1
|
He F, Wang Y, Liu J, Yao X. One-dimensional carbon based nanoreactor fabrication by electrospinning for sustainable catalysis. EXPLORATION (BEIJING, CHINA) 2023; 3:20220164. [PMID: 37933386 PMCID: PMC10624385 DOI: 10.1002/exp.20220164] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
An efficient and economical electrocatalyst as kinetic support is key to electrochemical reactions. For this reason, chemists have been working to investigate the basic changing of chemical principles when the system is confined in limited space with nanometer-scale dimensions or sub-microliter volumes. Inspired by biological research, the design and construction of a closed reaction environment, namely the reactor, has attracted more and more interest in chemistry, biology, and materials science. In particular, nanoreactors became a high-profile rising star and different types of nanoreactors have been fabricated. Compared with the traditional particle nanoreactor, the one-dimensional (1D) carbon-based nanoreactor prepared by the electrospinning process has better electrolyte diffusion, charge transfer capabilities, and outstanding catalytic activity and selectivity than the traditional particle catalyst which has great application potential in various electrochemical catalytic reactions.
Collapse
Affiliation(s)
- Fagui He
- State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoningChina
| | - Yiyan Wang
- DICP‐Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology InstituteUniversity of SurreyGuilfordSurreyUK
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical TechnologySinopecShanghaiChina
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoningChina
- DICP‐Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology InstituteUniversity of SurreyGuilfordSurreyUK
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsFudan UniversityShanghaiP. R. China
| | - Xiangdong Yao
- School of Advanced EnergySun‐yat Sen University (Shenzhen)ShenzhenGuangdongChina
| |
Collapse
|
2
|
Amutha E, Rajaduraipandian S, Sivakavinesan M, Annadurai G. Hydrothermal synthesis and characterization of the antimony-tin oxide nanomaterial and its application as a high-performance asymmetric supercapacitor, photocatalyst, and antibacterial agent. NANOSCALE ADVANCES 2022; 5:255-267. [PMID: 36605811 PMCID: PMC9765471 DOI: 10.1039/d2na00666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
We have synthesized antimony-tin oxide (ATO) nanoparticles chemically for use in antibacterial, photocatalytic, and supercapacitor applications. The XRD pattern reveals the hexagonal structure, while the FTIR spectra validate the functional groups. The agglomerated nanostructures, which are 40-50 nm thick and 100 nm long, are shown in the SEM images as having spherical, cube, square, and rod form morphologies. In a DLS test, ATO has a zeta potential of 28.93/-28.00 mV, demonstrating strong colloidal stability in the suspension. With minimum inhibitory concentrations (MIC) ranging from 25 to 100 g mL-1, ATO is also tested for its antibacterial activity against a variety of Gram-positive and Gram-negative bacteria. Additionally, rhodamine dye was broken down by ATO nanoparticles in 240 minutes with a degradation efficiency of 88 percent. The specific capacitance (C s) and energy density (E) values of ATO nanoparticles further demonstrated their suitability for use in supercapacitors.
Collapse
Affiliation(s)
- Eswaran Amutha
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University Alwarkurichi - 627412 India
| | | | - Minnalkodi Sivakavinesan
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University Alwarkurichi - 627412 India
| | - Gurusamy Annadurai
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University Alwarkurichi - 627412 India
| |
Collapse
|
3
|
Li P, Zang R, Wu Y, Liu S, Wang S, Liu P, Li P. A quasi-3D Sb 2S 3/reduced graphene oxide/MXene (Ti 3C 2T x) hybrid for high-rate and durable sodium-ion batteries. NANOSCALE 2022; 14:5529-5536. [PMID: 35343536 DOI: 10.1039/d2nr00655c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Antimony sulfide (Sb2S3) is a promising anode material for sodium-ion batteries (SIBs) owing to its high theoretical capacity and superior reversibility. However, its cycling life and rate performance are seriously impeded by the inferior inherent electroconductibility and tremendous volume change in the charging/discharging processes. Herein, a quasi three-dimensional (3D) Sb2S3/RGO/MXene composite, with Sb2S3 nanoparticles (∼15 nm) uniformly distributed in the quasi-3D RGO/MXene architecture, was prepared by a toilless hydrothermal treatment. The RGO/MXene conductive substrate not only alleviates the volume expansion of Sb2S3, but also promotes electrolyte infiltration and affords highways for ion/electron transport. More importantly, the synergistic effects between RGO and Ti3C2Tx MXene are extremely favourable to maintain the integrity of the electrode during cycling. As a result, the Sb2S3/RGO/MXene composite exhibits a high reversible capacity of 633 mA h g-1 at 0.2 A g-1, outstanding rate capability (510.1 mA h g-1 at 4 A g-1) and good cycling performance with a capacity loss of 16% after 500 cycles.
