1
|
Hosseini SA, Kardani A, Yaghoobi H. A comprehensive review of cancer therapies mediated by conjugated gold nanoparticles with nucleic acid. Int J Biol Macromol 2023; 253:127184. [PMID: 37797860 DOI: 10.1016/j.ijbiomac.2023.127184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
Nucleic acids provide a promising therapeutic platform by targeting various cell signaling pathways involved in cancer and genetic disorders. However, maintaining optimal stability during delivery limits their utility. Nucleic acid delivery vehicles are generally categorized into biological and synthetic carriers. Regardless of the efficiency of biological vectors, such as viral vectors, issues related to their immunogenicity and carcinogenesis are very important and vital for clinical applications. On the other hand, synthetic vectors such as lipids or polymers, have been widely used for nucleic acid delivery. Despite their transfection efficiency, low storage stability, targeting inefficiency, and tracking limitations are among the limitations of the clinical application of these vectors. In the past decades, gold nanoparticles with unique properties have been shown to be highly efficient mineral vectors for overcoming these obstacles. In this review, we focus on gold nanoparticle-nucleic acid combinations and highlight their use in the treatment of various types of cancers. Furthermore, by stating the biological applications of these structures, we will discuss their clinical applications.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Arefeh Kardani
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
2
|
Gao W, Liang C, Zhao K, Hou M, Wen Y. Multifunctional gold nanoparticles for osteoporosis: synthesis, mechanism and therapeutic applications. J Transl Med 2023; 21:889. [PMID: 38062495 PMCID: PMC10702032 DOI: 10.1186/s12967-023-04594-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/04/2023] [Indexed: 12/18/2023] Open
Abstract
Osteoporosis is currently the most prevalent bone disorder worldwide and is characterized by low bone mineral density and an overall increased risk of fractures. To treat osteoporosis, a range of drugs targeting bone homeostasis have emerged in clinical practice, including anti-osteoclast agents such as bisphosphonates and denosumab, bone formation stimulating agents such as teriparatide, and selective oestrogen receptor modulators. However, traditional clinical medicine still faces challenges related to side effects and high costs of these types of treatments. Nanomaterials (particularly gold nanoparticles [AuNPs]), which have unique optical properties and excellent biocompatibility, have gained attention in the field of osteoporosis research. AuNPs have been found to promote osteoblast differentiation, inhibit osteoclast formation, and block the differentiation of adipose-derived stem cells, which thus is believed to be a novel and promising candidate for osteoporosis treatment. This review summarizes the advances and drawbacks of AuNPs in their synthesis and the mechanisms in bone formation and resorption in vitro and in vivo, with a focus on their size, shape, and chemical composition as relevant parameters for the treatment of osteoporosis. Additionally, several important and promising directions for future studies are also discussed, which is of great significance for prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Weihang Gao
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Chen Liang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ke Zhao
- Department of Orthopaedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingming Hou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China.
| | - Yinxian Wen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Mousa M, Kim YH, Evans ND, Oreffo ROC, Dawson JI. Tracking cellular uptake, intracellular trafficking and fate of nanoclay particles in human bone marrow stromal cells. NANOSCALE 2023; 15:18457-18472. [PMID: 37941481 DOI: 10.1039/d3nr02447d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Clay nanoparticles, in particular synthetic smectites, have generated interest in the field of tissue engineering and regenerative medicine due to their utility as cross-linkers for polymers in biomaterial design and as protein release modifiers for growth factor delivery. In addition, recent studies have suggested a direct influence on the osteogenic differentiation of responsive stem and progenitor cell populations. Relatively little is known however about the mechanisms underlying nanoclay bioactivity and in particular the cellular processes involved in nanoclay-stem cell interactions. In this study we employed confocal microscopy, inductively coupled plasma mass spectrometry and transmission electron microscopy to track the interactions between clay nanoparticles and human bone marrow stromal cells (hBMSCs). In particular we studied nanoparticle cellular uptake mechanisms and uptake kinetics, intracellular trafficking pathways and the fate of endocytosed nanoclay. We found that nanoclay particles present on the cell surface as μm-sized aggregates, enter hBMSCs through clathrin-mediated endocytosis, and their uptake kinetics follow a linear increase with time during the first week of nanoclay addition. The endocytosed particles were observed within the endosomal/lysosomal compartments and we found evidence for both intracellular degradation of nanoclay and exocytosis as well as an increase in autophagosomal activity. Inhibitor studies indicated that endocytosis was required for nanoclay upregulation of alkaline phosphatase activity but a similar dependency was not observed for autophagy. This study into the nature of nanoclay-stem cell interactions, in particular the intracellular processing of nanosilicate, may provide insights into the mechanisms underlying nanoclay bioactivity and inform the successful utilisation of clay nanoparticles in biomaterial design.
Collapse
Affiliation(s)
- Mohamed Mousa
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| | - Yang-Hee Kim
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| | - Nicholas D Evans
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| | - Richard O C Oreffo
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| | - Jonathan I Dawson
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| |
Collapse
|
4
|
Chambers P, Ziminska M, Elkashif A, Wilson J, Redmond J, Tzagiollari A, Ferreira C, Balouch A, Bogle J, Donahue SW, Dunne NJ, McCarthy HO. The osteogenic and angiogenic potential of microRNA-26a delivered via a non-viral delivery peptide for bone repair. J Control Release 2023; 362:489-501. [PMID: 37673308 DOI: 10.1016/j.jconrel.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Bone-related injuries and diseases are among the most common causes of morbidity worldwide. Current bone-regenerative strategies such as auto- and allografts are invasive by nature, with adverse effects such as pain, infection and donor site morbidity. MicroRNA (miRNA) gene therapy has emerged as a promising area of research, with miRNAs capable of regulating multiple gene pathways simultaneously through the repression of post-transcriptional mRNAs. miR-26a is a key regulator of osteogenesis and has been found to be upregulated following bone injury, where it induces osteodifferentiation of mesenchymal stem cells (MSCs) and facilitates bone formation. This study demonstrates, for the first time, that the amphipathic, cell-penetrating peptide RALA can efficiently deliver miR-26a to MSCs in vitro to regulate osteogenic signalling. Transfection with miR-26a significantly increased expression of osteogenic and angiogenic markers at both gene and protein level. Using a rat calvarial defect model with a critical size defect, RALA/miR-26a NPs were delivered via an injectable, thermo-responsive Cs-g-PNIPAAm hydrogel to assess the impact on both rate and quality of bone healing. Critical defects treated with the RALA/miR-26a nanoparticles (NPs) had significantly increased bone volume and bone mineral density at 8 weeks, with increased blood vessel formation and mechanical properties. This study highlights the utility of RALA to deliver miR-26a for the purpose of bone healing within an injectable biomaterial, warranting further investigation of dose-related efficacy of the therapeutic across a range of in vivo models.
Collapse
Affiliation(s)
- Phillip Chambers
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Monika Ziminska
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ahmed Elkashif
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jordan Wilson
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - John Redmond
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - Antzela Tzagiollari
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - Cole Ferreira
- Department of Biomedical Engineering, University of Massachusetts, Amherst, United States
| | - Auden Balouch
- Department of Biomedical Engineering, University of Massachusetts, Amherst, United States
| | - Jasmine Bogle
- Department of Biomedical Engineering, University of Massachusetts, Amherst, United States
| | - Seth W Donahue
- Department of Biomedical Engineering, University of Massachusetts, Amherst, United States
| | - Nicholas J Dunne
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Biodesign Europe, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
5
|
Abuarqoub D, Mahmoud N, Alshaer W, Mohammad M, Ibrahim AA, Al-Mrahleh M, Alnatour M, Alqudah DA, Esawi E, Awidi A. Biological Performance of Primary Dental Pulp Stem Cells Treated with Gold Nanoparticles. Biomedicines 2023; 11:2490. [PMID: 37760931 PMCID: PMC10525781 DOI: 10.3390/biomedicines11092490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Gold nanoparticles (AuNPs) are one of the most stable nanoparticles that have been prevalently used as examples for biological and biomedical applications. Herein, we evaluate the effect of AuNPs on the biological processes of dental pulp stem cells derived from exfoliated deciduous teeth (SHED). Two different shapes of PEGylated AuNPs, rods (AuNR-PEG) and spheres (AuNS-PEG), were prepared and characterized. SHED cells were treated with different concentrations of AuNR-PEG and AuNS-PEG to determine their effect on the stemness profile of stem cells (SCs), proliferation, cytotoxicity, cellular uptake, and reactive oxygen species (ROS), for cells cultured in media containing-fetal bovine serum (FBS) and serum-free media (SFM). Our results showed that both nanoparticle shapes maintained the expression profile of MSC surface markers. Moreover, AuNS-PEG showed a stimulatory effect on the proliferation rate and lower toxicity on SHED, compared to AuNR-PEG. Higher concentrations of 0.5-0.125 nM of AuNR-PEG have been demonstrated to cause more toxicity in cells. Additionally, cells treated with AuNPs and cultured in FBS showed a higher proliferative rate and lower toxicity when compared to the SFM. For cellular uptake, both AuNS-PEG and AuNR-PEG were uptaken by treated cells efficiently. However, cells cultured in SFM media showed a higher percentage of cellular uptake. For ROS, AuNR-PEG showed a significant reduction in ROS at lower concentrations (<0.03 nM), while AuNS-PEG did not show any significant difference compared to the control untreated cells. Thus, our results give evidence about the optimum concentration and shape of AuNPs that can be used for the differentiation of stem cells into specific cell lineages in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Duaa Abuarqoub
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan;
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan; (W.A.); (M.A.-M.); (D.A.A.); (E.E.)
| | - Nouf Mahmoud
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan;
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Walhan Alshaer
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan; (W.A.); (M.A.-M.); (D.A.A.); (E.E.)
| | - Marwa Mohammad
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan;
| | - Abed Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, 2907 E. Gate City Blvd., Greensboro, NC 27401, USA;
| | - Mairvat Al-Mrahleh
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan; (W.A.); (M.A.-M.); (D.A.A.); (E.E.)
| | - Mohammad Alnatour
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan;
| | - Dana A. Alqudah
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan; (W.A.); (M.A.-M.); (D.A.A.); (E.E.)
| | - Ezaldeen Esawi
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan; (W.A.); (M.A.-M.); (D.A.A.); (E.E.)
| | - Abdalla Awidi
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan; (W.A.); (M.A.-M.); (D.A.A.); (E.E.)
