1
|
Li H, Luo J, Ding S, Ding J. Laser-machined micro-supercapacitors: from microstructure engineering to smart integrated systems. NANOSCALE 2024; 16:14574-14588. [PMID: 38976354 DOI: 10.1039/d4nr01860e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
With the rapid development of portable and wearable electronic devices, there is an increasing demand for miniaturized and lightweight energy storage devices. Micro-supercapacitors (MSCs), as a kind of energy storage device with high power density, a fast charge/discharge rate, and a long service life, have attracted wide attention in the field of energy storage in recent years. The performance of MSCs is mainly related to the electrodes, so there is a need to explore more efficient methods to prepare electrodes for MSCs. The process is cumbersome and time-consuming using traditional fabrication methods, and the development of laser micro-nano technology provides an efficient, high-precision, low-cost, and convenient method for fabricating supercapacitor electrodes, which can achieve finer mask-less nanofabrication. This work reviews the basics of laser fabrication of MSCs, including the laser system, the structure of MSCs, and the performance evaluation of MSCs. The application of laser micro-nanofabrication technology to MSCs and the integration of MSCs are analyzed. Finally, the challenges and prospects for the development of laser micro-nano technology for manufacturing supercapacitors are summarized.
Collapse
Affiliation(s)
- Hongpeng Li
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Junhao Luo
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Shumei Ding
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Jiabao Ding
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
2
|
Moon S, Senokos E, Trouillet V, Loeffler FF, Strauss V. Sustainable design of high-performance multifunctional carbon electrodes by one-step laser carbonization for supercapacitors and dopamine sensors. NANOSCALE 2024; 16:8627-8638. [PMID: 38606506 PMCID: PMC11064777 DOI: 10.1039/d4nr00588k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Laser carbonization is a rapid method to produce functional carbon materials for electronic devices, but many typical carbon precursors are not sustainable and/or require extensive processing for electrochemical applications. Here, a sustainable concept to fabricate laser patterned carbon (LP-C) electrodes from biomass-derived sodium lignosulfonate, an abundant waste product from the paper industry is presented. By introducing an adhesive polymer interlayer between the sodium lignosulfonate and a graphite foil current collector, stable, abrasion-resistant LP-C electrodes can be fabricated in a single laser irradiation step. The electrode properties can be systematically tuned by controlling the laser processing parameters. The optimized LP-C electrodes demonstrate a promising performance in supercapacitors and electrochemical dopamine biosensors. They exhibit high areal capacitances of 38.9 mF cm-2 in 1 M H2SO4 and high energy and power densities of 4.3 μW h cm-2 and 16 mW cm-2 in 17 M NaClO4, showing the best performance among biomass-derived LP-C materials reported so far. After 20 000 charge/discharge cycles, they retain a high capacitance of 81%. Dopamine was linearly detected in the range of 0.1 to 20 μM with an extrapolated limit of detection of 0.5 μM (S/N = 3) and high sensitivity (13.38 μA μM-1 cm-2), demonstrating better performance than previously reported biomass-derived LP-C dopamine sensors.
Collapse
Affiliation(s)
- Sanghwa Moon
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Evgeny Senokos
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Vanessa Trouillet
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Felix F Loeffler
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Volker Strauss
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
3
|
Devi M, Wang H, Moon S, Sharma S, Strauss V. Laser-Carbonization - A Powerful Tool for Micro-Fabrication of Patterned Electronic Carbons. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211054. [PMID: 36841955 DOI: 10.1002/adma.202211054] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Fabricating electronic devices from natural, renewable resources is a common goal in engineering and materials science. In this regard, carbon is of special significance due to its biocompatibility combined with electrical conductivity and electrochemical stability. In microelectronics, however, carbon's device application is often inhibited by tedious and expensive preparation processes and a lack of control over processing and material parameters. Laser-assisted carbonization is emerging as a tool for the precise and selective synthesis of functional carbon-based materials for flexible device applications. In contrast to conventional carbonization via in-furnace pyrolysis, laser-carbonization is induced photo-thermally and occurs on the time-scale of milliseconds. By careful selection of the precursors and process parameters, the properties of this so-called laser-patterned carbon (LP-C) such as porosity, surface polarity, functional groups, degree of graphitization, charge-carrier structure, etc. can be tuned. In this critical review, a common perspective is generated on laser-carbonization in the context of general carbonization strategies, fundamentals of laser-induced materials processing, and flexible electronic applications, like electrodes for sensors, electrocatalysts, energy storage, or antennas. An attempt is made to have equal emphasis on material processing and application aspects such that this emerging technology can be optimally positioned in the broader context of carbon-based microfabrication.
