1
|
Wang C, Zhou Y. Sacrificial biomaterials in 3D fabrication of scaffolds for tissue engineering applications. J Biomed Mater Res B Appl Biomater 2024; 112:e35312. [PMID: 37572033 DOI: 10.1002/jbm.b.35312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/05/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Three-dimensional (3D) printing technology has progressed exceedingly in the area of tissue engineering. Despite the tremendous potential of 3D printing, building scaffolds with complex 3D structure, especially with soft materials, still exist as a challenge due to the low mechanical strength of the materials. Recently, sacrificial materials have emerged as a possible solution to address this issue, as they could serve as temporary support or templates to fabricate scaffolds with intricate geometries, porous structures, and interconnected channels without deformation or collapse. Here, we outline the various types of scaffold biomaterials with sacrificial materials, their pros and cons, and mechanisms behind the sacrificial material removal, compare the manufacturing methods such as salt leaching, electrospinning, injection-molding, bioprinting with advantages and disadvantages, and discuss how sacrificial materials could be applied in tissue-specific applications to achieve desired structures. We finally conclude with future challenges and potential research directions.
Collapse
Affiliation(s)
- Chi Wang
- Systems Science and Industrial Engineering, Binghamton University, Binghamton, New York, USA
| | - Yingge Zhou
- Systems Science and Industrial Engineering, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
2
|
Gürtler AL, Rades T, Heinz A. Electrospun fibers for the treatment of skin diseases. J Control Release 2023; 363:621-640. [PMID: 37820983 DOI: 10.1016/j.jconrel.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Skin diseases are among the most common diseases in the global population and with the growth of the aging population, they represent an increasing burden to healthcare systems worldwide. Even though they are rarely life-threatening, the suffering for those affected is high due to the visibility and physical discomfort related to these diseases. Typical symptoms of skin diseases include an inflamed, swollen or itchy skin, and therefore, there is a high demand for effective therapy options. In recent years, electrospinning has attracted considerable interest in the field of drug delivery. The technique allows producing multifunctional drug-loaded fibrous patches from various natural and synthetic polymers with fiber diameters in the nano- and micrometer range, suitable for the treatment of a wide variety of skin diseases. The great potential of electrospun fiber patches not only lies in their tunable drug release properties and the possibility to entrap a variety of therapeutic compounds, but they also provide physical and mechanical protection to the impaired skin area, exhibit a high surface area, allow gas exchange, absorb exudate due to their porous structure and are cytocompatible and biodegradable. In the case of wound healing, cell adhesion is promoted due to the resemblance of the electrospun fibers to the structure of the native extracellular matrix. This review gives an overview of the potential applications of electrospun fibers in skin therapy. In addition to the treatment of bacterial, diabetic and burn wounds, focus is placed on inflammatory diseases such as atopic dermatitis and psoriasis, and therapeutic options for the treatment of skin cancer, acne vulgaris and herpes labialis are discussed. While we aim to emphasize the great potential of electrospun fiber patches for the treatment of skin diseases with this review paper, we also highlight challenges and limitations of current research in the field.
Collapse
Affiliation(s)
- Anna-Lena Gürtler
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Minooei F, Kanukunta AR, Mahmoud MY, Gilbert NM, Lewis WG, Lewis AL, Frieboes HB, Steinbach-Rankins JM. Mesh and layered electrospun fiber architectures as vehicles for Lactobacillus acidophilus and Lactobacillus crispatus intended for vaginal delivery. BIOMATERIALS ADVANCES 2023; 154:213614. [PMID: 37659215 PMCID: PMC10873095 DOI: 10.1016/j.bioadv.2023.213614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Bacterial vaginosis (BV) is a recurrent condition that affects millions of women worldwide. The use of probiotics is a promising alternative or an adjunct to traditional antibiotics for BV prevention and treatment. However, current administration regimens often require daily administration, thus contributing to low user adherence and recurrence. Here, electrospun fibers were designed to separately incorporate and sustain two lactic acid producing model organisms, Lactobacillus crispatus (L. crispatus) and Lactobacillus acidophilus (L. acidophilus). Fibers were made of polyethylene oxide and polylactic-co-glycolic acid in two different architectures, one with distinct layers and the other with co-spun components. Degradation of mesh and layered fibers was evaluated via mass loss and scanning electron microscopy. The results show that after 48 h and 6 days, cultures of mesh and layered fibers yielded as much as 108 and 109 CFU probiotic/mg fiber in total, respectively, with corresponding daily recovery on the order of 108 CFU/(mg·day). In addition, cultures of the fibers yielded lactic acid and caused a significant reduction in pH, indicating a high level of metabolic activity. The formulations did not affect vaginal keratinocyte viability or cell membrane integrity in vitro. Finally, mesh and layered probiotic fiber dosage forms demonstrated inhibition of Gardnerella, one of the most prevalent and abundant bacteria associated with BV, respectively resulting in 8- and 6.5-log decreases in Gardnerella viability in vitro after 24 h. This study provides initial proof of concept that mesh and layered electrospun fiber architectures developed as dissolving films may offer a viable alternative to daily probiotic administration.
Collapse
Affiliation(s)
- Farnaz Minooei
- Department of Chemical Engineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Abhinav R Kanukunta
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Mohamed Y Mahmoud
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Nicole M Gilbert
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Warren G Lewis
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; UofL Health - Brown Cancer Center, University of Louisville, KY 40202, USA.