- School of Medicine, University of Jordan, Amman 11942, Jordan
- Department of Internal Medicine, Hospital of Jordan University, Amman University, Amman 11942, Jordan
| |
Collapse
|
6
|
A Review of Biomimetic and Biodegradable Magnetic Scaffolds for Bone Tissue Engineering and Oncology. Int J Mol Sci 2023; 24:ijms24054312. [PMID: 36901743 PMCID: PMC10001544 DOI: 10.3390/ijms24054312] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Bone defects characterized by limited regenerative properties are considered a priority in surgical practice, as they are associated with reduced quality of life and high costs. In bone tissue engineering, different types of scaffolds are used. These implants represent structures with well-established properties that play an important role as delivery vectors or cellular systems for cells, growth factors, bioactive molecules, chemical compounds, and drugs. The scaffold must provide a microenvironment with increased regenerative potential at the damage site. Magnetic nanoparticles are linked to an intrinsic magnetic field, and when they are incorporated into biomimetic scaffold structures, they can sustain osteoconduction, osteoinduction, and angiogenesis. Some studies have shown that combining ferromagnetic or superparamagnetic nanoparticles and external stimuli such as an electromagnetic field or laser light can enhance osteogenesis and angiogenesis and even lead to cancer cell death. These therapies are based on in vitro and in vivo studies and could be included in clinical trials for large bone defect regeneration and cancer treatments in the near future. We highlight the scaffolds' main attributes and focus on natural and synthetic polymeric biomaterials combined with magnetic nanoparticles and their production methods. Then, we underline the structural and morphological aspects of the magnetic scaffolds and their mechanical, thermal, and magnetic properties. Great attention is devoted to the magnetic field effects on bone cells, biocompatibility, and osteogenic impact of the polymeric scaffolds reinforced with magnetic nanoparticles. We explain the biological processes activated due to magnetic particles' presence and underline their possible toxic effects. We present some studies regarding animal tests and potential clinical applications of magnetic polymeric scaffolds.
Collapse
|
7
|
Xin L, Wen Y, Song J, Chen T, Zhai Q. Bone regeneration strategies based on organelle homeostasis of mesenchymal stem cells. Front Endocrinol (Lausanne) 2023; 14:1151691. [PMID: 37033227 PMCID: PMC10081449 DOI: 10.3389/fendo.2023.1151691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The organelle modulation has emerged as a crucial contributor to the organismal homeostasis. The mesenchymal stem cells (MSCs), with their putative functions in maintaining the regeneration ability of adult tissues, have been identified as a major driver to underlie skeletal health. Bone is a structural and endocrine organ, in which the organelle regulation on mesenchymal stem cells (MSCs) function has most been discovered recently. Furthermore, potential treatments to control bone regeneration are developing using organelle-targeted techniques based on manipulating MSCs osteogenesis. In this review, we summarize the most current understanding of organelle regulation on MSCs in bone homeostasis, and to outline mechanistic insights as well as organelle-targeted approaches for accelerated bone regeneration.
Collapse
Affiliation(s)
- Liangjing Xin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yao Wen
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Qiming Zhai, ; Tao Chen, ; Jinlin Song,
| | - Tao Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Qiming Zhai, ; Tao Chen, ; Jinlin Song,
| | - Qiming Zhai
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Qiming Zhai, ; Tao Chen, ; Jinlin Song,
| |
Collapse
|
8
|
Jiang T, Miao S, Shen J, Song W, Tan S, Ma D. Enhanced effects of antagomiR-3074-3p-conjugated PEI-AuNPs on the odontogenic differentiation by targeting FKBP9. J Tissue Eng 2023; 14:20417314231184512. [PMID: 37441553 PMCID: PMC10333998 DOI: 10.1177/20417314231184512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/06/2023] [Indexed: 07/15/2023] Open
Abstract
The odontogenic differentiation of dental pulp stem cells (DPSCs), which is vital for tooth regeneration, was regulated by various functional molecules. In recent years, a growing body of research has shown that miRNAs play a crucial role in the odontogenic differentiation of human dental pulp stem cells (hDPSCs). However, the mechanisms by which miRNAs regulated odontogenic differentiation of hDPSCs remained unclear, and the application of miRNAs in reparative dentin formation in vivo was also rare. In this study, we first discovered that miR-3074-3p had an inhibitory effect on odontogenic differentiation of hDPSCs and antagomiR-3074-3p-conjugated PEI-AuNPs effectively promoted odontogenic differentiation of hDPSCs in vitro. AntagomiR-3074-3p-conjugated PEI-AuNPs was further applied to the rat pulp-capping model and showed the increased formation of restorative dentin. In addition, the results of lentivirus transfection in vitro suggested that FKBP9 acted as the key target of miR-3074-3p in regulating the odontogenic differentiation of hDPSCs. These findings might provide a new strategy and candidate target for dentin restoration and tooth regeneration.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Endodontics,
Stomatological Hospital, School of Stomatology, Southern Medical University,
Guangzhou, China
| | - Shenghong Miao
- College of Stomatology, Southern
Medical University, Guangzhou, China
- Foshan Stomatological Hospital, Foshan
University, Foshan, Guangdong, China
| | - Jingjie Shen
- School of Material Science and
Engineering, South China University of Technology, Guangzhou, China
| | - Wenjing Song
- School of Material Science and
Engineering, South China University of Technology, Guangzhou, China
| | - Shenglong Tan
- Department of Endodontics,
Stomatological Hospital, School of Stomatology, Southern Medical University,
Guangzhou, China
| | - Dandan Ma
- Department of Endodontics,
Stomatological Hospital, School of Stomatology, Southern Medical University,
Guangzhou, China
| |
Collapse
|
9
|
Gupta A, Singh S. Multimodal Potentials of Gold Nanoparticles for Bone Tissue Engineering and Regenerative Medicine: Avenues and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201462. [PMID: 35758545 DOI: 10.1002/smll.202201462] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Osseous tissue repair has advanced due to the introduction of tissue engineering. The key elements required while engineering new tissues involve scaffolds, cells, and bioactive cues. The macrostructural to the nanostructural framework of such complex tissue has engrossed the intervention of nanotechnology for efficient neo-bone formation. Gold nanoparticles (GNPs) have recently gained interest in bone tissue regeneration due to their multimodal functionality. They are proven to modulate the properties of scaffolds and the osteogenic cells significantly. GNPs also influence different metabolic functions within the body, which directly or indirectly govern the mechanism of bone regeneration. Therefore, this review highlights nanoparticle-mediated osteogenic development, focusing on different aspects of GNPs ranging from scaffold modulation to cellular stimulation. The toxic aspects of gold nanoparticles studied so far are critically explicated, while further insight into the advancements and prospects of these nanoparticles in bone regeneration is also highlighted.
Collapse
Affiliation(s)
- Archita Gupta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Sneha Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| |
Collapse
|
10
|
Bianchi E, Vigani B, Viseras C, Ferrari F, Rossi S, Sandri G. Inorganic Nanomaterials in Tissue Engineering. Pharmaceutics 2022; 14:1127. [PMID: 35745700 PMCID: PMC9231279 DOI: 10.3390/pharmaceutics14061127] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
In recent decades, the demand for replacement of damaged or broken tissues has increased; this poses the attention on problems related to low donor availability. For this reason, researchers focused their attention on the field of tissue engineering, which allows the development of scaffolds able to mimic the tissues' extracellular matrix. However, tissue replacement and regeneration are complex since scaffolds need to guarantee an adequate hierarchical structured morphology as well as adequate mechanical, chemical, and physical properties to stand the stresses and enhance the new tissue formation. For this purpose, the use of inorganic materials as fillers for the scaffolds has gained great interest in tissue engineering applications, due to their wide range of physicochemical properties as well as their capability to induce biological responses. However, some issues still need to be faced to improve their efficacy. This review focuses on the description of the most effective inorganic nanomaterials (clays, nano-based nanomaterials, metal oxides, metallic nanoparticles) used in tissue engineering and their properties. Particular attention has been devoted to their combination with scaffolds in a wide range of applications. In particular, skin, orthopaedic, and neural tissue engineering have been considered.
Collapse
Affiliation(s)
- Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (E.B.); (B.V.)
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (E.B.); (B.V.)
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain;
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (E.B.); (B.V.)
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (E.B.); (B.V.)
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (E.B.); (B.V.)
| |
Collapse
|
11
|
Pan T, Song W, Xin H, Yu H, Wang H, Ma D, Cao X, Wang Y. MicroRNA-activated hydrogel scaffold generated by 3D printing accelerates bone regeneration. Bioact Mater 2022; 10:1-14. [PMID: 34901525 PMCID: PMC8637000 DOI: 10.1016/j.bioactmat.2021.08.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/09/2023] Open
Abstract
Bone defects remain a major threat to human health and bone tissue regeneration has become a prominent clinical demand worldwide. The combination of microRNA (miRNA) therapy with 3D printed scaffolds has always posed a challenge. It can mimic physiological bone healing processes, in which a biodegradable scaffold is gradually replaced by neo-tissue, and the sustained release of miRNA plays a vital role in creating an optimal osteogenic microenvironment, thus achieving promising bone repair outcomes. However, the balance between two key factors - scaffold degradation behavior and miRNA release profile - on osteogenesis and bone formation is still poorly understood. Herein, we construct a series of miRNA-activated hydrogel scaffolds (MAHSs) generated by 3D printing with different crosslinking degree to screened the interplay between scaffold degradation and miRNA release in the osteoinduction activity both in vitro and in vivo. Although MAHSs with a lower crosslinking degree (MAHS-0 and MAHS-0.25) released a higher amount of miR-29b in a sustained release profile, they degraded too fast to provide prolonged support for cell and tissue ingrowth. On the contrary, although the slow degradation of MAHSs with a higher crosslinking degree (MAHS-1 and MAHS-2.5) led to insufficient release of miR-29b, their adaptable degradation rate endowed them with more efficient osteoinductive behavior over the long term. MAHS-1 gave the most well-matched degradation rate and miR-29b release characteristics and was identified as the preferred MAHSs for accelerated bone regeneration. This study suggests that the bio-adaptable balance between scaffold degradation behavior and bioactive factors release profile plays a critical role in bone regeneration. These findings will provide a valuable reference about designing miRNAs as well as other bioactive molecules activated scaffold for tissue regeneration.
