1
|
Korte D, Swapna MNS, Budasheva H, Diaz PC, Chhikara M, Škorjanc T, Tripon C, Farcas A, Pavlica E, Tran CD, Franko M. Characterization of sustainable biocompatible materials based on chitosan: cellulose composites containing sporopollenin exine capsules. Int J Biol Macromol 2024; 282:136649. [PMID: 39419139 DOI: 10.1016/j.ijbiomac.2024.136649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
In this work, photothermal beam deflection spectrometric technique (BDS) is applied for non-contact and non-destructive characterization of chitosan (CS): cellulose (CEL) biocomposites with incorporated sporopollenin exine capsules (SEC). The objective was to determine the structural and thermal properties of synthesized CS:CEL:SEC composites with varying amounts of SEC, and to validate the BDS by photopyroelectric calorimetry (PPE) as an independent technique. It was found that CS:CEL biocomposites without SEC exhibit low porosities, which are on the order of 0.005 %, but can be increased by augmenting the content of CEL in the composite and/or by incorporation of SEC. By increasing the SEC content of CS:CEL composites to 50 % (w/w), the porosity increased up to 0.17 %. SEC also increases the surface roughness of biocomposite by over 2000-times to reach the roughness amplitude of 6 μm in composites with 50 % SEC. The thermal conductivities of investigated biocomposites were in the range of 40-80 mWm-1 K-1, while the thermal diffusivities were on the order of fractions of mm2s-1. With first validation of BDS results for thermal properties of CS:CEL-based composites, which show agreement with PPE results to within 5 %, this study confirms BDS technique as a perspectives tool for non-destructive characterization of CS:CEL:SEC biocomposites.
Collapse
Affiliation(s)
- Dorota Korte
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia.
| | | | - Hanna Budasheva
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| | - Patricia Cazon Diaz
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| | - Manisha Chhikara
- Laboratory of Organic Matter Physics, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| | - Tina Škorjanc
- Materials Research Laboratory, University of Nova Gorica, Vipavska 11c, Ajdovscina SI-5270, Slovenia
| | - Carmen Tripon
- National R&D Institute for Isotopic and Molecular Technologies, Donat 65-103, 400293 Cluj-Napoca, Romania
| | - Alexandra Farcas
- National R&D Institute for Isotopic and Molecular Technologies, Donat 65-103, 400293 Cluj-Napoca, Romania
| | - Egon Pavlica
- Laboratory of Organic Matter Physics, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| | - Chieu D Tran
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, United States
| | - Mladen Franko
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| |
Collapse
|
2
|
Ma S, Kong J, Luo X, Xie J, Zhou Z, Bai X. Recent progress on bismuth-based light-triggered antibacterial nanocomposites: Synthesis, characterization, optical properties and bactericidal applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170125. [PMID: 38242469 DOI: 10.1016/j.scitotenv.2024.170125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Bacterial infections pose a seriously threat to the safety of the environment and human health. In particular, the emergence of drug-resistant pathogens as a result of antibiotic abuse and high trauma risk has rendered conventional therapeutic techniques insufficient for treating infections by these so-called "superbugs". Therefore, there is an urgent need to develop highly efficient and environmentally-friendly antimicrobial agents. Bismuth-based nanomaterials with unique structures and physicochemical characteristics have attracted considerable attention as promising antimicrobial candidates, with many demonstratingoutstanding antibacterial effects upon being triggered by broad-spectrum light. These nanomaterials have also exhibited satisfactory energy band gaps and electronic density distribution with improved photonic properties for extensive and comprehensive applications after being modified through various engineering methods. This review summarizes the latest research progress made on bismuth-based nanomaterials with different morphologies, structures and compositions as well as the different methods used for their synthesis to meet their rapidly increasing demand, especially for antibacterial applications. Moreover, the future prospects and challenges regarding the application of these nanomaterials are discussed. The aim of this review is to stimulate interest in the development and experimental transformation of novel bismuth-based nanomaterials to expand the arsenal of effective antimicrobials.
Collapse
Affiliation(s)
- Sihan Ma
- College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China.
| | - Jianglong Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xian Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361002, China
| | - Jun Xie
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Zonglang Zhou
- Department of Nephrology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xue Bai
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Puccetti M, Donnadio A, Ricci M, Latterini L, Quaglia G, Pietrella D, Di Michele A, Ambrogi V. Alginate Ag/AgCl Nanoparticles Composite Films for Wound Dressings with Antibiofilm and Antimicrobial Activities. J Funct Biomater 2023; 14:jfb14020084. [PMID: 36826883 PMCID: PMC9968148 DOI: 10.3390/jfb14020084] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Recently, silver-based nanoparticles have been proposed as components of wound dressings due to their antimicrobial activity. Unfortunately, they are cytotoxic for keratinocytes and fibroblasts, and this limits their use. Less consideration has been given to the use of AgCl nanoparticles in wound dressings. In this paper, a sustainable preparation of alginate AgCl nanoparticles composite films by simultaneous alginate gelation and AgCl nanoparticle formation in the presence of CaCl2 solution is proposed with the aim of obtaining films with antimicrobial and antibiofilm activities and low cytotoxicity. First, AgNO3 alginate films were prepared, and then, gelation and nanoparticle formation were induced by film immersion in CaCl2 solution. Films characterization revealed the presence of both AgCl and metallic silver nanoparticles, which resulted as quite homogeneously distributed, and good hydration properties. Finally, films were tested for their antimicrobial and antibiofilm activities against Staphylococcus epidermidis (ATCC 12228), Staphylococcus aureus (ATCC 29213), Pseudomonas aeruginosa (ATCC 15692), and the yeast Candida albicans. Composite films showed antibacterial and antibiofilm activities against the tested bacteria and resulted as less active towards Candida albicans. Film cytotoxicity was investigated towards human dermis fibroblasts (HuDe) and human skin keratinocytes (NCTC2544). Composite films showed low cytotoxicity, especially towards fibroblasts. Thus, the proposed sustainable approach allows to obtain composite films of Ag/AgCl alginate nanoparticles capable of preventing the onset of infections without showing high cytotoxicity for tissue cells.
