1
|
Meng F, Liang C, Ali B, Wan C, He F, Chen J, Zhang Y, Luo Z, Su L, Zhao X, Yang B, Zhang J. In vivo spatiotemporal characterizing diverse body transportation of optical labeled high immunity aluminium adjuvants with photoacoustic tomography. PHOTOACOUSTICS 2024; 39:100643. [PMID: 39309020 PMCID: PMC11416220 DOI: 10.1016/j.pacs.2024.100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024]
Abstract
Vaccine development requires high-resolution, in situ, and visual adjuvant technology. To address this need, this work proposed a novel adjuvant labeling that involved indocyanine green (ICG) and bovine serum albumin (BSA) with self-assembled aluminium adjuvant (Alum), which was called BSA@ICG@Alum. This compound exhibited excellent photoacoustic properties and has been confirmed its safety, biocompatibility, high antigen binding efficiency, and superior induction of immune response. Photoacoustic tomography (PAT) tracked the distribution of Alum in lymph nodes (LNs) and lymphatic vessels in real time after diverse injection modalities. The non-invasive imaging approach revealed that BSA@ICG@Alum was transported to the draining LNs 60 min after intramuscular injection and to distal LNs within 30 min after lymph node injection. In conclusion, PAT enabled real-time three-dimensional and quantitative visualization, thus offering a powerful tool for advancing vaccine design by providing critical insights into adjuvant transport and immune system activation.
Collapse
Affiliation(s)
- Fan Meng
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, PR China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| | - Chaohao Liang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| | - Barkat Ali
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| | - Changwu Wan
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221000, PR China
| | - Fengbing He
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| | - Jiarui Chen
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| | - Yiqing Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| | - Zhijia Luo
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| | - Lingling Su
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| | - Xiaoya Zhao
- School of Pharmacy, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| | - Bin Yang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| | - Jian Zhang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, PR China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| |
Collapse
|
2
|
Li H, Lin WP, Zhang ZN, Sun ZJ. Tailoring biomaterials for monitoring and evoking tertiary lymphoid structures. Acta Biomater 2023; 172:1-15. [PMID: 37739247 DOI: 10.1016/j.actbio.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Despite the remarkable clinical success of immune checkpoint blockade (ICB) in the treatment of cancer, the response rate to ICB therapy remains suboptimal. Recent studies have strongly demonstrated that intratumoral tertiary lymphoid structures (TLSs) are associated with a good prognosis and a successful clinical response to immunotherapy. However, there is still a shortage of efficient and wieldy approaches to image and induce intratumoral TLSs in vivo. Biomaterials have made great strides in overcoming the deficiencies of conventional diagnosis and therapies for cancer, and antitumor therapy has also benefited from biomaterial-based drug delivery models. In this review, we summarize the reported methods for TLS imaging and induction based on biomaterials and provide potential strategies that can further enhance the effectiveness of imaging and stimulating intratumoral TLSs to predict and promote the response rates of ICB therapies for patients. STATEMENT OF SIGNIFICANCE: In this review, we focused on the promising of biomaterials for imaging and induction of TLSs. We reviewed the applications of biomaterials in molecular imaging and immunotherapy, identified the biomaterials that may be suitable for TLS imaging and induction, and provided outlooks for further research. Accurate imaging and effective induction of TLSs are of great significance for understanding the mechanism and clinical application. We highlighted the need for multidisciplinary coordination and cooperation in this field, and proposed the possible future direction of noninvasive imaging and artificial induction of TLSs based on biomaterials. We believe that it can facilitate collaboration and galvanize a broader effort.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China; Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Wen-Ping Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China
| | - Zhong-Ni Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China; Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
3
|
Ma X, Mao M, He J, Liang C, Xie HY. Nanoprobe-based molecular imaging for tumor stratification. Chem Soc Rev 2023; 52:6447-6496. [PMID: 37615588 DOI: 10.1039/d3cs00063j] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The responses of patients to tumor therapies vary due to tumor heterogeneity. Tumor stratification has been attracting increasing attention for accurately distinguishing between responders to treatment and non-responders. Nanoprobes with unique physical and chemical properties have great potential for patient stratification. This review begins by describing the features and design principles of nanoprobes that can visualize specific cell types and biomarkers and release inflammatory factors during or before tumor treatment. Then, we focus on the recent advancements in using nanoprobes to stratify various therapeutic modalities, including chemotherapy, radiotherapy (RT), photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), ferroptosis, and immunotherapy. The main challenges and perspectives of nanoprobes in cancer stratification are also discussed to facilitate probe development and clinical applications.