Collapse
Affiliation(s)
- Ting Pan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, PR China
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, PR China
| | - Wenjing Song
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, And Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Hongbao Xin
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, PR China
| | - Haiyue Yu
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral Diagnosis, Digital Health and Health Services Research, Berlin, Germany
| | - He Wang
- Department of Endodontics, Stomatological Hospital, Southern Medical University, No. 366 South Jiangnan Avenue, Guangzhou, 510280, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, Southern Medical University, No. 366 South Jiangnan Avenue, Guangzhou, 510280, China
| | - Xiaodong Cao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, And Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yingjun Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, And Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
12
|
Ouyang L, Sun Y, Lv D, Peng X, Liu X, Ci L, Zhang G, Yuan B, Li L, Fei J, Ma J, Liu X, Liao Y. miR-29cb2 promotes angiogenesis and osteogenesis by inhibiting HIF-3α in bone. iScience 2022; 25:103604. [PMID: 35005549 PMCID: PMC8718933 DOI: 10.1016/j.isci.2021.103604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/25/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Coordination between osteogenesis and angiogenesis is required for bone homeostasis. Here, we show that miR-29cb2 is a bone-specific miRNA and plays critical roles on angiogenesis-osteogenesis coupling during bone remodeling. Mice with deletion of miR-29cb2 exhibit osteopenic phenotypes and osteoblast impairment, accompanied by pronounced decreases in specific H vessels. The decrease in bone miR-29cb2 was associated with pathological ovariectomy stimuli. Mechanistically, hypoxia-inducible factor (HIF)-3α, as a target for miR-29cb2, inhibits HIF-1α activity by competitively bonding with HIF-1β. Notably, miR-29cb2 in peripheral blood (PB) nearly is undetectable in sham and significantly increases in ovariectomy mice. Further evaluation from osteoporosis patients demonstrates similar signatures. ROC analysis shows miR-29cb2 in PB has higher sensitivity and specificity for diagnosing osteoporosis when compared with four clinical biomarkers. Collectively, these findings reveal that miR-29cb2 is essential for bone remodeling by inhibiting HIF-3α and elevated bone-specific miR-29cb2 in PB, which may be a promising biomarker for bone loss.
Collapse
Affiliation(s)
- Liping Ouyang
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
- Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yingxiao Sun
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Dan Lv
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Xiaochun Peng
- Department of Orthopaedics, The Sixth Affiliated People's Hospital, Shanghai Jiaotong University, Shanghai 200233, China
| | - Xiaoming Liu
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Lei Ci
- Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC., Shanghai 201203, China
| | - Guoning Zhang
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Bo Yuan
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Ling Li
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Jian Fei
- Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC., Shanghai 201203, China
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jun Ma
- Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yun Liao
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| |
Collapse
|
13
|
Chakraborty S, Mukherjee S. Effects of protecting groups on luminescent metal nanoclusters: spectroscopic signatures and applications. Chem Commun (Camb) 2021; 58:29-47. [PMID: 34877943 DOI: 10.1039/d1cc05396e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Luminescent metal nanoclusters (NCs) have been established as next-generation fluorophores. Their biocompatible and non-toxic nature, along with excellent chemical- and photo-stability, enables them to find applications in multi-disciplinary areas. However, preparing NCs which are stable is always challenging, primarily owing to their small size and propensity to self-aggregate. In this review, we highlight a holistic approach as to how ligands and templates can monitor the stability of NCs, tune their spectroscopic signatures, and alter their applications. The role of small molecules of a large ligand in the preparation of NCs and their associated limitations are also discussed. We have summarized how these NCs can be utilized in sensing several metal ions, pH, viscosity and temperature of many systems which have biological relevance. Additionally, these luminescent metal NCs find usage in cell-imaging, discriminating between cancerous and non-cancerous cell lines and also targeting specific organelles within the cellular environment.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India.
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India.
| |
Collapse
|
14
|
Sidharthan DS, Abhinandan R, Balagangadharan K, Selvamurugan N. Advancements in nucleic acids-based techniques for bone regeneration. Biotechnol J 2021; 17:e2100570. [PMID: 34882984 DOI: 10.1002/biot.202100570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022]
Abstract
The dynamic biology of bone involving an enormous magnitude of cellular interactions and signaling transduction provides ample biomolecular targets, which can be enhanced or repressed to mediate a rapid regeneration of the impaired bone tissue. The delivery of nucleic acids such as DNA and RNA can enhance the expression of osteogenic proteins. Members of the RNA interference pathway such as miRNA and siRNA can repress negative osteoblast differentiation regulators. Advances in nanomaterials have provided researchers with a plethora of delivery modules that can ensure proper transfection. Combining the nucleic acid carrying vectors with bone scaffolds has met with tremendous success in accomplishing bone formation. Recent years have witnessed the advent of CRISPR and DNA nanostructures in regenerative medicine. This review focuses on the delivery of nucleic acids and touches upon the prospect of CRISPR and DNA nanostructures for bone tissue engineering, emphasizing their potential in treating bone defects.
Collapse
Affiliation(s)
- Dharmaraj Saleth Sidharthan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ranganathan Abhinandan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Kalimuthu Balagangadharan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
15
|
Kolanthai E, Fu Y, Kumar U, Babu B, Venkatesan AK, Liechty KW, Seal S. Nanoparticle mediated RNA delivery for wound healing. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1741. [PMID: 34369096 DOI: 10.1002/wnan.1741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
Wound healing is a complicated physiological process that comprises various steps, including hemostasis, inflammation, proliferation, and remodeling. The wound healing process is significantly affected by coexisting disease states such as diabetes, immunosuppression, or vascular disease. It can also be impacted by age, repeated injury, or hypertrophic scarring. These comorbidities can affect the rate of wound closure, the quality of wound closure, and tissues' function at the affected sites. There are limited options to improve the rate or quality of wound healing, creating a significant unmet need. Advances in nucleic acid research and the human genome project have developed potential novel approaches to address these outstanding requirements. In particular, the use of microRNA, short hairpin RNA, and silencing RNA is unique in their abilities as key regulators within the physiologic machinery of the cell. Although this innovative therapeutic approach using ribonucleic acid (RNA) is an attractive approach, the application as a therapeutic remains a challenge due to site-specific delivery, off-target effects, and RNA degradation obstacles. An ideal delivery system is essential for successful gene delivery. An ideal delivery system should result in high bioactivity, inhibit rapid dilution, controlled release, allow specific activation timings facilitating physiological stability, and minimize multiple dosages. Currently, these goals can be achieved by inorganic nanoparticle (NP) (e.g., cerium oxide, gold, silica, etc.) based delivery systems. This review focuses on providing insight into the preeminent research carried out on various RNAs and their delivery through NPs for effective wound healing. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Yifei Fu
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Udit Kumar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Balaashwin Babu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | | | - Kenneth W Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA.,College of Medicine, Nanoscience Technology Center, Biionix Cluster, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
16
|
Li Q, Hu Z, Rong X, Chang B, Liu X. Multifunctional polyplex micelles for efficient microRNA delivery and accelerated osteogenesis. NANOSCALE 2021; 13:12198-12211. [PMID: 34231613 PMCID: PMC10041663 DOI: 10.1039/d1nr02638k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
MicroRNAs (miRNAs) are emerging as a novel class of molecular targets and therapeutics to control gene expression for tissue repair and regeneration. However, a safe and effective transfection of miRNAs to cells has been a major barrier to their applications. In this work, a multifunctional polyplex micelle named PPP-RGI was developed as a non-viral gene vector for the efficient transfection of miR-218 (an osteogenic miRNA regulator) to bone marrow-derived mesenchymal stem cells (BMSCs) for accelerated osteogenic differentiation. PPP-RGI was designed and synthesized via conjugation of a multifunctional R9-G4-IKVAVW (RGI) peptide onto an amphiphilic poly(lactide-co-glycolide)-g-polyethylenimine-b-polyethylene glycol (PPP) copolymer. PPP-RGI self-assembled into polyplex micelles and strongly condensed miR-218 to prevent its RNase degradation. When the PPP-RGI/miR-218 complex was brought into contact with BMSCs, it exhibited high internalization efficiency and a fast escape from endo/lysosomes of the BMSCs. Subsequently, miR-218 released from the PPP-RGI/miR-218 complex regulated gene expressions and significantly enhanced the osteogenic differentiation of BMSCs. The multifunctional peptide conjugated nanocarrier serves as an effective miRNA delivery vector to promote osteogenesis.
Collapse
Affiliation(s)
- Qian Li
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA.
| | | | | | | | | |
Collapse
|
17
|
Shi Y, Han X, Pan S, Wu Y, Jiang Y, Lin J, Chen Y, Jin H. Gold Nanomaterials and Bone/Cartilage Tissue Engineering: Biomedical Applications and Molecular Mechanisms. Front Chem 2021; 9:724188. [PMID: 34307305 PMCID: PMC8299113 DOI: 10.3389/fchem.2021.724188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 06/28/2021] [Indexed: 01/26/2023] Open
Abstract
Recently, as our population increasingly ages with more pressure on bone and cartilage diseases, bone/cartilage tissue engineering (TE) have emerged as a potential alternative therapeutic technique accompanied by the rapid development of materials science and engineering. The key part to fulfill the goal of reconstructing impaired or damaged tissues lies in the rational design and synthesis of therapeutic agents in TE. Gold nanomaterials, especially gold nanoparticles (AuNPs), have shown the fascinating feasibility to treat a wide variety of diseases due to their excellent characteristics such as easy synthesis, controllable size, specific surface plasmon resonance and superior biocompatibility. Therefore, the comprehensive applications of gold nanomaterials in bone and cartilage TE have attracted enormous attention. This review will focus on the biomedical applications and molecular mechanism of gold nanomaterials in bone and cartilage TE. In addition, the types and cellular uptake process of gold nanomaterials are highlighted. Finally, the current challenges and future directions are indicated.
Collapse
Affiliation(s)
- Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xuyao Han
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shuang Pan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Yuhao Wu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yuhan Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jinghao Lin
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yihuang Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Hong L, Sun H, Amendt BA. MicroRNA function in craniofacial bone formation, regeneration and repair. Bone 2021; 144:115789. [PMID: 33309989 PMCID: PMC7869528 DOI: 10.1016/j.bone.2020.115789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Bone formation in the craniofacial complex is regulated by cranial neural crest (CNC) and mesoderm-derived cells. Different elements of the developing skull, face, mandible, maxilla (jaws) and nasal bones are regulated by an array of transcription factors, signaling molecules and microRNAs (miRs). miRs are molecular modulators of these factors and act to restrict their expression in a temporal-spatial mechanism. miRs control the different genetic pathways that form the craniofacial complex. By understanding how miRs function in vivo during development they can be adapted to regenerate and repair craniofacial genetic anomalies as well as bone diseases and defects due to traumatic injuries. This review will highlight some of the new miR technologies and functions that form new bone or inhibit bone regeneration.
