1
|
Wang H, Wang Z, Ma J, Chen J, Li H, Hao W, Bi Q, Xiao S, Fan J, Li G. Regulating coordination environment in metal-organic Framework@Cuprous oxide Core-Shell catalyst for Promoting electrocatalytic oxygen evolution reaction. J Colloid Interface Sci 2025; 678:465-476. [PMID: 39255603 DOI: 10.1016/j.jcis.2024.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
As a kind of promising oxygen evolution reaction (OER) catalysts, metal-organic frameworks (MOF) are often constrained by their inherent poor electroconductivity and structural instability. In this study, we developed a mono-dispersed zeolitic imidazolate framework-67@cuprous oxide (ZIF-67@Cu2O) core-shell catalyst via in-situ growth method for highly efficient alkaline OER. The ZIF-67@Cu2O shows an excellent OER activity with a low overpotential of 254 mV at 10 mA cm-2 and Tafel slope of 87.9 mV·dec-1 in 1.0 M KOH. Furthermore, the ZIF-67@Cu2O also shows a high turnover frequency (TOF) of 0.166 s-1 at 1.60 V vs. RHE and long-term stability for 160 h at a high current density of 100 mA cm-2. The unique core-shell structure with the Cu2O core linked with ZIF-67 shell through interfacial di-oxygen bridge improves the structural stability, enhances the charge transfer, and provides more active sites. Moreover, the interfacial coordination structure was regulated from Co-N4 to Co-N2O2 which elevates the valence of Co sites and optimizes the adsorption free energy of oxygen-containing intermediates, thus improving the electrocatalytic OER performance. This work could propose the way for designing novel MOF-based nanomaterials and developing desirable and robust heterogeneous OER catalysts.
Collapse
Affiliation(s)
- Hui Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zijian Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jin Ma
- Department of Chemistry, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China
| | - Jian Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Hong Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Weiju Hao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qingyuan Bi
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuning Xiao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jinchen Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Guisheng Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; Department of Chemistry, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China
| |
Collapse
|
2
|
Salah A, Ren HD, Al-Ansi N, Al-Salihy A, Qaraah FA, Mahyoub SA, Ahmed AA, Drmosh QA. Interface Engineering Induced by Low Ru Doping in Ni/Co@NC Derived from Ni-ZIF-67 for Enhanced Electrocatalytic Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60310-60320. [PMID: 39442079 DOI: 10.1021/acsami.4c13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Electrochemical water splitting is a promising approach for hydrogen evolution reactions (HER); however, the oxygen evolution reaction (OER) remains a major bottleneck due to its high energy requirements. High-performance electrocatalysts capable of facilitating HER, OER, and overall water splitting (OWS) are highly needed to improve OER kinetics. In this work, we synthesized a trimetallic heterostructure of Ru, Ni, and Co incorporated into N-doped carbon (denoted as Ru/Ni/Co@NC) by first synthesizing Ni/Co@NC from Ni-ZIF-67 polyhedrons via high-temperature carbonization, followed by Ru doping using the galvanic replacement method. Benefiting from increased active surface sites, modulated electronic structure, and enhanced interfacial synergistic effects, Ru/Ni/Co@NC exhibited exceptional electrocatalytic performance for both HER and OER processes. The optimized Ru/Ni/Co@NC catalyst, with a minimal Ru mass ratio of ∼2.07%, demonstrated significantly low overpotential values of 34 mV for HER and 174 mV for OER at a current density of 10 mA/cm2 with corresponding Tafel slope values of 33.42 and 34.39 mV/dec, respectively. Further, the optimized catalyst was loaded onto carbon paper and used as anode and cathode materials for alkaline water splitting. Interestingly, a low cell voltage of just 1.44 V was obtained. The enhanced electrolytic performance was further elaborated by density functional theory (DFT) calculations, which confirmed that Ru doping in Ni/Co introduced additional active sites for H*, enhancing adsorption/desorption abilities for HER (ΔGH* = -0.30 eV), lowering water dissociation barrier (ΔGb = 0.49 eV) and reducing the energy barrier for the rate-determining step of OER (O* → OOH*) to 1.62 eV in an alkaline environment. These findings reflect the significant potential of ZIF-67-based catalysts in energy conversion and storage applications.
Collapse
Affiliation(s)
- Abdulwahab Salah
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Hong-Da Ren
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Nabilah Al-Ansi
- National and Local United Engineering Laboratory for Power Batteries, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Adel Al-Salihy
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Fahim A Qaraah
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Samah A Mahyoub
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Anas A Ahmed
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Qasem A Drmosh
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
- Department of Materials Science and Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
3
|
Rajagopal V, Mehla S, Jones LA, Bhargava SK. Nanoengineered Cobalt Electrocatalyst for Alkaline Oxygen Evolution Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:946. [PMID: 38869572 PMCID: PMC11173492 DOI: 10.3390/nano14110946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024]
Abstract
The alkaline oxygen evolution reaction (OER) remains a bottleneck in green hydrogen production owing to its slow reaction kinetics and low catalytic efficiencies of earth abundant electrocatalysts in the alkaline OER reaction. This study investigates the OER performance of hierarchically porous cobalt electrocatalysts synthesized using the dynamic hydrogen bubble templating (DHBT) method. Characterization studies revealed that electrocatalysts synthesized under optimized conditions using the DHBT method consisted of cobalt nanosheets, and hierarchical porosity with macropores distributed in a honeycomb network and mesopores distributed between cobalt nanosheets. Moreover, X-ray photoelectron spectroscopy studies revealed the presence of Co(OH)2 as the predominant surface cobalt species while Raman studies revealed the presence of the cubic Co3O4 phase in the synthesized electrocatalysts. The best performing electrocatalyst required only 360 mV of overpotential to initiate a current density of 10 mA cm-2, exhibited a Tafel slope of 37 mV dec-1, and stable OER activity over 24 h. The DHBT method offers a facile, low cost and rapid synthesis approach for preparation for highly efficient cobalt electrocatalysts.
Collapse
Affiliation(s)
| | | | | | - Suresh K. Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, STEM College, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (V.R.); (S.M.)
| |
Collapse
|
4
|
Satpute N, Ghosh MK, Kesharwani A, Ghorai TK. Biosynthesis of JC-La 2CoO 4 magnetic nanoparticles explored in catalytic and SMMs properties. Sci Rep 2023; 13:22122. [PMID: 38092788 PMCID: PMC10719267 DOI: 10.1038/s41598-023-47852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/19/2023] [Indexed: 12/17/2023] Open
Abstract
We have reported the synthesis of JC-La2CoO4 magnetic nanoparticles from Jatropha Curcas L. leaf extract in aqueous medium and potential application study in catalytic & Single Molecule Magnets (SMMs). Several techniques were used to investigate the structural, morphological, and elemental composition, particle size, optical properties, catalytic and magnetic properties by XRD, FTIR, SEM, EDAX, XPS, UV-visible and squid magnetic measurement. It was found that the crystallite sizes and grain sizes of JC-La2CoO4 NPs were 11.3 ± 1 and 24.1 ± 1 nm respectively and surface morphology of the nanoparticles looks spherical shape with good surface area. The band gap of JC-La2CoO4 was found to be 4.95 eV indicates good semiconductor in nature. XPS studies shows that La and Co present in + 3 and + 2 oxidation state respectively and suggest the composition formula is La2CoO4 with satisfied all the valency of metal ions. The photocatalytic efficiency of La2CoO4 shows good result against methylene blue (MB) compared to other dyes like MO, NO, RhB in presence of sunlight with rate constant 56.73 × 10-3 min-1 and completely degraded within 115 mints. The importance of JC-La2CoO4 has magnetic properties with antiferromagnetic coupling and SMMs properties with nature.
