1
|
Wang H, Bai X, Wu Y, Peng D, Liu J, Li Z, Cheng Z, Zhou Y, Huang K, Li B, Wu H. High-Performance Multifunctional Carbon Fibrous Sponges Derived from Pitch. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401939. [PMID: 38924354 DOI: 10.1002/smll.202401939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/30/2024] [Indexed: 06/28/2024]
Abstract
3D carbon-based porous sponges are recognized for significant potential in oil absorption and electromagnetic interference (EMI). However, their widespread application is hindered by a common compromise between high performance and affordability of mass production. Herein, a novel approach is introduced that involves laser-assisted micro-zone heating melt-blown spinning (LMHMS) to address this challenge by creating pitch-based submicron carbon fibers (PSCFs) sponge with 3D interconnected structures. These structures bestow the resulting sponge exceptional characteristics including low density (≈20 mg cm-3), high porosity (≈99%), remarkable compressibility (80% maximum strain), and superior conductivity (≈628 S m-1). The resultant PSCF sponges realize an oil/organic solvent sorption capacity over 56 g/g and possess remarkable regenerated ability. In addition to their effectiveness in cleaning up oil/organic solvent spills, they also demonstrated strong electromagnetic shielding capabilities, with a total shielding effectiveness (SE) exceeding 60 dB across the X-band GHz range. In virtue of extreme lightweight of ≈20 mg cm-3, the specific SE of the PSCF sponge reaches as high as ≈1466 dB cm3 g-1, surpassing the performance of numerous carbon-based porous structures. Thus, the unique blend of properties renders these sponges promising for transforming strategies in addressing oil/organic solvent contaminations and providing effective protection against EMI.
Collapse
Affiliation(s)
- Haiyang Wang
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, P. R. China
| | - Xiaopeng Bai
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yufeng Wu
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Du Peng
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Junchen Liu
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Ziwei Li
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Zekun Cheng
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yiqian Zhou
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Kai Huang
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Bo Li
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, P. R. China
| | - Hui Wu
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
2
|
Nuge T, Fazeli M, Baniasadi H. Elucidating the enduring transformations in cellulose-based carbon nanofibers through prolonged isothermal treatment. Int J Biol Macromol 2024; 275:133480. [PMID: 38942408 DOI: 10.1016/j.ijbiomac.2024.133480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
This study investigates the conversion of highly acetylated sugarcane bagasse into high-modulus carbon nanofibers (CnNFs) with exceptional electrical conductivity. By electrospinning the bagasse into nanofibers with diameters ranging from 80 nm to 800 nm, a cost-effective CnNFs precursor is obtained. The study reveals the transformation of the cellulose crystalline structure into a stable antiparallel chain arrangement of cellulose II following prolonged isothermal treatment, leading to a remarkable 50 % increase in CnNFs recovery with carbon contents ranging from 80 % to 90 %. This surpasses the performance of any other reported biomass precursors. Furthermore, graphitization-induced shrinkage of CnNFs diameter results in significant growth of specific surface area and pore volume in the resulting samples. This, along with a highly ordered nanostructure and high crystallinity degree, contributes to an impressive tensile modulus of 9.592 GPa, surpassing that of most petroleum-based CnNFs documented in the literature. Additionally, the prolonged isothermal treatment influences the d002 value (measured at 0.414 nm) and CnNFs degree of crystallinity, leading to an enhancement in electrical conductivity. However, the study observes no size effect advantages on mechanical properties and electrical conductivity, possibly attributed to the potential presence of point defects in the ultrathin CnNFs. Overall, this research opens a promising and cost-effective pathway for converting sugarcane biomasses into high-modulus carbon nanofibers with outstanding electrical conductivity. These findings hold significant implications for the development of sustainable and high-performance materials for various applications, including electronics, energy storage, and composite reinforcement.