Collapse
Affiliation(s)
- Mamta Devi
- School of Mechanical and Materials Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175075, India
| | - Huize Wang
- Department Kolloidchemie, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Sanghwa Moon
- Department Kolloidchemie, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Swati Sharma
- School of Mechanical and Materials Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175075, India
| | - Volker Strauss
- Department Kolloidchemie, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
4
|
Usselmann M, Bansmann J, Kuehne AJC. Switchable Polyacrylonitrile-Copolymer for Melt-Processing and Thermal Carbonization-3D Printing of Carbon Supercapacitor Electrodes with High Capacitance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208484. [PMID: 36417702 DOI: 10.1002/adma.202208484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Polyacrylonitrile (PAN) represents the most widely used precursor for carbon fibers and carbon materials. Carbon materials stand out with their high mechanical performance, but they also show excellent electrical conductivity and high surface area. These properties render carbon materials suitable as electrode material for fuel cells, batteries, and supercapacitors. However, PAN has to be processed from solution before being thermally converted to carbon, limiting its final format to fibers, films, and non-wovens. Here, a PAN-copolymer with an intrinsic plasticizer is presented to reduce the melting temperature and avoid undesired entering of the thermal carbonization regime. This plasticizer enables melt extrusion-based additive manufacturing (EAM). The plasticizer in the PAN-copolymer can be switched to increase the melting temperature after processing, allowing the 3D-melt-printed workpiece to be thermally carbonized after EAM. Melt-processing of the PAN copolymer extends the freedom-in-design of carbon materials to mold-free rapid prototyping, in the absence of solvents, which enables more economic and sustainable manufacturing processes. As an example for the capability of this material system, open meshed carbon electrodes are printed for supercapacitors that are metal- and binder-free with an optimized thickness of 1.5 mm and a capacitance of up to 387 mF cm-2 .
Collapse
Affiliation(s)
- Michael Usselmann
- Institute of Macromolecular and Organic Chemistry, Ulm University, 89081, Ulm, Germany
| | - Joachim Bansmann
- Institute of Surface Chemistry and Catalysis, Ulm University, 89081, Ulm, Germany
| | - Alexander J C Kuehne
- Institute of Macromolecular and Organic Chemistry, Ulm University, 89081, Ulm, Germany
| |
Collapse
|
5
|
Liu Y, Amissah OB, Huangfang X, Wang L, Dieu Habimana JD, Lv L, Ding X, Li J, Chen M, Zhu J, Mukama O, Sun Y, Li Z, Huang R. Large-scale expansion of human umbilical cord-derived mesenchymal stem cells using PLGA@PLL scaffold. BIORESOUR BIOPROCESS 2023; 10:18. [PMID: 36915643 PMCID: PMC9994782 DOI: 10.1186/s40643-023-00635-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/31/2023] [Indexed: 03/16/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are highly important in biomedicine and hold great potential in clinical treatment for various diseases. In recent years, the capabilities of MSCs have been under extensive investigation for practical application. Regarding therapy, the efficacy usually depends on the amount of MSCs. Nevertheless, the yield of MSCs is still limited due to the traditional cultural methods. Herein, we proposed a three-dimensional (3D) scaffold prepared using poly lactic-co-glycolic acid (PLGA) nanofiber with polylysine (PLL) grafting, to promote the growth and proliferation of MSCs derived from the human umbilical cord (hUC-MSCs). We found that the inoculated hUC-MSCs adhered efficiently to the PLGA scaffold with good affinity, fast growth rate, and good multipotency. The harvested cells were ideally distributed on the scaffold and we were able to gain a larger yield than the traditional culturing methods under the same condition. Thus, our cell seeding with a 3D scaffold could serve as a promising strategy for cell proliferation in the large-scale production of MSCs. Moreover, the simplicity and low preparation cost allow this 3D scaffold to extend its potential application beyond cell culture. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1186/s40643-023-00635-6.