Collapse
Affiliation(s)
- Xianbin Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Mingchuan Mao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jiaqi He
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chao Liang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hai-Yan Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing, 100191, P. R. China.
| |
Collapse
|
4
|
Ma X, Zhang MJ, Wang J, Zhang T, Xue P, Kang Y, Sun ZJ, Xu Z. Emerging Biomaterials Imaging Antitumor Immune Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204034. [PMID: 35728795 DOI: 10.1002/adma.202204034] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Immunotherapy is one of the most promising clinical modalities for the treatment of malignant tumors and has shown excellent therapeutic outcomes in clinical settings. However, it continues to face several challenges, including long treatment cycles, high costs, immune-related adverse events, and low response rates. Thus, it is critical to predict the response rate to immunotherapy by using imaging technology in the preoperative and intraoperative. Here, the latest advances in nanosystem-based biomaterials used for predicting responses to immunotherapy via the imaging of immune cells and signaling molecules in the immune microenvironment are comprehensively summarized. Several imaging methods, such as fluorescence imaging, magnetic resonance imaging, positron emission tomography imaging, ultrasound imaging, and photoacoustic imaging, used in immune predictive imaging, are discussed to show the potential of nanosystems for distinguishing immunotherapy responders from nonresponders. Nanosystem-based biomaterials aided by various imaging technologies are expected to enable the effective prediction and diagnosis in cases of tumors, inflammation, and other public diseases.
Collapse
Affiliation(s)
- Xianbin Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Meng-Jie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Jingting Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Tian Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Peng Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Yuejun Kang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhigang Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
5
|
Zheng F, Huang X, Ding J, Bi A, Wang S, Chen F, Zeng W. NIR-I Dye-Based Probe: A New Window for Bimodal Tumor Theranostics. Front Chem 2022; 10:859948. [PMID: 35402374 PMCID: PMC8984032 DOI: 10.3389/fchem.2022.859948] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Near-infrared (NIR, 650-1700 nm) bioimaging has emerged as a powerful strategy in tumor diagnosis. In particular, NIR-I fluorescence imaging (650-950 nm) has drawn more attention, benefiting from the high quantum yield and good biocompatibility. Since their biomedical applications are slightly limited by their relatively low penetration depth, NIR-I fluorescence imaging probes have been under extensive development in recent years. This review summarizes the particular application of the NIR-I fluorescent dye-contained bimodal probes, with emphasis on related nanoprobes. These probes have enabled us to overcome the drawbacks of individual imaging modalities as well as achieve synergistic imaging. Meanwhile, the application of these NIR-I fluorescence-based bimodal probes for cancer theranostics is highlighted.
Collapse
Affiliation(s)
- Fan Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Xueyan Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Jipeng Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Anyao Bi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Shifen Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| |
Collapse
|
6
|
Xuan Y, Guan M, Zhang S. Tumor immunotherapy and multi-mode therapies mediated by medical imaging of nanoprobes. Theranostics 2021; 11:7360-7378. [PMID: 34158855 PMCID: PMC8210602 DOI: 10.7150/thno.58413] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy is an effective tumor treatment strategy that has several advantages over conventional methods such as surgery, radiotherapy and chemotherapy. Studies show that multifunctional nanoprobes can achieve multi-mode image-guided multiple tumor treatment modes. The tumor cells killed by chemotherapies or phototherapies release antigens that trigger an immune response and augment the effects of tumor immunotherapy. Thus, combining immunotherapy and multifunctional nanoprobes can achieve early cancer diagnosis and treatment. In this review, we have summarized the current research on the applications of multifunctional nanoprobes in image-guided immunotherapy. In addition, image-guided synergistic chemotherapy/photothermal therapy/photodynamic therapy and immunotherapy have also been discussed. Furthermore, the application potential and clinical prospects of multifunctional nanoprobes in combination with immunotherapy have been assessed.