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
4
|
Altun E, Bayram C, Gultekinoglu M, Matharu R, Delbusso A, Homer-Vanniasinkam S, Edirisinghe M. Pressure-Spun Fibrous Surgical Sutures for Localized Antibacterial Delivery: Development, Characterization, and In Vitro Evaluation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45561-45573. [PMID: 37729472 PMCID: PMC10561146 DOI: 10.1021/acsami.3c07956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
Surgical sutures designed to prevent infection are critical in addressing antibiotic-resistant pathogens that cause surgical site infections. Instead of antibiotics, alternative materials such as biocides have been assessed for coating commercially used sutures due to emerging antibiotic resistance concerns worldwide. This study has a new approach to the development of fibrous surgical sutures with the ability to deliver localized antibacterial agents. A new manufacturing process based on pressure spinning was used for the first time in the production of fibrous surgical sutures by physically blending antibacterial triclosan (Tri) agent with poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene oxide) (PEO) polymers. Fibrous surgical sutures with virgin PLGA, virgin PEO, different ratios of PLGA-PEO, and different ratios of Tri-loaded PLGA-PEO fibrous sutures were produced to mimic the FDA- and NICE-approved PLGA-based sutures available in the market and compared for their characteristics. They were also tested simultaneously with commercially available sutures to compare their in vitro biodegradation, antibacterial, drug release, and cytotoxicity properties. After in vitro antibacterial testing for 24 h, sutures having 285 ± 12 μg/mg Tri loading were selected as a model for further testing as they exhibited antibacterial activity against all tested bacteria strains. The selected model of antibacterial fibrous sutures exhibited an initial burst of Tri release within 24 h, followed by a sustained release for the remaining time until the sutures completely degraded within 21 days. The cell viability assay showed that these surgical sutures had no cytotoxic effect on mammalian cells.
Collapse
Affiliation(s)
- Esra Altun
- Department
of Mechanical Engineering, University College
London (UCL), Torrington Place, London WC1E 7JE, U.K.
| | - Cem Bayram
- Department
of Nanotechnology and Nanomedicine, Graduate School of Science and
Engineering, Hacettepe University, Ankara 06800, Turkey
| | - Merve Gultekinoglu
- Department
of Nanotechnology and Nanomedicine, Graduate School of Science and
Engineering, Hacettepe University, Ankara 06800, Turkey
| | - Rupy Matharu
- Department
of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London WC1E
6BT, U.K.
| | - Angelo Delbusso
- Department
of Mechanical Engineering, University College
London (UCL), Torrington Place, London WC1E 7JE, U.K.
| | | | - Mohan Edirisinghe
- Department
of Mechanical Engineering, University College
London (UCL), Torrington Place, London WC1E 7JE, U.K.
| |
Collapse
|
5
|
Yang C, Zhang Z, Gan L, Zhang L, Yang L, Wu P. Application of Biomedical Microspheres in Wound Healing. Int J Mol Sci 2023; 24:7319. [PMID: 37108482 PMCID: PMC10138683 DOI: 10.3390/ijms24087319] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Tissue injury, one of the most common traumatic injuries in daily life, easily leads to secondary wound infections. To promote wound healing and reduce scarring, various kinds of wound dressings, such as gauze, bandages, sponges, patches, and microspheres, have been developed for wound healing. Among them, microsphere-based tissue dressings have attracted increasing attention due to the advantage of easy to fabricate, excellent physicochemical performance and superior drug release ability. In this review, we first introduced the common methods for microspheres preparation, such as emulsification-solvent method, electrospray method, microfluidic technology as well as phase separation methods. Next, we summarized the common biomaterials for the fabrication of the microspheres including natural polymers and synthetic polymers. Then, we presented the application of the various microspheres from different processing methods in wound healing and other applications. Finally, we analyzed the limitations and discussed the future development direction of microspheres in the future.
Collapse
Affiliation(s)
- Caihong Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Lu Gan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Lexiang Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Lei Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
6
|
Nadine S, Chung A, Diltemiz SE, Yasuda B, Lee C, Hosseini V, Karamikamkar S, de Barros NR, Mandal K, Advani S, Zamanian BB, Mecwan M, Zhu Y, Mofidfar M, Zare MR, Mano J, Dokmeci MR, Alambeigi F, Ahadian S. Advances in microfabrication technologies in tissue engineering and regenerative medicine. Artif Organs 2022; 46:E211-E243. [PMID: 35349178 DOI: 10.1111/aor.14232] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tissue engineering provides various strategies to fabricate an appropriate microenvironment to support the repair and regeneration of lost or damaged tissues. In this matter, several technologies have been implemented to construct close-to-native three-dimensional structures at numerous physiological scales, which are essential to confer the functional characteristics of living tissues. METHODS In this article, we review a variety of microfabrication technologies that are currently utilized for several tissue engineering applications, such as soft lithography, microneedles, templated and self-assembly of microstructures, microfluidics, fiber spinning, and bioprinting. RESULTS These technologies have considerably helped us to precisely manipulate cells or cellular constructs for the fabrication of biomimetic tissues and organs. Although currently available tissues still lack some crucial functionalities, including vascular networks, innervation, and lymphatic system, microfabrication strategies are being proposed to overcome these issues. Moreover, the microfabrication techniques that have progressed to the preclinical stage are also discussed. CONCLUSIONS This article aims to highlight the advantages and drawbacks of each technique and areas of further research for a more comprehensive and evolving understanding of microfabrication techniques in terms of tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Sara Nadine
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ada Chung
- Department of Psychology, University of California-Los Angeles, Los Angeles, California, USA
| | | | - Brooke Yasuda
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,Department of Psychology, University of California-Los Angeles, Los Angeles, California, USA
| | - Charles Lee
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA.,Station 1, Lawrence, Massachusetts, USA
| | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | | | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Shailesh Advani
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | | | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Mohammad Mofidfar
- Department of Chemistry, Stanford University, Palo Alto, California, USA
| | | | - João Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Farshid Alambeigi
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| |
Collapse
|
7
|
Hawkins BC, Burnett E, Chou SF. Physicomechanical properties and in vitro release behaviors of electrospun ibuprofen-loaded blend PEO/EC fibers. MATERIALS TODAY. COMMUNICATIONS 2022; 30:103205. [PMID: 36883050 PMCID: PMC9988240 DOI: 10.1016/j.mtcomm.2022.103205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Electrospinning is a fiber manufacturing technique with the possibility of encapsulating high levels of small molecule drugs while providing controlled release rates. In this study, electrospun blend fibers were produced from polyethylene oxide (PEO) and ethyl cellulose (EC) at various compositions to encapsulate a poorly water-soluble drug of ibuprofen (IBP) at 30% loading. Microscopic evaluation showed smooth and defect-free fiber morphologies for blank and IBP-loaded PEO/EC fibers. The average fiber diameters and fiber yields suggested a potential optimization on the blend fiber composition for the electrospun drug-eluting PEO/EC fibers, where the highest average fiber diameter and fiber yield occurred at 50PEO/50EC fiber composition. Surface wettability studies demonstrated the effects on surface hydrophobicity from blend fibers of water-soluble PEO and hydrophobic EC as well as the incorporation of IBP. In addition, blend fibers containing more PEO promoted the water absorption rates through dissolution of the polymer matrix. Furthermore, results from mechanical testing of the blend fibers showed the highest fiber elastic modulus and tensile strength at fiber compositions in between 75PEO/25EC and 50PEO/50EC, corresponding to the average fiber diameter measurements. The in vitro IBP release rates demonstrated a dependence on the EC compositions supported by the surface wettability and water absorption rate studies. In general, our work demonstrated the ability to electrospin blank and IBP-loaded PEO/EC fibers with the scientific understandings of EC compositions on modulations of fiber physicomechanical properties and in vitro drug release rates. The findings from the work indicated the potential engineering and pharmaceutical applications of electrospun drug-eluting fibers for topical drug delivery.
Collapse
Affiliation(s)
| | | | - Shih-Feng Chou
- Correspondence to: Department of Mechanical Engineering, The University of Texas at Tyler, 3900 University Blvd., Tyler, TX 75799, USA. (S.-F. Chou)
| |
Collapse
|
8
|
Gu C, Feng J, Waqas A, Deng Y, Zhang Y, Chen W, Long J, Huang S, Chen L. Technological Advances of 3D Scaffold-Based Stem Cell/Exosome Therapy in Tissues and Organs. Front Cell Dev Biol 2021; 9:709204. [PMID: 34568322 PMCID: PMC8458970 DOI: 10.3389/fcell.2021.709204] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, biomaterial scaffolds have been widely applied in the field of tissue engineering and regenerative medicine. Due to different production methods, unique types of three-dimensional (3D) scaffolds can be fabricated to meet the structural characteristics of tissues and organs, and provide suitable 3D microenvironments. The therapeutic effects of stem cell (SC) therapy in tissues and organs are considerable and have attracted the attention of academic researchers worldwide. However, due to the limitations and challenges of SC therapy, exosome therapy can be used for basic research and clinical translation. The review briefly introduces the materials (nature or polymer), shapes (hydrogels, particles and porous solids) and fabrication methods (crosslinking or bioprinting) of 3D scaffolds, and describes the recent progress in SC/exosome therapy with 3D scaffolds over the past 5 years (2016-2020). Normal SC/exosome therapy can improve the structure and function of diseased and damaged tissues and organs. In addition, 3D scaffold-based SC/exosome therapy can significantly improve the structure and function cardiac and neural tissues for the treatment of various refractory diseases. Besides, exosome therapy has the same therapeutic effects as SC therapy but without the disadvantages. Hence, 3D scaffold therapy provides an alternative strategy for treatment of refractory and incurable diseases and has entered a transformation period from basic research into clinical translation as a viable therapeutic option in the future.
Collapse
Affiliation(s)
- Chenyang Gu
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jia Feng
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- School of Medicine, Southeast University, Nanjing, China
| | - Ahmed Waqas
- School of Medicine, Southeast University, Nanjing, China
| | - Yushu Deng
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yifan Zhang
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wanghao Chen
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Long
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shiying Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Towards bioengineered skeletal muscle: recent developments in vitro and in vivo. Essays Biochem 2021; 65:555-567. [PMID: 34342361 DOI: 10.1042/ebc20200149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
Skeletal muscle is a functional tissue that accounts for approximately 40% of the human body mass. It has remarkable regenerative potential, however, trauma and volumetric muscle loss, progressive disease and aging can lead to significant muscle loss that the body cannot recover from. Clinical approaches to address this range from free-flap transfer for traumatic events involving volumetric muscle loss, to myoblast transplantation and gene therapy to replace muscle loss due to sarcopenia and hereditary neuromuscular disorders, however, these interventions are often inadequate. The adoption of engineering paradigms, in particular materials engineering and materials/tissue interfacing in biology and medicine, has given rise to the rapidly growing, multidisciplinary field of bioengineering. These methods have facilitated the development of new biomaterials that sustain cell growth and differentiation based on bionic biomimicry in naturally occurring and synthetic hydrogels and polymers, as well as additive fabrication methods to generate scaffolds that go some way to replicate the structural features of skeletal muscle. Recent advances in biofabrication techniques have resulted in significant improvements to some of these techniques and have also offered promising alternatives for the engineering of living muscle constructs ex vivo to address the loss of significant areas of muscle. This review highlights current research in this area and discusses the next steps required towards making muscle biofabrication a clinical reality.