Collapse
Affiliation(s)
- Yujie Liu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China.,Guangzhou Junyuankang Biotechnology Co., Ltd., Guangzhou, 510530 China
| | - Obed Boadi Amissah
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | | | - Ling Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Jean de Dieu Habimana
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Linshuang Lv
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xuanyan Ding
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Junyi Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ming Chen
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Jinmin Zhu
- GZMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436 China
| | - Omar Mukama
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Yirong Sun
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Zhiyuan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China.,University of Chinese Academy of Sciences, Beijing, 100049 China.,School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China.,GZMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436 China.,GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China.,Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013 China
| | - Rongqi Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China.,GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| |
Collapse
|
6
|
Atmospheric Pressure Plasma-Jet Treatment of PAN-Nonwovens—Carbonization of Nanofiber Electrodes. Mol Vis 2022. [DOI: 10.3390/c8030033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Carbon nanofibers are produced from dielectric polymer precursors such as polyacrylonitrile (PAN). Carbonized nanofiber nonwovens show high surface area and good electrical conductivity, rendering these fiber materials interesting for application as electrodes in batteries, fuel cells, and supercapacitors. However, thermal processing is slow and costly, which is why new processing techniques have been explored for carbon fiber tows. Alternatives for the conversion of PAN-precursors into carbon fiber nonwovens are scarce. Here, we utilize an atmospheric pressure plasma jet to conduct carbonization of stabilized PAN nanofiber nonwovens. We explore the influence of various processing parameters on the conductivity and degree of carbonization of the converted nanofiber material. The precursor fibers are converted by plasma-jet treatment to carbon fiber nonwovens within seconds, by which they develop a rough surface making subsequent surface activation processes obsolete. The resulting carbon nanofiber nonwovens are applied as supercapacitor electrodes and examined by cyclic voltammetry and impedance spectroscopy. Nonwovens that are carbonized within 60 s show capacitances of up to 5 F g−1.
Collapse
|
7
|
Wang W, Lu L, Lu X, Liang Z, Tang B, Xie Y. Laser-induced jigsaw-like graphene structure inspired by Oxalis corniculata Linn. leaf. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00197-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Hoffmann A, Jiménez-Calvo P, Bansmann J, Strauss V, Kuehne AJC. On-chip Direct Laser Writing of PAN-based Carbon Supercapacitor Electrodes. Macromol Rapid Commun 2022; 43:e2100731. [PMID: 35064608 DOI: 10.1002/marc.202100731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/19/2022] [Indexed: 11/07/2022]
Abstract
We report carbonization of polyacrylonitrile by direct laser writing to produce microsupercapacitors directly on-chip. We demonstrate the process by producing interdigitated carbon finger electrodes directly on a printed circuit board, which we then employ to characterize our supercapacitor electrodes. By varying the laser power, we are able to tune the process from carbonization to material ablation. This allows to not only convert pristine polyacrylonitrile films into carbon electrodes, but also to pattern and cut away non-carbonized material to produce completely freestanding carbon electrodes. While the carbon electrodes adhere well to the printed circuit board, non-carbonized polyacrylonitrile is peeled off the substrate. We achieve specific capacities as high as 260 μF/cm2 in a supercapacitor with 16 fingers. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Andreas Hoffmann
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Pablo Jiménez-Calvo
- Department of Colloid Chemistry, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Joachim Bansmann
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, Ulm, 89069, Germany
| | - Volker Strauss
- Department of Colloid Chemistry, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Alexander J C Kuehne
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| |
Collapse
|
9
|
