c00494] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Cellular tight junctions play a key role in establishing a barrier between different compartments of the body by regulating the selective passage of different solutes across epithelial and endothelial tissues. Over the past decade, significant efforts have been conducted to develop more clinically relevant "organ-on-a-chip" models with integrated trans-epithelial electrical resistance (TEER) monitoring systems to help better understand the fundamental underpinnings of epithelial tissue physiology upon exposure to different substances. However, most of these platforms require the use of high-cost and time-consuming photolithography processes, which limits their scalability and practical implementation in clinical research. To address this need, we have developed a low-cost microfluidic platform with an integrated electrode array that allows continuous real-time monitoring of TEER and the risk of bubble formation in the microfluidic system by using scalable manufacturing technologies such as screen printing and laser processing. The integrated printed electrode array exhibited excellent stability (with less than ∼0.02 Ω change in resistance) even after long-term exposure to a complex culture medium. As a proof of concept, the fully integrated platform was tested with HMT3522 S1 epithelial cells to evaluate the tight barrier junction formation through TEER measurement and validated with standard immunostaining procedures for Zonula occludens-1 protein. This platform could be regarded as a stepping stone for the fabrication of disposable and low-cost organ and tissue-on-a-chip models with integrated sensors to facilitate studying the dynamic response of epithelial tissues to different substances in more physiologically relevant conditions.
Collapse
Affiliation(s)
- Akshay Krishnakumar
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sachin Kadian
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ulisses Heredia Rivera
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shirisha Chittiboyina
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sophie A Lelièvre
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rahim Rahimi
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Combined Additive and Laser-Induced Processing of Functional Structures for Monitoring under Deformation. Polymers (Basel) 2023; 15:polym15020443. [PMID: 36679324 PMCID: PMC9860559 DOI: 10.3390/polym15020443] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
This research introduces a readily available and non-chemical combinatorial production approach, known as the laser-induced writing process, to achieve laser-processed conductive graphene traces. The laser-induced graphene (LIG) structure and properties can be improved by adjusting the laser conditions and printing parameters. This method demonstrates the ability of laser-induced graphene (LIG) to overcome the electrothermal issues encountered in electronic devices. To additively process the PEI structures and the laser-induced surface, a high-precision laser nScrypt printer with different power, speed, and printing parameters was used. Raman spectroscopy and scanning electron microscopy analysis revealed similar results for laser-induced graphene morphology and structural chemistry. Significantly, the 3.2 W laser-induced graphene crystalline size (La; 159 nm) is higher than the higher power (4 W; 29 nm) formation due to the surface temperature and oxidation. Under four-point probe electrical property measurements, at a laser power of 3.8 W, the resistivity of the co-processed structure was three orders of magnitude larger. The LIG structure and property improvement are possible by varying the laser conditions and the printing parameters. The lowest gauge factor (GF) found was 17 at 0.5% strain, and the highest GF found was 141.36 at 5%.
Collapse
|
4
|
Muhamed S, Aparna RK, Karmakar A, Kundu S, Mandal S. Catalytically active silver nanoparticles stabilized on a thiol-functionalized metal-organic framework for an efficient hydrogen evolution reaction. NANOSCALE 2022; 14:17345-17353. [PMID: 36377813 DOI: 10.1039/d2nr05460d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A post-synthetic technique, Solvent Assisted Ligand Incorporation (SALI), was used for thiol functionalization in the zirconium-based metal-organic framework NU-1000. This thiol-functionalized MOF was employed as a support for the growth of silver nanoparticles (Ag NPs) through coordination of a Ag(I) complex with a node-anchored thiol-ligand, followed by the reduction of Ag(I) to Ag(0). X-ray photoelectron spectroscopy revealed that the ratio of Ag(0) to Ag(I) proportionally increased with the loading of silver ions. The HER activity increased with the enhancement of Ag(0) in the system and the best efficiency was observed for the composite with ∼95% Ag(0). This composite displayed an overpotential of 165 mV in an acidic medium at 10 mA cm-2 and a Tafel slope of 53 mA dec-1. The loading of silver beyond the optimum value led to the aggregation of the particles which affected the overpotential substantially. The catalyst demonstrated appreciable static stability for 24 h, which promotes the use of the material as an HER catalyst. Therefore, these results emphasized that Ag NPs embedded onto a thiol-functionalized MOF is a propitious material for developing a clean and renewable energy source.
Collapse
Affiliation(s)
- Shamna Muhamed
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India 69551.
| | - Ravari Kandy Aparna
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India 69551.
| | - Arun Karmakar
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India 630006
| | - Subrata Kundu
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India 630006
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India 69551.
| |
Collapse
|
5
|
Hong Q, Zhu W, Wang S, Jiang L, He J, Zhan J, Li X, Zhao X, Zhao B. High-Resolution Femtosecond Laser-Induced Carbon and Ag Hybrid Structure for Bend Sensing. ACS OMEGA 2022; 7:42256-42263. [PMID: 36440162 PMCID: PMC9685746 DOI: 10.1021/acsomega.2c05060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Miniaturized resistance-based portable bending sensors have been widely used for human health monitoring in recent years. Their sensitivities are defined by their resistance variations (ΔR/R), which strongly rely on the conductivity and minimum line width of the sensing unit. Laser-induced carbonization is a fast and simple method to fabricate porous-sensing structures. However, the fabrication resolution of conductive and deformation-sensitive structures is limited by the thermal effect of commonly used laser sources. With the assistance of femtosecond laser temporal shaping, plasma ejection confinement, and silver nitrate doping, the sheet resistance of the sensing structure was improved from 15 to 0.0004 Ω/□. A thin line with a lateral resolution of 6.5 μm is fabricated as the sensing unit. The fFabricated structures are characterized by electron microscopy, Raman spectroscopy, energy-dispersive spectroscopy, X-ray scattering, and time-resolved images. The strain sensor demonstrates a ΔR/R of 25.8% with a rising edge of 109 ms in the cyclic bending test. The sensor is further applied for detecting human pulse and finger bending.
Collapse
Affiliation(s)
- Quan Hong
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| | - Weihua Zhu
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| | - Sumei Wang
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
- Yangtze
Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Lan Jiang
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
- Beijing
Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Jiahua He
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| | - Jie Zhan
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| | - Xin Li
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
- Beijing
Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Xiaoming Zhao
- Tianjin
Navigation Instruments Research Institute, No. 268 Dingzigu No. 1 Street,
Hong Qiao District, Tianjin 300131, China
| | - Bingquan Zhao
- Tianjin
Navigation Instruments Research Institute, No. 268 Dingzigu No. 1 Street,
Hong Qiao District, Tianjin 300131, China
| |
Collapse
|
6
|
Liu G, Liu J, Pan P, Wang Z, Yang Z, Wei J, Li P, Cao S, Shen H, Zhou J, Zhang X. Electrochemical sensor based on laser-induced preparation of MnOx/rGO composites for simultaneous recognition of hydroquinone and catechol. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Vivaldi F, Dallinger A, Poma N, Bonini A, Biagini D, Salvo P, Borghi F, Tavanti A, Greco F, Di Francesco F. Sweat analysis with a wearable sensing platform based on laser-induced graphene. APL Bioeng 2022; 6:036104. [PMID: 36147196 PMCID: PMC9489259 DOI: 10.1063/5.0093301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022] Open
Abstract
The scientific community has shown increasing interest in laser scribing for the direct fabrication of conductive graphene-based tracks on different substrates. This can enable novel routes for the noninvasive analysis of biofluids (such as sweat or other noninvasive matrices), whose results can provide the rapid evaluation of a person's health status. Here, we present a wearable sensing platform based on laser induced graphene (LIG) porous electrodes scribed on a flexible polyimide sheet, which samples sweat through a paper sampler. The device is fully laser manufactured and features a two layer design with LIG-based vertical interconnect accesses. A detailed characterization of the LIG electrodes including pore size, surface groups, surface area in comparison to electroactive surface area, and the reduction behavior of different LIG types was performed. The bare LIG electrodes can detect the electrochemical oxidation of both uric acid and tyrosine. Further modification of the surface of the LIG working electrode with an indoaniline derivative [4-((4-aminophenyl)imino)-2,6-dimethoxycyclohexa-2,5-dien-1-one] enables the voltammetric measurement of pH with an almost ideal sensitivity and without interference from other analytes. Finally, electrochemical impedance spectroscopy was used to measure the concentrations of ions through the analysis of the sweat impedance. The device was successfully tested in a real case scenario, worn on the skin during a sports session. In vitro tests proved the non-cytotoxic effect of the device on the A549 cell line.