Collapse
Affiliation(s)
- Liu Hong
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, USA
| | - Hongli Sun
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, USA
| | - Brad A Amendt
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, USA; The University of Iowa, Department of Anatomy and Cell Biology, Iowa City, IA, USA; Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
19
|
Novel strategies of third level (Organelle-specific) drug targeting: An innovative approach of modern therapeutics. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Apostolopoulos V, Bojarska J, Chai TT, Elnagdy S, Kaczmarek K, Matsoukas J, New R, Parang K, Lopez OP, Parhiz H, Perera CO, Pickholz M, Remko M, Saviano M, Skwarczynski M, Tang Y, Wolf WM, Yoshiya T, Zabrocki J, Zielenkiewicz P, AlKhazindar M, Barriga V, Kelaidonis K, Sarasia EM, Toth I. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021; 26:E430. [PMID: 33467522 PMCID: PMC7830668 DOI: 10.3390/molecules26020430] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/23/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide "drugs" initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed.
Collapse
Affiliation(s)
- Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia;
| | - Sherif Elnagdy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; (S.E.); (M.A.)
| | - Krzysztof Kaczmarek
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - John Matsoukas
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
- NewDrug, Patras Science Park, 26500 Patras, Greece;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Roger New
- Vaxcine (UK) Ltd., c/o London Bioscience Innovation Centre, London NW1 0NH, UK;
- Faculty of Science & Technology, Middlesex University, The Burroughs, London NW4 4BT, UK;
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA;
| | - Octavio Paredes Lopez
- Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Biotecnología y Bioquímica, Irapuato 36824, Guanajuato, Mexico;
| | - Hamideh Parhiz
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA;
| | - Conrad O. Perera
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Monica Pickholz
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina;
- Instituto de Física de Buenos Aires (IFIBA, UBA-CONICET), Argentina, Buenos Aires 1428, Argentina
| | - Milan Remko
- Remedika, Luzna 9, 85104 Bratislava, Slovakia;
| | - Michele Saviano
- Institute of Crystallography (CNR), Via Amendola 122/o, 70126 Bari, Italy;
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (I.T.)
| | - Yefeng Tang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (MOE), School of Pharma Ceutical Sciences, Tsinghua University, Beijing 100084, China;
| | - Wojciech M. Wolf
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | | | - Janusz Zabrocki
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland;
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Maha AlKhazindar
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; (S.E.); (M.A.)
| | - Vanessa Barriga
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
| | | | | | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
21
|
The Role of Epigenetic Functionalization of Implants and Biomaterials in Osseointegration and Bone Regeneration-A Review. Molecules 2020; 25:molecules25245879. [PMID: 33322654 PMCID: PMC7763898 DOI: 10.3390/molecules25245879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
The contribution of epigenetic mechanisms as a potential treatment model has been observed in cancer and autoimmune/inflammatory diseases. This review aims to put forward the epigenetic mechanisms as a promising strategy in implant surface functionalization and modification of biomaterials, to promote better osseointegration and bone regeneration, and could be applicable for alveolar bone regeneration and osseointegration in the future. Materials and Methods: Electronic and manual searches of the literature in PubMed, MEDLINE, and EMBASE were conducted, using a specific search strategy limited to publications in the last 5 years to identify preclinical studies in order to address the following focused questions: (i) Which, if any, are the epigenetic mechanisms used to functionalize implant surfaces to achieve better osseointegration? (ii) Which, if any, are the epigenetic mechanisms used to functionalize biomaterials to achieve better tissue regeneration? Findings from several studies have emphasized the role of miRNAs in functionalizing implants surfaces and biomaterials to promote osseointegration and bone regeneration, respectively. However, there are scarce data on the role of DNA methylation and histone modifications for these specific applications, despite being commonly applied in cancer research. Studies over the past few years have demonstrated that biomaterials are immunomodulatory rather than inert materials. In this context, epigenetics can act as next generation of advanced treatment tools for future regenerative techniques. Yet, there is a need to evaluate the efficacy/cost effectiveness of these techniques in comparison to current standards of care.
Collapse
|
22
|
Madni A, Rehman S, Sultan H, Khan MM, Ahmad F, Raza MR, Rai N, Parveen F. Mechanistic Approaches of Internalization, Subcellular Trafficking, and Cytotoxicity of Nanoparticles for Targeting the Small Intestine. AAPS PharmSciTech 2020; 22:3. [PMID: 33221968 PMCID: PMC7680634 DOI: 10.1208/s12249-020-01873-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Targeting the small intestine employing nanotechnology has proved to be a more effective way for site-specific drug delivery. The drug targeting to the small intestine can be achieved via nanoparticles for its optimum bioavailability within the systemic circulation. The small intestine is a remarkable candidate for localized drug delivery. The intestine has its unique properties. It has a less harsh environment than the stomach, provides comparatively more retention time, and possesses a greater surface area than other parts of the gastrointestinal tract. This review focuses on elaborating the intestinal barriers and approaches to overcome these barriers for internalizing nanoparticles and adopting different cellular trafficking pathways. We have discussed various factors that contribute to nanocarriers' cellular uptake, including their surface chemistry, surface morphology, and functionalization of nanoparticles. Furthermore, the fate of nanoparticles after their uptake at cellular and subcellular levels is also briefly explained. Finally, we have delineated the strategies that are adopted to determine the cytotoxicity of nanoparticles.
Collapse
Affiliation(s)
- Asadullah Madni
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Sadia Rehman
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Humaira Sultan
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Faiz Ahmad
- Departments of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - M Rafi Raza
- Department of Mechanical Engineering, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Nadia Rai
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Farzana Parveen
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
23
|
Li K, Zhuang P, Tao B, Li D, Xing X, Mei X. Ultra-Small Lysozyme-Protected Gold Nanoclusters as Nanomedicines Inducing Osteogenic Differentiation. Int J Nanomedicine 2020; 15:4705-4716. [PMID: 32636626 PMCID: PMC7335297 DOI: 10.2147/ijn.s241163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Ultra-small gold nanoclusters (AuNCs), as emerging fluorescent nanomaterials with excellent biocompatibility, have been widely investigated for in vivo biomedical applications. However, their effects in guiding osteogenic differentiation have not been investigated, which are important for osteoporosis therapy and bone regeneration. Herein, for the first time, lysozyme-protected AuNCs (Lys-AuNCs) are used to stimulate osteogenic differentiation, which have the potential for the treatment of bone disease. METHODS Proliferation of MC3T3E-1 is important for osteogenic differentiation. First, the proliferation rate of MC3T3E-1 was studied by Cell Counting Kit-8 (CCK8) assays. Signaling pathways of PI3K/Akt play central roles in controlling proliferation throughout the body. The expression of PI3K/Akt was investigated in the presence of lysozyme, and lysozyme-protected AuNCs (Lys-AuNCs) by Western blot (WB) and intracellular cell imaging to evacuate the osteogenic differentiation mechanisms. Moreover, the formation of osteoclasts (OC) plays a negative role in the differentiation of osteoblasts. Nuclear factor κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) signaling pathways are used to understand the negative influence of the osteogenic differentiation by the investigation of Raw 264.7 cell line. Raw 264.7 (murine macrophage-like) cells and NIH/3T3 (mouse fibroblast) cells were treated with tyloxapol, and the cell viability was assessed. Raw 264.7 cells have also been used for in vitro studies, on understanding the osteoclast formation and function. The induced osteoclasts were identified by TRAP confocal fluorescence imaging. These key factors in osteoclast formation, such as (NFATc-1, c-Fos, V-ATPase-2 and CTSK), were investigated by Western blot. RESULTS Based on the above investigation, Lys-AuNCs were found to promote osteogenic differentiation and decrease osteoclast activity. It is noteworthy that the lysozyme (protected template), AuNPs, or the mixture of Lysozyme and AuNPs have negligible effects on osteoblastic differentiation compared to Lys-AuNCs. CONCLUSION This study opens up a novel avenue to develop a new gold nanomaterial for promoting osteogenic differentiation. The possibility of using AuNCs as nanomedicines for the treatment of osteoporosis can be expected.
Collapse
Affiliation(s)
- Kuo Li
- Department of Orthopedics, School of Pharmaceutical Science, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Pengfei Zhuang
- Department of Orthopedics, School of Pharmaceutical Science, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
- Department of Basic Science, School of Pharmaceutical Science, Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Bailong Tao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing400044, People’s Republic of China
| | - Dan Li
- Department of Orthopedics, School of Pharmaceutical Science, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
- Department of Basic Science, School of Pharmaceutical Science, Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Xuejiao Xing
- Department of Orthopedics, School of Pharmaceutical Science, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Xifan Mei
- Department of Orthopedics, School of Pharmaceutical Science, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| |
Collapse
|
24
|
Wei Y, Liu L, Gao H, Shi X, Wang Y. In Situ Formation of Hexagon-like Column Array Hydroxyapatite on 3D-Plotted Hydroxyapatite Scaffolds by Hydrothermal Method and Its Effect on Osteogenic Differentiation. ACS APPLIED BIO MATERIALS 2020; 3:1753-1760. [PMID: 35021664 DOI: 10.1021/acsabm.0c00049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the preparation of bioactive bone graft materials, surface topography is essential for the ultimate stem cell response. However, the tunable fabrication of surface topography for 3D bioceramic scaffolds is still a technical problem because of the low processability and high brittleness of bioceramics. In this study, an evenly spaced hexagon-like column array surface was fabricated in situ via a hydrothermal method on 3D plotted hydroxyapatite scaffolds. Compared with the Control scaffolds, hydroxyapatite scaffolds with a hexagon-like column array topography possessed a higher crystal orientation degree and specific surface area, which further enhanced fibronectin adsorption. The array topography on the hydroxyapatite scaffolds also showed good biocompatibility with human adipose-derived stem cells (ADSCs). More importantly, the Array scaffolds significantly promoted the expression levels of osteogenic-related genes and proteins compared with the Control scaffolds. The results suggested that the construction of hexagon-like column array topography might be critical for the design of bone regeneration scaffolds with spontaneous stimulation capacity.