Kwon S, Choi HJ, Shim HC, Yoon Y, Ahn J, Lim H, Kim G, Choi KB, Lee J. Hierarchically Porous, Laser-Pyrolyzed Carbon Electrode from Black Photoresist for On-Chip Microsupercapacitors. NANOMATERIALS 2021; 11:nano11112828. [PMID: 34835593 PMCID: PMC8620280 DOI: 10.3390/nano11112828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 01/23/2023]
Abstract
We report a laser-pyrolyzed carbon (LPC) electrode prepared from a black photoresist for an on-chip microsupercapacitor (MSC). An interdigitated LPC electrode was fabricated by direct laser writing using a high-power carbon dioxide (CO2) laser to simultaneously carbonize and pattern a spin-coated black SU-8 film. Due to the high absorption of carbon blacks in black SU-8, the laser-irradiated SU-8 surface was directly exfoliated and carbonized by a fast photo-thermal reaction. Facile laser pyrolysis of black SU-8 provides a hierarchically macroporous, graphitic carbon structure with fewer defects (ID/IG = 0.19). The experimental conditions of CO2 direct laser writing were optimized to fabricate high-quality LPCs for MSC electrodes with low sheet resistance and good porosity. A typical MSC based on an LPC electrode showed a large areal capacitance of 1.26 mF cm-2 at a scan rate of 5 mV/s, outperforming most MSCs based on thermally pyrolyzed carbon. In addition, the results revealed that the high-resolution electrode pattern in the same footprint as that of the LPC-MSCs significantly affected the rate performance of the MSCs. Consequently, the proposed laser pyrolysis technique using black SU-8 provided simple and facile fabrication of porous, graphitic carbon electrodes for high-performance on-chip MSCs without high-temperature thermal pyrolysis.
Collapse
Affiliation(s)
- Soongeun Kwon
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Korea; (H.-J.C.); (H.C.S.); (J.A.); (H.L.); (G.K.); (K.-B.C.); (J.L.)
- Correspondence:
| | - Hak-Jong Choi
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Korea; (H.-J.C.); (H.C.S.); (J.A.); (H.L.); (G.K.); (K.-B.C.); (J.L.)
| | - Hyung Cheoul Shim
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Korea; (H.-J.C.); (H.C.S.); (J.A.); (H.L.); (G.K.); (K.-B.C.); (J.L.)
- Department of Nanomechatronics, Korea University of Science and Technology (UST), 217, Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34113, Korea
| | - Yeoheung Yoon
- Korea Electric Power Research Institute, 105, Munji-Ro, Yuseong-Gu, Daejeon 34056, Korea;
| | - Junhyoung Ahn
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Korea; (H.-J.C.); (H.C.S.); (J.A.); (H.L.); (G.K.); (K.-B.C.); (J.L.)
| | - Hyungjun Lim
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Korea; (H.-J.C.); (H.C.S.); (J.A.); (H.L.); (G.K.); (K.-B.C.); (J.L.)
- Department of Nanomechatronics, Korea University of Science and Technology (UST), 217, Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34113, Korea
| | - Geehong Kim
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Korea; (H.-J.C.); (H.C.S.); (J.A.); (H.L.); (G.K.); (K.-B.C.); (J.L.)
| | - Kee-Bong Choi
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Korea; (H.-J.C.); (H.C.S.); (J.A.); (H.L.); (G.K.); (K.-B.C.); (J.L.)
| | - JaeJong Lee
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Korea; (H.-J.C.); (H.C.S.); (J.A.); (H.L.); (G.K.); (K.-B.C.); (J.L.)
- Department of Nanomechatronics, Korea University of Science and Technology (UST), 217, Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34113, Korea
| |
Collapse
|
10
|
Shi H, Wang Z, Ouyang Q, Hao J, Huang X. In Situ Nitrogen Retention of Carbon Anode for Enhancing the Electrochemical Performance for Sodium-Ion Battery. Chemistry 2021; 27:8030-8039. [PMID: 33780051 DOI: 10.1002/chem.202100076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 11/08/2022]
Abstract
Retaining nitrogen for polyacrylonitrile (PAN) based carbon anode is a cost-effective way to make full use of the advantages of PAN for sodium-ion batteries (SIBs). Here, a simple strategy has been successfully adopted to retain N atoms in situ and increase production yield of a novel composite PAZ by mixing 3 wt % of zinc borate (ZB) with poly (acrylonitrile-co-itaconic acid) (PANIA). Among the prepared carbonised fibre (CF) samples, PAZ-CF-700 maintains the highest N content, retaining 90 % of the original N from PANIA. It represents the highest capacity storage contribution (80.55 %) and the lowest impedance Rct (117 Ω). Consequently, the specific capacity increases from 60 mAh g-1 of PANIA-CF-700 to 190 mAh g-1 of PAZ-CF-700 at a current density of 100 mA g-1 . At the same time, PAZ-CF-700 exhibits a good rate performance and excellent long-term cycling stability with a specific capacity of 94 mAh g-1 after 4000 cycles at 1.6 A g-1 .