Collapse
Affiliation(s)
| | - A Dallinger
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, 8010 Graz, Austria
| | | | - A Bonini
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - D Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - P Salvo
- Institute of Clinical Physiology, National Research Council, via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - F Borghi
- Interdisciplinary Center for Nanostructured Materials and Interfaces, Department of Physics, University of Milan, Via Celoria 16, Milan 20133, Italy
| | - A Tavanti
- Department of Biology, University of Pisa, 56127 Pisa, Italy
| | | | - F Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
8
|
Ullah H, Wahab MA, Will G, Karim MR, Pan T, Gao M, Lai D, Lin Y, Miraz MH. Recent Advances in Stretchable and Wearable Capacitive Electrophysiological Sensors for Long-Term Health Monitoring. BIOSENSORS 2022; 12:bios12080630. [PMID: 36005025 PMCID: PMC9406032 DOI: 10.3390/bios12080630] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 05/27/2023]
Abstract
Over the past several years, wearable electrophysiological sensors with stretchability have received significant research attention because of their capability to continuously monitor electrophysiological signals from the human body with minimal body motion artifacts, long-term tracking, and comfort for real-time health monitoring. Among the four different sensors, i.e., piezoresistive, piezoelectric, iontronic, and capacitive, capacitive sensors are the most advantageous owing to their reusability, high durability, device sterilization ability, and minimum leakage currents between the electrode and the body to reduce the health risk arising from any short circuit. This review focuses on the development of wearable, flexible capacitive sensors for monitoring electrophysiological conditions, including the electrode materials and configuration, the sensing mechanisms, and the fabrication strategies. In addition, several design strategies of flexible/stretchable electrodes, body-to-electrode signal transduction, and measurements have been critically evaluated. We have also highlighted the gaps and opportunities needed for enhancing the suitability and practical applicability of wearable capacitive sensors. Finally, the potential applications, research challenges, and future research directions on stretchable and wearable capacitive sensors are outlined in this review.
Collapse
Affiliation(s)
- Hadaate Ullah
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Md A. Wahab
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, George St Brisbane, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Geoffrey Will
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, George St Brisbane, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Mohammad R. Karim
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421, Saudi Arabia
- K.A. CARE Energy Research and Innovation Center, Riyadh 11451, Saudi Arabia
| | - Taisong Pan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Min Gao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dakun Lai
- Biomedical Imaging and Electrophysiology Laboratory, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
- Medico-Engineering Corporation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Mahdi H. Miraz
- School of Computing and Data Science, Xiamen University Malaysia, Bandar Sunsuria, Sepang 43900, Malaysia
- School of Computing, Faculty of Arts, Science and Technology, Wrexham Glyndŵr University, Wrexham LL112AW, UK
| |
Collapse
|
9
|
Wang L, Feng Y, Li Z, Liu G. Nanoscale thermoplasmonic welding. iScience 2022; 25:104422. [PMID: 35663015 PMCID: PMC9156941 DOI: 10.1016/j.isci.2022.104422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Establishing direct, close contact between individual nano-objects is crucial to fabricating hierarchical and multifunctional nanostructures. Nanowelding is a technical prerequisite for successfully manufacturing such structures. In this paper, we review the nanoscale thermoplasmonic welding with a focus on its physical mechanisms, key influencing factor, and emerging applications. The basic mechanisms are firstly described from the photothermal conversion to self-limited heating physics. Key aspects related to the welding process including material scrutinization, nanoparticle geometric and spatial configuration, heating scheme and performance characterization are then discussed in terms of the distinctive properties of plasmonic welding. Based on the characteristics of high precision and flexible platform of thermoplasmonic welding, the potential applications are further highlighted from electronics and optics to additive manufacturing. Finally, the future challenges and prospects are outlined for future prospects of this dynamic field. This work summarizes these innovative concepts and works on thermoplasmonic welding, which is significant to establish a common link between nanoscale welding and additive manufacturing communities.
Collapse
Affiliation(s)
- Lin Wang
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, China
| | - Yijun Feng
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, China
| | - Ze Li
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, China
| | - Guohua Liu
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
10
|
Zhang J, Xie Y, Xu H, Zhou T. Efficient and Simple Fabrication of High-Strength and High-Conductivity Metallization Patterns on Flexible Polymer Films. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jihai Zhang
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Yi Xie
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Haoran Xu
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Tao Zhou
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
11
|
Electrochemical sensor for rapid detection of fentanyl using laser-induced porous carbon-electrodes. Mikrochim Acta 2022; 189:198. [DOI: 10.1007/s00604-022-05299-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/28/2022] [Indexed: 12/11/2022]
|
12
|
Selvamani V, Kadian S, Detwiler DA, Zareei A, Woodhouse I, Qi Z, Peana S, Alcaraz AM, Wang H, Rahimi R. Laser-Assisted Nanotexturing and Silver Immobilization on Titanium Implant Surfaces to Enhance Bone Cell Mineralization and Antimicrobial Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4014-4027. [PMID: 35312330 DOI: 10.1021/acs.langmuir.2c00008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite the great advancement and wide use of titanium (Ti) and Ti-based alloys in different orthopedic implants, device-related infections remain the major complication in modern orthopedic and trauma surgery. Most of these infections are often caused by both poor antibacterial and osteoinductive properties of the implant surface. Here, we have demonstrated a facile two-step laser nanotexturing and immobilization of silver onto the titanium implants to improve both cellular integration and antibacterial properties of Ti surfaces. The required threshold laser processing power for effective nanotexturing and osseointegration was systematically determined by the level of osteoblast cells mineralized on the laser nanotextured Ti (LN-Ti) surfaces using a neodymium-doped yttrium aluminum garnet laser (Nd:YAG, wavelength of 1.06 μm). Laser processing powers above 24 W resulted in the formation of hierarchical nanoporous structures (average pore 190 nm) on the Ti surface with a 2.5-fold increase in osseointegration as compared to the pristine Ti surface. Immobilization of silver nanoparticles onto the LN-Ti surface was conducted by dip coating in an aqueous silver ionic solution and subsequently converted to silver nanoparticles (AgNPs) by using a low power laser-assisted photocatalytic reduction process. Structural and surface morphology analysis via XRD and SEM revealed a uniform distribution of Ag and the formation of an AgTi-alloy interface on the Ti surface. The antibacterial efficacy of the LN-Ti with laser immobilized silver (LN-Ti/LI-Ag) was tested against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The LN-Ti/LI-Ag surface was observed to have efficient and stable antimicrobial properties for over 6 days. In addition, it was found that the LN-Ti/LI-Ag maintained a cytocompatibility and bone cell mineralization property similar to the LN-Ti surface. The differential toxicity of the LN-Ti/LI-Ag between bacterial and cellular species qualifies this approach as a promising candidate for novel rapid surface modification of biomedical metal implants.
Collapse
Affiliation(s)
- Vidhya Selvamani
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2050, United States
- Birck Nanotechnology Research Center, Purdue University, West Lafayette, Indiana 47907-2050, United States
| | - Sachin Kadian
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2050, United States
- Birck Nanotechnology Research Center, Purdue University, West Lafayette, Indiana 47907-2050, United States
| | | | - Amin Zareei
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2050, United States
- Birck Nanotechnology Research Center, Purdue University, West Lafayette, Indiana 47907-2050, United States
| | - Ian Woodhouse
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2050, United States
- Birck Nanotechnology Research Center, Purdue University, West Lafayette, Indiana 47907-2050, United States
| | - Zhimin Qi
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Samuel Peana
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alejandro M Alcaraz
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2050, United States
| | - Haiyan Wang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2050, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rahim Rahimi
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2050, United States
- Birck Nanotechnology Research Center, Purdue University, West Lafayette, Indiana 47907-2050, United States
| |
Collapse
|
13
|
Fiodorov V, Ratautas K, Mockus Z, Trusovas R, Mikoliūnaitė L, Račiukaitis G. Laser-Assisted Selective Fabrication of Copper Traces on Polymers by Electroplating. Polymers (Basel) 2022; 14:polym14040781. [PMID: 35215694 PMCID: PMC8875099 DOI: 10.3390/polym14040781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/22/2023] Open
Abstract
The selective deposition of metals on dielectric materials is widely used in the electronic industry, making electro-conductive connections between circuit elements. We report a new low-cost laser-assisted method for the selective deposition of copper tracks on polymer surfaces by electroplating. The technique uses a laser for the selective modification of the polymer surface. The electrical conductivity of some polymers could be increased due to laser irradiation. Polyimide samples were treated using nanosecond and picosecond lasers working at a 1064 nm wavelength. An electro-conductive graphene-like layer was formed on the polymer surface after the laser treatment with selected parameters, and the copper layer thickness of 5–20 µm was deposited on the modified surface by electroplating. The selective laser-assisted electroplating technology allows the fabrication of copper tracks on complex shape dielectric materials. The technology could be used in the manufacturing of molded interconnect devices (MID).