Collapse
Affiliation(s)
- Tamrin Nuge
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China; Center of Innovative Nanostructures & Nanodevices, University Technology Petronas, Malaysia
| | - Mahyar Fazeli
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland.
| | - Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
3
|
Iftikhar FJ, Shah A, Wali Q, Kokab T. Advancements in Nanofiber-Based Electrochemical Biosensors for Diagnostic Applications. BIOSENSORS 2023; 13:bios13040416. [PMID: 37185491 PMCID: PMC10136113 DOI: 10.3390/bios13040416] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023]
Abstract
Biosensors are analytical tools that can be used as simple, real-time, and effective devices in clinical diagnosis, food analysis, and environmental monitoring. Nanoscale functional materials possess unique properties such as a large surface-to-volume ratio, making them useful for biomedical diagnostic purposes. Nanoengineering has resulted in the increased use of nanoscale functional materials in biosensors. Various types of nanostructures i.e., 0D, 1D, 2D, and 3D, have been intensively employed to enhance biosensor selectivity, limit of detection, sensitivity, and speed of response time to display results. In particular, carbon nanotubes and nanofibers have been extensively employed in electrochemical biosensors, which have become an interdisciplinary frontier between material science and viral disease detection. This review provides an overview of the current research activities in nanofiber-based electrochemical biosensors for diagnostic purposes. The clinical applications of these nanobiosensors are also highlighted, along with a discussion of the future directions for these materials in diagnostics. The aim of this review is to stimulate a broader interest in developing nanofiber-based electrochemical biosensors and improving their applications in disease diagnosis. In this review, we summarize some of the most recent advances achieved in point of care (PoC) electrochemical biosensor applications, focusing on new materials and modifiers enabling biorecognition that have led to improved sensitivity, specificity, stability, and response time.
Collapse
Affiliation(s)
- Faiza Jan Iftikhar
- School of Applied Sciences & Humanities, National University of Technology, Islamabad 44000, Pakistan
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Qamar Wali
- School of Applied Sciences & Humanities, National University of Technology, Islamabad 44000, Pakistan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Tayyaba Kokab
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
4
|
Shrestha RG, Maji S, Mallick AK, Jha A, Man Shrestha R, Rajbhandari R, Hill JP, Ariga K, Shrestha LK. Hierarchically Porous Carbon from Phoenix Dactylifera Seed for High-Performance Supercapacitor Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Subrata Maji
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Aabhash Kumar Mallick
- Materials Science and Engineering Program, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University (TU), Lalitpur, Kathmandu 44700
| | - Abhimanyu Jha
- Materials Science and Engineering Program, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University (TU), Lalitpur, Kathmandu 44700
| | - Rajeshwar Man Shrestha
- Materials Science and Engineering Program, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University (TU), Lalitpur, Kathmandu 44700
| | - Rinita Rajbhandari
- Materials Science and Engineering Program, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University (TU), Lalitpur, Kathmandu 44700
| | - Jonathan P. Hill
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
5
|
Magana JR, Pérez-Calm A, Rodriguez-Abreu C. Chromonic nematic liquid crystals in a room-temperature ionic liquid. Chem Commun (Camb) 2022; 58:1724-1727. [PMID: 35024700 DOI: 10.1039/d1cc05800b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Planar multiaromatic molecules hierarchically and selectively arrange into nematic chromonic liquid crystals in the room temperature ionic liquid 2-hydroxyethylammonium formate. In a proof of concept, these liquid crystals were used as reaction media to produce mesostructured silica materials under mild biomimetic conditions. Several other applications are envisaged.
Collapse
Affiliation(s)
- Jose Rodrigo Magana
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Jordi Girona 18-26 08034, Barcelona, Spain.