Collapse
Affiliation(s)
- Hui Shi
- National Engineering Technology Research Centre of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ziheng Wang
- Beijing Kay Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qin Ouyang
- National Engineering Laboratory for Carbon Fibre Preparation Technology, Ningbo Institute of Material Technology & Engineering, Chinese Academy of Science, Ningbo, 315201, P. R. China
| | - Jianwei Hao
- National Engineering Technology Research Centre of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xianbo Huang
- Kingfa Science & Technology Company, Guangzhou, 510520, P. R. China
| |
Collapse
|
11
|
Wongkaew N, Simsek M, Arumugam P, Behrent A, Berchmans S, Baeumner AJ. A Robust strategy enabling addressable porous 3D carbon-based functional nanomaterials in miniaturized systems. NANOSCALE 2019; 11:3674-3680. [PMID: 30741291 DOI: 10.1039/c8nr09232j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
3D-porous carbon nanomaterials and their hybrids are ideal materials for energy storage and conversion, biomedical research, and wearable sensors, yet today's fabrication methods are too complicated and inefficient to implement into miniaturized systems. Instead, it is shown here that 3D-carbon nanofibrous electrodes of various designs, shapes and sizes, on flexible substrates, under ambient conditions and without complicated equipment and procedures can simply be "written" via a one-step laser-induced carbonization on electrospun nanofibers. Analytical functionalities are realized as full control over native polymer chemistry doping of the polymer (e.g. with metals) is provided. Similarly, being able to control mat morphology and its impact on the electroanalytical performance was studied. Ultimately, optimized writing conditions were harnessed for superior (bio)analytical sensing of important biomarkers (NADH, dopamine). The new procedure hence paves the way for future controlled studies on this 3D nanomaterial, for a multitude of functionalization and design possibilities, and for mass production capabilities necessary for their application in the real world.
Collapse
Affiliation(s)
- Nongnoot Wongkaew
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Wongkaew N, Simsek M, Griesche C, Baeumner AJ. Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. Chem Rev 2018; 119:120-194. [DOI: 10.1021/acs.chemrev.8b00172] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nongnoot Wongkaew
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Marcel Simsek
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Christian Griesche
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Antje J. Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
13
|
Puthusseri D, Wahid M, Basu A, Babar R, Kabir M, Ogale S. F-Doped carbon nano-onion films as scaffold for highly efficient and stable Li metal anodes: a novel laser direct-write process. NANOSCALE 2018; 10:7630-7638. [PMID: 29645024 DOI: 10.1039/c7nr09656a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Li metal is the most promising choice for anode in high-energy rechargeable batteries, but the dendrite growth upon cycling leads to safety concerns and poor cycle life. Herein, we demonstrate a novel and scalable approach for direct writing of a thin layer of carbon nano-onions on copper substrate to stabilize the Li metal anode and prevent the dendrite growth. The F-doped carbon nano-onion film (F-CNOF) scaffold enables reversible electroplating for over 1500 hours (300 cycles) with a coulombic efficiency of ∼100%. The F-CNOF is capable of depositing Li equivalent to a capacity of 10 mA h cm-2 (gravimetric capacity 3218 mA h g-1) at 1 mA cm-2, operating at a high current density of 6 mA cm-2. More importantly, these features of long-term cyclic stability and excellent rate capability are attributed to the very high curvature due to nano dimension (∼108 m-1) of the nano-onions that develop a very uniform Li flux due to the negative surface charge, thus preventing the dendrite formation. We have also shown via first-principles DFT calculations that the high curvature achieved herein can significantly enhance the binding energy of Li to the carbon surface, which helps to improve lithiophilicity. A full cell fabricated using Li4Ti5O12 as the positive electrode showed cyclic stability of 450 cycles.