Collapse
Affiliation(s)
- Vitalij Fiodorov
- Department of Laser Technologies, Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania; (K.R.); (R.T.); (G.R.)
- Correspondence: ; Tel.: +370-6286-2878
| | - Karolis Ratautas
- Department of Laser Technologies, Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania; (K.R.); (R.T.); (G.R.)
| | - Zenius Mockus
- Department of Chemical Engineering and Technology, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania;
| | - Romualdas Trusovas
- Department of Laser Technologies, Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania; (K.R.); (R.T.); (G.R.)
| | - Lina Mikoliūnaitė
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania;
| | - Gediminas Račiukaitis
- Department of Laser Technologies, Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania; (K.R.); (R.T.); (G.R.)
| |
Collapse
|
14
|
A Low-Cost Wireless Intelligent Portable Sensor Based on Disposable Laser-Induced Porous Graphene Flexible Electrode Decorated by Gold Nanoshells for Rapid Detection of Sulfonamides in Aquatic Products. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Hong Q, Jiang L, Wang S, Huang J, Sun J, Li X, Zuo P, Yin J, Lu J. One-Step In Situ Patternable Reduction of a Ag-rGO Hybrid Using Temporally Shaped Femtosecond Pulses. MATERIALS 2022; 15:ma15020563. [PMID: 35057280 PMCID: PMC8781587 DOI: 10.3390/ma15020563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 12/10/2022]
Abstract
In recent years, metallic nanoparticle (NP)–two-dimensional material hybrids have been widely used for photocatalysis and photoreduction. Here, we introduce a femtosecond laser reduction approach that relies on the repetitive ablation of recast layers by usi–ng temporally shaped pulses to achieve the fast fabrication of metallic NP–two-dimensional material hybrids. We selectively deposited silver-reduced graphene oxide (Ag–rGO) hybrids on different substrates under various fabrication conditions. The deposition of the hybrids was attributed to the redistribution of the cooling ejected plume after multiple radiation pulses and the exchange of carriers with ejected plume ions containing activated species such as small carbon clusters and H2O. The proposed one-step in situ fabrication method is a competitive fabrication process that eliminates the additive separation process and exhibits morphological controllability. The Ag–rGO hybrids demonstrate considerable potential for chemomolecular and biomolecular detection because the surface-enhanced Raman scattering signal of the enhancement factor reached 4.04 × 108.
Collapse
Affiliation(s)
- Quan Hong
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China; (Q.H.); (S.W.); (J.H.); (J.S.); (X.L.); (P.Z.)
| | - Lan Jiang
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China; (Q.H.); (S.W.); (J.H.); (J.S.); (X.L.); (P.Z.)
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
- Correspondence:
| | - Sumei Wang
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China; (Q.H.); (S.W.); (J.H.); (J.S.); (X.L.); (P.Z.)
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Ji Huang
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China; (Q.H.); (S.W.); (J.H.); (J.S.); (X.L.); (P.Z.)
| | - Jiaxin Sun
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China; (Q.H.); (S.W.); (J.H.); (J.S.); (X.L.); (P.Z.)
| | - Xin Li
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China; (Q.H.); (S.W.); (J.H.); (J.S.); (X.L.); (P.Z.)
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Pei Zuo
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China; (Q.H.); (S.W.); (J.H.); (J.S.); (X.L.); (P.Z.)
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Jiangang Yin
- Han’s Laser Technology Industry Group Co., Ltd., 6 Building WanYan Industry Zone, Haoye Road, Fuyong Town, Baoan District, Shenzhen 518103, China; (J.Y.); (J.L.)
| | - Jiangang Lu
- Han’s Laser Technology Industry Group Co., Ltd., 6 Building WanYan Industry Zone, Haoye Road, Fuyong Town, Baoan District, Shenzhen 518103, China; (J.Y.); (J.L.)
| |
Collapse
|
16
|
|
17
|
Tang R, Lu F, Liu L, Yan Y, Du Q, Zhang B, Zhou T, Fu H. Flexible pressure sensors with microstructures. NANO SELECT 2021. [DOI: 10.1002/nano.202100003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ruitao Tang
- Frontier Research Center Institute of flexible electronics technology of THU Zhejiang Jiaxing 314006 China
| | - Fangyuan Lu
- Frontier Research Center Institute of flexible electronics technology of THU Zhejiang Jiaxing 314006 China
| | - Lanlan Liu
- Frontier Research Center Institute of flexible electronics technology of THU Zhejiang Jiaxing 314006 China
| | - Yu Yan
- Frontier Research Center Institute of flexible electronics technology of THU Zhejiang Jiaxing 314006 China
| | - Qifeng Du
- Frontier Research Center Institute of flexible electronics technology of THU Zhejiang Jiaxing 314006 China
| | - Bocheng Zhang
- Frontier Research Center Institute of flexible electronics technology of THU Zhejiang Jiaxing 314006 China
| | - Tao Zhou
- Frontier Research Center Institute of flexible electronics technology of THU Zhejiang Jiaxing 314006 China
| | - Haoran Fu
- Frontier Research Center Institute of flexible electronics technology of THU Zhejiang Jiaxing 314006 China
| |
Collapse
|
18
|
Masihi S, Panahi M, Maddipatla D, Hanson AJ, Bose AK, Hajian S, Palaniappan V, Narakathu BB, Bazuin BJ, Atashbar MZ. Highly Sensitive Porous PDMS-Based Capacitive Pressure Sensors Fabricated on Fabric Platform for Wearable Applications. ACS Sens 2021; 6:938-949. [PMID: 33728910 DOI: 10.1021/acssensors.0c02122] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A novel porous polydimethylsiloxane (PDMS)-based capacitive pressure sensor was fabricated by optimizing the dielectric layer porosity for wide-range pressure sensing applications in the sports field. The pressure sensor consists of a porous PDMS dielectric layer and two fabric-based conductive electrodes. The porous PDMS dielectric layer was fabricated by introducing nitric acid (HNO3) into a mixture of PDMS and sodium hydrogen bicarbonate (NaHCO3) to facilitate the liberation of carbon dioxide (CO2) gas, which induces the creation of porous microstructures within the PDMS dielectric layer. Nine different pressure sensors (PS1, PS2,..., PS9) were fabricated in which the porosity (pore size, thickness) and dielectric constant of the PDMS dielectric layers were varied by changing the curing temperature, the mixing proportions of the HNO3/PDMS concentration, and the PDMS mixing ratio. The response of the fabricated pressure sensors was investigated for the applied pressures ranging from 0 to 1000 kPa. A relative capacitance change of ∼100, ∼323, and ∼485% was obtained by increasing the curing temperature from 110 to 140 to 170 °C, respectively. Similarly, a relative capacitance change of ∼170, ∼282, and ∼323% was obtained by increasing the HNO3/PDMS concentration from 10 to 15 to 20%, respectively. In addition, a relative capacitance change of ∼94, ∼323, and ∼460% was obtained by increasing the PDMS elastomer base/curing agent ratio from 5:1 to 10:1 to 15:1, respectively. PS9 exhibited the highest sensitivity over a wide pressure sensing range (low-pressure ranges (<50 Pa), 0.3 kPa-1; high-pressure ranges (0.2-1 MPa), 3.2 MPa-1). From the results, it was observed that the pressure sensors with dielectric layers prepared at relatively higher curing temperatures, higher HNO3 concentrations, and higher PDMS ratios resulted in increased porosity and provided the highest sensitivity. As an application demonstrator, a wearable fit cap was developed using an array of 16 pressure sensors for measuring and mapping the applied pressures on a player's head while wearing a helmet. The pressure mapping aids in observing and understanding the proper fit of the helmet in sports applications.