Collapse
Affiliation(s)
- Pengxin Li
- College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Rui Zang
- College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Yuhan Wu
- College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Shuaishuai Liu
- College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Siyu Wang
- College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Puyu Liu
- College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Peng Li
- College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| |
Collapse
|
4
|
Yoo G, Koo BR, An HR, Huang C, An GH. Enhanced and stabilized charge transport boosting by Fe-doping effect of V2O5 nanorod for rechargeable Zn-ion battery. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Li M, Cai Z, Yang Y, Wang Y, Zhong H, Li T. Preparation and characterization of Sb-doped SnO 2 (ATO) nanoparticles with NIR shielding by an oxidation coprecipitation hydrothermal method. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2019.1645020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Meng Li
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences , Urumqi , China
- Center of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences , Beijing , China
- School of Physics and Electrical Engineering, Qinghai Normal University , Xining , Qinghai , China
| | - Zi Cai
- Yew Wah International Educational School of Guangzhou , Guangzhou , China
| | - Yun Yang
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences , Urumqi , China
- Center of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences , Beijing , China
| | - Yuanhao Wang
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences , Urumqi , China
- Center of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences , Beijing , China
| | - Hong Zhong
- Renewable Energy Research Group, Department of Building Services Engineering, The Hong Kong Polytechnic University , Hong Kong , Kowloon , China
| | - Tao Li
- School of Physics and Electrical Engineering, Qinghai Normal University , Xining , Qinghai , China
| |
Collapse
|
6
|
Shin DY, Ahn HJ. Interfacial Engineering of a Heteroatom-Doped Graphene Layer on Patterned Aluminum Foil for Ultrafast Lithium Storage Kinetics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19210-19217. [PMID: 32233395 DOI: 10.1021/acsami.0c01774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The design of the interfacial architecture between the electrode and the current collector in lithium-ion batteries (LIB) plays a key role in achieving ultrafast lithium storage kinetics with respect to efficient charge transfer and cycle stability. However, in recent years, despite considerable efforts in the structural and chemical engineering of active materials (anode and cathode materials), interfacial architectures between the electrode and the current collector have received relatively insufficient attention in the case of ultrafast LIBs. Here, the interface architecture of a micropatterned Al current collector with a heteroatom-doped graphene interfacial layer is developed using roll pressing and dip coating processes. The cathode electrode fabricated with the resultant current collector offers increased contact area with enhanced interfacial stability between the electrode and the current collector because of micropatterns with heteroatom-doped graphene formed on the current collector, leading to outstanding ultrafast cycling capacity (105.8 mA h g-1) at 20 C. Furthermore, at extremely high rate and long-term cycling performance, significant ultrafast cycling stability (specific capacity of 87.1 mA h g-1 with capacity retention of 82.3% at 20 C after 1000 cycles) is noted. These improved ultrafast and ultra-stable performances are explained in terms of the increased electron collection/provision site with a high contact area between the electrode and the current collector for enhanced ultrafast cycling capacity and the effective corrosion prevention of the current collector with fast charge transfer for ultrafast cycling stability.
Collapse
Affiliation(s)
- Dong-Yo Shin
- Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Hyo-Jin Ahn
- Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Korea
- Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea
| |
Collapse
|
7
|
Zoller F, Böhm D, Bein T, Fattakhova‐Rohlfing D. Tin Oxide Based Nanomaterials and Their Application as Anodes in Lithium-Ion Batteries and Beyond. CHEMSUSCHEM 2019; 12:4140-4159. [PMID: 31309710 PMCID: PMC6790706 DOI: 10.1002/cssc.201901487] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/14/2019] [Indexed: 05/05/2023]
Abstract
Herein, recent progress in the field of tin oxide (SnO2 )-based nanosized and nanostructured materials as conversion and alloying/dealloying-type anodes in lithium-ion batteries and beyond (sodium- and potassium-ion batteries) is briefly discussed. The first section addresses the importance of the initial SnO2 micro- and nanostructure on the conversion and alloying/dealloying reaction upon lithiation and its impact on the microstructure and cyclability of the anodes. A further section is dedicated to recent advances in the fabrication of diverse 0D to 3D nanostructures to overcome stability issues induced by large volume changes during cycling. Additionally, the role of doping on conductivity and synergistic effects of redox-active and -inactive dopants on the reversible lithium-storage capacity and rate capability are discussed. Furthermore, the synthesis and electrochemical properties of nanostructured SnO2 /C composites are reviewed. The broad research spectrum of SnO2 anode materials is finally reflected in a brief overview of recent work published on Na- and K-ion batteries.