Collapse
Affiliation(s)
- Yingqi Wei
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Lei Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Huichang Gao
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Xuetao Shi
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yingjun Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
25
|
Sayed N, Tambe P, Kumar P, Jadhav S, Paknikar KM, Gajbhiye V. miRNA transfection via poly(amidoamine)-based delivery vector prevents hypoxia/reperfusion-induced cardiomyocyte apoptosis. Nanomedicine (Lond) 2019; 15:163-181. [PMID: 31799897 DOI: 10.2217/nnm-2019-0363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: Myocardial infarction is a tissue injury that leads to apoptosis of cardiomyocytes. This can be prevented by using miRNAs, but its delivery to cardiomyocytes is a major hurdle. We aimed to deliver miRNAs using poly(amidoamine)-histidine (PAMAM-His) nanocarriers to prevent apoptosis. Materials & methods: The PAMAM-His nanoparticles were synthesized and assessed for their transfection efficiency of miRNAs to prevent apoptosis in hypoxia/reperfusion-induced H9c2 as well as primary cultured cardiomyocytes. Results & conclusion: miRNAs-nanoparticle complexes exerted a significant antiapoptotic effect on the H9c2 and primary rat ventricular cardiomyocytes. Enhanced expression of antiapoptotic genes and decreased expression of proapoptotic genes were observed. PAMAM-His nanoparticles effectively delivered miRNAs to the cardiomyocytes and prevented the hypoxia/reperfusion-induced apoptosis critical in myocardial infarctions.
Collapse
Affiliation(s)
- Nida Sayed
- Nanobioscience, Agharkar Research Institute, Pune, 411 004, India
| | - Prajakta Tambe
- Nanobioscience, Agharkar Research Institute, Pune, 411 004, India
| | - Pramod Kumar
- Nanobioscience, Agharkar Research Institute, Pune, 411 004, India
| | - Sachin Jadhav
- Nanobioscience, Agharkar Research Institute, Pune, 411 004, India
| | - Kishore M Paknikar
- Nanobioscience, Agharkar Research Institute, Pune, 411 004, India.,Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.,Materials Research Centre, Malaviya National Institute of Technology, Jaipur, 302017, India
| | | |
Collapse
|
26
|
Liang H, Xu X, Feng X, Ma L, Deng X, Wu S, Liu X, Yang C. Gold nanoparticles-loaded hydroxyapatite composites guide osteogenic differentiation of human mesenchymal stem cells through Wnt/β-catenin signaling pathway. Int J Nanomedicine 2019; 14:6151-6163. [PMID: 31447557 PMCID: PMC6683960 DOI: 10.2147/ijn.s213889] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Precise control and induction of the differentiation of stem cells to osteoblasts by artificial biomaterials are a promising strategy for rapid bone regeneration and reconstruction. PURPOSE In this study, gold nanoparticles (AuNPs)-loaded hydroxyapatite (HA-Au) nanocomposites were designed to guide the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs) through the synergistic effects of both AuNPs and HA. MATERIALS AND METHODS The HA-Au nanoparticles were synthesized and characterized by several analytical techniques. Cell viability and proliferation of hMSCs were characterized by CCK-8 test. Cellular uptake of nanoparticles was observed by transmission electron microscope. For the evaluation of osteogenic differentiation, alkaline phosphatase (ALP) activity and staining, Alizarin red staining, and a quantitative real-time polymerase chain reaction (RT-PCR) analysis were performed. In order to examine specific signaling pathways, RT-PCR and Western blotting assay were performed. RESULTS The results confirmed the successful synthesis of HA-Au nanocomposites. The HA-Au nanoparticles showed good cytocompatibility and internalized into hMSCs at the studied concentrations. The increased level of ALP production, deposition of calcium mineralization, as well as the expression of typical osteogenic genes, indicated the enhancement of osteogenic differentiation of hMSCs. Moreover, the incorporation of Au could activate the Wnt/β-catenin signaling pathway, which seemed to be the molecular mechanism underlying the osteoinductive capability of HA-Au nanoparticles. CONCLUSION The HA-Au nanoparticles exerted a synergistic effect on accelerating osteogenic differentiation of hMSCs, suggesting they may be potential candidates for bone repair and regeneration.
Collapse
Affiliation(s)
- Hang Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430022, People’s Republic of China
| | - Xiaomo Xu
- Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan430062, People’s Republic of China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430022, People’s Republic of China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430022, People’s Republic of China
| | - Xiangyu Deng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430022, People’s Republic of China
| | - Shuilin Wu
- Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan430062, People’s Republic of China
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin300072, People’s Republic of China
| | - Xiangmei Liu
- Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan430062, People’s Republic of China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430022, People’s Republic of China
| |
Collapse
|
27
|
Delivery of miRNA-29b Using R9-LK15, a Novel Cell-Penetrating Peptide, Promotes Osteogenic Differentiation of Bone Mesenchymal Stem Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3032158. [PMID: 31111046 PMCID: PMC6487134 DOI: 10.1155/2019/3032158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/31/2019] [Indexed: 02/06/2023]
Abstract
Delivery of osteogenesis-promoting microRNAs (miRNAs) is a promising approach to enhance bone regeneration. In this study, we generated nanocomplexes comprising the novel cell-penetrating peptide R9-LK15 and miR-29b and investigated their effects on osteogenic differentiation of bone mesenchymal stem cells (BMSCs). R9-LK15/miR-29b nanocomplexes were prepared and characterized. The transfection efficiency, cell viability, and osteogenic differentiation were investigated. The results showed that R9-LK15 maintained the stability of miR-29b in serum for up to 24 h. Moreover, R9-LK15 efficiently delivered miR-29b into BMSCs; the transfection efficiency was ~10-fold higher than that achieved using Lipofectamine 2000. The Cell Counting Kit-8 assay showed that R9-LK15 and R9-LK15/miR-29b nanocomplexes had negligible cytotoxic effects on BMSCs. Delivery of R9-LK15/miR-29b nanocomplexes promoted osteogenic differentiation of BMSCs and extracellular matrix mineralization by upregulating alkaline phosphatase expression and downregulating histone deacetylase-4 expression. In general, we developed a novel miRNA delivery system that has a high transfection efficiency and promotes osteogenic differentiation.
Collapse
|
28
|
Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev 2019; 143:68-96. [PMID: 31022434 DOI: 10.1016/j.addr.2019.04.008] [Citation(s) in RCA: 535] [Impact Index Per Article: 89.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/14/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022]
Abstract
Nanoparticle-based therapeutics and diagnostics are commonly referred to as nanomedicine and may significantly impact the future of healthcare. However, the clinical translation of these technologies is challenging. One of these challenges is the efficient delivery of nanoparticles to specific cell populations and subcellular targets in the body to elicit desired biological and therapeutic responses. It is critical for researchers to understand the fundamental concepts of how nanoparticles interact with biological systems to predict and control in vivo nanoparticle transport for improved clinical benefit. In this overview article, we review and discuss cellular internalization pathways, summarize the field`s understanding of how nanoparticle physicochemical properties affect cellular interactions, and explore and discuss intracellular nanoparticle trafficking and kinetics. Our overview may provide a valuable resource for researchers and may inspire new studies to expand our current understanding of nanotechnology-biology interactions at cellular and subcellular levels with the goal to improve clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Nathan D Donahue
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Handan Acar
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States; Stephenson Cancer Center, Oklahoma City, Oklahoma 73104, United States.
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States; Stephenson Cancer Center, Oklahoma City, Oklahoma 73104, United States.
| |
Collapse
|
29
|
Bai Z, Wei J, Yu C, Han X, Qin X, Zhang C, Liao W, Li L, Huang W. Non-viral nanocarriers for intracellular delivery of microRNA therapeutics. J Mater Chem B 2019; 7:1209-1225. [DOI: 10.1039/c8tb02946f] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs are small regulatory noncoding RNAs that regulate various biological processes. Herein, we will present the development of the strategies for intracellular miRNAs delivery, and specially focus on the rational designed routes, their mechanisms of action, as well as potential therapeutics used in the host cells orin vivostudies.
Collapse
Affiliation(s)
- Zhiman Bai
- School of Physics and Materials Science
- Anhui University
- Hefei 230601
- China
| | - Jing Wei
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Xisi Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Xiaofei Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene
- Guangdong Provincial Key Laboratory of Tropical Disease Research
- School of Public Health
- Southern Medical University
- Guangzhou 510515
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| |
Collapse
|
30
|
Sun X, Guo Q, Wei W, Robertson S, Yuan Y, Luo X. Current Progress on MicroRNA-Based Gene Delivery in the Treatment of Osteoporosis and Osteoporotic Fracture. Int J Endocrinol 2019; 2019:6782653. [PMID: 30962808 PMCID: PMC6431398 DOI: 10.1155/2019/6782653] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/28/2018] [Accepted: 12/31/2018] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence demonstrates that microRNAs, as important endogenous posttranscriptional regulators, are essential for bone remodeling and regeneration. Undoubtedly, microRNA-based gene therapies show great potential to become novel approaches against bone-related diseases, including osteoporosis and associated fractures. The major obstacles for continued advancement of microRNA-based therapies in clinical application include their poor in vivo stability, nonspecific biodistribution, and unwanted side effects. Appropriate chemical modifications and delivery vectors, which improve the biological performance and potency of microRNA-based drugs, hold the key to translating miRNA technologies into clinical practice. Thus, this review summarizes the current attempts and existing deficiencies of chemical modifications and delivery systems applied in microRNA-based therapies for osteoporosis and osteoporotic fractures to inform further explorations.
Collapse
Affiliation(s)
- Xi Sun
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, 138# Tongzipo Road, Changsha, Hunan 410007, China
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China
| | - Wenhua Wei
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Stephen Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Ying Yuan
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China
| |
Collapse
|
31
|
Miao Y, Shi X, Li Q, Hao L, Liu L, Liu X, Chen Y, Wang Y. Engineering natural matrices with black phosphorus nanosheets to generate multi-functional therapeutic nanocomposite hydrogels. Biomater Sci 2019; 7:4046-4059. [DOI: 10.1039/c9bm01072f] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural matrices are engineered with black phosphorus nanosheets to generate therapeutic nanocomposite hydrogels with promising multi-functions, providing a facile and efficient therapeutic strategy for bone tissue engineering.