Collapse
Affiliation(s)
- Nilesh Satpute
- Nanomaterials and Crystal Design Laboratory, Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Mithun Kumar Ghosh
- Nanomaterials and Crystal Design Laboratory, Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
- Department of Chemistry, Govt. College Hatta, Damoh, Madhya Pradesh, 470775, India
| | - Aparna Kesharwani
- Nanomaterials and Crystal Design Laboratory, Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Tanmay Kumar Ghorai
- Nanomaterials and Crystal Design Laboratory, Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India.
| |
Collapse
|
5
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Ritz AJ, Bertini IA, Nguyen ET, Strouse GF, Lazenby RA. Electrocatalytic activity and surface oxide reconstruction of bimetallic iron-cobalt nanocarbide electrocatalysts for the oxygen evolution reaction. RSC Adv 2023; 13:33413-33423. [PMID: 38025854 PMCID: PMC10644102 DOI: 10.1039/d3ra07003d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
For renewable energy technology to become ubiquitous, it is imperative to develop efficient oxygen evolution reaction (OER) electrocatalysts, which is challenging due to the kinetically and thermodynamically unfavorable OER mechanism. Transition metal carbides (TMCs) have recently been investigated as desirable OER pre-catalysts, but the ability to tune electrocatalytic performance of bimetallic catalysts and understand their transformation under electrochemical oxidation requires further study. In an effort to understand the tunable TMC material properties for enhancing electrocatalytic activity, we synthesized bimetallic FeCo nanocarbides with a complex mixture of FeCo carbide crystal phases. The synthesized FeCo nanocarbides were tuned by percent proportion Fe (i.e. % Fe), and analysis revealed a non-linear dependence of OER electrocatalytic activity on % Fe, with a minimum overpotential of 0.42 V (15-20% Fe) in alkaline conditions. In an effort to understand the effects of Fe composition on electrocatalytic performance of FeCo nanocarbides, we assessed the structural phase and electronic state of the carbides. Although we did not identify a single activity descriptor for tuning activity for FeCo nanocarbides, we found that surface reconstruction of the carbide surface to oxide during water oxidation plays a pivotal role in defining electrocatalytic activity over time. We observed that a rapid increase of the (FexCo1-x)2O4 phase on the carbide surface correlated with lower electrocatalytic activity (i.e. higher overpotential). We have demonstrated that the electrochemical performance of carbides under harsh alkaline conditions has the potential to be fine-tuned via Fe incorporation and with control, or suppression, of the growth of the oxide phase.
Collapse
Affiliation(s)
- Amanda J Ritz
- Department of Chemistry & Biochemistry, Florida State University Tallahassee Florida 32306 USA
| | - Isabella A Bertini
- Department of Chemistry & Biochemistry, Florida State University Tallahassee Florida 32306 USA
| | - Edward T Nguyen
- Department of Chemistry & Biochemistry, Florida State University Tallahassee Florida 32306 USA
| | - Geoffrey F Strouse
- Department of Chemistry & Biochemistry, Florida State University Tallahassee Florida 32306 USA
| | - Robert A Lazenby
- Department of Chemistry & Biochemistry, Florida State University Tallahassee Florida 32306 USA
| |
Collapse
|
7
|
Interfacial Electronic Engineering of NiSe–Anchored Ni–N–C Composite Electrocatalyst for Efficient Hydrogen Evolution. Catalysts 2022. [DOI: 10.3390/catal12121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Rational design and construction of cost–effective electrocatalysts for efficient hydrogen production has attracted extensive research attention worldwide. Herein, we report the construction of a transition metal selenide/carbon composite catalyst featuring uniform NiSe nanoparticles anchored to single Ni atom doped porous carbon structure (NiSe/Ni–N–C) via a facile one–pot pyrolysis of low–cost solid mixtures. NiSe/Ni–N–C exhibits remarkable catalytic performance towards hydrogen evolution reaction (HER) in 1.0 M KOH, requiring a low overpotential of 146 mV to reach a current density of 10 mA cm−2. The unique carbon layer encapsulation derived from the enwrapping of fluid catalytic cracking slurry further renders NiSe/Ni–N–C excellent for long–term durability in electrolyte corrosion and nanostructure aggregation. This work paves the way for the design and synthesis of highly efficient composite HER electrocatalysts.
Collapse
|
8
|
Shen Y, Chen Y, Fang S, Park JK, Xu H. Plasma-modified graphitic C 3N 4@Cobalt hydroxide nanowires as a highly efficient electrocatalyst for oxygen evolution reaction. Heliyon 2022; 8:e11573. [PMID: 36411906 PMCID: PMC9674508 DOI: 10.1016/j.heliyon.2022.e11573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/25/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
The key to electrocatalytic water splitting is the discovery of efficient, low-cost electrocatalysts for oxygen evolution reaction (OER). g-C3N4@Co(OH)2 + PA/X nanowire materials were prepared by a combined strategy of thermo-hydraulic and DBD plasma modification. The morphological structure of the plasma modification for 60 s was then characterised by SEM and TEM patterns. In alkaline media, the g-C3N4@Co(OH)2 catalyst subjected to 60-s plasma treatment had excellent durability and exhibited outstanding electrochemical performance, displaying a low overpotential (329 mV). The number of Co3+ active sites, high conductivity, and large surface area of the g-C3N4@Co(OH)2 + PA/60s catalyst contribute to the remarkable OER activity. This research offers a novel approach to rationally designing effective electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Yongjun Shen
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Yin Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Shuaikang Fang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Jae Kwang Park
- Department of Civil and Environmental Engineering, University of Wisconsin–Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Hao Xu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| |
Collapse
|
9
|
Ding J, Zhu X, Yue R, Liu W, He S, Pei H, Zhu J, Zheng H, Liu N, Mo Z. Ni-B-Co nanoparticles based on ZIF-67 as efficient electrocatalyst for oxygen evolution reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Zhou J, Zhang H, Xie T, Liu Y, Shen Q, Yang J, Cao L, Yang J. Highly efficient Hg 2+ removal via a competitive strategy using a Co-based metal organic framework ZIF-67. J Environ Sci (China) 2022; 119:33-43. [PMID: 35934463 DOI: 10.1016/j.jes.2021.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 06/15/2023]
Abstract
The stronger coordination ability of mercury ions with organic ligands than the metal ions in metal organic framework (MOFs) provides an accessible way to separate mercury ions from solution using specific MOFs. In this study, a Co-based MOF (ZIF-67, Co(mIM)2) was synthesized. It did not introduce specific functional groups, such as -SH and -NH2, into its structure through complicated steps. It separate Hg2+ from wastewater with a new strategy, which utilized the stronger coordination ability of Hg2+ with the nitrogen atom on the imidazole ring of the organic ligand than the Co2+ ions. Hg2+ replaced Co2+ nodes from ZIF-67 and formed a more stable precipitate with mIM. The experimental results showed that this new strategy was efficient. ZIF-67 exhibited Hg2+ adsorption capacity of 1740 mg/g, much higher than the known MOFs sorbents. mIMs is the reaction center and ZIF-67 can improve its utilization. The sample color faded from purple to white due to the loss of cobalt ion. It is a great feature of ZIF-67 that allows users to judge whether the sorbent is deactivated intuitively. ZIF-67 can be sustainable recycled by adding organic ligands to the solution after treatment due to its simple synthesis method at room temperature. It's a high-efficient and sustainable sorbent for Hg2+ separation from wastewater.