Collapse
Affiliation(s)
- Dhanya Puthusseri
- Department of Physics, Centre for Energy Science, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune 411008, India
| | | | | | | | | | | |
Collapse
|
14
|
Go D, Opitz M, Lott P, Rahimi K, Stollenwerk J, Thomas H, Möller M, Roling B, Kuehne AJC. Electrochemical characterization of laser-carbonized polyacrylonitrile nanofiber nonwovens. J Appl Polym Sci 2018. [DOI: 10.1002/app.46398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Dennis Go
- DWI-Leibniz Institute for Interactive Materials; RWTH Aachen University, Forckenbeckstraße 50; Aachen 52076 Germany
| | - Martin Opitz
- Department of Chemistry; University of Marburg, Hans-Meerwein-Straße 4; Marburg 35032 Germany
| | - Philipp Lott
- Fraunhofer Institute for Laser Technology, Steinbachstraße 15; Aachen 52074 Germany
| | - Khosrow Rahimi
- DWI-Leibniz Institute for Interactive Materials; RWTH Aachen University, Forckenbeckstraße 50; Aachen 52076 Germany
| | - Jochen Stollenwerk
- Fraunhofer Institute for Laser Technology, Steinbachstraße 15; Aachen 52074 Germany
| | - Helga Thomas
- DWI-Leibniz Institute for Interactive Materials; RWTH Aachen University, Forckenbeckstraße 50; Aachen 52076 Germany
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials; RWTH Aachen University, Forckenbeckstraße 50; Aachen 52076 Germany
| | - Bernhard Roling
- Department of Chemistry; University of Marburg, Hans-Meerwein-Straße 4; Marburg 35032 Germany
| | - Alexander J. C. Kuehne
- DWI-Leibniz Institute for Interactive Materials; RWTH Aachen University, Forckenbeckstraße 50; Aachen 52076 Germany
| |
Collapse
|
15
|
Nanostructured Electrospun Hybrid Graphene/Polyacrylonitrile Yarns. NANOMATERIALS 2017; 7:nano7100293. [PMID: 28946668 PMCID: PMC5666458 DOI: 10.3390/nano7100293] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/02/2022]
Abstract
Novel nanostructured hybrid electrospun polyacrylonitrile (PAN) yarns with different graphene ratios were prepared using liquid crystal graphene oxide (LCGO) and PAN. It was found that the well-dispersed LCGO were oriented along the fiber axis in an electrified thin liquid jet during electrospinning. The graphene oxide sheets were well dispersed in the polar organic solvent, forming nematic liquid crystals upon increasing concentration. Twisted nanofibers were produced from aligned nanofibrous mats prepared by conventional electrospinning. It was found that the mechanical properties of the twisted nanofiber yarns increased even at very low LCGO loading. This research offers a new approach for the fabrication of continuous, strong, and uniform twisted nanofibers which could show promise in developing a novel carbon fiber precursor.
Collapse
|
16
|
Go D, Jurásková A, Hoffmann A, Kapiti G, Kuehne AJC. Deep-Blue Fluorescent Particles via Microwave Heating of Polyacrylonitrile Dispersions. Macromol Rapid Commun 2017; 38. [PMID: 28169474 DOI: 10.1002/marc.201600775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Dennis Go
- DWI-Leibniz Institute for Interactive Materials; RWTH Aachen University; Forckenbeckstraße 50 52076 Aachen Germany
| | - Alena Jurásková
- DWI-Leibniz Institute for Interactive Materials; RWTH Aachen University; Forckenbeckstraße 50 52076 Aachen Germany
| | - Andreas Hoffmann
- DWI-Leibniz Institute for Interactive Materials; RWTH Aachen University; Forckenbeckstraße 50 52076 Aachen Germany
| | - Gent Kapiti
- DWI-Leibniz Institute for Interactive Materials; RWTH Aachen University; Forckenbeckstraße 50 52076 Aachen Germany
| | - Alexander J. C. Kuehne
- DWI-Leibniz Institute for Interactive Materials; RWTH Aachen University; Forckenbeckstraße 50 52076 Aachen Germany
| |
Collapse
|