Collapse
|
10
|
Antinori ME, Contardi M, Suarato G, Armirotti A, Bertorelli R, Mancini G, Debellis D, Athanassiou A. Advanced mycelium materials as potential self-growing biomedical scaffolds. Sci Rep 2021; 11:12630. [PMID: 34135362 PMCID: PMC8209158 DOI: 10.1038/s41598-021-91572-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Mycelia, the vegetative part of fungi, are emerging as the avant-garde generation of natural, sustainable, and biodegradable materials for a wide range of applications. They are constituted of a self-growing and interconnected fibrous network of elongated cells, and their chemical and physical properties can be adjusted depending on the conditions of growth and the substrate they are fed upon. So far, only extracts and derivatives from mycelia have been evaluated and tested for biomedical applications. In this study, the entire fibrous structures of mycelia of the edible fungi Pleurotus ostreatus and Ganoderma lucidum are presented as self-growing bio-composites that mimic the extracellular matrix of human body tissues, ideal as tissue engineering bio-scaffolds. To this purpose, the two mycelial strains are inactivated by autoclaving after growth, and their morphology, cell wall chemical composition, and hydrodynamical and mechanical features are studied. Finally, their biocompatibility and direct interaction with primary human dermal fibroblasts are investigated. The findings demonstrate the potentiality of mycelia as all-natural and low-cost bio-scaffolds, alternative to the tissue engineering systems currently in place.
Collapse
Affiliation(s)
- Maria Elena Antinori
- Smart Materials, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
- DIBRIS, University of Genoa, Genoa, Italy
| | - Marco Contardi
- Smart Materials, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Giulia Suarato
- Smart Materials, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
- Translational Pharmacology, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Rosalia Bertorelli
- Translational Pharmacology, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Giorgio Mancini
- Smart Materials, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Doriana Debellis
- Electron Microscopy Facility, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Athanassia Athanassiou
- Smart Materials, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163, Genova, Italy.
| |
Collapse
|
11
|
Barani H, Haseloer A, Mathur S, Klein A. Sustained release of a thiosemicarbazone from antibacterial electrospun poly(lactic‐co‐glycolic acid) fiber mats. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Alexander Haseloer
- Department of Chemistry, Institute for Inorganic Chemistry University of Cologne Cologne Germany
| | - Sanjay Mathur
- Department of Chemistry, Institute for Inorganic Chemistry University of Cologne Cologne Germany
| | - Axel Klein
- Department of Carpet University of Birjand Birjand Iran
- Department of Chemistry, Institute for Inorganic Chemistry University of Cologne Cologne Germany
| |
Collapse
|
12
|
Barani H, Khorashadizadeh M, Haseloer A, Klein A. Characterization and Release Behavior of a Thiosemicarbazone from Electrospun Polyvinyl Alcohol Core-Shell Nanofibers. Polymers (Basel) 2020; 12:E1488. [PMID: 32635276 PMCID: PMC7407991 DOI: 10.3390/polym12071488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 11/16/2022] Open
Abstract
Mats of polyvinyl alcohol (PVA) core-shell nanofibers were produced using coaxial electrospinning in the presence of a thiosemicarbazone (TSC) N4-(S)-1-phenylethyl)-2-(pyridin-2-yl-ethylidene)hydrazine-1-carbothioamide (HapyTSCmB). Monolithic fibers with 0% or 5% TSC and core-shell fibers with 10% TSC in the spinning solution were studied to compare stability and release rates. SEM showed the formation of uniform, bead-free, cylindrical, and smooth fibers. NMR spectroscopy and thermal analysis (TG/DTA) gave proof for the chemical integrity of the TSC in the fiber mats after the electrospinning process. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy showed no TSC on the surface of the PVA/TSC-PVA fibers confirming the core-shell character. The TSC release profiles of the fibers as studied using UV-vis absorption spectroscopy showed a slower release from the PVA/TSC-PVA core-shell structure compared with the monolithic PVA/TSC fibers as well as lower cumulative release percentage (17%). Out of several release models, the Korsmeyer-Peppas model gave the best fit to the experimental data. The main release phase can be described with a Fick-type diffusion mechanism. Antibacterial properties were tested against the Gram-positive Staphylococcus aureus bacterium and gave a minimal inhibitory concentration of 12.5 μg/mL. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazoliumbromide (MTT)-based cytotoxicity experiments showed that the cell viability of fibroblast at different contents of TSC was slightly decreased from 1.5% up to 3.5% when compared to control cells.