Collapse
Affiliation(s)
- Jiacheng Zhou
- School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Zhang
- School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Tianying Xie
- School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Ye Liu
- School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Qicheng Shen
- School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Yang
- School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Limei Cao
- School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Ji Yang
- School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
11
|
Li X, Liang H, Liu X, Zhang Y, Liu Z, Fan H. Zeolite Imidazolate Frameworks (ZIFs) Derived Nanomaterials and their Hybrids for Advanced Secondary Batteries and Electrocatalysis. CHEM REC 2022; 22:e202200105. [PMID: 35959942 DOI: 10.1002/tcr.202200105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/07/2022]
Abstract
Zeolite imidazolate frameworks (ZIFs), as a typical class of metal-organic frameworks (MOFs), have attracted a great deal of attention in the field of energy storage and conversation due to their chemical structure stability, facile synthesis and environmental friendliness. Among of ZIFs family, the zinc-based imidazolate framework (ZIF-8) and cobalt-based imidazolate framework (ZIF-67) have considered as promising ZIFs materials, which attributed to their tunable porosity, stable structure, and desirable electrical conductivity. To date, various ZIF-8 and ZIF67 derived materials, including carbon materials, metal oxides, sulfides, selenides, carbides and phosphides, have been successfully synthesized using ZIFs as templates and evaluated as promising electrode materials for secondary batteries and electrocatalysis. This review provides an effective guide for the comprehension of the performance optimization and application prospects of ZIFs derivatives, specifically focusing on the optimization of structure and their application in secondary batteries and electrocatalysis. In detail, we present recent advances in the improvement of electrochemical performance of ZIF-8, ZIF-67 and ZIF-8@ZIF-67 derived nanomaterials and their hybrids, including carbon materials, metal oxides, carbides, oxides, sulfides, selenides, and phosphides for high-performance secondary batteries and electrocatalysis.
Collapse
Affiliation(s)
- Xiaotong Li
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang, 550025, China.,School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Huajian Liang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xinlong Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yufei Zhang
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang, 550025, China
| | - Zili Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Haosen Fan
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
12
|
Bai X, Guan J. MXenes for electrocatalysis applications: Modification and hybridization. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64030-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Aghajani S, Mohammadikish M. Sustainable Coordination Polymer-Based Catalyst and Its Application in the Nitroaromatic Hydrogenation under Mild Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8686-8695. [PMID: 35802934 DOI: 10.1021/acs.langmuir.2c01208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nitroarene reduction has played a crucial role in the environment remediation and public health. However, few research studies have been undertaken regarding the use of infinite coordination polymer-based catalysts in this process. Herein, we are looking for a way to catalyze the reduction of nitroarenes using a new and well-designed coordination polymer-based palladium catalyst. The Co-BDC-NH2 coordination polymer was prepared through a co-precipitation reaction between 2-amino-1,4-benzenedicarboxylic acid as a linker and the cobalt cation as a node. Functionalization of the prepared Co-BDC-NH2 with 2-pyridinecarboxaldehyde and subsequent metallation with a Pd cation led to the formation of the final catalyst, i.e., Co-BDC-NH2-py-Pd. It has been specified that palladium species substantially contribute to the reduction of nitroarenes in the presence of hydrazine hydrate (N2H4·H2O). The highest conversion (100%) of nitroarenes to the corresponding amines was achieved under relatively mild conditions. This heterogeneous catalyst was able to catalyze the reduction of nitroarenes to desired products without changing other substituents. The reusability and stability of the catalyst were confirmed through four consecutive reduction tests without a major decrease in catalytic activity.
Collapse
Affiliation(s)
- Shima Aghajani
- Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Maryam Mohammadikish
- Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
- Research Institute of Green Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| |
Collapse
|
14
|
Tian M, Jiang Z, Chen C, Kosari M, Li X, Jian Y, Huang Y, Zhang J, Li L, Shi JW, Zhao Y, He C. Engineering Ru/MnCo 3O x for 1,2-Dichloroethane Benign Destruction by Strengthening C–Cl Cleavage and Chlorine Desorption: Decisive Role of H 2O and Reaction Mechanism. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mingjiao Tian
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.R. China
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Zeyu Jiang
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.R. China
- Department of Chemistry, National University of Singapore, Singapore 117534, Singapore
| | - Changwei Chen
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119260, Singapore
| | - Mohammadreza Kosari
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119260, Singapore
| | - Xinzhe Li
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.R. China
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Yanfei Jian
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.R. China
| | - Yu Huang
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.R. China
| | - Jingjie Zhang
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.R. China
| | - Lu Li
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Jian-Wen Shi
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Yaruo Zhao
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.R. China
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.R. China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| |
Collapse
|
15
|
Zhang N, Zhang Q, Zhang LY, Zhang JY, Fang YZ, Liu Z, Zhou M. Oxygen Vacancy Induced Boosted Visible-Light Driven Photocatalytic CO 2 Reduction and Electrochemical Water Oxidation Over CuCo-ZIF@Fe 2 O 3 @CC Architecture. SMALL METHODS 2022; 6:e2200308. [PMID: 35661441 DOI: 10.1002/smtd.202200308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Herein, the obtained Cu0.5 Co0.5 -ZIF@Fe2 O3 @CC-150 heterojunction (termed as Cu1- x Cox -ZFC-150) showed high hydrogen and oxygen evolution reaction (HER and OER) activities with low overpotential small Tafel slope. When employed to be the bifunctional anode and cathode, they only needed a cell voltage of 1.62 V. The composite also exhibited excellent photocatalytic performance on CO2 evolution into CO and CH4 . The enhanced OER kinetics and Z-scheme charge transfer model for photocatalytic property have been discussed based on the experiments and density functional theory (DFT) analysis. The optimized phase interfaces, abundant active sites, optional oxygen vacancy, and adjusted Gibbs free energy were beneficial for the fast electron/ion transport enhancing the water splitting performance.
Collapse
Affiliation(s)
- Na Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Qing Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Lin-Yan Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jian-Yong Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yong-Zheng Fang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Zhifu Liu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Min Zhou
- Hefei National Laboratory for Physical Science at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
16
|
Liu Z, Qiu Y, Barrow CJ, Razal JM, Yang W, Liu J. Co3Se4 quantum dots encapsulated with nitrogen-doped porous nanocarbon as ultrastable electrode material for water-based all-solid asymmetric supercapacitors. J Colloid Interface Sci 2022; 627:10-20. [DOI: 10.1016/j.jcis.2022.06.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022]
|
17
|
Mohanty RI, Pradhan L, Chongdar S, Basu S, Bhanja P, Jena BK. Newly designed microporous organic-inorganic hybrid cobalt phosphonate for hydrogen evolution reaction. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
18
|
Jadhav HS, Bandal HA, Ramakrishna S, Kim H. Critical Review, Recent Updates on Zeolitic Imidazolate Framework-67 (ZIF-67) and Its Derivatives for Electrochemical Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107072. [PMID: 34846082 DOI: 10.1002/adma.202107072] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Design and construction of low-cost electrocatalysts with high catalytic activity and long-term stability is a challenging task in the field of catalysis. Metal-organic frameworks (MOF) are promising candidates as precursor materials in the development of highly efficient electrocatalysts for energy conversion and storage applications. This review starts with a summary of basic concepts and key evaluation parameters involved in the electrochemical water-splitting reaction. Then, different synthesis approaches reported for the cobalt-based Zeolitic imidazolate framework (ZIF-67) and its derivatives are critically reviewed. Additionally, several strategies employed to enhance the electrocatalytic activity and stability of ZIF-67-based electrocatalysts are discussed in detail. The present review provides a succinct insight into the ZIF-67 and its derivatives (oxides, hydroxides, sulfides, selenides, phosphide, nitrides, telluride, heteroatom/metal-doped carbon, noble metal-supported ZIF-67 derivatives) reported for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and overall water splitting applications. Finally, this review concludes with the associated challenges and the perspectives on developing the best economic, durable electrocatalytic materials.