Collapse
Affiliation(s)
| | | | - Shubiao Zhang
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, 116600, China
| |
Collapse
|
7
|
Zhang X, Li X, Sun S, Wang P, Ma X, Hou R, Liang X. Anti-Tumor Metastasis via Platelet Inhibitor Combined with Photothermal Therapy under Activatable Fluorescence/Magnetic Resonance Bimodal Imaging Guidance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19679-19694. [PMID: 33876926 DOI: 10.1021/acsami.1c02302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photothermal therapy (PTT) is a promising tumor therapy strategy; however, heterogeneous heat distribution over the tumor often exists, resulting in insufficient photothermal ablation and potential risk of cancer metastasis, which has been demonstrated to be associate with platelets. Herein, a near-infrared (NIR) photothermal agent of IR780 was conjugated with MRI agent of Gd-DOTA via a disulfide linkage (ICD-Gd), which was coassembly with lipid connecting tumor-homing pentapeptide CREKA (Cys-Arg-Glu-Lys-Ala) (DSPE-PEG-CREKA) to encapsulate a platelet inhibitor of ticagrelor (Tic), affording a multistimuli-responsive nanosystem (DPC@ICD-Gd-Tic). The nanosystem with completely quenching fluorescence could specifically target the tumor-associated platelets and showed pH/reduction/NIR light-responsive drug release, which simultaneously resulting in dis-assembly of nanoparticle and fluorescence recovery, enabling the drug delivery visualization in tumor in situ via activatable NIR fluorescence/MR bimodal imaging. Finally, DPC@ICD-Gd-Tic further integrated the photoinduced hyperthermia and platelet function inhibitor to achieve synergistic anticancer therapy, leading to ablation of primary tumor cells and effectively suppressed their distant metastasis. The number of lung metastases in 4T1 tumor bearing mice was reduced by about 90%, and the size of tumor was reduced by about 70%, while half of the mouse was completely cured by this smart nanosystem.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaoda Li
- School of Basic Medical Sciences, Peking University, Beijing 100190, P. R. China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Ping Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Xiaotu Ma
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Rui Hou
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| |
Collapse
|
8
|
Ji Y, Jones C, Baek Y, Park GK, Kashiwagi S, Choi HS. Near-infrared fluorescence imaging in immunotherapy. Adv Drug Deliv Rev 2020; 167:121-134. [PMID: 32579891 DOI: 10.1016/j.addr.2020.06.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Near-infrared (NIR) light possesses many suitable optophysical properties for medical imaging including low autofluorescence, deep tissue penetration, and minimal light scattering, which together allow for high-resolution imaging of biological tissue. NIR imaging has proven to be a noninvasive and effective real-time imaging methodology that provides a high signal-to-background ratio compared to other potential optical imaging modalities. In response to this, the use of NIR imaging has been extensively explored in the field of immunotherapy. To date, NIR fluorescence imaging has successfully offered reliable monitoring of the localization, dynamics, and function of immune responses, which are vital in assessing not only the efficacy but also the safety of treatments to design immunotherapies optimally. This review aims to provide an overview of the current research on NIR imaging of the immune response. We expect that the use of NIR imaging will expand further in response to the recent success in cancer immunotherapy. We will also offer our insights on how this technology will meet rapidly growing expectations in the future.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Scientific Research Centre, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China; Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Catherine Jones
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yoonji Baek
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - G Kate Park
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
9
|
Park HS, Kim J, Cho MY, Cho YJ, Suh YD, Nam SH, Hong KS. Effectual Labeling of Natural Killer Cells with Upconverting Nanoparticles by Electroporation for In Vivo Tracking and Biodistribution Assessment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49362-49370. [PMID: 33050704 DOI: 10.1021/acsami.0c12849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Natural killer (NK) cells, which are cytotoxic lymphocytes of the innate immune system and recognize cancer cells via various immune receptors, are promising agents in cell immunotherapy. To utilize NK cells as a therapeutic agent, their biodistribution and pharmacokinetics need to be evaluated following systemic administration. Therefore, in vivo imaging and tracking with efficient labeling and quantitative analysis of NK cells are required. However, the lack of the phagocytic capacity of NK cells makes it difficult to establish breakthroughs in cell labeling and subsequent in vivo studies. Herein, an effective labeling of upconverting nanoparticles (UCNPs) in NK cells is proposed using electroporation with high sensitivity and stability. The labeling performance of UCNPs functionalized with carboxy-polyethylene glycol (PEG) is better than with methoxy-PEG or with amine-PEG. The labeling efficiency becomes higher, but cell damage is greater as electric field increases; thus, there is an optimum electroporation condition for internalization of UCNPs into NK cells. The tracking and biodistribution imaging analyses of intravenously injected NK cells show that the labeled NK cells are initially distributed primarily in lungs and then spread to the liver and spleen. These advances will accelerate the application of NK cells as key components of immunotherapy against cancer.