Collapse
Affiliation(s)
- Simin Masihi
- Department of Electrical and Computer Engineering, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Masoud Panahi
- Department of Electrical and Computer Engineering, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Dinesh Maddipatla
- Department of Electrical and Computer Engineering, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Anthony J. Hanson
- Department of Electrical and Computer Engineering, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Arnesh K. Bose
- Department of Electrical and Computer Engineering, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Sajjad Hajian
- Department of Electrical and Computer Engineering, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Valliammai Palaniappan
- Department of Electrical and Computer Engineering, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Binu B. Narakathu
- Department of Electrical and Computer Engineering, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Bradley J. Bazuin
- Department of Electrical and Computer Engineering, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Massood Z. Atashbar
- Department of Electrical and Computer Engineering, Western Michigan University, Kalamazoo, Michigan 49008, United States
| |
Collapse
|
19
|
Wang K, Lin F, Lai DTH, Gong S, Kibret B, Ali MA, Yuce MR, Cheng W. Soft gold nanowire sponge antenna for battery-free wireless pressure sensors. NANOSCALE 2021; 13:3957-3966. [PMID: 33570536 DOI: 10.1039/d0nr07621j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The past decade has witnessed growing interest in developing soft wearable pressure sensors with the ultimate goal of transforming today's hospital-centered diagnosis to tomorrow's patient-centered bio-diagnosis. In this context, battery-free wireless antenna-based pressure sensors will be highly advantageous for ubiquitous real-time health monitoring. However, current wireless antennas are largely based on thin films from traditional bulk metallic films or novel nanomaterials with an air-cavity design, which can only be operated in a limited pressure range due to the rigidity of active films and/or inherent cavity dimensions. Herein we report a soft battery-free wireless pressure sensor that is based on a three-dimensional (3D) porous gold nanowire foam-elastomer composite and is fabricated by solution-based conformal electroless plating technology, followed by elastomer encapsulation. We observe a transducer trade-off point for our foam antenna, below which the inductive effect and capacitive effect function together and above which the capacitive effect dominates. When an external pressure is applied, initially the inductance and capacitance increase simultaneously but the capacitance decreases afterwards. This can be transformed into a variable resonant frequency that first decreases linearly and then increases (in the capacitance domination pressure range). Importantly, the linear detection range of the sensor can be tuned simply by adjusting the thickness of the sponge or the rigidity of the elastomer (PDMS). We can achieve a wide pressure range of 0-248 kPa, which is the largest linear detection range reported in the literature (typically from 0 to 30 kPa) to the best of our knowledge. As a proof of concept, we further demonstrated that our gold nanowire foam sensor can be used to weigh people under both static and dynamic conditions.
Collapse
Affiliation(s)
- Kaixuan Wang
- Department of Chemical Engineering, Monash University Clayton, Victoria 3800, Australia.
| | - Fenge Lin
- Department of Chemical Engineering, Monash University Clayton, Victoria 3800, Australia.
| | - Daniel T H Lai
- College of Engineering and Science, Victoria University, Victoria 8001, Australia
| | - Shu Gong
- Department of Chemical Engineering, Monash University Clayton, Victoria 3800, Australia.
| | - Behailu Kibret
- Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Muhammad Arslan Ali
- Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Mehmet Rasit Yuce
- Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Wenlong Cheng
- Department of Chemical Engineering, Monash University Clayton, Victoria 3800, Australia.
| |
Collapse
|
20
|
Jiang H, Woodhouse I, Selvamani V, Ma JL, Tang R, Goergen CJ, Soleimani T, Rahimi R. A Wireless Implantable Passive Intra-Abdominal Pressure Sensing Scheme via Ultrasonic Imaging of a Microfluidic Device. IEEE Trans Biomed Eng 2021; 68:747-758. [PMID: 32780694 DOI: 10.1109/tbme.2020.3015485] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this article, we demonstrate a wireless and passive physiological pressure sensing scheme that utilizes ultrasound imaging of an implantable microfluidic based pressure sensitive transducer. The transducer consists of a sub-mm scale pressure sensitive membrane that covers a reservoir filled with water and is connected to a hydrophobic micro-channel. Applied pressure onto the transducer deflects the membrane and pushes the water from the reservoir into the channel; the water's travelling distance in the channel is a function of the applied pressure, which is quantitatively measured by using a 40 MHz ultrasound imaging system. The sensor presents a linear sensitivity of 42 kPa/mm and a spatial resolution of 1.2 kPa/30 μm in the physiological range of abdominal compartment syndrome. Reliability assessments of the transducer confirm its ability to remain functional after more than 600 cycles of pressure up to 55 kPa over the course of 2 days. Ex vivo experimental results verify the practical capability of the technology to effectively measure pressures under a 15 mm thick porcine skin. It is anticipated that this technology can be applied to a broad range of implantable pressure measurement, by simply tuning the thickness of the thin polydimethylsiloxane membrane and the geometry of the reservoir.
Collapse
|
21
|
Xu Y, Fei Q, Page M, Zhao G, Ling Y, Chen D, Yan Z. Laser-induced graphene for bioelectronics and soft actuators. NANO RESEARCH 2021; 14:3033-3050. [PMID: 33841746 PMCID: PMC8023525 DOI: 10.1007/s12274-021-3441-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 05/18/2023]
Abstract
Laser-assisted process can enable facile, mask-free, large-area, inexpensive, customizable, and miniaturized patterning of laser-induced porous graphene (LIG) on versatile carbonaceous substrates (e.g., polymers, wood, food, textiles) in a programmed manner at ambient conditions. Together with high tailorability of its porosity, morphology, composition, and electrical conductivity, LIG can find wide applications in emerging bioelectronics (e.g., biophysical and biochemical sensing) and soft robots (e.g., soft actuators). In this review paper, we first introduce the methods to make LIG on various carbonaceous substrates and then discuss its electrical, mechanical, and antibacterial properties and biocompatibility that are critical for applications in bioelectronics and soft robots. Next, we overview the recent studies of LIG-based biophysical (e.g., strain, pressure, temperature, hydration, humidity, electrophysiological) sensors and biochemical (e.g., gases, electrolytes, metabolites, pathogens, nucleic acids, immunology) sensors. The applications of LIG in flexible energy generators and photodetectors are also introduced. In addition, LIG-enabled soft actuators that can respond to chemicals, electricity, and light stimulus are overviewed. Finally, we briefly discuss the future challenges and opportunities of LIG fabrications and applications.
Collapse
Affiliation(s)
- Yadong Xu
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Qihui Fei
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Margaret Page
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Ganggang Zhao
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Yun Ling
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Dick Chen
- Rock Bridge High School, Columbia, Missouri 65203 USA
| | - Zheng Yan
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri 65211 USA
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 USA
| |
Collapse
|
22
|
Bhaiyya M, Rewatkar P, Salve M, Pattnaik PK, Goel S. Miniaturized Electrochemiluminescence Platform With Laser-Induced Graphene Electrodes for Multiple Biosensing. IEEE Trans Nanobioscience 2020; 20:79-85. [PMID: 33166255 DOI: 10.1109/tnb.2020.3036642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present work demonstrates a miniaturized 3D printed Electrochemiluminescence (ECL) sensing platform with Laser-Induced Graphene (LIG) based Open Bipolar Electrodes (OBEs). To fabricate OBEs, polyimide (PI) substrate has been used as it provides properties like low-cost fabrication, high selectivity, great stability, easy reproducibility, cost-effectiveness and rapid prototyping. Moreover, graphene can be created on PI in a single step during the ablation of the CO2 laser. Android smartphone was efficiently used to sense ECL signals as well as to drive the required voltage to the OBEs. With the optimized parameters, the imaging system was successfully used to detect Hydrogen Peroxide (H2 O2) with a linear range of 1 [Formula: see text] to [Formula: see text] and detection of limit (LOD) [Formula: see text] (R2 = 0.9449, n = 3). In addition, the detection of glucose has been carried out with a linear range of [Formula: see text] to [Formula: see text] and detection of limit (LOD) [Formula: see text] (R2 = 0.9875, n = 3). Further, real samples were tested to manifest the workability of the platform for random samples. Overall, the developed low-cost, rapidly realized and the miniaturized system can be used in many biomedical applications, environmental monitoring and point-of-care testings.