| | - Adria Pérez-Calm
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Jordi Girona 18-26 08034, Barcelona, Spain. .,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26 08034, Barcelona, Spain
| | - Carlos Rodriguez-Abreu
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Jordi Girona 18-26 08034, Barcelona, Spain. .,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26 08034, Barcelona, Spain
| |
Collapse
|
6
|
Maji S, Shrestha RG, Lee J, Han SA, Hill JP, Kim JH, Ariga K, Shrestha LK. Macaroni Fullerene Crystals-Derived Mesoporous Carbon Tubes as the High Rate Performance Supercapacitor Electrode Material. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210059] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Subrata Maji
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Jaewoo Lee
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia
| | - Sang A Han
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia
| | - Jonathan P. Hill
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Jung Ho Kim
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia
- Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
7
|
Shrestha RL, Chaudhary R, Shrestha RG, Shrestha T, Maji S, Ariga K, Shrestha LK. Washnut Seed-Derived Ultrahigh Surface Area Nanoporous Carbons as High Rate Performance Electrode Material for Supercapacitors. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200314] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ram Lal Shrestha
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal
| | - Rashma Chaudhary
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan
| | - Timila Shrestha
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal
| | - Subrata Maji
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan
| |
Collapse
|
8
|
Jackfruit Seed-Derived Nanoporous Carbons as the Electrode Material for Supercapacitors. C — JOURNAL OF CARBON RESEARCH 2020. [DOI: 10.3390/c6040073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hierarchically porous activated carbon materials from agro-waste, Jackfruit seeds are prepared by a chemical activation method involving the treatment with zinc chloride (ZnCl2) at different temperatures (600–1000 °C). The electrochemical supercapacitance performances of the prepared materials were studied in an aqueous electrolyte (1 M sulfuric acid, H2SO4) in a three-electrode system. Jackfruit seed carbons display nanoporous structures consisting of both micro- and mesopore architectures and they are amorphous in nature and also contain oxygenated surface functional groups, as confirmed by powder X-ray diffraction (pXRD), Raman scattering, and Fourier-transformed infrared (FTIR) spectroscopy, respectively. The surface areas and pore volumes were found to be 1216.0 to 1340.4 m2·g−1 and 0.804 to 1.144 cm3·g−1, respectively, demonstrating the better surface textural properties compared to the commercial activated carbons. Due to the high surface area, large pore volume, and well developed hierarchical micro- and mesoporosity, the optimal sample achieved a high specific capacitance of 292.2 F·g−1 at 5 mV·s−1 and 261.3 F·g−1 at 1 A·g−1 followed by outstanding high rate capability. The electrode sustained 71.6% capacity retention at a high current density of 20 A·g−1. Furthermore, the electrode displayed exceptional cycling stability with small capacitance loss (0.6%) even after 10,000 charging–discharging cycles, suggesting that Jackfruit seed would have potential in low-cost and scalable production of nanoporous carbon materials for supercapacitors applications.
Collapse
|
9
|
Rodríguez-Abreu C, Kolen'ko YV, Kovnir K, Sanchez-Dominguez M, Shrestha RG, Bairi P, Ariga K, Shrestha LK. 1D materials from ionic self-assembly in mixtures containing chromonic liquid crystal mesogens. Phys Chem Chem Phys 2020; 22:23276-23285. [PMID: 33030486 DOI: 10.1039/d0cp04348f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ionic self-assembly is a simple yet powerful method to obtain robust nanostructures. Herewith, we use mixtures of oppositely-charged porphyrins that can act as mesogens to form chromonic liquid crystals in water, i.e., molecular stacks with orientational (nematic) or positional (hexagonal) order. Electrostatic locking coupled with π-π interactions between aromatic groups within the stacks, together with inter-stack hydrogen bonding induce formation of all-organic crystalline nanofibers with high aspect ratio (a few tenths of nanometers in width but several tenths of micrometers in length) and that display branching. The nanofibers prepared from metal-free porphyrin units feature interesting optical properties, including an absorption spectrum that is different from the simple sum of the individual spectra of the components, which is attributed to a striking aggregation-induced chromism. When in contact with some polar organic solvents the materials become fluorescent, as a result of disaggregation. In a proof-of-concept, the obtained self-assembled one-dimensional (1D) materials were carbonized (yield ca. 60%) to produce nitrogen-doped carbon nanofibers that can be used as active electrode materials for energy storage applications.
Collapse
Affiliation(s)
- Carlos Rodríguez-Abreu
- Instituto de Química Avanzada de Cataluña, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain. and CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Yury V Kolen'ko
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - Kirill Kovnir
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA and Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA
| | - Margarita Sanchez-Dominguez
- Centro de Investigación en Materiales Avanzados (CIMAV, S.C.), Unidad Monterrey, Apodaca, Nuevo León 66628, Mexico
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan.
| | - Partha Bairi
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan. and Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan.