Collapse
Affiliation(s)
- Hye Sun Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Jongwoo Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Mi Young Cho
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Youn-Joo Cho
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Yung Doug Suh
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Sang Hwan Nam
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Kwan Soo Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
10
|
Yang CT, Hattiholi A, Selvan ST, Yan SX, Fang WW, Chandrasekharan P, Koteswaraiah P, Herold CJ, Gulyás B, Aw SE, He T, Ng DCE, Padmanabhan P. Gadolinium-based bimodal probes to enhance T1-Weighted magnetic resonance/optical imaging. Acta Biomater 2020; 110:15-36. [PMID: 32335310 DOI: 10.1016/j.actbio.2020.03.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/29/2022]
Abstract
Gd3+-based contrast agents have been extensively used for signal enhancement of T1-weighted magnetic resonance imaging (MRI) due to the large magnetic moment and long electron spin relaxation time of the paramagnetic Gd3+ ion. The key requisites for the development of Gd3+-based contrast agents are their relaxivities and stabilities which can be achieved by chemical modifications. These modifications include coordinating Gd3+ with a chelator such as diethylenetriamine pentaacetic acid (DTPA) or 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), encapsulating Gd3+ in nanoparticles, conjugation to biomacromolecules such as polymer micelles and liposomes, or non-covalent binding to plasma proteins. In order to have a coherent diagnostic and therapeutic approach and to understand diseases better, the combination of MRI and optical imaging (OI) techniques into one technique entity has been developed to overcome the conventional boundaries of either imaging modality used alone through bringing the excellent spatial resolution of MRI and high sensitivity of OI into full play. Novel MRI and OI bimodal probes have been extensively studied in this regard. This review is an attempt to shed some light on the bimodal imaging probes by summarizing all recent noteworthy publications involving Gd3+ containing MR-optical imaging probes. The several key elements such as novel synthetic strategy, high sensitivity, biocompatibility, and targeting of the probes are highlighted in the review. STATEMENT OF SIGNIFICANCE: The present article aims at giving an overview of the existing bimodal MRI and OI imaging probes. The review structured as a series of examples of paramagnetic Gd3+ ions, either as ions in the crystalline structure of inorganic materials or chelates for contrast enhancement in MRI, while they are used as optical imaging probes in different modes. The comprehensive review focusing on the synthetic strategies, characterizations and properties of these bimodal imaging probes will be helpful in a way to prepare related work.
Collapse
Affiliation(s)
- Chang-Tong Yang
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore; Duke-NUS Medical School, 8 College Road, 169857, Singapore.