Collapse
|
23
|
Smart bandage with integrated multifunctional sensors based on MXene-functionalized porous graphene scaffold for chronic wound care management. Biosens Bioelectron 2020; 169:112637. [DOI: 10.1016/j.bios.2020.112637] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/06/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022]
|
24
|
Nakajima T, Tsuchiya T. Ultrathin Highly Flexible Featherweight Ceramic Temperature Sensor Arrays. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36600-36608. [PMID: 32805791 DOI: 10.1021/acsami.0c08718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We fabricated highly flexible Sr- and Ni-doped perovskite SmMnO3 thermistor film sensor arrays on an ultrathin (5 μm thick) and lightweight (21 mg) polyimide sheet for healthcare monitoring devices. The Ag nanowire and nanoparticle-impregnated carbon microcone array, which was prepared by precisely controlled surface laser carbonization of polyimide, showed sufficiently low resistance as a bottom electrode and good stability against sharp bending angles. The dot-shaped (diameter: 900 μm) perovskite thermistor film with a thickness of 900 nm was crystallized by pulsed ultraviolet laser irradiation of a precursor film printed with perovskite nanoparticle dispersion ink, and the film functioned well as the thermistor with a thermistor constant of 2820 K. The thermistor sensor sheet exhibited rapid responses to temperature variation and high stability in the temperature cycle tests over 1000 cycles between room temperature and 80 °C. The bending durability for a bending angle of 60° with a small bending radius (500 μm) was also high. During the bending test over 1000 cycles, the monitoring temperature variation was suppressed only within 0.1 °C. This ultrathin sensor array sheet can be mounted on surfaces with shape variations, and we used the sensor for real-time monitoring in healthcare to detect precise temperature variations on the human skin during physical exercise.
Collapse
Affiliation(s)
- Tomohiko Nakajima
- Advanced Coating Technology Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Tetsuo Tsuchiya
- Advanced Coating Technology Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
25
|
Dallinger A, Keller K, Fitzek H, Greco F. Stretchable and Skin-Conformable Conductors Based on Polyurethane/Laser-Induced Graphene. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19855-19865. [PMID: 32249561 PMCID: PMC7304821 DOI: 10.1021/acsami.0c03148] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/06/2020] [Indexed: 05/18/2023]
Abstract
The conversion of various polymer substrates into laser-induced graphene (LIG) with a CO2 laser in ambient condition is recently emerging as a simple method for obtaining patterned porous graphene conductors, with a myriad of applications in sensing, actuation, and energy. In this paper, a method is presented for embedding porous LIG (LIG-P) or LIG fibers (LIG-F) into a thin (about 50 μm) and soft medical grade polyurethane (MPU) providing excellent conformal adhesion on skin, stretchability, and maximum breathability to boost the development of various unperceivable monitoring systems on skin. The effect of varying laser fluence and geometry of the laser scribing on the LIG micro-nanostructure morphology and on the electrical and electromechanical properties of LIG/MPU composites is investigated. A peculiar and distinct behavior is observed for either LIG-P or LIG-F. Excellent stretchability without permanent impairment of conductive properties is revealed up to 100% strain and retained after hundreds of cycles of stretching tests. A distinct piezoresistive behavior, with an average gauge factor of 40, opens the way to various potential strain/pressure sensing applications. A novel method based on laser scribing is then introduced for providing vertical interconnect access (VIA) into LIG/MPU conformable epidermal sensors. Such VIA enables stable connections to an external measurement device, as this represents a typical weakness of many epidermal devices so far. Three examples of minimally invasive LIG/MPU epidermal sensing proof of concepts are presented: as electrodes for electromyographic recording on limb and as piezoresistive sensors for touch and respiration detection on skin. Long-term wearability and functioning up to several days and under repeated stretching tests is demonstrated.
Collapse
Affiliation(s)
- Alexander Dallinger
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Kirill Keller
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Harald Fitzek
- Graz
Centre for Electron Microscopy (ZFE), Steyrergasse 17, 8010 Graz, Austria
- Institute
for Electron Microscopy and Nanoanalysis (FELMI), NAWI Graz, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
| | - Francesco Greco
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
| |
Collapse
|
26
|
Davoodi E, Montazerian H, Haghniaz R, Rashidi A, Ahadian S, Sheikhi A, Chen J, Khademhosseini A, Milani AS, Hoorfar M, Toyserkani E. 3D-Printed Ultra-Robust Surface-Doped Porous Silicone Sensors for Wearable Biomonitoring. ACS NANO 2020; 14:1520-1532. [PMID: 31904931 DOI: 10.1021/acsnano.9b06283] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Three-dimensional flexible porous conductors have significantly advanced wearable sensors and stretchable devices because of their specific high surface area. Dip coating of porous polymers with graphene is a facile, low cost, and scalable approach to integrate conductive layers with the flexible polymer substrate platforms; however, the products often suffer from nanoparticle delamination and overtime decay. Here, a fabrication scheme based on accessible methods and safe materials is introduced to surface-dope porous silicone sensors with graphene nanoplatelets. The sensors are internally shaped with ordered, interconnected, and tortuous internal geometries (i.e., triply periodic minimal surfaces) using fused deposition modeling (FDM) 3D-printed sacrificial molds. The molds were dip coated to transfer-embed graphene onto the silicone rubber (SR) surface. The presented procedure exhibited a stable coating on the porous silicone samples with long-term electrical resistance durability over ∼12 months period and high resistance against harsh conditions (exposure to organic solvents). Besides, the sensors retained conductivity upon severe compressive deformations (over 75% compressive strain) with high strain-recoverability and behaved robustly in response to cyclic deformations (over 400 cycles), temperature, and humidity. The sensors exhibited a gauge factor as high as 10 within the compressive strain range of 2-10%. Given the tunable sensitivity, the engineered biocompatible and flexible devices captured movements as rigorous as walking and running to the small deformations resulted by human pulse.
Collapse
Affiliation(s)
- Elham Davoodi
- Multi-Scale Additive Manufacturing Lab, Mechanical and Mechatronics Engineering Department , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada
- Department of Bioengineering , University of California, Los Angeles , 410 Westwood Plaza , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI) , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095 , United States
| | - Hossein Montazerian
- Department of Bioengineering , University of California, Los Angeles , 410 Westwood Plaza , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI) , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095 , United States
- Composites Research Network-Okanagan Node (CRN), School of Engineering , University of British Columbia , 3333 University Way , Kelowna , British Columbia V1V 1V7 , Canada
- Advanced Thermo-fluidic Laboratory (ATFL), School of Engineering , University of British Columbia , 3333 University Way , Kelowna , British Columbia V1V 1V7 , Canada
| | - Reihaneh Haghniaz
- Department of Bioengineering , University of California, Los Angeles , 410 Westwood Plaza , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI) , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095 , United States
| | - Armin Rashidi
- Composites Research Network-Okanagan Node (CRN), School of Engineering , University of British Columbia , 3333 University Way , Kelowna , British Columbia V1V 1V7 , Canada
| | - Samad Ahadian
- Department of Bioengineering , University of California, Los Angeles , 410 Westwood Plaza , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI) , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095 , United States
| | - Amir Sheikhi
- Department of Bioengineering , University of California, Los Angeles , 410 Westwood Plaza , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI) , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095 , United States
- Department of Chemical Engineering , The Pennsylvania State University , 106 Greenberg Building , University Park , Pennsylvania 16802 , United States
| | - Jun Chen
- Department of Bioengineering , University of California, Los Angeles , 410 Westwood Plaza , Los Angeles , California 90095 , United States
| | - Ali Khademhosseini
- Department of Bioengineering , University of California, Los Angeles , 410 Westwood Plaza , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI) , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095 , United States
- Department of Radiology , University of California, Los Angeles , 410 Westwood Plaza , Los Angeles , California 90095 , United States
| | - Abbas S Milani
- Composites Research Network-Okanagan Node (CRN), School of Engineering , University of British Columbia , 3333 University Way , Kelowna , British Columbia V1V 1V7 , Canada
| | - Mina Hoorfar
- Advanced Thermo-fluidic Laboratory (ATFL), School of Engineering , University of British Columbia , 3333 University Way , Kelowna , British Columbia V1V 1V7 , Canada
| | - Ehsan Toyserkani
- Multi-Scale Additive Manufacturing Lab, Mechanical and Mechatronics Engineering Department , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
27
|
Wang R, Duan X, Yao J, Ruan X, Yao Y, Liu T. Processing–structure–property relationship in direct laser writing carbonization of polyimide. J Appl Polym Sci 2020. [DOI: 10.1002/app.48978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rui Wang
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Soochow 215123 People's Republic of China
| | - Xiaoshuang Duan
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Soochow 215123 People's Republic of China
| | - Jingwen Yao
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Soochow 215123 People's Republic of China
| | - Xiaojun Ruan
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Soochow 215123 People's Republic of China
| | - Yanbo Yao
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Soochow 215123 People's Republic of China
| | - Tao Liu
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Soochow 215123 People's Republic of China
| |
Collapse
|
28
|
Ju K, Gao Y, Xiao T, Yu C, Tan J, Xuan F. Laser direct writing of carbonaceous sensors on cardboard for human health and indoor environment monitoring. RSC Adv 2020; 10:18694-18703. [PMID: 35518308 PMCID: PMC9053907 DOI: 10.1039/d0ra02217a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/05/2020] [Indexed: 11/21/2022] Open
Abstract
Carbonaceous sensors on cardboard can be used for human health and indoor environment monitoring.