Collapse
Affiliation(s)
- Florian Zoller
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität München (LMU Munich)Butenandtstrasse 5-13 (E)81377MunichGermany
- Faculty of Engineering and Center for Nanointegration, Duisburg-Essen (CENIDE)Universität Duisburg-Essen (UDE)Lotharstraße 147057DuisburgGermany
| | - Daniel Böhm
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität München (LMU Munich)Butenandtstrasse 5-13 (E)81377MunichGermany
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität München (LMU Munich)Butenandtstrasse 5-13 (E)81377MunichGermany
| | - Dina Fattakhova‐Rohlfing
- Institute of Energy and Climate Research (IEK-1), Materials Synthesis and ProcessingForschungszentrum Jülich GmbHWilhelm-Johnen-Strasse52425JülichGermany
- Faculty of Engineering and Center for Nanointegration, Duisburg-Essen (CENIDE)Universität Duisburg-Essen (UDE)Lotharstraße 147057DuisburgGermany
| |
Collapse
|
8
|
A Robust Solid Electrolyte Interphase Layer Augments the Ion Storage Capacity of Bimetallic‐Sulfide‐Containing Potassium‐Ion Batteries. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908542] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Xie J, Li X, Lai H, Zhao Z, Li J, Zhang W, Xie W, Liu Y, Mai W. A Robust Solid Electrolyte Interphase Layer Augments the Ion Storage Capacity of Bimetallic‐Sulfide‐Containing Potassium‐Ion Batteries. Angew Chem Int Ed Engl 2019; 58:14740-14747. [DOI: 10.1002/anie.201908542] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Junpeng Xie
- Siyuan Laboratory Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials Department of Physics Jinan University Guangzhou 510632 P. R. China
| | - Xiaodan Li
- Siyuan Laboratory Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials Department of Physics Jinan University Guangzhou 510632 P. R. China
| | - Haojie Lai
- Siyuan Laboratory Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials Department of Physics Jinan University Guangzhou 510632 P. R. China
| | - Zhijuan Zhao
- Siyuan Laboratory Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials Department of Physics Jinan University Guangzhou 510632 P. R. China
| | - Jinliang Li
- Siyuan Laboratory Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials Department of Physics Jinan University Guangzhou 510632 P. R. China
- International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Wanggang Zhang
- Department College of Materials Science and Engineering Taiyuan University of Technology Taiyuan Shanxi 030024 China
| | - Weiguang Xie
- Siyuan Laboratory Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials Department of Physics Jinan University Guangzhou 510632 P. R. China
| | - Yiming Liu
- Department College of Materials Science and Engineering Taiyuan University of Technology Taiyuan Shanxi 030024 China
| | - Wenjie Mai
- Siyuan Laboratory Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials Department of Physics Jinan University Guangzhou 510632 P. R. China
| |
Collapse
|
10
|
Li J, Wang L, Liu F, Liu W, Luo C, Liao Y, Li X, Qu M, Wan Q, Peng G. In Situ Wrapping SiO with Carbon Nanotubes as Anode Material for High-Performance Li-Ion Batteries. ChemistrySelect 2019. [DOI: 10.1002/slct.201900337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jianbin Li
- Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu, Sichuan 610041 PR China
- University of Chinese Academy of Sciences; Beijing 100039 PR China
| | - Lei Wang
- Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu, Sichuan 610041 PR China
| | - Fangming Liu
- Chengdu Guibao Science and Technology Co., Ltd; Chengdu 610041 PR China
| | - Wenjing Liu
- Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu, Sichuan 610041 PR China
| | - Caikun Luo
- Chengdu Guibao Science and Technology Co., Ltd; Chengdu 610041 PR China
| | - Yingling Liao
- Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu, Sichuan 610041 PR China
- University of Chinese Academy of Sciences; Beijing 100039 PR China
| | - Xuan Li
- Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu, Sichuan 610041 PR China
- University of Chinese Academy of Sciences; Beijing 100039 PR China
| | - Meizhen Qu
- Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu, Sichuan 610041 PR China
| | - Qi Wan
- Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu, Sichuan 610041 PR China
| | - Gongchang Peng
- Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu, Sichuan 610041 PR China
| |
Collapse
|
11
|
Nguyen QH, Kim IT, Hur J. Core-shell Si@c-PAN particles deposited on graphite as promising anode for lithium-ion batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
An GH, Kim H, Ahn HJ. Excavated carbon with embedded Si nanoparticles for ultrafast lithium storage. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.07.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
An GH, Lee DY, Ahn HJ. Hierarchically mesoporous activated carbon prepared from the dissolution of zinc oxide for high-rate electrical double layer capacitors. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
14
|
Sun H, Deng K, Zhu Y, Liao M, Xiong J, Li Y, Li L. A Novel Conductive Mesoporous Layer with a Dynamic Two-Step Deposition Strategy Boosts Efficiency of Perovskite Solar Cells to 20. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801935. [PMID: 29786889 DOI: 10.1002/adma.201801935] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Indexed: 05/27/2023]
Abstract
Lead halide perovskite solar cells (PSCs) with the high power conversion efficiency (PCE) typically use mesoporous metal oxide nanoparticles as the scaffold and electron-transport layers. However, the traditional mesoporous layer suffers from low electron conductivity and severe carrier recombination. Here, antimony-doped tin oxide nanorod arrays are proposed as novel transparent conductive mesoporous layers in PSCs. Such a mesoporous layer improves the electron transport as well as light utilization. To resolve the common problem of uneven growth of perovskite on rough surface, the dynamic two-step spin coating strategy is proposed to prepare highly smooth, dense, and crystallized perovskite films with micrometer-scale grains, largely reducing the carrier recombination ratio. The conductive mesoporous layer and high-quality perovskite film eventually render the PSC with a remarkable PCE of 20.1% with excellent reproducibility. These findings provide a new avenue to further design high-efficiency PSCs from the aspect of carrier transport and recombination.