| | - Aishwarya Hattiholi
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore; School of Biological Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Subramanian Tamil Selvan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore
| | - Sean Xuexian Yan
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore; Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Wei-Wei Fang
- School of Chemistry and Chemical Engineering, HeFei University of Technology, HeFei, AnHui 230009, PR China
| | | | - Podili Koteswaraiah
- School of Biological Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Christian J Herold
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna General Hospital, Austria
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore; Karolinska Institutet, Department of Clinical Neuroscience, S-171 76, Stockholm, Sweden
| | - Swee Eng Aw
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore
| | - Tao He
- School of Chemistry and Chemical Engineering, HeFei University of Technology, HeFei, AnHui 230009, PR China
| | - David Chee Eng Ng
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore; Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore
| |
Collapse
|
11
|
Xia B, Yan X, Fang WW, Chen S, Jiang Z, Wang J, Sun TC, Li Q, Li Z, Lu Y, He T, Cao B, Yang CT. Activatable Cell-Penetrating Peptide Conjugated Polymeric Nanoparticles with Gd-Chelation and Aggregation-Induced Emission for Bimodal MR and Fluorescence Imaging of Tumors. ACS APPLIED BIO MATERIALS 2020; 3:1394-1405. [DOI: 10.1021/acsabm.9b01049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bin Xia
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Xu Yan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Wei-Wei Fang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Sheng Chen
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - ZhiLin Jiang
- Centre for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, People’s Republic of China
| | - JinChen Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Tian-Ci Sun
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Qing Li
- The Central Laboratory of Medical Research Centre, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230009, People’s Republic of China
| | - Zhen Li
- Centre for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, People’s Republic of China
| | - Yang Lu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Tao He
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - BaoQiang Cao
- Department of General Surgery, Anhui No. 2 Provincial People’s Hospital, Hefei, Anhui 230041, People’s Republic of China
| | - Chang-Tong Yang
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608
- Duke-NUS Medical School, 8 College Road, Singapore 169857
| |
Collapse
|
12
|
Bodio E, Denat F, Goze C. BODIPYS and aza-BODIPY derivatives as promising fluorophores for in vivo molecular imaging and theranostic applications. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619501268] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since their discovery in 1968, the BODIPYs dyes (4,4-difluoro-4-bora-3a, 4a diaza-s-indacene) have found an exponentially increasing number of applications in a large variety of scientific fields. In particular, studies reporting bioapplications of BODIPYs have increased dramatically. However, most of the time, only in vitro investigations have been reported. The in vivo potential of BODIPYs and aza-BODIPYs is more recent, but considering the number of in vivo studies with BODIPY and aza-BODIPY which have been reported in the last five years, we can now affirm that this family of fluorophores can be considered important as cyanine dyes for future in vivo and even clinical applications. This review aims to present representative examples of recent in vivo applications of BODIPYs or aza-BODIPYs, and to highlight the potential of these dyes for optical molecular imaging.
Collapse
Affiliation(s)
- Ewen Bodio
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 Avenue A. Savary, 21078 Dijon Cedex, France
| | - Franck Denat
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 Avenue A. Savary, 21078 Dijon Cedex, France
| | - Christine Goze
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 Avenue A. Savary, 21078 Dijon Cedex, France
| |
Collapse
|
13
|
Florès O, Pliquett J, Abad Galan L, Lescure R, Denat F, Maury O, Pallier A, Bellaye PS, Collin B, Même S, Bonnet CS, Bodio E, Goze C. Aza-BODIPY Platform: Toward an Efficient Water-Soluble Bimodal Imaging Probe for MRI and Near-Infrared Fluorescence. Inorg Chem 2020; 59:1306-1314. [DOI: 10.1021/acs.inorgchem.9b03017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Océane Florès
- CNRS, Université Bourgogne Franche-Comté, ICMUB UMR6302 − CNRS, F-21000 Dijon, France
| | - Jacques Pliquett
- CNRS, Université Bourgogne Franche-Comté, ICMUB UMR6302 − CNRS, F-21000 Dijon, France
| | - Laura Abad Galan
- Université Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, UMR 5182, F-69342 Lyon, France
| | - Robin Lescure
- CNRS, Université Bourgogne Franche-Comté, ICMUB UMR6302 − CNRS, F-21000 Dijon, France
| | - Franck Denat
- CNRS, Université Bourgogne Franche-Comté, ICMUB UMR6302 − CNRS, F-21000 Dijon, France
| | - Olivier Maury
- Université Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, UMR 5182, F-69342 Lyon, France
| | - Agnès Pallier
- Centre de Biophysique Moléculaire, CNRS, Université d’Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Pierre-Simon Bellaye
- Centre Georges François Leclerc, Service de Médecine Nucléaire (Plateforme d’Imagerie et de Radiothérapie Précliniques), 1 rue Professeur Marion, BP77980, 21079 Dijon Cedex, France
| | - Bertrand Collin
- CNRS, Université Bourgogne Franche-Comté, ICMUB UMR6302 − CNRS, F-21000 Dijon, France
| | - Sandra Même