Collapse
Affiliation(s)
- Kuan Ju
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yang Gao
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Ting Xiao
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Cunjiang Yu
- Department of Mechanical Engineering
- University of Houston
- Houston
- USA
| | - Jianpin Tan
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Fuzhen Xuan
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
29
|
Huang L, Su J, Song Y, Ye R. Laser-Induced Graphene: En Route to Smart Sensing. NANO-MICRO LETTERS 2020; 12:157. [PMID: 32835028 PMCID: PMC7396264 DOI: 10.1007/s40820-020-00496-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/09/2020] [Indexed: 05/02/2023]
Abstract
The discovery of laser-induced graphene (LIG) from polymers in 2014 has aroused much attention in recent years. A broad range of applications, including batteries, catalysis, sterilization, and separation, have been explored. The advantages of LIG technology over conventional graphene synthesis methods are conspicuous, which include designable patterning, environmental friendliness, tunable compositions, and controllable morphologies. In addition, LIG possesses high porosity, great flexibility, and mechanical robustness, and excellent electric and thermal conductivity. The patternable and printable manufacturing process and the advantageous properties of LIG illuminate a new pathway for developing miniaturized graphene devices. Its use in sensing applications has grown swiftly from a single detection component to an integrated smart detection system. In this minireview, we start with the introduction of synthetic efforts related to the fabrication of LIG sensors. Then, we highlight the achievement of LIG sensors for the detection of a diversity of stimuli with a focus on the design principle and working mechanism. Future development of the techniques toward in situ and smart detection of multiple stimuli in widespread applications will be discussed.
Collapse
Affiliation(s)
- Libei Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong People’s Republic of China
| | - Jianjun Su
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong People’s Republic of China
| | - Yun Song
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong People’s Republic of China
| | - Ruquan Ye
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong People’s Republic of China
- State Key Lab of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong People’s Republic of China
| |
Collapse
|
30
|
Ruan X, Luo J, Wang R, Yao Y, Guan J, Liu T. Microcontact Printing with Laser Direct Writing Carbonization for Facile Fabrication of Carbon-Based Ultrathin Disk Arrays and Ordered Holey Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902819. [PMID: 31490635 DOI: 10.1002/smll.201902819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/06/2019] [Indexed: 06/10/2023]
Abstract
A nanometer-thick carbon film with a highly ordered pattern structure is very useful in a variety of applications. However, its large-scale, high-throughput, and low-cost fabrication is still a great challenge. Herein, microcontact printing (µCP) and direct laser writing carbonization (DLWc) are combined to develop a novel method that enables ease of fabrication of nanometer-thick and regularly patterned carbon disk arrays (CDAs) and holey carbon films (HCFs) from a pyromellitic dianhydride-oxydianiline-based polyamic acid (PAA) solution. The effect of PAA concentration and pillar lattice structure of the polydimethyl siloxane stamp are systematically studied for their influence on the geometrical parameter, surface morphology, and chemical structure of the finally achieved CDAs and HCFs. Within the PAA concentration being investigated, the averaged thickness of CDAs and HCFs can be tailored in a range from a few tens to a few hundred of nanometers. The µCP+DLWc-enabled electrically conductive CDAs and HCFs possess the characteristics of ease-of-fabrication, nanometer-thickness, highly regular and controlled patterns and structures, and the ability to form on both hard and soft substrates, which imparts usefulness in electronics, photonics, energy storage, catalysis, tissue engineering, as well as physical, chemical, and bio-sensing applications.
Collapse
Affiliation(s)
- Xiaojun Ruan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiangjiang Luo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Rui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yanbo Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jingjiao Guan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Tao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
31
|
Slepchenkov MM, Shmygin DS, Zhang G, Glukhova OE. Controlling the electronic properties of 2D/3D pillared graphene and glass-like carbon via metal atom doping. NANOSCALE 2019; 11:16414-16427. [PMID: 31441467 DOI: 10.1039/c9nr05185f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present the results of investigation of the nanopore filling of planar layered and bulk pillared graphene (PGR) as well as films and 3D samples of glass-like porous carbon (GLC) with potassium atoms. The patterns of charge transfer, electronic structure, and shift of the Fermi level during the filling of nanopores with potassium atoms are established. It is found that the greatest charge transfer from potassium atoms to the carbon framework is observed in PGR with a density of 1.1-1.4 g cm-3 (that is, with a nanopore volume of 1300-1800 nm3) regardless of the framework topology. The maximum charge transfer occurs already when the mass fraction of potassium is 12 wt%. At the same potassium concentration, a maximum shift of the Fermi level to zero by ∼3 eV occurs in a bilayer PGR film with a density of 1.4 g cm-3. Thus, our work shows for the first time that the electronic properties of nanoporous materials doped with alkaline earth metals (in particular, potassium) can be controlled by varying the volume of doped nanopores, i.e. by controlling the density of the nanoporous material. We first demonstrated that the potassium doping of PGR would be more effective than potassium doping of GLC. It is established that 2D samples of PGR and GLC completely reproduce the electronic properties of the bulk samples and even surpass them in some parameters. To carry out research, we developed a new method for nanopore filling with dopant atoms based on both the randomness of the nanopore filling and the energy advantage of this process. This method allows us to reliably determine the maximum possible mass fraction (wt%) of dopant atoms of any porous material.
Collapse
Affiliation(s)
- Michael M Slepchenkov
- Department of Physics, Saratov State University, Astrakhanskaya 83, Saratov, 410012, Russia
| | - Dmitry S Shmygin
- Department of Physics, Saratov State University, Astrakhanskaya 83, Saratov, 410012, Russia
| | - Gang Zhang
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, 138632, Singapore
| | - Olga E Glukhova
- Department of Physics, Saratov State University, Astrakhanskaya 83, Saratov, 410012, Russia and I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya street 2-4, 119991 Moscow, Russia.
| |
Collapse
|
32
|
Han T, Nag A, Afsarimanesh N, Mukhopadhyay SC, Kundu S, Xu Y. Laser-Assisted Printed Flexible Sensors: A Review. SENSORS 2019; 19:s19061462. [PMID: 30934649 PMCID: PMC6471508 DOI: 10.3390/s19061462] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 12/15/2022]
Abstract
This paper provides a substantial review of some of the significant research done on the fabrication and implementation of laser-assisted printed flexible sensors. In recent times, using laser cutting to develop printed flexible sensors has become a popular technique due to advantages such as the low cost of production, easy sample preparation, the ability to process a range of raw materials, and its usability for different functionalities. Different kinds of laser cutters are now available that work on samples very precisely via the available laser parameters. Thus, laser-cutting techniques provide huge scope for the development of prototypes with a varied range of sizes and dimensions. Meanwhile, researchers have been constantly working on the types of materials that can be processed, individually or in conjugation with one another, to form samples for laser-ablation. Some of the laser-printed techniques that are commonly considered for fabricating flexible sensors, which are discussed in this paper, include nanocomposite-based, laser-ablated, and 3D-printing. The developed sensors have been used for a range of applications, such as electrochemical and strain-sensing purposes. The challenges faced by the current printed flexible sensors, along with a market survey, are also outlined in this paper.