| |
Collapse
|
10
|
Shrestha RL, Shrestha T, Tamrakar BM, Shrestha RG, Maji S, Ariga K, Shrestha LK. Nanoporous Carbon Materials Derived from Washnut Seed with Enhanced Supercapacitance. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2371. [PMID: 32455649 PMCID: PMC7287766 DOI: 10.3390/ma13102371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
Abstract
Nanoporous activated carbons-derived from agro-waste have been useful as suitable and scalable low-cost electrode materials in supercapacitors applications because of their better surface area and porosity compared to the commercial activated carbons. In this paper, the production of nanoporous carbons by zinc chloride activation of Washnut seed at different temperatures (400-1000 °C) and their electrochemical supercapacitance performances in aqueous electrolyte (1 M H2SO4) are reported. The prepared nanoporous carbon materials exhibit hierarchical micro- and meso-pore architectures. The surface area and porosity increase with the carbonization temperature and achieved the highest values at 800 °C. The surface area was found in the range of 922-1309 m2 g-1. Similarly, pore volume was found in the range of 0.577-0.789 cm3 g-1. The optimal sample obtained at 800 °C showed excellent electrochemical energy storage supercapacitance performance. Specific capacitance of the electrode was calculated 225.1 F g-1 at a low current density of 1 A g-1. An observed 69.6% capacitance retention at 20 A g-1 indicates a high-rate capability of the electrode materials. The cycling stability test up to 10,000 cycles revealed the outstanding stability of 98%. The fascinating surface textural properties with outstanding electrochemical performance reveal that Washnut seed would be a feasible agro-waste precursor to prepare nanoporous carbon materials as a low-cost and scalable supercapacitor electrode.
Collapse
Affiliation(s)
- Ram Lal Shrestha
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal; (R.L.S.); (T.S.)
| | - Timila Shrestha
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal; (R.L.S.); (T.S.)
| | - Birendra Man Tamrakar
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu 44600, Nepal;
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan; (S.M.); (K.A.)
| | - Subrata Maji
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan; (S.M.); (K.A.)
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan; (S.M.); (K.A.)
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan; (S.M.); (K.A.)
| |
Collapse
|
11
|
Shrestha RG, Maji S, Shrestha LK, Ariga K. Nanoarchitectonics of Nanoporous Carbon Materials in Supercapacitors Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E639. [PMID: 32235393 PMCID: PMC7221662 DOI: 10.3390/nano10040639] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/23/2023]
Abstract
High surface area and large pore volume carbon materials having hierarchical nanoporous structure are required in high performance supercapacitors. Such nanoporous carbon materials can be fabricated from organic precursors with high carbon content, such as synthetic biomass or agricultural wastes containing cellulose, hemicellulose, and lignin. Using recently developed unique concept of materials nanoarchitectonics, high performance porous carbons with controllable surface area, pore size distribution, and hierarchy in nanoporous structure can be fabricated. In this review, we will overview the recent trends and advancements on the synthetic methods for the production of hierarchical porous carbons with one- to three-dimensional network structure with superior performance in supercapacitors applications. We highlight the promising scope of accessing nanoporous graphitic carbon materials from: (i) direct conversion of single crystalline self-assembled fullerene nanomaterials and metal organic frameworks, (ii) hard- and soft-templating routes, and (iii) the direct carbonization and/or activation of biomass or agricultural wastes as non-templating routes. We discuss the appealing points of the different synthetic carbon sources and natural precursor raw-materials derived nanoporous carbon materials in supercapacitors applications.
Collapse
Affiliation(s)
- Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI−MANA), National Institute for Materials Science (NIMS), 1−1 Namiki, Tsukuba 305−0044, Japan; (S.M.); (L.K.S.)
| | - Subrata Maji
- International Center for Materials Nanoarchitectonics (WPI−MANA), National Institute for Materials Science (NIMS), 1−1 Namiki, Tsukuba 305−0044, Japan; (S.M.); (L.K.S.)
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI−MANA), National Institute for Materials Science (NIMS), 1−1 Namiki, Tsukuba 305−0044, Japan; (S.M.); (L.K.S.)
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI−MANA), National Institute for Materials Science (NIMS), 1−1 Namiki, Tsukuba 305−0044, Japan; (S.M.); (L.K.S.)