Collapse
Affiliation(s)
- Harsharaj S Jadhav
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Harshad A Bandal
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| |
Collapse
|
19
|
Chen TY, Kuo TR, Yougbaré S, Lin LY, Xiao CY. Novel direct growth of ZIF-67 derived Co 3O 4 and N-doped carbon composites on carbon cloth as supercapacitor electrodes. J Colloid Interface Sci 2022; 608:493-503. [PMID: 34626991 DOI: 10.1016/j.jcis.2021.09.198] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
Zeolitic imidazolate framework-67 (ZIF67) derivatives are considered as promising active materials for energy storage owing to the possible formation of cobalt oxide and N-doped graphite. Cobalt oxide has multiple redox states for generating redox reactions for charge storage, while N-doped graphite can provide high electrical conductivity for charge transfer. In this study, it is the first time to synthesize binder-free electrodes composed of cobalt oxide and N-doped graphite derived from ZIF67 on carbon cloth (CC) for supercapacitor (SC). Successive oxidation and carbonization along with additional coverage of ZIF67 derivatives are applied to synthesize ZIF67 derivatives composed of cobalt oxide, N-doped graphite and cobalt oxide/N-doped graphite composites with different layer compositions. The highest specific capacitance (CF) of 90.0F/g at 20 mV/s is obtained for the oxidized ZIF67/carbonized ZIF67/carbon cloth (O67/C67/CC) electrode, due to the large surface area and high electrical conductivity benefitted from preferable morphology and growing sequence of Co3O4 and N-doped graphite. The symmetric SC composed of O67/C67/CC electrodes shows the maximum energy density of 2.53 Wh/kg at the power density of 50 W/kg. Cycling stability with CF retention of 70% and Coulombic efficiency of 65% after 6000 times repeatedly charge/discharge process is also obtained for this symmetric SC.
Collapse
Affiliation(s)
- Tzu-Yang Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Tsung-Rong Kuo
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de la Santé (IRSS-DRCO)/Nanoro, 03 B.P 7192, Ouagadougou 03, Burkina Faso
| | - Lu-Yin Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan.
| | - Cheng-Yu Xiao
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
20
|
Rana P, Kaushik B, Gaur R, Dutta S, Yadav S, Rana P, Solanki K, Arora B, Biradar AV, Gawande MB, Sharma RK. An Earth-abundant cobalt based photocatalyst: visible light induced direct (het)arene C-H arylation and CO 2 capture. Dalton Trans 2022; 51:2452-2463. [PMID: 35048925 DOI: 10.1039/d1dt03625d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we have reported a noble metal free heterogeneous photocatalyst to carry out direct (het)arene C-H arylation and solvent-free CO2 capture via single-electron transfer processes at room temperature and under pressure. The catalytic system comprises a cobalt(III) complex grafted over the silica coated magnetic support for the efficient recovery of the photocatalytic moiety without hampering its light-harvesting capability. The novel Earth-abundant cobalt(III) based photocatalyst possesses various fascinating properties such as high surface area to volume ratios, large pore volume, crystalline behaviour, high metal loading, excellent stability and reusability. The general efficacy of the highly abundant and low-cost cobalt based heterogeneous nanocatalyst was checked for the selective conversion of aryldiazonium salts into synthetically and pharmaceutically significant biaryl motifs under ambient conditions upon irradiation with visible light. The highly efficient photocatalytic conversion of carbon dioxide (CO2) to a value-added chemical was accomplished under mild reaction conditions with high selectivity, showing the added benefit of operational simplicity.
Collapse
Affiliation(s)
- Pooja Rana
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Bhawna Kaushik
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Rashmi Gaur
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Sriparna Dutta
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Sneha Yadav
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Pooja Rana
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Kanika Solanki
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Bhavya Arora
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Ankush V Biradar
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
| | - Manoj B Gawande
- Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna, 431213, Maharashtra, India
| | - R K Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| |
Collapse
|
21
|
Zhou Y, Wang Z, Zheng C, Fu Q, Wu M, Zhao H, Lei Y. Construction of Co0.85Se@nickel nanopores array hybrid electrode for high-performance asymmetric supercapacitors. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Tripathy RK, Samantara AK, Mane P, Chakraborty B, Behera JN. Cobalt metal organic framework (Co-MOF) derived CoSe 2/C hybrid nanostructures for the electrochemical hydrogen evolution reaction supported by DFT studies. NEW J CHEM 2022. [DOI: 10.1039/d1nj05528c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Through a single step and facile approach, CoSe2/C is synthesized from a HER inactive pristine MOF without adding any external carbon source, which efficiently catalyses HER in acidic medium which was also supported by DFT studies.