Collapse
Affiliation(s)
- Tao Han
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan 523106, China.
| | - Anindya Nag
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan 523106, China.
| | | | | | - Sudip Kundu
- CSIR-Central Mechanical Engineering Research Institute Durgapur, West Bengal 713209, India.
| | - Yongzhao Xu
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan 523106, China.
| |
Collapse
|
33
|
Ji Z, Zhang X, Yan C, Jia X, Xia Y, Wang X, Zhou F. 3D Printing of Photocuring Elastomers with Excellent Mechanical Strength and Resilience. Macromol Rapid Commun 2019; 40:e1800873. [DOI: 10.1002/marc.201800873] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/11/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Zhongying Ji
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100039 China
| | - Xiaoqin Zhang
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 China
| | - Changyou Yan
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100039 China
| | - Xin Jia
- School of Chemistry and Chemical EngineeringShihezi University Shihezi 832003 China
| | - Yanqiu Xia
- School of EnergyPower and Mechanical EngineeringNorth China Electric Power University Beijing 102206 China
| | - Xiaolong Wang
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 China
- School of Chemistry and Chemical EngineeringShihezi University Shihezi 832003 China
| | - Feng Zhou
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|
34
|
Wei Y, Chen J, Song X, Gu Y, Zeng H. Laser direct-writing electrode for rapid customization of a photodetector. OPTICS LETTERS 2019; 44:683-686. [PMID: 30702710 DOI: 10.1364/ol.44.000683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/05/2019] [Indexed: 05/25/2023]
Abstract
The interdigital Ag electrode is fabricated via a simple and fast approach called laser direct writing (LDW). The morphology and conductivity of electrode fingers are investigated systematically under different experimental parameters, including the laser spot size, laser power, and scanning speed. "Dose" describes the combined influence of these experimental parameters. It is found that overdose results in net-shape and dot-shape hollows in the middle of an Ag line due to the sintering degree and complex flow dynamics, which reduced the conductivity of the Ag lines. Based on the printed Ag electrodes with the best conductivity, a photodetector is customized further, which can detect the offset of the line-shape laser easily. Moreover, to the best of our knowledge, this is the first time the printed Ag electrodes are applied to photodetectors, which can be highly valuable for developing all-printed electronic devices by LDW in the future.
Collapse
|
35
|
Ionic liquid/poly-l-cysteine composite deposited on flexible and hierarchical porous laser-engraved graphene electrode for high-performance electrochemical analysis of lead ion. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.176] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Rahimi R, Ochoa M, Ziaie B. Comparison of Direct and Indirect Laser Ablation of Metallized Paper for Inexpensive Paper-Based Sensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36332-36341. [PMID: 30222316 DOI: 10.1021/acsami.8b09598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this work, we present a systematic study of laser processing of metallized papers (MPs) as a simple and scalable alternative to conventional photolithography-based processes and printing technologies. Two laser-processing methods are examined in terms of selectivity for the removal of the conductive aluminum film (25 nm) of an MP substrate; these processes, namely direct and indirect laser ablation (DLA and ILA), operate at wavelengths of 1.06 μm (neodymium-doped yttrium aluminum garnet) and 10.6 μm (CO2), respectively. The required threshold energy for each laser processing method was systematically measured using electrical, optical, and mechanical characterization techniques. The results of these investigations show that the removal of the metal coating using ILA is only achieved through partial etching of the paper substrate. The ILA process shows a narrow effective set of laser settings capable of removing the metal film while not completely burning through the paper substrate. By contrast, DLA shows a more defined and selective removal of the aluminum layer without damaging the mechanical and natural fibular structure of the paper substrate. Finally, as a proof of concept, interdigitated capacitive moisture sensors were fabricated by means of DLA and ILA onto the MP substrate, and their performance was assessed in the humidity range of 2-85%. The humidity sensitivity results show that the DLA sensors have a superior humidity sensing performance compared to the ILA sensors. The observed behavior is attributed to the higher water molecule absorption and induced capillary condensation within the intact cellulose network resulting from the DLA process (compared to the damaged one from the ILA process). The DLA process of MP should enable scalable production of low-cost, paper-based physical and chemical sensing systems for potential use in point-of-care diagnostics and food packaging.
Collapse
|
37
|
Rahimi R, Shams Es‐haghi S, Chittiboyina S, Mutlu Z, Lelièvre SA, Cakmak M, Ziaie B. Laser-Enabled Processing of Stretchable Electronics on a Hydrolytically Degradable Hydrogel. Adv Healthc Mater 2018; 7:e1800231. [PMID: 29947042 DOI: 10.1002/adhm.201800231] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/14/2018] [Indexed: 12/14/2022]
Abstract
Degradable electronics represent a rapidly emerging field of science and technology with the potential to serve short-term medical implantation applications where the device disappears once its function is complete. Despite many efforts in developing new types of degradable electronics, many of such systems are nonelastic and incompatible with the dynamic motion of native soft/elastic biological tissues. Herein, a photo-crosslinkable hydrogel with integrated electronics that are highly stretchable and degradable in liquid environments is demonstrated. The fabrication process takes advantage of facile laser micromachining of conductive patterns directly onto the hydrogel under ambient conditions and permanent hydrogel-hydrogel bonding. The robustness and degradation rate of hydrogel and the laser-processed encapsulated stretchable circuits is systematically investigated in different solutions under various conditions. Biocompatibility tests with non-neoplastic cells (HMT 3522 S1) and cancer cells (T4-2 and MDA-MB-231) are performed in 2D and 3D cell culture systems to confirm instead of evaluate the safety of the hydrogel and its byproducts during degradation as well as the zinc metal used in this technology. As a proof of concept, a stretchable hydrogel-based device that can be used for remote/wireless delivery of thermal energy into the tissue in contact with the hydrogel is fabricated.
Collapse
Affiliation(s)
- Rahim Rahimi
- Birck Nanotechnology Center Purdue University West Lafayette IN 47907‐2057 USA
- School of Electrical and Computer Engineering Purdue University West Lafayette IN 47907‐2035 USA
| | - Siamak Shams Es‐haghi
- Birck Nanotechnology Center Purdue University West Lafayette IN 47907‐2057 USA
- School of Materials Engineering Purdue University West Lafayette IN 47907‐2045 USA
| | - Shirisha Chittiboyina
- Department of Basic Medical Sciences Purdue University 625 Harrison Street West Lafayette IN 47907 USA
| | - Zeynep Mutlu
- Birck Nanotechnology Center Purdue University West Lafayette IN 47907‐2057 USA
- School of Materials Engineering Purdue University West Lafayette IN 47907‐2045 USA
| | - Sophie A. Lelièvre
- Department of Basic Medical Sciences Purdue University 625 Harrison Street West Lafayette IN 47907 USA
| | - Mukerrem Cakmak
- Birck Nanotechnology Center Purdue University West Lafayette IN 47907‐2057 USA
- School of Materials Engineering Purdue University West Lafayette IN 47907‐2045 USA
| | - Babak Ziaie
- Birck Nanotechnology Center Purdue University West Lafayette IN 47907‐2057 USA
- School of Electrical and Computer Engineering Purdue University West Lafayette IN 47907‐2035 USA
| |
Collapse
|
38
|
Femtosecond Laser-Based Modification of PDMS to Electrically Conductive Silicon Carbide. NANOMATERIALS 2018; 8:nano8070558. [PMID: 30037124 PMCID: PMC6071251 DOI: 10.3390/nano8070558] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 11/24/2022]
Abstract
In this paper, we experimentally demonstrate femtosecond laser direct writing of conductive structures on the surface of native polydimethylsiloxane (PDMS). Irradiation of femtosecond laser pulses modified the PDMS to black structures, which exhibit electrical conductivity. Fourier-transform infrared (FTIR) and X-ray diffraction (XRD) results show that the black structures were composed of β-silicon carbide (β-SiC), which can be attributed to the pyrolysis of the PDMS. The electrical conductivity was exhibited in limited laser power and scanning speed conditions. The technique we present enables the spatially selective formation of β-SiC on the surface of native PDMS only by irradiation of femtosecond laser pulses. Furthermore, this technique has the potential to open a novel route to simply fabricate flexible/stretchable MEMS devices with SiC microstructures.