Collapse
Affiliation(s)
- Yali Miao
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Xuetao Shi
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Qingtao Li
- National Engineering Research Center for Tissue Restoration and Reconstruction
- South China University of Technology
- Guangzhou 510006
- China
- Key Laboratory of Biomedical Engineering of Guangdong Province
| | - Lijing Hao
- National Engineering Research Center for Tissue Restoration and Reconstruction
- South China University of Technology
- Guangzhou 510006
- China
- Key Laboratory of Biomedical Engineering of Guangdong Province
| | - Lei Liu
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Xiao Liu
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Yunhua Chen
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Yingjun Wang
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| |
Collapse
|
32
|
Intracellular Delivery: An Overview. TARGETED INTRACELLULAR DRUG DELIVERY BY RECEPTOR MEDIATED ENDOCYTOSIS 2019. [DOI: 10.1007/978-3-030-29168-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Aslani S, Abhari A, Sakhinia E, Sanajou D, Rajabi H, Rahimzadeh S. Interplay between microRNAs and Wnt, transforming growth factor-β, and bone morphogenic protein signaling pathways promote osteoblastic differentiation of mesenchymal stem cells. J Cell Physiol 2018; 234:8082-8093. [PMID: 30548580 DOI: 10.1002/jcp.27582] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/18/2018] [Indexed: 12/17/2022]
Abstract
Osteoblasts are terminally differentiated cells with mesenchymal origins, known to possess pivotal roles in sustaining bone microstructure and homeostasis. These cells are implicated in the pathophysiology of various bone disorders, especially osteoporosis. Over the last few decades, strategies to impede bone resorption, principally by bisphosphonates, have been mainstay of treatment of osteoporosis; however, in recent years more attention has been drawn on bone-forming approaches for managing osteoporosis. MicroRNAs (miRNAs) are a broad category of noncoding short sequence RNA fragments that posttranscriptionally regulate the expression of diverse functional and structural genes in a negative manner. An accumulating body of evidence signifies that miRNAs direct mesenchymal stem cells toward osteoblast differentiation and bone formation through bone morphogenic protein, transforming growth factor-β, and Wnt signaling pathways. MiRNAs are regarded as excellent future therapeutic candidates because of their small size and ease of delivery into the cells. Considering their novel therapeutic significance, this review discusses the main miRNAs contributing to the anabolic aspects of bone formation and illustrates their interactions with corresponding signaling pathways involved in osteoblastic differentiation.
Collapse
Affiliation(s)
- Somayeh Aslani
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Abhari
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Deparment of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Sanajou
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Rajabi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Rahimzadeh
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Abdal Dayem A, Lee SB, Cho SG. The Impact of Metallic Nanoparticles on Stem Cell Proliferation and Differentiation. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E761. [PMID: 30261637 PMCID: PMC6215285 DOI: 10.3390/nano8100761] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022]
Abstract
Nanotechnology has a wide range of medical and industrial applications. The impact of metallic nanoparticles (NPs) on the proliferation and differentiation of normal, cancer, and stem cells is well-studied. The preparation of NPs, along with their physicochemical properties, is related to their biological function. Interestingly, various mechanisms are implicated in metallic NP-induced cellular proliferation and differentiation, such as modulation of signaling pathways, generation of reactive oxygen species, and regulation of various transcription factors. In this review, we will shed light on the biomedical application of metallic NPs and the interaction between NPs and the cellular components. The in vitro and in vivo influence of metallic NPs on stem cell differentiation and proliferation, as well as the mechanisms behind potential toxicity, will be explored. A better understanding of the limitations related to the application of metallic NPs on stem cell proliferation and differentiation will afford clues for optimal design and preparation of metallic NPs for the modulation of stem cell functions and for clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Soo Bin Lee
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
35
|
Transfection of gene regulation nanoparticles complexed with pDNA and shRNA controls multilineage differentiation of hMSCs. Biomaterials 2018; 177:1-13. [PMID: 29883913 DOI: 10.1016/j.biomaterials.2018.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/11/2018] [Accepted: 05/21/2018] [Indexed: 10/16/2022]
Abstract
Overexpression and knockdown of specific proteins can control stem cell differentiation for therapeutic purposes. In this study, we fabricated RUNX2, SOX9, and C/EBPα plasmid DNAs (pDNAs) and ATF4-targeting shRNA (shATF4) to induce osteogenesis, chondrogenesis, and adipogenesis of human mesenchymal stem cells (hMSCs). The pDNAs and shATF4 were complexed with TRITC-gene regulation nanoparticles (GRN). Osteogenesis-related gene expression was reduced at early (12 h) and late (36 h) time points after co-delivery of shATF4 and SOX9 or C/EBPα pDNA, respectively, and osteogenesis was inhibited in these hMSCs. By contrast, osteogenesis-related genes were highly expressed upon co-delivery of RUNX2 and ATF4 pDNAs. DEX in GRN enhanced chondrogenic differentiation. Expression of osteogenesis-, chondrogenesis-, and adipogenesis-related genes was higher in hMSCs transfected with NPs complexed with RUNX2 and ATF4 pDNAs, shATF4 and SOX9 pDNA, and shATF4 and C/EBPα pDNA for 72 h than in control hMSCs, respectively. Moreover, delivery of these NPs also increased expression of osteogenesis-, chondrogenesis-, and adipogenesis-related proteins. These alterations in expression led to morphological changes, indicating that hMSCs differentiated into osteoblasts, chondrocytes, and adipose cells.
Collapse
|
36
|
Labatut AE, Mattheolabakis G. Non-viral based miR delivery and recent developments. Eur J Pharm Biopharm 2018; 128:82-90. [PMID: 29679644 DOI: 10.1016/j.ejpb.2018.04.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/28/2018] [Accepted: 04/18/2018] [Indexed: 12/18/2022]
Abstract
miRNAs are promising therapeutic targets or tools for the treatment of numerous diseases, with most prominently, cancer. The inherent capacity of these short nucleic acids to regulate multiple cancer-related pathways simultaneously has prompted strong research on understanding miR functions and their potential use for therapeutic purposes. A key determinant of miR therapeutics' potential for treatment is their delivery. Viral and non-viral vectors attempt to address the major limitations associated with miR delivery, but several hurdles have been identified. Here, we present an overview on the general limitations of miR delivery, and the delivery strategies exploited to overcome them. We provide an introduction on the advantages and disadvantages of viral and non-viral vectors, and we go into detail to analyze the most prominently used non-viral systems. We provide with an update on the most recent research on this topic and we describe the mechanism and limitations of the lipid-, polymer- and inorganic material- based miR delivery systems.
Collapse
Affiliation(s)
- Annalise Elizabeth Labatut
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, United States
| | - George Mattheolabakis
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, United States.
| |
Collapse
|
37
|
Piperigkou Z, Götte M, Theocharis AD, Karamanos NK. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing. Adv Drug Deliv Rev 2018; 129:16-36. [PMID: 29079535 DOI: 10.1016/j.addr.2017.10.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/14/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
Extracellular matrix (ECM) is a dynamic network of macromolecules, playing a regulatory role in cell functions, tissue regeneration and remodeling. Wound healing is a tissue repair process necessary for the maintenance of the functionality of tissues and organs. This highly orchestrated process is divided into four temporally overlapping phases, including hemostasis, inflammation, proliferation and tissue remodeling. The dynamic interplay between ECM and resident cells exerts its critical role in many aspects of wound healing, including cell proliferation, migration, differentiation, survival, matrix degradation and biosynthesis. Several epigenetic regulatory factors, such as the endogenous non-coding microRNAs (miRNAs), are the drivers of the wound healing response. microRNAs have pivotal roles in regulating ECM composition during wound healing and dermal regeneration. Their expression is associated with the distinct phases of wound healing and they serve as target biomarkers and targets for systematic regulation of wound repair. In this article we critically present the importance of epigenetics with particular emphasis on miRNAs regulating ECM components (i.e. glycoproteins, proteoglycans and matrix proteases) that are key players in wound healing. The clinical relevance of miRNA targeting as well as the delivery strategies designed for clinical applications are also presented and discussed.
Collapse
|
38
|
Vezzali F, Grassilli S, Lambertini E, Brugnoli F, Patergnani S, Nika E, Piva R, Pinton P, Capitani S, Bertagnolo V. Vav1 is necessary for PU.1 mediated upmodulation of miR-29b in acute myeloid leukaemia-derived cells. J Cell Mol Med 2018. [PMID: 29532991 PMCID: PMC5980196 DOI: 10.1111/jcmm.13594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has been recently demonstrated that high pre‐treatment levels of miR‐29b positively correlated with the response of patients with acute myeloid leukaemia (AML) to hypomethylating agents. Upmodulation of miR‐29b by restoring its transcriptional machinery appears indeed a tool to improve therapeutic response in AML. In cells from acute promyelocytic leukaemia (APL), miR‐29b is regulated by PU.1, in turn upmodulated by agonists currently used to treat APL. We explored here the ability of PU.1 to also regulate miR‐29b in non‐APL cells, in order to identify agonists that, upmodulating PU.1 may be beneficial in hypomethylating agents‐based therapies. We found that PU.1 may regulate miR‐29b in the non‐APL Kasumi‐1 cells, showing the t(8;21) chromosomal rearrangement, which is prevalent in AML and correlated with a relatively low survival. We demonstrated that the PU.1‐mediated contribution of the 2 miR‐29b precursors is cell‐related and almost completely dependent on adequate levels of Vav1. Nuclear PU.1/Vav1 association accompanies the transcription of miR‐29b but, at variance with the APL‐derived NB4 cells, in which the protein is required for the association of PU.1 with both miRNA promoters, Vav1 is part of molecular complexes to the PU.1 consensus site in Kasumi‐1. Our results add new information on the transcriptional machinery that regulates miR‐29b expression in AML‐derived cells and may help in identifying drugs useful in upmodulation of this miRNA in pre‐treatment of patients with non‐APL leukaemia who can take advantage from hypomethylating agent‐based therapies.