Collapse
Affiliation(s)
- Rajat K. Tripathy
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), P. O. Jatni, Khurda 752050, Odisha, India
- Homi Bhabha National Institute (HBNI), Mumbai-400094, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Odisha, 752050, India
| | - Aneeya K. Samantara
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), P. O. Jatni, Khurda 752050, Odisha, India
- Homi Bhabha National Institute (HBNI), Mumbai-400094, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Odisha, 752050, India
| | - Pratap Mane
- Seismology Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | - Brahmananda Chakraborty
- Homi Bhabha National Institute (HBNI), Mumbai-400094, India
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | - J. N. Behera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), P. O. Jatni, Khurda 752050, Odisha, India
- Homi Bhabha National Institute (HBNI), Mumbai-400094, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Odisha, 752050, India
| |
Collapse
|
23
|
Jiang C, Yang J, Han X, Qi H, Su M, Zhao D, Kang L, Liu X, Ye J, Li J, Guo ZX, Kaltsoyannis N, Wang A, Tang J. Crystallinity-Modulated Co 2–xV xO 4 Nanoplates for Efficient Electrochemical Water Oxidation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04618] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Chaoran Jiang
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Ji Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Xiaoyu Han
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Haifeng Qi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Min Su
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Deqiang Zhao
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Leilei Kang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Xiaoyan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Jianfeng Ye
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Jianfeng Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Zheng-Xiao Guo
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
- HKU Zhejiang Institute of Research and Innovation, Hangzhou 311300, P.R. China
| | - Nikolas Kaltsoyannis
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Aiqin Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Junwang Tang
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| |
Collapse
|
24
|
Singh B, Singh A, Yadav A, Indra A. Modulating electronic structure of metal-organic framework derived catalysts for electrochemical water oxidation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214144] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Bhowmik K, Dutta A, Vyas MK, Ota J, Hait SK, Kagdiyal V, Saxena D, Ramakumar SSV. Resorcinol/Formaldehyde polymer derived carbon protected CoSe
2
nanocubes: A non‐precious, efficient, and durable electrocatalyst for oxygen evolution reaction. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Koushik Bhowmik
- Research & Development Centre Indian Oil Corporation Limited Faridabad India
| | - Anirban Dutta
- Research & Development Centre Indian Oil Corporation Limited Faridabad India
| | - Mukesh Kumar Vyas
- Research & Development Centre Indian Oil Corporation Limited Faridabad India
| | - Jyotiranjan Ota
- Research & Development Centre Indian Oil Corporation Limited Faridabad India
| | - Samik Kumar Hait
- Research & Development Centre Indian Oil Corporation Limited Faridabad India
| | | | - Deepak Saxena
- Research & Development Centre Indian Oil Corporation Limited Faridabad India
| | | |
Collapse
|
26
|
Gao L, Cui X, Sewell CD, Li J, Lin Z. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chem Soc Rev 2021; 50:8428-8469. [PMID: 34259239 DOI: 10.1039/d0cs00962h] [Citation(s) in RCA: 219] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A climax in the development of cost-effective and high-efficiency transition metal-based electrocatalysts has been witnessed recently for sustainable energy and related conversion technologies. In this regard, structure-activity relationships based on several descriptors have already been proposed to rationally design electrocatalysts. However, the dynamic reconstruction of the surface structures and compositions of catalysts during electrocatalytic water oxidation, especially during the anodic oxygen evolution reaction (OER), complicate the streamlined prediction of the catalytic activity. With the achievements in operando and in situ techniques, it has been found that electrocatalysts undergo surface reconstruction to form the actual active species in situ accompanied with an increase in their oxidation state during OER in alkaline solution. Accordingly, a thorough understanding of the surface reconstruction process plays a critical role in establishing unambiguous structure-composition-property relationships in pursuit of high-efficiency electrocatalysts. However, several issues still need to be explored before high electrocatalytic activities can be realized, as follows: (1) the identification of initiators and pathways for surface reconstruction, (2) establishing the relationships between structure, composition, and electrocatalytic activity, and (3) the rational manipulation of in situ catalyst surface reconstruction. In this review, the recent progress in the surface reconstruction of transition metal-based OER catalysts including oxides, non-oxides, hydroxides and alloys is summarized, emphasizing the fundamental understanding of reconstruction behavior from the original precatalysts to the actual catalysts based on operando analysis and theoretical calculations. The state-of-the-art strategies to tailor the surface reconstruction such as substituting/doping with metals, introducing anions, incorporating oxygen vacancies, tuning morphologies and exploiting plasmonic/thermal/photothermal effects are then introduced. Notably, comprehensive operando/in situ characterization together with computational calculations are responsible for unveiling the improvement mechanism for OER. By delivering the progress, strategies, insights, techniques, and perspectives, this review will provide a comprehensive understanding of the surface reconstruction in transition metal-based OER catalysts and future guidelines for their rational development.
Collapse
Affiliation(s)
- Likun Gao
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | | | | | | | |
Collapse
|
27
|
Wen H, Zhang S, Yu T, Yi Z, Guo R. ZIF-67-based catalysts for oxygen evolution reaction. NANOSCALE 2021; 13:12058-12087. [PMID: 34231644 DOI: 10.1039/d1nr01669e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a new type of crystalline porous material, the imidazole zeolite framework (ZIF) has attracted widespread attention due to its ultra-high surface area, large pore volume, and unique advantage of easy functionalization. Developing different methods to control the shape and composition of ZIF is very important for its practical application as catalyst. In recent years, nano-ZIF has been considered an electrode material with excellent oxygen evolution reaction (OER) performance, which provides a new way to research electrolyzed water. This review focuses on the morphological engineering of the original ZIF-67 and its derivatives (core-shell, hollow, and array structures) through doping (cation doping, anion doping, and co-doping), derivative composition engineering (metal oxide, phosphide, sulfide, selenide, and telluride), and the corresponding single-atom catalysis. Besides, combined with DFT calculations, it emphasizes the in-depth understanding of actual active sites and provides insights into the internal mechanism of enhancing the OER and proposes the challenges and prospects of ZIF-67 based electrocatalysts. We summarize the application of ZIF-67 and its derivatives in the OER for the first time, which has significantly guided research in this field.
Collapse
Affiliation(s)
- Hui Wen
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
| | | | | | | | | |
Collapse
|
28
|
Wang H, Chen BH, Liu DJ. Metal-Organic Frameworks and Metal-Organic Gels for Oxygen Electrocatalysis: Structural and Compositional Considerations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008023. [PMID: 33984166 DOI: 10.1002/adma.202008023] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Increasing demand for sustainable and clean energy is calling for the next-generation energy conversion and storage technologies such as fuel cells, water electrolyzers, CO2 /N2 reduction electrolyzers, metal-air batteries, etc. All these electrochemical processes involve oxygen electrocatalysis. Boosting the intrinsic activity and the active-site density through rational design of metal-organic frameworks (MOFs) and metal-organic gels (MOGs) as precursors represents a new approach toward improving oxygen electrocatalysis efficiency. MOFs/MOGs afford a broad selection of combinations between metal nodes and organic linkers and are known to produce electrocatalysts with high surface areas, variable porosity, and excellent activity after pyrolysis. Some recent studies on MOFs/MOGs for oxygen electrocatalysis and their new perspectives in synthesis, characterization, and performance are discussed. New insights on the structural and compositional design in MOF/MOG-derived oxygen electrocatalysts are summarized. Critical challenges and future research directions are also outlined.
Collapse
Affiliation(s)
- Hao Wang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Biao-Hua Chen
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Di-Jia Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
29
|
Peng LJ, Huang JP, Pan QR, Liang Y, Yin N, Xu HC, Li N. A simple method for the preparation of a nickel selenide and cobalt selenide mixed catalyst to enhance bifunctional oxygen activity for Zn-air batteries. RSC Adv 2021; 11:19406-19416. [PMID: 35479235 PMCID: PMC9033603 DOI: 10.1039/d1ra02861h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022] Open
Abstract
Developing a low-cost, simple, and efficient method to prepare excellent bifunctional electrocatalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is critical in rechargeable zinc-air batteries. Non-stoichiometric M0.85Se (M = Ni or Co) nanoparticles are synthesized and modified on nitrogen-doped hollow carbon sphere (NHCS). The NHCS loaded Ni0.85Se (Ni0.85Se-NHCS) with rich Ni3+ presents higher OER activity, whereas the NHCS-loaded Co0.85Se (Co0.85Se-NHCS) with abundant Co2+ displays better ORR activity, respectively. When Co0.85Se-NHCS is mixed with Ni0.85Se-NHCS in a mass ratio of 1 : 1, the resulting mixture (Ni0.85Se/Co0.85Se-NHCS-2) shows better ORR and OER dual catalytic functions than a single selenide. Moreover, zinc-air batteries equipped with Ni0.85Se/Co0.85Se-NHCS-2 as the oxygen electrode catalyst exhibit excellent charge and discharge performance as well as improved stability over precious metals. This work has developed a simple and effective method to prepare excellent bifunctional electrocatalysts for ORR and OER, which is beneficial for the practical large-scale application of zinc-air batteries.