Collapse
Affiliation(s)
- Hossein Barani
- Department of Carpet, Faculty of Arts, University of Birjand, Birjand 9717434765, Iran
| | - Mohsen Khorashadizadeh
- Department of Medical Biotechnology, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Alexander Haseloer
- Department of Chemistry, Institute for Inorganic Chemistry, University of Cologne, Greinstrasse 6, D-50939 Cologne, Germany;
| | - Axel Klein
- Department of Carpet, Faculty of Arts, University of Birjand, Birjand 9717434765, Iran
- Department of Chemistry, Institute for Inorganic Chemistry, University of Cologne, Greinstrasse 6, D-50939 Cologne, Germany;
| |
Collapse
|
13
|
Pannuzzo M, Horta BAC, La Rosa C, Decuzzi P. Predicting the Miscibility and Rigidity of Poly(lactic- co-glycolic acid)/Polyethylene Glycol Blends via Molecular Dynamics Simulations. Macromolecules 2020; 53:3643-3654. [PMID: 32831403 PMCID: PMC7428138 DOI: 10.1021/acs.macromol.0c00110] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/07/2020] [Indexed: 11/30/2022]
Abstract
![]()
The
addition of polyethylene glycol (PEG) chains to poly(lactic-co-glycolic acid) (PLGA) matrices is extensively used to
modulate the biodegradation, drug loading and release, mechanical
properties, and chemical stability of the original system. Multiple
parameters, including the molecular weight, relative concentration,
polarity, and solubility, affect the physicochemical properties of
the polymer blend. Here, molecular dynamics simulations with the united-atom
2016H66 force field are used to model the behavior of PLGA and PEG chains and thus predict the overall
physicochemical features of the resulting blend. First, the model
accuracy is validated against fundamental properties of pure PLGA
and PEG samples. In agreement with previous experimental and theoretical
observations, the PLGA solubility results to be higher in acetonitrile
than in water, with Flory parameters νACN = 0.63
± 0.01 and νW = 0.21 ± 0.02, and the Young’s
modulus of PLGA and PEG equal to Y = 2.0 ± 0.43
and 0.32 ± 0.34 GPa, respectively. Next, four PEG/PLGA blending
regimes are identified by varying the relative concentrations and
molecular weights of the individual polymers. The computational results
demonstrate that at low PEG concentrations (<8% w/w), homogeneous
blends are generated for both low and high PEG molecular weights.
In contrast, at comparable PEG and PLGA concentrations (∼50%
w/w), short PEG chains are only partially miscible whereas long PEG
chains segregate within the PLGA matrix. This behavior has been confirmed
experimentally via differential scanning calorimetry and is in agreement
with previous observations. Finally, the computed Young’s modulus
of PLGA/PEG blends is observed to decrease with the PEG content returning
the lowest values for the partial and fully segregated regimens (Y ≈ 1.3 GPa). This work proposes a computational
scheme for predicting the physicochemical properties of PLGA/PEG blends
paving the way toward the rational design of polymer mixtures for
biomedical applications.
Collapse
Affiliation(s)
- Martina Pannuzzo
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Bruno A C Horta
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Carmelo La Rosa
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
14
|
Mahmoud MY, Sapare S, Curry KC, Demuth DR, Steinbach-Rankins JM. Rapid Release Polymeric Fibers for Inhibition of Porphyromonas gingivalis Adherence to Streptococcus gordonii. Front Chem 2020; 7:926. [PMID: 32039149 PMCID: PMC6985268 DOI: 10.3389/fchem.2019.00926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/18/2019] [Indexed: 12/24/2022] Open
Abstract
Active agents targeting key bacterial interactions that initiate biofilm formation in the oral cavity, may alter periodontitis progression; however, to date, specifically-targeted prophylactic and treatment strategies have been limited. Previously we developed a peptide, BAR (SspB Adherence Region), that inhibits oral P. gingivalis/S. gordonii biofilm formation in vitro and in vivo, and BAR nanoparticles that increase BAR effectiveness via multivalency and prolonged delivery. However, limited BAR loading and nanoparticle retention in the oral cavity can result in inadequate release and efficaciousness. Given this, an effective delivery platform that can release concentrations of BAR suitable for twice-daily applications, may offer an alternative that enhances loading, ease of administration, and retention in the oral cavity. With this in mind, the study objectives were to develop and characterize a rapid-release platform, composed of polymeric electrospun fibers (EFs) that encapsulate BAR, and to evaluate fiber safety and functionality against P. gingivalis/S. gordonii biofilms in vitro. Poly(lactic-co-glycolic acid) (PLGA), poly(L-lactic acid) (PLLA), and polycaprolactone (PCL) were electrospun alone or blended with polyethylene oxide (PEO), to provide high BAR loading and rapid-release. The most promising formulation, 10:90 PLGA:PEO EFs, provided 95% BAR release after 4 h, dose-dependent inhibition of biofilm formation (IC50 = 1.3 μM), disruption of established dual-species biofilms (IC50 = 2 μM), and maintained high cell viability. These results suggest that BAR-incorporated EFs may provide a safe and specifically-targeted rapid-release platform to inhibit and disrupt dual-species biofilms, that we envision may be applied twice-daily to exert prophylactic effect in the oral cavity.
Collapse
Affiliation(s)
- Mohamed Y. Mahmoud
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
- Center for Predictive Medicine, University of Louisville, Louisville, KY, United States
- Department of Toxicology, Forensic Medicine and Veterinary Regulations, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sonali Sapare
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Keegan C. Curry
- Department of Biology, University of Louisville, Louisville, KY, United States
| | - Donald R. Demuth
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Jill M. Steinbach-Rankins
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
- Center for Predictive Medicine, University of Louisville, Louisville, KY, United States
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, United States
| |
Collapse
|
15
|
Liu H, Wang Y, Cui K, Guo Y, Zhang X, Qin J. Advances in Hydrogels in Organoids and Organs-on-a-Chip. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902042. [PMID: 31282047 DOI: 10.1002/adma.201902042] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/25/2019] [Indexed: 05/10/2023]
Abstract
Significant advances in materials, microscale technology, and stem cell biology have enabled the construction of 3D tissues and organs, which will ultimately lead to more effective diagnostics and therapy. Organoids and organs-on-a-chip (OOC), evolved from developmental biology and bioengineering principles, have emerged as major technological breakthrough and distinct model systems to revolutionize biomedical research and drug discovery by recapitulating the key structural and functional complexity of human organs in vitro. There is growing interest in the development of functional biomaterials, especially hydrogels, for utilization in these promising systems to build more physiologically relevant 3D tissues with defined properties. The remarkable properties of defined hydrogels as proper extracellular matrix that can instruct cellular behaviors are presented. The recent trend where functional hydrogels are integrated into organoids and OOC systems for the construction of 3D tissue models is highlighted. Future opportunities and perspectives in the development of advanced hydrogels toward accelerating organoids and OOC research in biomedical applications are also discussed.