- Centre de Biophysique Moléculaire, CNRS, Université d’Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Célia S. Bonnet
- Centre de Biophysique Moléculaire, CNRS, Université d’Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Ewen Bodio
- CNRS, Université Bourgogne Franche-Comté, ICMUB UMR6302 − CNRS, F-21000 Dijon, France
| | - Christine Goze
- CNRS, Université Bourgogne Franche-Comté, ICMUB UMR6302 − CNRS, F-21000 Dijon, France
| |
Collapse
|
14
|
Merkes JM, Rueping M, Kiessling F, Banala S. Photoacoustic Detection of Superoxide Using Oxoporphyrinogen and Porphyrin. ACS Sens 2019; 4:2001-2008. [PMID: 31262172 DOI: 10.1021/acssensors.9b00224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The superoxide (O2•-) ion is a highly reactive oxygen species involved in many diseases; hence, its noninvasive detection is desirable to identify the onset of pathological processes. Here, we employed photoacoustic (PA) spectroscopy, which enables imaging at ultrasound resolution with the sensitivity of optical modality, for the first time to detect O2•-, using stimuli-responsive contrast agents. meso-(3,5-Di-tert-butyl 4-hydroxyphenyl) porphyrins and oxoporphyrinogens were used as PA contrast agents, which trap the O2•- and enable its detection. The trapped O2•- increased the PA signal amplitude of chromophores up to 9.6-fold, and induced a red-shift in the PA signal maxima of up to 225 nm. Therefore, these trigger-responsive probes may be highly valuable as smart diagnostic PA probes to investigate pathological events stimulated by O2•- species.
Collapse
Affiliation(s)
- Jean Michél Merkes
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D52074 Aachen, Germany
| | - Magnus Rueping
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D52074 Aachen, Germany
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Clinic, and Comprehensive Diagnostic Center Aachen, RWTH Aachen University, Forckenbeckstrasse 55, D52074 Aachen, Germany
| | - Srinivas Banala
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D52074 Aachen, Germany
- Institute for Experimental Molecular Imaging, University Clinic, and Comprehensive Diagnostic Center Aachen, RWTH Aachen University, Forckenbeckstrasse 55, D52074 Aachen, Germany
| |
Collapse
|
15
|
Mori Y. [17. Live Cellular Imaging and Tracking by High Field MRI]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2019; 75:676-682. [PMID: 31327779 DOI: 10.6009/jjrt.2019_jsrt_75.7.676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuki Mori
- Center for Translational Neuromedicine,University of Copenhagen
| |
Collapse
|
16
|
Liu Y, Huang W, Xiong C, Huang Y, Chen BJ, Racioppi L, Chao N, Vo-Dinh T. Biodistribution and sensitive tracking of immune cells with plasmonic gold nanostars. Int J Nanomedicine 2019; 14:3403-3411. [PMID: 31190799 PMCID: PMC6514259 DOI: 10.2147/ijn.s192189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
Aim: To quantitatively and sensitively investigate the biodistribution of immune cells after systemic administration. Methods: Immune cells were loaded with plasmonic gold nanostars (GNS) tracking probes. Inductively coupled plasma mass spectrometry (ICP-MS) was used for quantitative gold mass measurement and two-photon photoluminescence (TPL) was used for high-resolution sensitive optical imaging. Results: GNS nanoparticles were loaded successfully into immune cells without negative effect on cellular vitality. Liver and spleen were identified to be the major organs for macrophage cells uptake after systematic administration. A small amount of macrophage cells were detected in the tumor site in our murine lymphoma animal model. Conclusion: GNS has great potential as a biocompatible marker for quantitative tracking and high-resolution imaging of immune cells at the cellular level.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Wei Huang
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Chuanfeng Xiong
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Yuxian Huang
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Benny J Chen
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Luigi Racioppi
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Nelson Chao
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Tuan Vo-Dinh
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.,Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA.,Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
17
|
Gd-DTPA-dialkylamine derivatives: Synthesis and self-assembled behaviors for T1-enhanced magnetic resonance imaging and drug carriers. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
He SJ, Xie YW, Chen QY. A NIR-BODIPY derivative for sensing copper(II) in blood and mitochondrial imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 195:210-214. [PMID: 29414580 DOI: 10.1016/j.saa.2018.01.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 01/17/2018] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
In order to develop NIR BODIPY for mitochondria targeting imaging agents and metal sensors, a side chain modified BODIPY (BPN) was synthesized and spectroscopically characterized. BPN has NIR emission at 765nm when excited at 704nm. The emission at 765nm responded differently to Cu2+ and Mn2+ ions, respectively. The BPN coordinated with Cu2+ forming [BPNCu]2+ complex with quenched emission, while Mn2+ induced aggregation of BPN with specific fluorescence enhancement. Moreover, BPN can be applied to monitor Cu2+ in live cells and image mitochondria. Further, BPN was used as sensor for the detection of Cu2+ ions in serum with linear detection range of 0.45μM-36.30μM. Results indicate that BPN is a good sensor for the detection of Cu2+ in serum and image mitochondria. This study gives strategies for future design of NIR sensors for the analysis of metal ions in blood.