Collapse
Affiliation(s)
- Haoxuan Sun
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Kaimo Deng
- College of Physics, Optoelectronics and Energy, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Yayun Zhu
- College of Physics, Optoelectronics and Energy, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Min Liao
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, Hunan, P. R. China
| | - Jie Xiong
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yanrong Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Liang Li
- College of Physics, Optoelectronics and Energy, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
15
|
An GH, Kim H, Ahn HJ. Improved Ionic Diffusion through the Mesoporous Carbon Skin on Silicon Nanoparticles Embedded in Carbon for Ultrafast Lithium Storage. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6235-6244. [PMID: 29381857 DOI: 10.1021/acsami.7b15950] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Because of their combined effects of outstanding mechanical stability, high electrical conductivity, and high theoretical capacity, silicon (Si) nanoparticles embedded in carbon are a promising candidate as electrode material for practical utilization in Li-ion batteries (LIBs) to replace the conventional graphite. However, because of the poor ionic diffusion of electrode materials, the low-grade ultrafast cycling performance at high current densities remains a considerable challenge. In the present study, seeking to improve the ionic diffusion, we propose a novel design of mesoporous carbon skin on the Si nanoparticles embedded in carbon by hydrothermal reaction, poly(methyl methacrylate) coating process, and carbonization. The resultant electrode offers a high specific discharge capacity with excellent cycling stability (1140 mA h g-1 at 100 mA g-1 after 100 cycles), superb high-rate performance (969 mA h g-1 at 2000 mA g-1), and outstanding ultrafast cycling stability (532 mA h g-1 at 2000 mA g-1 after 500 cycles). The battery performances are surpassing the previously reported results for carbon and Si composite-based electrodes on LIBs. Therefore, this novel approach provides multiple benefits in terms of the effective accommodation of large volume expansions of the Si nanoparticles, a shorter Li-ion diffusion pathway, and stable electrochemical conditions from a faster ionic diffusion during cycling.
Collapse
Affiliation(s)
- Geon-Hyoung An
- Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials and ‡Department of Materials Science and Engineering, Seoul National University of Science and Technology , Seoul 01811, Korea
| | - Hyeonjin Kim
- Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials and ‡Department of Materials Science and Engineering, Seoul National University of Science and Technology , Seoul 01811, Korea
| | - Hyo-Jin Ahn
- Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials and ‡Department of Materials Science and Engineering, Seoul National University of Science and Technology , Seoul 01811, Korea
| |
Collapse
|
16
|
Tan Y, Wong KW, Ng KM. Novel Silicon Doped Tin Oxide-Carbon Microspheres as Anode Material for Lithium Ion Batteries: The Multiple Effects Exerted by Doped Si. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1702614. [PMID: 29125716 DOI: 10.1002/smll.201702614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Silicon doped tin oxide embedded porous carbon microspheres (Siy Sn1-y Ox @C) are synthesized. It is found that the doped Si not only improves the reversibility of lithiation/delithiation reactions, but also prevents Sn from aggregation. In addition, the doped Si introduces extra defects into the carbon matrix and produces Li+ conductive Li4 SiO4 , which accelerates Li+ diffusion. Together with the conductive, porous carbon matrix that provides void space to accommodate the volume change of Sn during charge/discharge cycling, the novel Siy Sn1-y Ox @C exhibits excellent electrochemical performance. It shows a high initial columbic efficiency of 75.9%. A charge (delithiation) capacity of 880.32 mA h g-1 is retained after 150 cycles, i.e., 91% of the initial capacity. These results indicate that the as-synthesized Siy Sn1-y Ox @C is a promising anode material for lithium ion batteries.
Collapse
Affiliation(s)
- Yuanzhong Tan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ka-Wai Wong
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ka Ming Ng
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
17
|
Shi S, Zhang M, Deng T, Wang T, Yang G. A facile strategy to construct binder-free flexible carbonate composite anode at low temperature with high performances for lithium-ion batteries. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.06.135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|