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277−8561, Japan
| |
Collapse
|
12
|
Wang Z, Wu S, Wang J, Yu A, Wei G. Carbon Nanofiber-Based Functional Nanomaterials for Sensor Applications. NANOMATERIALS 2019; 9:nano9071045. [PMID: 31336563 PMCID: PMC6669495 DOI: 10.3390/nano9071045] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
Abstract
Carbon nanofibers (CNFs) exhibit great potentials in the fields of materials science, biomedicine, tissue engineering, catalysis, energy, environmental science, and analytical science due to their unique physical and chemical properties. Usually, CNFs with flat, mesoporous, and porous surfaces can be synthesized by chemical vapor deposition and electrospinning techniques with subsequent chemical treatment. Meanwhile, the surfaces of CNFs are easy to modify with various materials to extend the applications of CNF-based hybrid nanomaterials in multiple fields. In this review, we focus on the design, synthesis, and sensor applications of CNF-based functional nanomaterials. The fabrication strategies of CNF-based functional nanomaterials by adding metallic nanoparticles (NPs), metal oxide NPs, alloy, silica, polymers, and others into CNFs are introduced and discussed. In addition, the sensor applications of CNF-based nanomaterials for detecting gas, strain, pressure, small molecule, and biomacromolecules are demonstrated in detail. This work will be beneficial for the readers to understand the strategies for fabricating various CNF-based nanomaterials, and explore new applications in energy, catalysis, and environmental science.
Collapse
Affiliation(s)
- Zhuqing Wang
- AnHui Provice Key Laboratory of Optoelectronic and Magnetism Functional Materials, Anqing Normal University, Anqing 246011, China
| | - Shasha Wu
- AnHui Provice Key Laboratory of Optoelectronic and Magnetism Functional Materials, Anqing Normal University, Anqing 246011, China
| | - Jian Wang
- AnHui Provice Key Laboratory of Optoelectronic and Magnetism Functional Materials, Anqing Normal University, Anqing 246011, China
| | - Along Yu
- AnHui Provice Key Laboratory of Optoelectronic and Magnetism Functional Materials, Anqing Normal University, Anqing 246011, China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266077, China.
- Hybrid Materials Interfaces Group, Faculty of Production Engineering and Center for Environmental Research and Sustainable technology (UFT), University of Bremen, D-28359 Bremen, Germany.
| |
Collapse
|
13
|
Sankar S, Ahmed ATA, Inamdar AI, Im H, Im YB, Lee Y, Kim DY, Lee S. Biomass-derived ultrathin mesoporous graphitic carbon nanoflakes as stable electrode material for high-performance supercapacitors. MATERIALS & DESIGN 2019; 169:107688. [DOI: 10.1016/j.matdes.2019.107688] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
14
|
Sengottaiyan C, Jayavel R, Shrestha RG, Subramani T, Maji S, Kim JH, Hill JP, Ariga K, Shrestha LK. Indium Oxide/Carbon Nanotube/Reduced Graphene Oxide Ternary Nanocomposite with Enhanced Electrochemical Supercapacitance. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180338] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Ramasamy Jayavel
- Center for Nanoscience and Technolgy, Anna University, Chennai-600025, India
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Thiyagu Subramani
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Subrata Maji
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jung Ho Kim
- Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, North Wollongong, NSW 2500, Australia
| | - Jonathan P. Hill
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-0827, Japan
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
15
|
Rice Husk-Derived High Surface Area Nanoporous Carbon Materials with Excellent Iodine and Methylene Blue Adsorption Properties. C — JOURNAL OF CARBON RESEARCH 2019. [DOI: 10.3390/c5010010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Iodine and methylene blue adsorption properties of the high surface area nanoporous carbon materials derived from agro-waste and rice husk is reported. Rice husk was pre-carbonized at 300 °C in air followed by leaching out the silica nanoparticles by extraction with sodium hydroxide solution. The silica-free rice husk char was mixed with chemical activating agents sodium hydroxide (NaOH), zinc chloride (ZnCl2), and potassium hydroxide (KOH) separately at a mixing ratio of 1:1 (wt%) and carbonized at 900 °C under a constant flow of nitrogen. The prepared carbon materials were characterized by scanning electron microscopy (SEM), Fourier transformed-infrared spectroscopy (FT-IR), powder X-ray diffraction (pXRD), and Raman scattering. Due to the presence of bimodal micro- and mesopore structures, KOH activated samples showed high specific surface area ca. 2342 m2/g and large pore volume ca. 2.94 cm3/g. Oxygenated surface functional groups (hydroxyl, carbonyl, and carboxyl) were commonly observed in all of the samples and were essentially non-crystalline porous particle size of different sizes (<200 μm). Adsorption study revealed that KOH activated samples could be excellent material for the iodine and methylene blue adsorption from aqueous phase. Iodine and methylene blue number were ca. 1726 mg/g and 608 mg/g, respectively. The observed excellent iodine and methylene blue adsorption properties can be attributed to the well-developed micro- and mesopore structure in the carbon material. This study demonstrates that the agricultural waste, rice husk, and derived nanoporous carbon materials would be excellent adsorbent materials in water purifications.