Collapse
Affiliation(s)
- Haitao Liu
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqing Wang
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kangli Cui
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqiong Guo
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jianhua Qin
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
16
|
Impact of UV sterilization and short term storage on the in vitro release kinetics and bioactivity of biomolecules from electrospun scaffolds. Sci Rep 2019; 9:15117. [PMID: 31641201 PMCID: PMC6805903 DOI: 10.1038/s41598-019-51513-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/27/2019] [Indexed: 11/29/2022] Open
Abstract
To effectively translate bioactive scaffolds into a preclinical setting, proper sterilization techniques and storage conditions need to be carefully considered, as the chosen sterilization technique and storage condition might affect the structural and mechanical properties of the scaffolds, as well as the bioactivity and release kinetics of the incorporated biomolecules. Since rarely tested or quantified, we show here in a proof-of-concept study how these parameters are affected by UV sterilization and one week storage at different temperatures using bioactive electrospun DegraPol scaffolds that were specifically designed for application in the field of tendon rupture repair. Even though UV sterilization and the different storage conditions did not impact the morphology or the physicochemical properties of the bioactive scaffolds, UV sterilization caused significant attenuation of the growth factor release kinetics, here platelet derived growth factor (PDGF-BB) release (by approx. 85%) and slight decrease in ascorbic acid release (by approx. 20%). In contrast, 4 °C and −20 °C storage did not have a major effect on the release kinetics of PDGF-BB, while storage at room temperature caused increase in PDGF-BB released. All storage conditions had little effect on ascorbic acid release. Equally important, neither UV sterilization nor storage affected the bioactivity of the released PDGF-BB, suggesting stability of the bioactive scaffolds for at least one week and showing potential for bioactive DegraPol scaffolds to be translated into an off-the-shelf available product. These parameters are expected to be scaffold and protein-dependent.
Collapse
|
17
|
Chae S, Lee J, Kim G. Skeletal myotube formation enhanced through fibrillated collagen nanofibers coated on a 3D-printed polycaprolactone surface. Colloids Surf B Biointerfaces 2019; 181:408-415. [PMID: 31174076 DOI: 10.1016/j.colsurfb.2019.05.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/28/2019] [Accepted: 05/18/2019] [Indexed: 11/27/2022]
Abstract
This work focused on considering the cellular responses of the growth and differentiation of myoblasts, C2C12, on fibrillated collagen-coated poly(ε-caprolactone) (PCL) surfaces. Through a fibrillation processing window using NaCl and collagen weight fractions, collagen fibril coating density can be controlled. Three different collagen-fibril densities coated on PCL strut were used to investigate the effects of the collagen fibril on the myoblast activities. After physical and cellular analyses of the scaffolds, such as surface morphology, fibronectin absorption, wettability, and mechanical properties, the rate of cell growth and the proficiency of the myoblasts to develop skeletal myotubes were evaluated. Based on the results, although the coated collagen nanofibers were randomly distributed, the fibrillated collagen layer with the appropriate density on the PCL surface promoted a greater myotube formation than that of the control, which had no fibrillated collagen. In particular, relatively higher densities of collagen fibril showed significantly greater myotube formation than those of the control (not-fibrillated collagen-coated on the PCL surface) and lower density of collagen fibril.
Collapse
Affiliation(s)
- SooJung Chae
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon, South Korea.
| | - JiUn Lee
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon, South Korea.
| | - GeunHyung Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon, South Korea.
| |
Collapse
|
18
|
Kurečič M, Mohan T, Virant N, Maver U, Stergar J, Gradišnik L, Kleinschek KS, Hribernik S. A green approach to obtain stable and hydrophilic cellulose-based electrospun nanofibrous substrates for sustained release of therapeutic molecules. RSC Adv 2019; 9:21288-21301. [PMID: 35521346 PMCID: PMC9066020 DOI: 10.1039/c9ra03399h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/04/2019] [Indexed: 11/21/2022] Open
Abstract
Stable and (bio)-compatible nanofibrous matrices showing effective incorporation and release of nonsteroidal anti-inflammatory drugs (NSAIDs) hold a huge potential in tissue regeneration and wound healing.