Collapse
Affiliation(s)
- Shao-Jun He
- School of chemistry and chemical engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yu-Wen Xie
- School of chemistry and chemical engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qiu-Yun Chen
- School of chemistry and chemical engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
19
|
Lai J, Wang T, Wang H, Shi F, Gu W, Ye L. MnO nanoparticles with unique excitation-dependent fluorescence for multicolor cellular imaging and MR imaging of brain glioma. Mikrochim Acta 2018; 185:244. [PMID: 29610993 DOI: 10.1007/s00604-018-2779-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/19/2018] [Indexed: 12/19/2022]
Abstract
The authors describe MnO nanoparticles (NPs) with unique excitation-dependent fluorescence across the entire visible spectrum. These NPs are shown to be efficient optical nanoprobe for multicolor cellular imaging. Synthesis of the NPs is accomplished by a thermal decomposition method. The MnO NPs exhibit a high r1 relaxivity of 4.68 mM-1 s-1 and therefore give an enhanced contrast effect in magnetic resonance (MR) studies of brain glioma. The cytotoxicity assay, hemolysis analysis, and hematoxylin and eosin (H&E) staining tests verify that the MnO NPs are biocompatible. In the authors' perception, the simultaneous attributes of multicolor fluorescence and excellent MR functionality make this material a promising dual-modal nanoprobe for use in bio-imaging. Graphical abstract A direct method to synthesize fluorescent MnO NPs is reported. The NPs are biocompatible and have been successfully applied for multicolor cellular imaging and MR detection of brain glioma.
Collapse
Affiliation(s)
- Junxin Lai
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Tingjian Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, People's Republic of China
| | - Hao Wang
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Fengqiang Shi
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Wei Gu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Ling Ye
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
20
|
|
21
|
Zanganeh S, Spitler R, Hutter G, Ho JQ, Pauliah M, Mahmoudi M. Tumor-associated macrophages, nanomedicine and imaging: the axis of success in the future of cancer immunotherapy. Immunotherapy 2017; 9:819-835. [DOI: 10.2217/imt-2017-0041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The success of any given cancer immunotherapy relies on several key factors. In particular, success hinges on the ability to stimulate the immune system in a controlled and precise fashion, select the best treatment options and appropriate therapeutic agents, and use highly effective tools to accurately and efficiently assess the outcome of the immunotherapeutic intervention. Furthermore, a deep understanding and effective utilization of tumor-associated macrophages (TAMs), nanomedicine and biomedical imaging must be harmonized to improve treatment efficacy. Additionally, a keen appreciation of the dynamic interplay that occurs between immune cells and the tumor microenvironment (TME) is also essential. New advances toward the modulation of the immune TME have led to many novel translational research approaches focusing on the targeting of TAMs, enhanced drug and nucleic acid delivery, and the development of theranostic probes and nanoparticles for clinical trials. In this review, we discuss the key cogitations that influence TME, TAM modulations and immunotherapy in solid tumors as well as the methods and resources of tracking the tumor response. The vast array of current nanomedicine technologies can be readily modified to modulate immune function, target specific cell types, deliver therapeutic payloads and be monitored using several different imaging modalities. This allows for the development of more effective treatments, which can be specifically designed for particular types of cancer or on an individual basis. Our current capacities have allowed for greater use of theranostic probes and multimodal imaging strategies that have led to better image contrast, real-time imaging capabilities leveraging targeting moieties, tracer kinetics and enabling more detailed response profiles at the cellular and molecular levels. These novel capabilities along with new discoveries in cancer biology should drive innovation for improved biomarkers for efficient and individualized cancer therapy.