Collapse
|
16
|
Ariga K, Nishikawa M, Mori T, Takeya J, Shrestha LK, Hill JP. Self-assembly as a key player for materials nanoarchitectonics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:51-95. [PMID: 30787960 PMCID: PMC6374972 DOI: 10.1080/14686996.2018.1553108] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 05/07/2023]
Abstract
The development of science and technology of advanced materials using nanoscale units can be conducted by a novel concept involving combination of nanotechnology methodology with various research disciplines, especially supramolecular chemistry. The novel concept is called 'nanoarchitectonics' where self-assembly processes are crucial in many cases involving a wide range of component materials. This review of self-assembly processes re-examines recent progress in materials nanoarchitectonics. It is composed of three main sections: (1) the first short section describes typical examples of self-assembly research to outline the matters discussed in this review; (2) the second section summarizes self-assemblies at interfaces from general viewpoints; and (3) the final section is focused on self-assembly processes at interfaces. The examples presented demonstrate the strikingly wide range of possibilities and future potential of self-assembly processes and their important contribution to materials nanoarchitectonics. The research examples described in this review cover variously structured objects including molecular machines, molecular receptors, molecular pliers, molecular rotors, nanoparticles, nanosheets, nanotubes, nanowires, nanoflakes, nanocubes, nanodisks, nanoring, block copolymers, hyperbranched polymers, supramolecular polymers, supramolecular gels, liquid crystals, Langmuir monolayers, Langmuir-Blodgett films, self-assembled monolayers, thin films, layer-by-layer structures, breath figure motif structures, two-dimensional molecular patterns, fullerene crystals, metal-organic frameworks, coordination polymers, coordination capsules, porous carbon spheres, mesoporous materials, polynuclear catalysts, DNA origamis, transmembrane channels, peptide conjugates, and vesicles, as well as functional materials for sensing, surface-enhanced Raman spectroscopy, photovoltaics, charge transport, excitation energy transfer, light-harvesting, photocatalysts, field effect transistors, logic gates, organic semiconductors, thin-film-based devices, drug delivery, cell culture, supramolecular differentiation, molecular recognition, molecular tuning, and hand-operating (hand-operated) nanotechnology.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science (NIMS), Ibaraki, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | | | - Taizo Mori
- WPI-MANA, National Institute for Materials Science (NIMS), Ibaraki, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Jun Takeya
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Lok Kumar Shrestha
- WPI-MANA, National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Jonathan P. Hill
- WPI-MANA, National Institute for Materials Science (NIMS), Ibaraki, Japan
| |
Collapse
|
17
|
Self-Assembled Fullerene Crystals as Excellent Aromatic Vapor Sensors. SENSORS 2019; 19:s19020267. [PMID: 30641916 PMCID: PMC6359261 DOI: 10.3390/s19020267] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 01/29/2023]
Abstract
Here we report the aromatic vapor sensing performance of bitter melon shaped nanoporous fullerene C60 crystals that are self-assembled at a liquid-liquid interface between isopropyl alcohol and C60 solution in dodecylbenzene at 25 °C. Average length and center diameter of the crystals were ca. 10 μm and ~2 μm, respectively. Powder X-ray diffraction pattern (pXRD) confirmed a face-centered cubic (fcc) structure with cell dimension ca. a = 1.4272 nm, and V = 2.907 nm3, which is similar to that of the pristine fullerene C60. Transmission electron microscopy (TEM) confirmed the presence of a nanoporous structure. Quartz crystal microbalance (QCM) results showed that the bitter melon shaped nanoporous C60 performs as an excellent sensing system, particularly for aromatic vapors, due to their easy diffusion through the porous architecture and strong π–π interactions with the sp2-carbon.