Collapse
Affiliation(s)
- Federica Vezzali
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology, University of Ferrara, Ferrara, Italy
| | - Silvia Grassilli
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology, University of Ferrara, Ferrara, Italy
| | - Elisabetta Lambertini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Federica Brugnoli
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology, University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Ervin Nika
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology, University of Ferrara, Ferrara, Italy
| | - Roberta Piva
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Valeria Bertagnolo
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
39
|
Yuan H, Ma J, Li T, Han X. MiR-29b aggravates lipopolysaccharide-induced endothelial cells inflammatory damage by regulation of NF-κB and JNK signaling pathways. Biomed Pharmacother 2018; 99:451-461. [PMID: 29665646 DOI: 10.1016/j.biopha.2018.01.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) have been reported to involve in variety of biological progresses. The present study aimed to explore the functional roles of miR-29b in endothelial cells inflammatory damage, as well as the underlying mechanisms. Lipopolysaccharide (LPS) was used to induce endothelial cell inflammation, and the role of miR-29b in endothelial cells inflammatory damage was detected by testing cell viability, cell apoptosis, and the expression of inflammation factors after the suppression or overexpression of miR-29b. Aiming to make clear of the underlying mechanism of miR-29b regulation in inflammation, we studied the relationship between miR-29b and NF-κB/JNK pathway in HUVEC and Eahy926 cells. The results showed that LPS significantly suppressed cell viability, promoted apoptosis and increased TNF-α, IL-1α and INF-γ secretions. MiR-29b was up-regulated in LPS-treated HUVEC and Eahy926 cells. Moreover, suppression of miR-29b alleviated LPS-induced inflammatory injury by promoting cell viability, decreasing apoptosis and reducing the secretions of TNF-α, IL-1α and INF-γ in both HUVEC and Eahy926 cells. On the contrary, overexpression of miR-29b aggravated cell inflammatory injury in both HUVEC and Eahy926 cells. Furthermore, LPS activated NF-κB and JNK signal pathways. However, suppression of miR-29b reduced LPS-activated NF-κB and JNK pathways in both HUVEC and Eahy926 cells. Taken together, these findings concluded that miR-29b could regulate LPS-induced endothelial cells inflammatory injury through regulation of NF-κB and JNK signaling pathways.
Collapse
Affiliation(s)
- Huifeng Yuan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Ji Ma
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Tengfei Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
40
|
Yu Z, Xiao C, Huang Y, Chen M, Wei W, Yang X, Zhou H, Bi X, Lu L, Ruan J, Fan X. Enhanced bioactivity and osteoinductivity of carboxymethyl chitosan/nanohydroxyapatite/graphene oxide nanocomposites. RSC Adv 2018; 8:17860-17877. [PMID: 35542061 PMCID: PMC9080497 DOI: 10.1039/c8ra00383a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/15/2018] [Indexed: 12/26/2022] Open
Abstract
Tissue engineering approaches combine a bioscaffold with stem cells to provide biological substitutes that can repair bone defects and eventually improve tissue functions. The prospective bioscaffold should have good osteoinductivity. Surface chemical and roughness modifications are regarded as valuable strategies for developing bioscaffolds because of their positive effects on enhancing osteogenic differentiation. However, the synergistic combination of the two strategies is currently poorly studied. In this work, a nanoengineered scaffold with surface chemistry (oxygen-containing groups) and roughness (Rq = 74.1 nm) modifications was fabricated by doping nanohydroxyapatite (nHA), chemically crosslinked graphene oxide (GO) and carboxymethyl chitosan (CMC). The biocompatibility and osteoinductivity of the nanoengineered CMC/nHA/GO scaffold was evaluated in vitro and in vivo, and the osteogenic differentiation mechanism of the nanoengineered scaffold was preliminarily investigated. Our data demonstrated that the enhanced osteoinductivity of CMC/nHA/GO may profit from the surface chemistry and roughness, which benefit the β1 integrin interactions with the extracellular matrix and activate the FAK–ERK signaling pathway to upregulate the expression of osteogenic special proteins. This study indicates that the nanocomposite scaffold with surface chemistry and roughness modifications could serve as a novel and promising bone substitute for tissue engineering. The CMC/nHA/GO scaffold with the surface chemistry and roughness dual effects and the release of phosphate and calcium ions synergistically assist the mineralization and facilitate the bone regeneration.![]()
Collapse
|
41
|
Xiang Z, Wang K, Zhang W, Teh SW, Peli A, Mok PL, Higuchi A, Suresh Kumar S. Gold Nanoparticles Inducing Osteogenic Differentiation of Stem Cells: A Review. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1311-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Yang HY, Wang HJ, Xiong CY, Chai YQ, Yuan R. Intramolecular Self-Enhanced Nanochains Functionalized by an Electrochemiluminescence Reagent and Its Immunosensing Application for the Detection of Urinary β2-Microglobulin. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36239-36246. [PMID: 28952308 DOI: 10.1021/acsami.7b12011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, polyethylenimine (PEI) is discovered to possess a noticeable amplification effect for the electrochemiluminescence (ECL) of N-(aminobutyl)-N-(ethylisoluminol) (ABEI); thus, a novel self-enhanced ECL reagent (ABEI-PEI) is prepared by covalent cross-linking. Because of the shortened electron-transfer path and reduced energy loss, the intramolecular ECL reaction between ABEI and PEI exhibited enhanced luminous efficiency compared with the traditional intermolecular ECL reaction. Owing to the amine-rich property of PEI, abundant ABEI could be immobilized on the molecular chains of PEI to strengthen the luminous intensity of ABEI-PEI. On account of the reducibility of remaining amino groups, ABEI-PEI, as the self-enhanced ECL reagent, has also been chosen as a reductant and stabilizer for in situ preparation of Au@Ag nanochains (Au@AgNCs) which has the catalytic activity for the ECL reaction. Moreover, using ABEI-PEI as a template to directly prepare Au@AgNCs realizes the immobilization of the ECL reagent with large amounts. Meanwhile, in virtue of the electropositivity of ABEI-PEI-capped Au@AgNCs (ABEI-PEI-Au@AgNCs), polyacrylic acid (PAA) with electronegativity is pervaded on the surface of nanochains and further chelates with Co2+ to form an ABEI-PEI-Au@AgNCs-PAA/Co2+ complex, which could introduce Co2+ as a catalyst to promote H2O2 decomposition and thus oxidize ABEI to produce an enhanced ECL signal. Here, the obtained self-enhanced ABEI-PEI-Au@AgNCs-PAA/Co2+ complex is utilized to capture the detection antibody (Ab2). According to sandwiched immunoreactions, a sensitive ECL immunosensor is constructed for the detection of β2-microglobulin with a wide linearity from 0.01 pg mL-1 to 200 ng mL-1 and a detection limit of 3.3 fg mL-1.
Collapse
Affiliation(s)
- Hui-Yun Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| | - Hai-Jun Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| | - Cheng-Yi Xiong
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| |
Collapse
|
43
|
Cheng H, Chawla A, Yang Y, Li Y, Zhang J, Jang HL, Khademhosseini A. Development of nanomaterials for bone-targeted drug delivery. Drug Discov Today 2017; 22:1336-1350. [PMID: 28487069 PMCID: PMC5644493 DOI: 10.1016/j.drudis.2017.04.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/15/2022]
Abstract
Bone is one of the major organs of the human body; it supports and protects other organs, produces blood cells, stores minerals, and regulates hormones. Therefore, disorders in bone can cause serious morbidity, complications, or mortality of patients. However, despite the significant occurrence of bone diseases, such as osteoarthritis (OA), osteoporosis (OP), non-union bone defects, bone cancer, and myeloma-related bone disease, their effective treatments remain a challenge. In this review, we highlight recent progress in the development of nanotechnology-based drug delivery for bone treatment, based on its improved delivery efficiency and safety. We summarize the most commonly used nanomaterials for bone drug delivery. We then discuss the targeting strategies of these nanomaterials to the diseased sites of bone tissue. We also highlight nanotechnology-based drug delivery to bone cells and subcellular organelles. We envision that nanotechnology-based drug delivery will serve as a powerful tool for developing treatments for currently incurable bone diseases.
Collapse
Affiliation(s)
- Hao Cheng
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women's Hospital, Boston, MA 02139, USA; Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Orthopaedic Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Aditya Chawla
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women's Hospital, Boston, MA 02139, USA; Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Yafeng Yang
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women's Hospital, Boston, MA 02139, USA; Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yuxiao Li
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women's Hospital, Boston, MA 02139, USA; Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jin Zhang
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women's Hospital, Boston, MA 02139, USA; Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hae Lin Jang
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women's Hospital, Boston, MA 02139, USA; Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| | - Ali Khademhosseini
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women's Hospital, Boston, MA 02139, USA; Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Bioindustrial Technologies, College of Animal Bioscience & Technology, Konkuk University, Seoul 143-701, Republic of Korea; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| |
Collapse
|
44
|
Chen J, Wang T, Zhou XY, Tang CX, Gao DS. Glucose-6-phosphatase-α participates in dopaminergic differentiation. Neurol Res 2017; 39:869-876. [PMID: 28829278 DOI: 10.1080/01616412.2017.1348681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Induction of dopaminergic (DA) differentiation is a cell-based therapy for Parkinson's disease (PD). Here, we explore the key factors of DA differentiation with a focus on glucose-6-phosphatase (G6Pase), a marker enzyme for the endoplasmic reticulum (ER) associated with cell differentiation. METHODS We cultured SH-SY5Y human neuroblastoma cells, a model system for PD research, and added glial cell-derived neurotrophic factor (GDNF; 25, 50, or 100 ng/ml) to stimulate differentiation. Subsequently, several methods, such as microRNA/mRNA microarrays, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were used to detect target genes and proteins respectively. RESULTS Light microscopy revealed that 50 ng/ml GDNF most effectively induced DA differentiation. MicroRNA/mRNA microarrays identified that G6PC mRNA was significantly upregulated, which might be influenced by three downregulated microRNAs. Follow-up qRT-PCR results were consistent with the microarray findings, and western blots also supported the results. DISCUSSION Taken together, our results demonstrate that G6PC, a subunit of G6Pase, participates in DA differentiation. Our findings may contribute to provide a foundation for the research on the mechanism of DA differentiation as well as cell-based therapy for PD.