Collapse
Affiliation(s)
- Saeid Zanganeh
- Department of Radiology, Memorial Sloan Kettering, New York, NY 10065, USA
| | - Ryan Spitler
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Gregor Hutter
- Department of Neurosurgery, Stanford University, Stanford, CA 94304, USA
| | - Jim Q Ho
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA
| | - Mohan Pauliah
- Department of Radiology, Memorial Sloan Kettering, New York, NY 10065, USA
| | - Morteza Mahmoudi
- Department of Nanotechnology, Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155–6451, Iran
- Department of Anesthesiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
22
|
Seth A, Park HS, Hong KS. Current Perspective on In Vivo Molecular Imaging of Immune Cells. Molecules 2017; 22:molecules22060881. [PMID: 28587110 PMCID: PMC6152742 DOI: 10.3390/molecules22060881] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/19/2017] [Indexed: 12/31/2022] Open
Abstract
Contemporaneous development of improved immune cell-based therapies, and powerful imaging tools, has prompted growth in technologies for immune cell tracking in vivo. Over the past couple of decades, imaging tools such as magnetic resonance imaging (MRI) and optical imaging have successfully monitored the trafficking patterns of therapeutic immune cells and assisted the evaluation of the success or failure of immunotherapy. Recent advancements in imaging technology have made imaging an indispensable module of immune cell-based therapies. In this review, emerging applications of non-radiation imaging modalities for the tracking of a range of immune cells are discussed. Applications of MRI, NIR, and other imaging tools have demonstrated the potential of non-invasively surveying the fate of both phagocytic and non-phagocytic immune cells in vivo.
Collapse
Affiliation(s)
- Anushree Seth
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju 28119, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Hye Sun Park
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju 28119, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Kwan Soo Hong
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju 28119, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
23
|
Lee MH, Kim EJ, Lee H, Kim HM, Chang MJ, Park SY, Hong KS, Kim JS, Sessler JL. Liposomal Texaphyrin Theranostics for Metastatic Liver Cancer. J Am Chem Soc 2016; 138:16380-16387. [DOI: 10.1021/jacs.6b09713] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Min Hee Lee
- Department
of Chemistry, Sookmyung Women’s University, Seoul 04310, Korea
| | - Eun-Joong Kim
- Bioimaging
Research Team, Korea Basic Science Institute, Cheongju 28119, Korea
- Department
of Biomedical Engineering, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Hyunseung Lee
- Bioimaging
Research Team, Korea Basic Science Institute, Cheongju 28119, Korea
- Immunotherapy
Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hyun Min Kim
- Bioimaging
Research Team, Korea Basic Science Institute, Cheongju 28119, Korea
- Immunotherapy
Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Min Jung Chang
- Department
of Chemistry, Sookmyung Women’s University, Seoul 04310, Korea
| | - Sun Young Park
- Department
of Chemistry, Sookmyung Women’s University, Seoul 04310, Korea
| | - Kwan Soo Hong
- Bioimaging
Research Team, Korea Basic Science Institute, Cheongju 28119, Korea
- Immunotherapy
Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Jong Seung Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Jonathan L. Sessler
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| |
Collapse
|
24
|
Wang Y, Zhang R, Song R, Guo K, Meng Q, Feng H, Duan C, Zhang Z. Fluoride-specific fluorescence/MRI bimodal probe based on a gadolinium(iii)–flavone complex: synthesis, mechanism and bioimaging application in vivo. J Mater Chem B 2016; 4:7379-7386. [DOI: 10.1039/c6tb02384c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work reports a bimodal probe for the fluorescence and magnetic resonance detection of fluoride ion (F−) in aqueous medium andin vivo.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
| | - Run Zhang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
- Australian Institute for Bioengineering and Nanotechnology
| | - Renfeng Song
- Ansteel Mining Engineering Corporation
- Anshan
- P. R. China
| | - Ke Guo
- Ansteel Mining Engineering Corporation
- Anshan
- P. R. China
| | - Qingtao Meng
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
- State Key Laboratory of Fine Chemicals
| | - Huan Feng
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian High-Tech Industrial Zone 116024
- P. R. China
| | - Zhiqiang Zhang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
| |
Collapse
|