Collapse
|
39
|
Liu Y, Wang H, Zhao W, Zhang M, Qin H, Xie Y. Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features. SENSORS (BASEL, SWITZERLAND) 2018; 18:E645. [PMID: 29470408 PMCID: PMC5856015 DOI: 10.3390/s18020645] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 12/21/2022]
Abstract
Wearable health monitoring systems have gained considerable interest in recent years owing to their tremendous promise for personal portable health watching and remote medical practices. The sensors with excellent flexibility and stretchability are crucial components that can provide health monitoring systems with the capability of continuously tracking physiological signals of human body without conspicuous uncomfortableness and invasiveness. The signals acquired by these sensors, such as body motion, heart rate, breath, skin temperature and metabolism parameter, are closely associated with personal health conditions. This review attempts to summarize the recent progress in flexible and stretchable sensors, concerning the detected health indicators, sensing mechanisms, functional materials, fabrication strategies, basic and desired features. The potential challenges and future perspectives of wearable health monitoring system are also briefly discussed.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, Xidian University, Xi'an 710071, China.
| | - Hai Wang
- School of Aerospace Science and Technology, Xidian University, Xi'an 710071, China.
| | - Wei Zhao
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, Xidian University, Xi'an 710071, China.
| | - Min Zhang
- School of Aerospace Science and Technology, Xidian University, Xi'an 710071, China.
| | - Hongbo Qin
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, Xidian University, Xi'an 710071, China.
| | - Yongqiang Xie
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, Xidian University, Xi'an 710071, China.
| |
Collapse
|
40
|
Hong Q, Yang L, Ge L, Liu Z, Li F. Direct-laser-writing of three-dimensional porous graphene frameworks on indium-tin oxide for sensitive electrochemical biosensing. Analyst 2018; 143:3327-3334. [DOI: 10.1039/c8an00888d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Direct-laser-writing of three-dimensional porous graphene frameworks on indium-tin-oxide glass towards the fabrication of a unique electrode with outstanding electrochemical performance.
Collapse
Affiliation(s)
- Qing Hong
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- P. R. China
| | - Limin Yang
- College of Chemistry
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan 250014
- P. R. China
| | - Lei Ge
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- P. R. China
| | - Zhenhui Liu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- P. R. China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- P. R. China
| |
Collapse
|
41
|
Rahimi R, Yu W, Ochoa M, Ziaie B. Directly embroidered microtubes for fluid transport in wearable applications. LAB ON A CHIP 2017; 17:1585-1593. [PMID: 28379278 DOI: 10.1039/c7lc00074j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We demonstrate, for the first time, a facile and low-cost approach for integrating highly flexible and stretchable microfluidic channels into textile-based substrates. The integration of the microfluidics is accomplished by means of directly embroidering surface-functionalized micro-tubing in a zigzag/meander pattern and subsequently coating it with an elastomer for irreversible bonding. We show the utility of the embroidered micro-tubing by developing robust and stretchable drug-delivery and electronic devices. Controlled drug-delivery platforms with sustained release are achieved through selected laser ablated openings. We further demonstrate a wearable wireless resonant displacement sensor capable of detecting strains ranging from 0 to 60% with an average sensitivity of 45 kHz per % strain by filling the embroidered tubing with a liquid metal alloy, creating stretchable conductive microfluidics with <0.4 Ω resistance variations at their maximum stretchability (100%). The interconnects can withstand 1500 repeated stretch-and-release cycles at 30% strain with a less than 0.1 Ω change in resistance.
Collapse
Affiliation(s)
- Rahim Rahimi
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
42
|
Ahmed R, Yetisen AK, Butt H. High Numerical Aperture Hexagonal Stacked Ring-Based Bidirectional Flexible Polymer Microlens Array. ACS NANO 2017; 11:3155-3165. [PMID: 28252935 DOI: 10.1021/acsnano.7b00211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Flexible imprinted photonic nanostructures that are able to diffract/focus narrow-band light have potential applications in optical lenses, filters, tunable lasers, displays, and biosensing. Nanophotonic structures through holography and roll-to-roll printing may reduce fabrication complexities and expenses and enable mass production. Here, 3D photonic nanostructures of a stacked ring array were imprinted on acrylate polymer (AP) over poly(ethylene terephthalate) (PET) substrate through holography and lift-off processes to create a microlens array (MLA). The surface structure of the array consisted of circular nonostepped pyramids, and repeated patterns were in hexagonal arrangements. Stacked-ring-based MLA (SMLA) on a flexible AP-PET substrate showed efficient bidirectional light focusing and maximum numerical aperture (NA = 0.60) with a reasonable filling factor. The nanostructures produced a well-ordered hexagonally focused diffraction pattern in the far field, and power intensities were measured through angle-resolved experiments. The variation of nanostep dimensions (width and height) and the number of steps resulted in different photonic bandgaps, and the arrays produced distance-dependent narrow-band light focusing. The validation of the SMLA was demonstrated through the text, image, and hologram projection experiments. It is anticipated that imprinted bidirectional SMLA over flexible substrates may find applications in optical systems, displays, and portable sensors.
Collapse
Affiliation(s)
- Rajib Ahmed
- Microengineering and Nanotechnology Laboratory, School of Engineering, University of Birmingham , Birmingham B15 2TT, United Kingdom
| | - Ali K Yetisen
- Harvard Medical School and Division of Biomedical Engineering, Brigham and Women's Hospital , 65 Lansdowne Street, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology , 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Haider Butt
- Microengineering and Nanotechnology Laboratory, School of Engineering, University of Birmingham , Birmingham B15 2TT, United Kingdom
| |
Collapse
|
43
|
Rahimi R, Ochoa M, Tamayol A, Khalili S, Khademhosseini A, Ziaie B. Highly Stretchable Potentiometric pH Sensor Fabricated via Laser Carbonization and Machining of Carbon-Polyaniline Composite. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9015-9023. [PMID: 28224783 DOI: 10.1021/acsami.6b16228] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The development of stretchable sensors has recently attracted considerable attention. These sensors have been used in wearable and robotics applications, such as personalized health-monitoring, motion detection, and human-machine interfaces. Herein, we report on a highly stretchable electrochemical pH sensor for wearable point-of-care applications that consists of a pH-sensitive working electrode and a liquid-junction-free reference electrode, in which the stretchable conductive interconnections are fabricated by laser carbonizing and micromachining of a polyimide sheet bonded to an Ecoflex substrate. This method produces highly porous carbonized 2D serpentine traces that are subsequently permeated with polyaniline (PANI) as the conductive filler, binding material, and pH-sensitive membrane. The experimental and simulation results demonstrate that the stretchable serpentine PANI/C-PI interconnections with an optimal trace width of 0.3 mm can withstand elongations of up to 135% and are robust to more than 12 000 stretch-and-release cycles at 20% strain without noticeable change in the resistance. The pH sensor displays a linear sensitivity of -53 mV/pH (r2 = 0.976) with stable performance in the physiological range of pH 4-10. The sensor shows excellent stability to applied longitudinal and transverse strains up to 100% in different pH buffer solutions with a minimal deviation of less than ±4 mV. The material biocompatibility is confirmed with NIH 3T3 fibroblast cells via PrestoBlue assays.
Collapse
Affiliation(s)
| | | | - Ali Tamayol
- Biomaterials Innovation Research Center, School of Electrical and Computer Engineering, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Shahla Khalili
- Biomaterials Innovation Research Center, School of Electrical and Computer Engineering, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, School of Electrical and Computer Engineering, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University , Seoul 143-701, Republic of Korea
- Department of Physics, King Abdulaziz University , Jeddah 21569, Saudi Arabia
| | | |
Collapse
|
44
|
Direct synthesis of graphitic mesoporous carbon from green phenolic resins exposed to subsequent UV and IR laser irradiations. Sci Rep 2016; 6:39617. [PMID: 28000781 PMCID: PMC5175163 DOI: 10.1038/srep39617] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/23/2016] [Indexed: 02/08/2023] Open
Abstract
The design of mesoporous carbon materials with controlled textural and structural features by rapid, cost-effective and eco-friendly means is highly demanded for many fields of applications. We report herein on the fast and tailored synthesis of mesoporous carbon by UV and IR laser assisted irradiations of a solution consisting of green phenolic resins and surfactant agent. By tailoring the UV laser parameters such as energy, pulse repetition rate or exposure time carbon materials with different pore size, architecture and wall thickness were obtained. By increasing irradiation dose, the mesopore size diminishes in the favor of wall thickness while the morphology shifts from worm-like to an ordered hexagonal one. This was related to the intensification of phenolic resin cross-linking which induces the reduction of H-bonding with the template as highlighted by 13C and 1H NMR. In addition, mesoporous carbon with graphitic structure was obtained by IR laser irradiation at room temperature and in very short time periods compared to the classical long thermal treatment at very high temperatures. Therefore, the carbon texture and structure can be tuned only by playing with laser parameters, without extra chemicals, as usually required.
Collapse
|