Collapse
Affiliation(s)
- Li-Juan Peng
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China .,College of Chemistry and Materials Science, Jinan University Guangzhou 510632 China
| | - Jie-Ping Huang
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Qiu-Ren Pan
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Ying Liang
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Na Yin
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Hang-Chang Xu
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Nan Li
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| |
Collapse
|
30
|
Iron anchored microporous cobalt phosphonate novel nanostructure for efficient oxygen evolution reaction. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Wang L, Wang XT, Zhong JH, Xiao K, Ouyang T, Liu ZQ. Filling the Charge-Discharge Voltage Gap in Flexible Hybrid Zinc-Based Batteries by Utilizing a Pseudocapacitive Material. Chemistry 2021; 27:5796-5802. [PMID: 33491256 DOI: 10.1002/chem.202100112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 11/09/2022]
Abstract
The high charge-discharge voltage gap is one of the main bottlenecks of zinc-air batteries (ZABs) because of the kinetically sluggish oxygen reduction/evolution reactions (ORR/OER) on the oxygen electrode side. Thus, an efficient bifunctional catalyst for ORR and OER is highly desired. Herein, honeycomb-like MnCo2 O4.5 spheres were used as an efficient bifunctional electrocatalyst. It was demonstrated that both ORR and OER catalytic activity are promoted by MnIV -induced oxygen vacancy defects and multiple active sites. Importantly, the multivalent ions present in the material and its defect structure endow stable pseudocapacitance within the inactive region of ORR and OER; as a result, a low charge-discharge voltage gap (0.43 V at 10 mA cm-2 ) was achieved when it was employed in a flexible hybrid Zn-based battery. This mechanism provides unprecedented and valuable insights for the development of next-generation metal-air batteries.
Collapse
Affiliation(s)
- Ling Wang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Xiao-Tong Wang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Jia-Huan Zhong
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Kang Xiao
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China.,Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Ting Ouyang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China.,Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China.,Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China.,Guangzhou Key Laboratory for Clean Energy Materials, Guangzhou University, Guangzhou, 510006, P. R. China
| |
Collapse
|
32
|
Incorporating inactive Nd2O3 into Co/N-doped carbon as bifunctional oxygen electrocatalyst for rechargeable Zn-air battery. Catal Today 2021. [DOI: 10.1016/j.cattod.2019.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Ghosh T, Natarajan K, Kumar P, Mobin SM. Nitrogen-Doped Mixed-Phase Cobalt Nanocatalyst Derived from a Trinuclear Mixed-Valence Cobalt(III)/Cobalt(II) Complex for High-Performance Oxygen Evolution Reaction. Inorg Chem 2021; 60:2333-2346. [PMID: 33502850 DOI: 10.1021/acs.inorgchem.0c03202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Because of a continuous increase in energy demands and environmental concerns, a focus has been on the design and construction of a highly efficient, low-cost, environmentally friendly, and noble-metal free electrocatalyst for energy technology. Herein we report facile synthesis of the mixed-valence trinuclear cobalt complex 1 by the reaction of 2-amino-1-phenylethanol and CoCl2·6H2O in methanol as the solvent at room temperature. Further, 1 was reduced by using aqueous N2H4 as a simple reducing agent, followed by calcination at 300 °C for 3 h, yielding a nitrogen-doped mixed phase cobalt [β-Co(OH)2 and CoO] nanocatalyst (N@MPCoNC). Both 1 and N@MPCoNC were characterized by various physicochemical techniques. Moreover, 1 was authenticated by single-crystal X-ray diffraction studies. The hybrid N@MPCoNC reveals a unique electronic and morphological structure, offering a low overpotential of 390 mV for a stable current density of 10 mA cm-2 with high durability. This N@MPCoNC showed excellent electrocatalytic as well as photocatalytic activity for oxygen evolution reaction compared to 1.
Collapse
|
34
|
Wang J, Song YF. Synchronous Electrocatalytic Design of Architectural and Electronic Structure Based on Bifunctional LDH-Co 3 O 4 /NF toward Water Splitting. Chemistry 2021; 27:3367-3373. [PMID: 32909649 DOI: 10.1002/chem.202003596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/28/2020] [Indexed: 11/10/2022]
Abstract
The rational design of highly efficient bifunctional electrocatalysts for water splitting is extremely urgent for application in sustainable energy conversion processes to alleviate the energy crisis and environmental pollution. In this work, through simple deposition of layered double hydroxides (LDH) on Co3 O4 /NF (NF=nickel foam) nanosheets arrays, hierarchical Co3+ -rich materials based on LDH-Co3 O4 /NF are prepared as highly active and stable electrocatalysts for water splitting. The NiFe-LDH-Co3 O4 /NF demonstrates excellent electrochemical activity with an overpotential of 214 mV for the OER and an overpotential of 162 mV for the HER at 10 mA cm-2 . Such a performance is attributed to the optimized electronic states with a high concentration of Co3+ , which improves the intrinsic activity, and the sheet-on-sheet hierarchical structure, which increases the number of active sites. The unique synchronous design of both the architectural and electronic structure of nanomaterials can simultaneously accelerate the reaction kinetics and provide a more convenient charge transfer path. Therefore, the strategy reported herein may open a new pathway for the design of excellent electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Jiaxin Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
35
|
Suo N, Dou Z, Cui L. Interface and composition engineering of vanadium doped cobalt nickel sulfide/phosphide heterostructure for efficient water splitting. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137602] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Paul B, Bhanja P, Sharma S, Yamauchi Y, Alothman ZA, Wang ZL, Bal R, Bhaumik A. Morphologically controlled cobalt oxide nanoparticles for efficient oxygen evolution reaction. J Colloid Interface Sci 2021; 582:322-332. [PMID: 32827957 DOI: 10.1016/j.jcis.2020.08.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/21/2020] [Accepted: 08/07/2020] [Indexed: 11/24/2022]
Abstract
Electrochemical water oxidation is one of the thrust areas of research today in solving energy and environmental issues. The morphological control in the synthesis of nanomaterials plays a crucial role in designing efficient electrocatalyst. In general, various synthetic parameters can direct the morphology of nanomaterials and often this is the main driving force for the electrocatalyst in tuning the rate of the oxygen evolution reaction (OER) for the electrochemical water-splitting. Here, a facile and cost-effective synthesis of spinel cobalt oxides (Co3O4) via a one-pot hydrothermal pathway with tunable morphology has been demonstrated. Different kinds of morphologies have been obtained by systematically varying the reaction time i.e. nanospheres, hexagon and nanocubes. Their catalytic activity has been explored towards OER in 1.0 M alkaline KOH solution. The catalyst Co3O4-24 h nanoparticles synthesized in 24 h reaction time shows the lowest overpotential (η) value of 296 mV at 10 mA cm-2 current density, in comparison to that of other as-prepared catalysts i.e. Co3O4-pH9 (311 mV), Co3O4-12 h (337 mV), and Co3O4-6 h (342 mV) with reference to commercially available IrO2 (415 mV). Moreover, Co3O4-24 h sample shows the outstanding electrochemical stability up to 25 h time.
Collapse
Affiliation(s)
- Bappi Paul
- Department of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan; Catalytic Conversion & Processes Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India
| | - Piyali Bhanja
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sachin Sharma
- Catalytic Conversion & Processes Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; Department of Plant and Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Zeid A Alothman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zhong-Li Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Rajaram Bal
- Catalytic Conversion & Processes Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India.
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
37
|
Li D, Cen B, Fang C, Leng X, Wang W, Wang Y, Chen J, Luo M. High performance cobalt nanoparticle catalysts supported by carbon for ozone decomposition: the effects of the cobalt particle size and hydrophobic carbon support. NEW J CHEM 2021. [DOI: 10.1039/d0nj04876c] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic gaseous ozone decomposition under high humidity is not only an urgent need but also a significant challenge because of the low stability over the available catalysts.