Collapse
Affiliation(s)
- Jing Chen
- a Experimental Teaching Center of Morphology, Xuzhou Medical University , Xuzhou , China
| | - Ting Wang
- b Department of Human Anatomy and Neurobiology , Xuzhou Medical University , Xuzhou , China
| | - Xiao-Yan Zhou
- a Experimental Teaching Center of Morphology, Xuzhou Medical University , Xuzhou , China
| | - Chuan-Xi Tang
- b Department of Human Anatomy and Neurobiology , Xuzhou Medical University , Xuzhou , China
| | - Dian-Shuai Gao
- b Department of Human Anatomy and Neurobiology , Xuzhou Medical University , Xuzhou , China
| |
Collapse
|
45
|
Niu C, Yuan K, Ma R, Gao L, Jiang W, Hu X, Lin W, Zhang X, Huang Z. Gold nanoparticles promote osteogenic differentiation of human periodontal ligament stem cells via the p38 MAPK signaling pathway. Mol Med Rep 2017; 16:4879-4886. [PMID: 28791361 DOI: 10.3892/mmr.2017.7170] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 05/30/2017] [Indexed: 11/06/2022] Open
Abstract
Gold nanoparticles (AuNPs) are a promising material for use in regenerative medicine due to their biocompatibility and easy functionalization with biomolecules including growth factors, DNA and peptides. In the present study, transmission electron microscopy indicated that the AuNPs were monodisperse and spherical in shape, with an estimated average diameter of 13 nm. And the cellular effects of AuNPs on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and the associated signaling pathways in cell differentiation were investigated based on histochemical analysis of alkaline phosphatase activity and mineralization, quantitative polymerase chain reaction, and western blotting. The results indicated that AuNPs enhanced the differentiation of hPDLSCs into osteoblasts, increasing their osteogenic transcriptional profile including alkaline phosphatase, osterix, collagen type I and runt‑related transcription factor 2 (RUNX2) and activating the p38 mitogen‑activated protein kinase (MAPK) signaling pathway. Furthermore, AuNPs increased the protein level of RUNX2, which is crucial for osteogenic differentiation. These results suggested that AuNPs stimulate the osteogenesis of hPDLSCs partially via activation of the p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Chenguang Niu
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Keyong Yuan
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Rui Ma
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Li Gao
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Wenxin Jiang
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Xuchen Hu
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Wenzhen Lin
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200092, P.R. China
| | - Zhengwei Huang
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| |
Collapse
|
46
|
Golchin K, Golchin J, Ghaderi S, Alidadiani N, Eslamkhah S, Eslamkhah M, Davaran S, Akbarzadeh A. Gold nanoparticles applications: from artificial enzyme till drug delivery. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:250-254. [DOI: 10.1080/21691401.2017.1305393] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kazem Golchin
- Division of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Golchin
- Division of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahrooz Ghaderi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Division of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Alidadiani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Division of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Eslamkhah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Eslamkhah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
47
|
Yin J, Zhuang G, Zhu Y, Hu X, Zhao H, Zhang R, Guo H, Fan X, Cao Y. MiR-615-3p inhibits the osteogenic differentiation of human lumbar ligamentum flavum cells via suppression of osteogenic regulators GDF5 and FOXO1. Cell Biol Int 2017; 41:779-786. [PMID: 28460412 DOI: 10.1002/cbin.10780] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/23/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Jichao Yin
- Department of Epidemiology and Biostatistics; School of Public Health; Xi'an Jiaotong University Health Science Center; No. 76 West Yanta Road Xi'an Shaanxi 710061 China
- Department of Orthopedics and Traumatology; Xi'an Hospital of Traditional Chinese Medicine; Xi'an China
| | - Guihua Zhuang
- Department of Epidemiology and Biostatistics; School of Public Health; Xi'an Jiaotong University Health Science Center; No. 76 West Yanta Road Xi'an Shaanxi 710061 China
| | - Yi Zhu
- Department of Traditional Chinese Medicine Orthopedics Diagnosis and Treatment Center; Xi'an Honghui Hospital; Xi'an China
| | - Xinglv Hu
- Department of Orthopedics and Traumatology; Xi'an Hospital of Traditional Chinese Medicine; Xi'an China
| | - Hongmou Zhao
- Department of Traditional Chinese Medicine Orthopedics Diagnosis and Treatment Center; Xi'an Honghui Hospital; Xi'an China
| | - Rongqiang Zhang
- Department of Public Health; Shaanxi University of Chinese Medicine; Xi'an China
| | - Hao Guo
- Department of Traditional Chinese Medicine Orthopedics Diagnosis and Treatment Center; Xi'an Honghui Hospital; Xi'an China
| | - Xiaochen Fan
- Department of Traditional Chinese Medicine Orthopedics Diagnosis and Treatment Center; Xi'an Honghui Hospital; Xi'an China
| | - Yi Cao
- Department of Traditional Chinese Medicine Orthopedics Diagnosis and Treatment Center; Xi'an Honghui Hospital; Xi'an China
| |
Collapse
|
48
|
Maisani M, Pezzoli D, Chassande O, Mantovani D. Cellularizing hydrogel-based scaffolds to repair bone tissue: How to create a physiologically relevant micro-environment? J Tissue Eng 2017; 8:2041731417712073. [PMID: 28634532 PMCID: PMC5467968 DOI: 10.1177/2041731417712073] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/26/2017] [Indexed: 12/16/2022] Open
Abstract
Tissue engineering is a promising alternative to autografts or allografts for the regeneration of large bone defects. Cell-free biomaterials with different degrees of sophistication can be used for several therapeutic indications, to stimulate bone repair by the host tissue. However, when osteoprogenitors are not available in the damaged tissue, exogenous cells with an osteoblast differentiation potential must be provided. These cells should have the capacity to colonize the defect and to participate in the building of new bone tissue. To achieve this goal, cells must survive, remain in the defect site, eventually proliferate, and differentiate into mature osteoblasts. A critical issue for these engrafted cells is to be fed by oxygen and nutrients: the transient absence of a vascular network upon implantation is a major challenge for cells to survive in the site of implantation, and different strategies can be followed to promote cell survival under poor oxygen and nutrient supply and to promote rapid vascularization of the defect area. These strategies involve the use of scaffolds designed to create the appropriate micro-environment for cells to survive, proliferate, and differentiate in vitro and in vivo. Hydrogels are an eclectic class of materials that can be easily cellularized and provide effective, minimally invasive approaches to fill bone defects and favor bone tissue regeneration. Furthermore, by playing on their composition and processing, it is possible to obtain biocompatible systems with adequate chemical, biological, and mechanical properties. However, only a good combination of scaffold and cells, possibly with the aid of incorporated growth factors, can lead to successful results in bone regeneration. This review presents the strategies used to design cellularized hydrogel-based systems for bone regeneration, identifying the key parameters of the many different micro-environments created within hydrogels.
Collapse
Affiliation(s)
- Mathieu Maisani
- Laboratory for Biomaterials & Bioengineering (CRC-I), Department Min-Met-Materials Engineering & Research Center CHU de Québec, Laval University, Québec City, QC, Canada
- Laboratoire BioTis, Inserm U1026, Université de Bordeaux, Bordeaux, France
| | - Daniele Pezzoli
- Laboratory for Biomaterials & Bioengineering (CRC-I), Department Min-Met-Materials Engineering & Research Center CHU de Québec, Laval University, Québec City, QC, Canada
| | - Olivier Chassande
- Laboratoire BioTis, Inserm U1026, Université de Bordeaux, Bordeaux, France
| | - Diego Mantovani
- Laboratory for Biomaterials & Bioengineering (CRC-I), Department Min-Met-Materials Engineering & Research Center CHU de Québec, Laval University, Québec City, QC, Canada
| |
Collapse
|
49
|
Tsekoura EK, K C RB, Uludag H. Biomaterials to Facilitate Delivery of RNA Agents in Bone Regeneration and Repair. ACS Biomater Sci Eng 2016; 3:1195-1206. [PMID: 33440509 DOI: 10.1021/acsbiomaterials.6b00387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bone healing after traumatic injuries or pathological diseases remains an important worldwide problem. In search of safer and more effective approaches to bone regeneration and repair, RNA-based therapeutic agents, specifically microRNAs (miRNAs) and short interfering RNA (siRNA), are beginning to be actively explored. In this review, we summarize current attempts to employ miRNAs and siRNAs in preclinical models of bone repair. We provide a summary of current limitations when attempting to utilize bioactive nucleic acids for therapeutic purposes and position the unique aspects of RNA reagents for clinical bone repair. Delivery strategies for RNA reagents are emphasized and nonviral carriers (biomaterial-based) employed to deliver such reagents are reviewed. Critical features of biomaterial carriers and various delivery technologies centered around nanoparticulate systems are highlighted. We conclude with the authors' perspectives on the future of the field, outlining main critical issues important to address as RNA reagents are explored for clinical applications.
Collapse
Affiliation(s)
- Eleni K Tsekoura
- Department of Chemical & Materials Engineering, Faculty of Engineering, ‡Department of Biomedical Engineering, Faculty of Medicine & Dentistry, and §Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Remant Bahadur K C
- Department of Chemical & Materials Engineering, Faculty of Engineering, Department of Biomedical Engineering, Faculty of Medicine & Dentistry, and §Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Hasan Uludag
- Department of Chemical & Materials Engineering, Faculty of Engineering, Department of Biomedical Engineering, Faculty of Medicine & Dentistry, and Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
50
|
Qu X, Chen Z, Fan D, Sun C, Zeng Y. MiR-132-3p Regulates the Osteogenic Differentiation of Thoracic Ligamentum Flavum Cells by Inhibiting Multiple Osteogenesis-Related Genes. Int J Mol Sci 2016; 17:ijms17081370. [PMID: 27556448 PMCID: PMC5000765 DOI: 10.3390/ijms17081370] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/08/2016] [Accepted: 08/16/2016] [Indexed: 12/29/2022] Open
Abstract
Ossification of the ligamentum flavum (OLF) is a disorder of heterotopic ossification of spinal ligaments and is the main cause of thoracic spinal canal stenosis. Previous studies suggested that miR-132-3p negatively regulates osteoblast differentiation. However, whether miR-132-3p is involved in the process of OLF has not been investigated. In this study, we investigated the effect of miR-132-3p and its target genes forkhead box O1 (FOXO1), growth differentiation factor 5 (GDF5) and SRY-box 6 (SOX6) on the osteogenic differentiation of ligamentum flavum (LF) cells. We demonstrated that miR-132-3p was down-regulated during the osteogenic differentiation of LF cells and negatively regulated the osteoblast differentiation. Further, miR-132-3p targeted FOXO1, GDF5 and SOX6 and down-regulated the protein expression of these genes. Meanwhile, FOXO1, GDF5 and SOX6 were up-regulated after osteogenic differentiation and the down-regulation of endogenous FOXO1, GDF5 or SOX6 suppressed the osteogenic differentiation of LF cells. In addition, we also found FOXO1, GDF5 and SOX6 expression in the ossification front of OLF samples. Overall, these results suggest that miR-132-3p inhibits the osteogenic differentiation of LF cells by targeting FOXO1, GDF5 and SOX6.
Collapse
Affiliation(s)
- Xiaochen Qu
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Zhongqiang Chen
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Dongwei Fan
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Chuiguo Sun
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Yan Zeng
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| |
Collapse
|