Collapse
|
18
|
Sengottaiyan C, Kalam NA, Jayavel R, Shrestha RG, Subramani T, Sankar S, Hill JP, Shrestha LK, Ariga K. BiVO4/RGO hybrid nanostructure for high performance electrochemical supercapacitor. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2018.10.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Magana JR, Solans C, Salonen LM, Carbó-Argibay E, Gallo J, Tiddy GJ, Rodríguez-Abreu C. Chromonic self-assemblies in a series of dialkyl-thiacarbocyanine dyes and generalization of a facile route for the synthesis of fluorescent nanostructured silica fibers. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Vanadium sulfide/reduced graphene oxide composite with enhanced supercapacitance performance. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.01.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Jackman JA, Cho NJ, Nishikawa M, Yoshikawa G, Mori T, Shrestha LK, Ariga K. Materials Nanoarchitectonics for Mechanical Tools in Chemical and Biological Sensing. Chem Asian J 2018; 13:3366-3377. [PMID: 29959818 DOI: 10.1002/asia.201800935] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Indexed: 12/28/2022]
Abstract
In this Focus Review, nanoarchitectonic approaches for mechanical-action-based chemical and biological sensors are briefly discussed. In particular, recent examples of piezoelectric devices, such as quartz crystal microbalances (QCM and QCM-D) and a membrane-type surface stress sensor (MSS), are introduced. Sensors need well-designed nanostructured sensing materials for the sensitive and selective detection of specific targets. Nanoarchitectonic approaches for sensing materials, such as mesoporous materials, 2D materials, fullerene assemblies, supported lipid bilayers, and layer-by-layer assemblies, are highlighted. Based on these sensing approaches, examples of bioanalytical applications are presented for toxic gas detection, cell membrane interactions, label-free biomolecular assays, anticancer drug evaluation, complement activation-related multiprotein membrane attack complexes, and daily biodiagnosis, which are partially supported by data analysis, such as machine learning and principal component analysis.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore
- Department of Medicine, Stanford University, Stanford, California, 94305, USA
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Michihiro Nishikawa
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Genki Yoshikawa
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Center for Functional Sensor & Actuator (CFSN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Materials Science and Engineering, Graduate School of Pure and Applied Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8571, Japan
| | - Taizo Mori
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
22
|
Li S, Qi D, Huang J. Natural cellulose based self-assembly towards designed functionalities. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2017.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Luo W, Zhang G, Cui Y, Liu Y, Jin C, Hao J, Zhang J, Zheng W. One-pot synthesis of highly stable carbon–MoS2 nanosphere electrodes using a co-growth mechanism for supercapacitors. NEW J CHEM 2018. [DOI: 10.1039/c8nj01387j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The carbon–MoS2 nanosphere was successfully prepared using a co-growth mechanism in a one-pot synthesis. The co-growth process gave the composite electrode good stability at a large current density for a long cycle life.