Collapse
Affiliation(s)
- Dandan Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
| | - Bingheng Cen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
| | - Chentao Fang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
| | - Xingyue Leng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
| | - Weiyue Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
| | - Yuejuan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
| | - Jian Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
| | - Mengfei Luo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
| |
Collapse
|
38
|
Xu W, Feng L, Wang Z, Liu B, Li X, Chen Y. Novel microporous cobalt phosphonate: Efficient heterogeneous catalyst towards oxygen evolution reaction. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Zhang J, Xu Q, Hu Y, Jiang H, Li C. Selenium vacancy triggered atomic disordering of Co 0.85Se nanoparticles towards a highly-active electrocatalyst for water oxidation. Chem Commun (Camb) 2020; 56:14451-14454. [PMID: 33146637 DOI: 10.1039/d0cc06336c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenium vacancy engineering has been realized in Co0.85Se nanoparticles via an anoxic melting strategy, where the vacancy content can be continuously controlled to modulate atomic disordering. The resulting Co0.85Se-30 catalyst requires a super low overpotential of 243 mV to achieve 10 mA cm-2 for the OER with a Tafel slope of 45.5 mV dec-1 and 70 h stability. In-depth electrochemical analysis finds that the outstanding properties are chiefly attributed to the dynamic Co-centers, giving the highest intrinsic activity (jCo = 6.49 A g-1 at η = 270 mV) and lowest apparent activation energy (42.43 kJ mol-1).
Collapse
Affiliation(s)
- Jiahao Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | |
Collapse
|
40
|
Kwon CY, Jeong JY, Yang J, Park YS, Jeong J, Park H, Kim Y, Choi SM. Effect of Copper Cobalt Oxide Composition on Oxygen Evolution Electrocatalysts for Anion Exchange Membrane Water Electrolysis. Front Chem 2020; 8:600908. [PMID: 33344420 PMCID: PMC7741587 DOI: 10.3389/fchem.2020.600908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/12/2020] [Indexed: 11/25/2022] Open
Abstract
Copper cobalt oxide nanoparticles (CCO NPs) were synthesized as an oxygen evolution electrocatalyst via a simple co-precipitation method, with the composition being controlled by altering the precursor ratio to 1:1, 1:2, and 1:3 (Cu:Co) to investigate the effects of composition changes. The effect of the ratio of Cu2+/Co3+ and the degree of oxidation during the co-precipitation and annealing steps on the crystal structure, morphology, and electrocatalytic properties of the produced CCO NPs were studied. The CCO1:2 electrode exhibited an outstanding performance and high stability owing to the suitable electrochemical kinetics, which was provided by the presence of sufficient Co3+ as active sites for oxygen evolution and the uniform sizes of the NPs in the half cell. Furthermore, single cell tests were performed to confirm the possibility of using the synthesized electrocatalyst in a practical water splitting system. The CCO1:2 electrocatalyst was used as an anode to develop an anion exchange membrane water electrolyzer (AEMWE) cell. The full cell showed stable hydrogen production for 100 h with an energetic efficiency of >71%. In addition, it was possible to mass produce the uniform, highly active electrocatalyst for such applications through the co-precipitation method.
Collapse
Affiliation(s)
- Chae-Yeon Kwon
- Materials Center for Energy Convergence, Surface Technology Division, Korea Institute of Materials Science (KIMS), Changwon, South Korea.,School of Materials Science and Engineering, Gyeongsang National University, Jinju, South Korea
| | - Jae-Yeop Jeong
- Materials Center for Energy Convergence, Surface Technology Division, Korea Institute of Materials Science (KIMS), Changwon, South Korea.,Department of Materials Science and Engineering, Pusan National University, Busan, South Korea
| | - Juchan Yang
- Materials Center for Energy Convergence, Surface Technology Division, Korea Institute of Materials Science (KIMS), Changwon, South Korea
| | - Yoo Sei Park
- Materials Center for Energy Convergence, Surface Technology Division, Korea Institute of Materials Science (KIMS), Changwon, South Korea.,Department of Materials Science and Engineering, Pusan National University, Busan, South Korea
| | - Jaehoon Jeong
- Materials Center for Energy Convergence, Surface Technology Division, Korea Institute of Materials Science (KIMS), Changwon, South Korea
| | - Honghyun Park
- Department of Advanced Biomaterials Research, Materials Processing Innovation Research Division, Korea Institute of Materials Science (KIMS), Changwon, South Korea
| | - Yangdo Kim
- Department of Materials Science and Engineering, Pusan National University, Busan, South Korea
| | - Sung Mook Choi
- Materials Center for Energy Convergence, Surface Technology Division, Korea Institute of Materials Science (KIMS), Changwon, South Korea
| |
Collapse
|
41
|
Karthick K, Subhashini S, Kumar R, Sethuram Markandaraj S, Teepikha MM, Kundu S. Cubic Nanostructures of Nickel–Cobalt Carbonate Hydroxide Hydrate as a High-Performance Oxygen Evolution Reaction Electrocatalyst in Alkaline and Near-Neutral Media. Inorg Chem 2020; 59:16690-16702. [DOI: 10.1021/acs.inorgchem.0c02680] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kannimuthu Karthick
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Sugumar Subhashini
- Centre for Education, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Rishabh Kumar
- Centre for Education, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sridhar Sethuram Markandaraj
- Centre for Education, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Muthukumar Muthu Teepikha
- Centre for Education, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subrata Kundu
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
42
|
Li J, Meng Z, Brett DJL, Shearing PR, Skipper NT, Parkin IP, Gadipelli S. High-Performance Zinc-Air Batteries with Scalable Metal-Organic Frameworks and Platinum Carbon Black Bifunctional Catalysts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42696-42703. [PMID: 32852934 DOI: 10.1021/acsami.0c10151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal-organic framework (MOF)-related derivatives have generated significant interest in numerous energy conversion and storage applications, such as adsorption, catalysis, and batteries. However, such materials' real-world applicability is hindered because of scalability and reproducibility issues as they are produced by multistep postsynthesis modification of MOFs, often with high-temperature carbonization and/or calcination. In this process, MOFs act as self-sacrificial templates to develop functional materials at the expense of severe mass loss, and the resultant materials exhibit complex process-performance relationships. In this work, we report the direct applicability of a readily synthesized and commercially available MOF, a zeolitic imidazolate framework (ZIF-8), in a rechargeable zinc-air battery. The composite of cobalt-based ZIF-8 and platinum carbon black (ZIF-67@Pt/CB) prepared via facile solution mixing shows a promising bifunctional electrocatalytic activity for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), the key charge and discharge mechanisms in a battery. ZIF-67@Pt/CB exhibits long OER/ORR activity durability, notably, a significantly enhanced ORR stability compared to Pt/CB, 85 versus 52%. Interestingly, a ZIF-67@Pt/CB-based battery delivers high performance with a power density of >150 mW cm-2 and long stability for 100 h of charge-discharge cyclic test runs. Such remarkable activities from as-produced ZIF-67 are attributed to the electrochemically driven in situ development of an active cobalt-(oxy)hydroxide nanophase and interfacial interaction with platinum nanoparticles. This work shows commercial feasibility of zinc-air batteries as MOF-cathode materials can be reproducibly synthesized in mass scale and applied as produced.