Collapse
Affiliation(s)
- Manja Kurečič
- Laboratory for Characterization and Processing of Polymers
- Faculty of Mechanical Engineering
- University of Maribor
- 2000 Maribor
- Slovenia
| | - Tamilselvan Mohan
- Laboratory for Characterization and Processing of Polymers
- Faculty of Mechanical Engineering
- University of Maribor
- 2000 Maribor
- Slovenia
| | - Natalija Virant
- Laboratory for Characterization and Processing of Polymers
- Faculty of Mechanical Engineering
- University of Maribor
- 2000 Maribor
- Slovenia
| | - Uroš Maver
- Institute of Biomedical Sciences
- Faculty of Medicine
- University of Maribor
- 2000 Maribor
- Slovenia
| | - Janja Stergar
- Institute of Biomedical Sciences
- Faculty of Medicine
- University of Maribor
- 2000 Maribor
- Slovenia
| | - Lidija Gradišnik
- Institute of Biomedical Sciences
- Faculty of Medicine
- University of Maribor
- 2000 Maribor
- Slovenia
| | - Karin Stana Kleinschek
- Laboratory for Characterization and Processing of Polymers
- Faculty of Mechanical Engineering
- University of Maribor
- 2000 Maribor
- Slovenia
| | - Silvo Hribernik
- Laboratory for Characterization and Processing of Polymers
- Faculty of Mechanical Engineering
- University of Maribor
- 2000 Maribor
- Slovenia
| |
Collapse
|
19
|
Piccirillo G, Ditaranto MV, Feuerer NFS, Carvajal Berrio DA, Brauchle EM, Pepe A, Bochicchio B, Schenke-Layland K, Hinderer S. Non-invasive characterization of hybrid gelatin:poly-l-lactide electrospun scaffolds using second harmonic generation and multiphoton imaging. J Mater Chem B 2018; 6:6399-6412. [PMID: 32254648 DOI: 10.1039/c8tb02026d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid scaffolds composed of synthetic polymers and naturally occurring components have become more relevant in the field of tissue engineering and regenerative medicine. Synthetic polymers are responsible for scaffold durability, strength and structural integrity; however, often do not provide biological signals. Introducing a biological component leads to more advanced and biocompatible scaffolds. In order to use these scaffolds as implants, a deeper knowledge of material characteristics and the impact of the biological component on the scaffold mechanical properties are required. Furthermore, it is necessary to implement fast, easy and non-invasive methods to determine material characteristics. In this work, we aimed to generate gelatin-poly-l-lactide (PLA) hybrids via electrospinning with defined, controllable and tunable scaffold characteristics. Using Raman microspectroscopy, we demonstrated the effectiveness of the cross-linking reaction and evaluated the increasing PLA content in the hybrid scaffolds with a non-invasive approach. Using multiphoton microscopy, we showed that gelatin fibers electrospun from a fluorinated solvent exhibit a second harmonic generation (SHG) signal typical for collagen-like structures. Compared to pure gelatin, where the SHG signal vanishes after cross-linking, the signal could be preserved in the hybrid scaffolds even after cross-linking. Furthermore, we non-invasively imaged cellular growth of human dermal fibroblasts on the hybrid electrospun scaffolds and performed fluorescence lifetime imaging microscopy on the cell-seeded hybrids, where we were able to discriminate between cells and scaffolds. Here, we successfully employed non-invasive methods to evaluate scaffold characteristics and investigate cell-material interactions.
Collapse
|
20
|
Wang J, Windbergs M. Influence of polymer composition and drug loading procedure on dual drug release from PLGA:PEG electrospun fibers. Eur J Pharm Sci 2018; 124:71-79. [PMID: 30145339 DOI: 10.1016/j.ejps.2018.08.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/06/2018] [Accepted: 08/22/2018] [Indexed: 11/30/2022]
Abstract
Poly(lactide-co-glycolide) (PLGA) has been widely investigated for fabricating electrospun fibers due to their biocompatibility, paired with the capacity for encapsulating different drugs. However, such scaffolds shrink and distort upon contact with biological media, which is undesired for local drug application. To address this issue, we fabricated composite fiber scaffolds with the combination of PLGA and poly(ethylene glycol) (PEG). Scaffold shrinkage could successfully be overcome, however, the release kinetics of the encapsulated drug was strongly dependent on the amount of PEG. The addition of 5% PEG resulted in slower drug release due to a significant increase in fiber diameters. In contrast, the drug release rate was accelerated for fibers containing 10% PEG due to the water-soluble nature of the polymer. Furthermore, co-delivery of two different drugs, the small molecule acyclovir and the model protein bovine serum albumin was realized by two different approaches, coaxial electrospinning and immobilization of the drugs on the surface of the fibers, and drug release was found to be strongly dependent on the loading procedure. Based on our findings, key factors for understanding and controlling physicochemical properties of PLGA/PEG composite fibers as well as tuning drug release could be identified, providing an essential basis for rational design of electrospun fiber-based drug carriers.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), Saarland University, Saarbruecken, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), Saarland University, Saarbruecken, Germany.
| |
Collapse
|
21
|
Zhang H, Xi S, Han Y, Liu L, Dong B, Zhang Z, Chen Q, Min W, Huang Q, Li Y, Liu J. Determining electrospun morphology from the properties of protein-polymer solutions. SOFT MATTER 2018; 14:3455-3462. [PMID: 29682643 DOI: 10.1039/c7sm02203d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Integrating natural macromolecules, e.g. proteins, is a progressive trend in the fabrication of biocompatible sub-micrometer fibers with tunable diameters using the electrospinning technique. The correlation between solution properties and electrospun morphology is critical; it is quite clear for synthetic linear polymer solutions but remains uncertain for solutions with protein. Here, we report the determination of electrospun morphology in protein-polymer solutions of poly(ethylene oxide) (PEO) and zein, a storage protein from corn. The viscosity of the zein/PEO mixed solutions can be well described using the Lederer-Roegiers equation and decreases with the increase of the fraction of zein. The surface tension sharply decreases above a critical concentration at the saturation of the interfacial monolayer. Correspondingly, the different electrospun morphologies-from bead, coexisting bead and fiber, to fiber and ribbon-were mapped onto a ternary phase diagram and a viscosity contour plot. Such coupling provides a clear way to determine the electrospun morphology from solution properties. The occurrence of electrospun fibers partially follows two empirical rules, while the critical point revealed from surface tension has the best approximation. The diameters of electrospun fibers were found to have a scaling relationship against concentration, zero-shear viscosity and surface tension of solutions. These scaling exponents were compared with those from typical polymer solutions. The analysis suggests that aqueous ethanol gives different solvent qualities to zein and PEO solutions, resulting in the irregular shape in the phase diagram that correlates solution properties and electrospun morphologies.