Collapse
Affiliation(s)
- Wenhao Luo
- Department of Chemistry, and Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- TKL of Metal and Molecule-based Material Chemistry
- College of Chemistry
- Nankai University
- Tianjin
| | - Guofeng Zhang
- Department of Chemistry, and Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- TKL of Metal and Molecule-based Material Chemistry
- College of Chemistry
- Nankai University
- Tianjin
| | - Yingxue Cui
- Department of Chemistry, and Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- TKL of Metal and Molecule-based Material Chemistry
- College of Chemistry
- Nankai University
- Tianjin
| | - Yanxia Liu
- Department of Chemistry, and Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- TKL of Metal and Molecule-based Material Chemistry
- College of Chemistry
- Nankai University
- Tianjin
| | - Cen Jin
- Department of Chemistry, and Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- TKL of Metal and Molecule-based Material Chemistry
- College of Chemistry
- Nankai University
- Tianjin
| | - Jing Hao
- Department of Chemistry, and Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- TKL of Metal and Molecule-based Material Chemistry
- College of Chemistry
- Nankai University
- Tianjin
| | - Jing Zhang
- Department of Chemistry, and Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- TKL of Metal and Molecule-based Material Chemistry
- College of Chemistry
- Nankai University
- Tianjin
| | - Wenjun Zheng
- Department of Chemistry, and Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- TKL of Metal and Molecule-based Material Chemistry
- College of Chemistry
- Nankai University
- Tianjin
| |
Collapse
|
24
|
Hierarchical Flower Structured Bi2S3/Reduced Graphene Oxide Nanocomposite for High Electrochemical Performance. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0701-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Shu Y, Maruyama J, Iwasaki S, Li C, Shen Y, Uyama H. Hierarchical Activated Green Carbons from Abundant Biomass Waste for Symmetric Supercapacitors. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yu Shu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, Shaanxi Province, PR China
| | - Jun Maruyama
- Research Division of Environmental Technology, Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553
| | - Satoshi Iwasaki
- Research Division of Environmental Technology, Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, Shaanxi Province, PR China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, Shaanxi Province, PR China
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, Shaanxi Province, PR China
| |
Collapse
|
26
|
Sengottaiyan C, Jayavel R, Bairi P, Shrestha RG, Ariga K, Shrestha LK. Cobalt Oxide/Reduced Graphene Oxide Composite with Enhanced Electrochemical Supercapacitance Performance. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170092] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | - Ramasamy Jayavel
- Center for Nanoscience and Technolgy, Anna University, Chennai-600025, India
| | - Partha Bairi
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044
| | - Rekha Goswami Shrestha
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044
| | - Katsuhiko Ariga
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044
- Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-0827
| | - Lok Kumar Shrestha
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044
| |
Collapse
|
27
|
Zhu Y, Cheng S, Zhou W, Jia J, Yang L, Yao M, Wang M, Wu P, Luo H, Liu M. Porous Functionalized Self-Standing Carbon Fiber Paper Electrodes for High-Performance Capacitive Energy Storage. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13173-13180. [PMID: 28353335 DOI: 10.1021/acsami.7b01210] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A facile and cost-efficient approach to functionalize raw carbon fiber paper (CFP) used for a self-standing capacitive electrode has been proposed here. Benefiting from the improved specific surface area and surface functional groups, the functionalized CFP (F-CFP) showed much enhanced capacitive performance, 3 orders of magnitude higher than that of the raw CFP. It delivered the areal capacitance of 1275 mF cm-2 at 5 mA cm-2 with a rather wide voltage window of 1.4 V (-0.4 to 1 V vs Ag/AgCl) in 0.5 M H2SO4. However, in a neutral 1 M Na2SO4 aqueous solution, although the areal capacitance of 1115 mF cm-2 at 3 mA cm-2 is slightly smaller, the potential window is much wider (2 V, -1 to 1 V vs Ag/AgCl), indicating a high overpotential of hydrogen evolution. The areal capacitance was still as high as 722 mF cm-2 at a very fast charge-discharge current density of 50 mA cm-2, and about 66% of the initial capacitance (at 3 mA cm-2) was remained in Na2SO4, indicating considerable rate capability.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- Guanzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology , Guangzhou 510006, China
| | - Shuang Cheng
- Guanzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology , Guangzhou 510006, China
| | - Weijia Zhou
- Guanzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology , Guangzhou 510006, China
| | - Jin Jia
- Guanzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology , Guangzhou 510006, China
| | - Lufeng Yang
- Guanzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology , Guangzhou 510006, China
| | - Minghai Yao
- Guanzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology , Guangzhou 510006, China
| | - Mengkun Wang
- Guanzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology , Guangzhou 510006, China
| | - Peng Wu
- Guanzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology , Guangzhou 510006, China
| | - Haowei Luo
- Guanzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology , Guangzhou 510006, China
| | - Meilin Liu
- Guanzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology , Guangzhou 510006, China
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
28
|
Nanoarchitectonics of Nanoporous Carbon Materials from Natural Resource for Supercapacitor Application. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0548-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Sengottaiyan C, Jayavel R, Shrestha RG, Hill JP, Ariga K, Shrestha LK. Electrochemical Supercapacitance Properties of Reduced Graphene Oxide/Mn2O3:Co3O4 Nanocomposite. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0501-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|