Collapse
Affiliation(s)
- Juntao Li
- Department of Chemistry, University College London, London WC1H 0AJ, U.K
| | - Zhu Meng
- Department of Chemistry, Imperial College London, London W12 0BZ, U.K
| | - Dan J L Brett
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, U.K
| | - Paul R Shearing
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, U.K
| | - Neal T Skipper
- Department of Physics & Astronomy, University College London, London WC1E 6BT, U.K
| | - Ivan P Parkin
- Department of Chemistry, University College London, London WC1H 0AJ, U.K
| | - Srinivas Gadipelli
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
| |
Collapse
|
43
|
Li X, Yan X, Hu X, Feng R, Zhou M. Yolk-shell ZIFs@SiO 2 and its derived carbon composite as robust catalyst for peroxymonosulfate activation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 262:110299. [PMID: 32094105 DOI: 10.1016/j.jenvman.2020.110299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Cobalt-based Zeolitic imidazolate frameworks (ZIFs) have shown a great potential for radical production by activating peroxymonosulfate (PMS). However, improve the stability of ZIFs in the reaction remains a significant challenge. In this work, ZIF-67 was synthesized and protected by coating with a layer of silica, furthermore, the yolk-shell ZIFs@SiO2 was carbonized under inner gas to obtain the Co containing carbon. When the above samples were applied for catalytic degradation of Rhodamine B (RhB) in the presence of PMS, both of them shows similar performance, with higher RhB removal efficiency and stability than that of pure ZIF-67. Additionally, factors affecting the PMS activation such as catalyst and PMS dosage and solution pH were also investigated. Radical quenching tests and electron paramagnetic resonance (EPR) revealed that 1O2 was the dominant active species involving in the degradation process. Finally, the reusability of the catalysts was studied and the spent catalysts were analyzed. Overall, the results provide insights into synthesis of yolk-shell ZIFs@SiO2 catalyst with enhanced performance for the degradation of organic pollutants from effluent.
Collapse
Affiliation(s)
- Xuemei Li
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering & Technology, China University of Mining and Technology, XuZhou, 221116, PR China
| | - Xinlong Yan
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering & Technology, China University of Mining and Technology, XuZhou, 221116, PR China.
| | - Xiaoyan Hu
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering & Technology, China University of Mining and Technology, XuZhou, 221116, PR China
| | - Rui Feng
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering & Technology, China University of Mining and Technology, XuZhou, 221116, PR China
| | - Min Zhou
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering & Technology, China University of Mining and Technology, XuZhou, 221116, PR China
| |
Collapse
|
44
|
Huang X, Men S, Zheng H, Qin DD, Kang X. Highly Porous NiCoSe 4 Microspheres as High-Performance Anode Materials for Sodium-Ion Batteries. Chem Asian J 2020; 15:1456-1463. [PMID: 32157820 DOI: 10.1002/asia.202000132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Indexed: 11/06/2022]
Abstract
Binary transition metal selenides have been more promising than single transition metal selenides as anode materials for sodium-ion batteries (SIBs). However, the controlled synthesis of transition metal selenides, especially those derived from metal-organic-frameworks with well-controlled structure and morphology is still challenging. In this paper, highly porous NiCoSe4 @NC composite microspheres were synthesized by simultaneous carbonization and selenization of a Ni-Co-based metal-organic framework (NiCo-MOF) and characterized by scanning electron microscopy, transition electron microscopy, X-Ray diffraction, X-Ray photoelectron spectroscopy and electrochemical techniques. The rationally engineered NiCoSe4 @NC composite exhibits a capacity of 325 mAh g-1 at a current density of 1 A g-1 , and 277.8 mAh g-1 at 10 A g-1 . Most importantly, the NiCoSe4 @NC retains a capacity of 293 mAh g-1 at 1 A g-1 after 1500 cycles, with a capacity decay rate of 0.025 % per cycle.
Collapse
Affiliation(s)
- Xiaolian Huang
- College of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Shuang Men
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Hui Zheng
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Dong-Dong Qin
- College of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Xiongwu Kang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
45
|
Wang T, Liu M. Rational phase transformation and morphology design to optimize oxygen evolution property of cobalt tungstate. NANOTECHNOLOGY 2020; 31:145603. [PMID: 31887727 DOI: 10.1088/1361-6528/ab662d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, a facile and feasible soft template method with the aid of buffer solution is successfully applied to synthesize high-order mesoporous cobalt tungstate for the first time. Attributing to the regulation of reaction solution's pH value and the existence of template, the phenomenon of phase transformation occurs, and high-order mesoporous structure is formed. Because of the variation of phase and morphology, only 448 mV can deliver a current density of 10 mA cm-2 with a small Tafel slope (61 mV dec-1) for mesoporous cobalt tungsten oxide hydroxide, while the cobalt tungstate nanoparticles cannot satisfy the basic demand of electrocatalysts. Herein, rational phase transformation and morphology design can significantly affect the property of oxygen evolution, which can provide vast opportunities to turn into candidates for the novel oxygen evolution catalyst.
Collapse
Affiliation(s)
- Tianlei Wang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, People's Republic of China
| | | |
Collapse
|
46
|
Ding H, Xu G, Zhang L, Wei B, Hei J, Chen L. A highly effective bifunctional catalyst of cobalt selenide nanoparticles embedded nitrogen-doped bamboo-like carbon nanotubes toward hydrogen and oxygen evolution reactions based on metal-organic framework. J Colloid Interface Sci 2020; 566:296-303. [PMID: 32007740 DOI: 10.1016/j.jcis.2020.01.096] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 10/25/2022]
|
47
|
Gholinejad M, Naghshbandi Z, Sansano JM. Co/Cu bimetallic ZIF as New heterogeneous catalyst for reduction of nitroarenes and dyes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5522] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mohammad Gholinejad
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences (IASBS) P. O. Box 45195‐1159, Gavazang Zanjan 45137‐66731 Iran
- Research Center for Basic Sciences & Modern Technologies (RBST)Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137‐66731 Iran
| | - Zhwan Naghshbandi
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences (IASBS) P. O. Box 45195‐1159, Gavazang Zanjan 45137‐66731 Iran
| | - José M. Sansano
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO‐CINQA)Universidad de Alicante Apdo. 99, E‐03080‐ Alicante Spain
| |
Collapse
|
48
|
Gholampour N, Eslamian M. Ultrasound-assisted synthesis of layered zeolitic imidazolate framework: crystal formation and characteristics. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1713316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Nadia Gholampour
- University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai, China
| | - Morteza Eslamian
- University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai, China
| |
Collapse
|
49
|
Cobalt Phosphate Cocatalyst Loaded-CdS Nanorod Photoanode with Well-Defined Junctions for Highly Efficient Photoelectrochemical Water Splitting. Catal Letters 2020. [DOI: 10.1007/s10562-019-03084-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Yang N, Guo K, Zhang Y, Xu C. Engineering the valence state of ZIF-67 by Cu2O for efficient nonenzymatic glucose detection. J Mater Chem B 2020; 8:2856-2861. [DOI: 10.1039/d0tb00094a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The valence state regulation of Co-based electrocatalysts is extremely important and greatly challenging to enhance the electrochemical performance toward glucose oxidation.
Collapse
Affiliation(s)
- Nian Yang
- State Key Laboratory of Applied Organic Chemistry
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Kailu Guo
- State Key Laboratory of Applied Organic Chemistry
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Yanwen Zhang
- State Key Laboratory of Applied Organic Chemistry
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Cailing Xu
- State Key Laboratory of Applied Organic Chemistry
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|