Collapse
Affiliation(s)
- Hao Zhang
- College of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, 130118, P. R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wu T, Zhang J, Wang Y, Li D, Sun B, El-Hamshary H, Yin M, Mo X. Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 82:121-129. [PMID: 29025640 DOI: 10.1016/j.msec.2017.08.072] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/13/2017] [Accepted: 08/16/2017] [Indexed: 11/25/2022]
Abstract
Designing a biomimetic and functional tissue-engineered vascular graft has been urgently needed for repairing and regenerating defected vascular tissues. Utilizing a multi-layered vascular scaffold is commonly considered an effective way, because multi-layered scaffolds can easily simulate the structure and function of natural blood vessels. Herein, we developed a novel tri-layer tubular graft consisted of Poly(L-lactide-co-caprolactone)/collagen (PLCL/COL) fibers and Poly(lactide-co-glycolide)/silk fibroin (PLGA/SF) yarns via a three-step electrospinning method. The tri-layer vascular graft consisted of PLCL/COL aligned fibers in inner layer, PLGA/SF yarns in middle layer, and PLCL/COL random fibers in outer layer. Each layer possessed tensile mechanical strength and elongation, and the entire tubular structure provided tensile and compressive supports. Furthermore, the human umbilical vein endothelial cells (HUVECs) and smooth muscle cells (SMCs) proliferated well on the materials. Fluorescence staining images demonstrated that the axially aligned PLCL/COL fibers prearranged endothelium morphology in lumen and the circumferential oriented PLGA/SF yarns regulated SMCs organization along the single yarns. The outside PLCL/COL random fibers performed as the fixed layer to hold the entire tubular structure. The in vivo results showed that the tri-layer vascular graft supported cell infiltration, scaffold biodegradation and abundant collagen production after subcutaneous implantation for 10weeks, revealing the optimal biocompatibility and tissue regenerative capability of the tri-layer graft. Therefore, the specially designed tri-layer vascular graft will be beneficial to vascular reconstruction.
Collapse
Affiliation(s)
- Tong Wu
- State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Jialing Zhang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Yuanfei Wang
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dandan Li
- College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Binbin Sun
- State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Hany El-Hamshary
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China.
| | - Xiumei Mo
- State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
23
|
Yang GH, Jeon H, Kim G. Alternately plasma-roughened nanosurface of a hybrid scaffold for aligning myoblasts. Biofabrication 2017; 9:025035. [DOI: 10.1088/1758-5090/aa77ba] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
24
|
Li Q, Bai Y, Jin T, Wang S, Cui W, Stanciulescu I, Yang R, Nie H, Wang L, Zhang X. Bioinspired Engineering of Poly(ethylene glycol) Hydrogels and Natural Protein Fibers for Layered Heart Valve Constructs. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16524-16535. [PMID: 28448124 DOI: 10.1021/acsami.7b03281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Layered constructs from poly(ethylene glycol) (PEG) hydrogels and chicken eggshell membranes (ESMs) are fabricated, which can be further cross-linked by glutaraldehyde (GA) to form GA-PEG-ESM composites. Our results indicate that ESMs composed of protein fibrous networks show elastic moduli ∼3.3-5.0 MPa and elongation percentages ∼47-56%, close to human heart valve leaflets. Finite element simulations reveal obvious stress concentration on a partial number of fibers in the GA-cross-linked ESM (GA-ESM) samples, which can be alleviated by efficient stress distribution among multiple layers of ESMs embedded in PEG hydrogels. Moreover, the polymeric networks of PEG hydrogels can prevent mineral deposition and enzyme degradation of protein fibers from incorporated ESMs. The fibrous structures of ESMs retain in the GA-PEG-ESM samples after subcutaneous implantation for 4 weeks, while those from ESM and GA-ESM samples show early degradation to certain extent, suggesting the prevention of enzymatic degradation of protein fibers by the polymeric network of PEG hydrogels in vivo. Thus, these GA-PEG-ESM layered constructs show heterogenic structures and mechanical properties comparable to heart valve leaflets, as well as improved functions to prevent progressive calcification and enzymatic degeneration, which are likely used for artificial heart valves.
Collapse
Affiliation(s)
- Qian Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences , Shenyang, Liaoning 110016, China
- Department of Chemistry, Northeastern University , Shenyang, Liaoning 110004, China
| | - Yun Bai
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences , Shenyang, Liaoning 110016, China
| | - Tao Jin
- Department of Civil and Environmental Engineering, Rice University , Houston, Texas 77005, United States
| | - Shuo Wang
- Institute of Bionanotechnology and Tissue Engineering, College of Life Sciences, Hunan University , Changsha, Hunan 410082, China
| | - Wei Cui
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences , Shenyang, Liaoning 110016, China
| | - Ilinca Stanciulescu
- Department of Civil and Environmental Engineering, Rice University , Houston, Texas 77005, United States
| | - Rui Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences , Shenyang, Liaoning 110016, China
- School of Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Hemin Nie
- Institute of Bionanotechnology and Tissue Engineering, College of Life Sciences, Hunan University , Changsha, Hunan 410082, China
| | - Linshan Wang
- Department of Chemistry, Northeastern University , Shenyang, Liaoning 110004, China
| | - Xing Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences , Shenyang, Liaoning 110016, China
- School of Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, China
| |
Collapse
|