Collapse
Affiliation(s)
- Matteo Puccetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Anna Donnadio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Maurizio Ricci
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Loredana Latterini
- Nano4Light Lab, Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Giulia Quaglia
- Nano4Light Lab, Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Donatella Pietrella
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, Via Piazzale Gambuli, 1, 06129 Perugia, Italy
| | - Alessandro Di Michele
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via Pascoli, 06123 Perugia, Italy
| | - Valeria Ambrogi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy
- Correspondence: ; Tel.: +39-0755855125
| |
Collapse
|
4
|
Facile one-pot synthesis of silver nanoparticles embedded alginate beads: synthesis, characterization and antimicrobial activity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Ren R, Lim C, Li S, Wang Y, Song J, Lin TW, Muir BW, Hsu HY, Shen HH. Recent Advances in the Development of Lipid-, Metal-, Carbon-, and Polymer-Based Nanomaterials for Antibacterial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3855. [PMID: 36364631 PMCID: PMC9658259 DOI: 10.3390/nano12213855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 05/29/2023]
Abstract
Infections caused by multidrug-resistant (MDR) bacteria are becoming a serious threat to public health worldwide. With an ever-reducing pipeline of last-resort drugs further complicating the current dire situation arising due to antibiotic resistance, there has never been a greater urgency to attempt to discover potential new antibiotics. The use of nanotechnology, encompassing a broad range of organic and inorganic nanomaterials, offers promising solutions. Organic nanomaterials, including lipid-, polymer-, and carbon-based nanomaterials, have inherent antibacterial activity or can act as nanocarriers in delivering antibacterial agents. Nanocarriers, owing to the protection and enhanced bioavailability of the encapsulated drugs, have the ability to enable an increased concentration of a drug to be delivered to an infected site and reduce the associated toxicity elsewhere. On the other hand, inorganic metal-based nanomaterials exhibit multivalent antibacterial mechanisms that combat MDR bacteria effectively and reduce the occurrence of bacterial resistance. These nanomaterials have great potential for the prevention and treatment of MDR bacterial infection. Recent advances in the field of nanotechnology are enabling researchers to utilize nanomaterial building blocks in intriguing ways to create multi-functional nanocomposite materials. These nanocomposite materials, formed by lipid-, polymer-, carbon-, and metal-based nanomaterial building blocks, have opened a new avenue for researchers due to the unprecedented physiochemical properties and enhanced antibacterial activities being observed when compared to their mono-constituent parts. This review covers the latest advances of nanotechnologies used in the design and development of nano- and nanocomposite materials to fight MDR bacteria with different purposes. Our aim is to discuss and summarize these recently established nanomaterials and the respective nanocomposites, their current application, and challenges for use in applications treating MDR bacteria. In addition, we discuss the prospects for antimicrobial nanomaterials and look forward to further develop these materials, emphasizing their potential for clinical translation.
Collapse
Affiliation(s)
- Ruohua Ren
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Chiaxin Lim
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Shiqi Li
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Yajun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jiangning Song
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | | | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong 518057, China
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
6
|
Mirhaj M, Labbaf S, Tavakoli M, Seifalian A. An Overview on the Recent Advances in the Treatment of Infected Wounds: Antibacterial Wound Dressings. Macromol Biosci 2022; 22:e2200014. [PMID: 35421269 DOI: 10.1002/mabi.202200014] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/20/2022] [Indexed: 11/11/2022]
Abstract
A wound can be surgical, cuts from an operation or due to accident and trauma. The infected wound, as a result of bacteria growth within the damaged skin, interrupts the natural wound healing process and significantly impacts the quality of life. Wound dressing is an important segment of the skincare industry with its economic burden estimated at $ 20.4 billion (in 2021) in the global market. The results of recent clinical trials suggest that the use of modern dressings can be the easiest, most accessible, and most cost-effective way to treat chronic wounds and, hence, holds significant promise. With the sheer number of dressings in the market, the selection of correct dressing is confusing for clinicians and healthcare workers. The aim of this research was to review widely used types of antibacterial wound dressings, as well as emerging products, for their efficiency and mode of action. In this review, we focus on introducing antibiotics and antibacterial nanoparticles as two important and clinically widely used categories of antibacterial agents. The perspectives and challenges for paving the way for future research in this field are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Amelia Seifalian
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Girija AR, Balasubramanian S, Cowin AJ. Nanomaterials-based drug delivery approaches for wound healing. Curr Pharm Des 2022; 28:711-726. [DOI: 10.2174/1381612828666220328121211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/11/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Wound healing is a complex and dynamic process that requires intricate synchronization between multiple cell types within appropriate extracellular microenvironment. Wound healing process involves four overlapping phases in a precisely regulated manner, consisting of hemostasis, inflammation, proliferation, and maturation. For an effective wound healing all four phases must follow in a sequential pattern within a time frame. Several factors might interfere with one or more of these phases in healing process, thus causing improper or impaired wound healing resulting in non-healing chronic wounds. The complications associated with chronic non-healing wounds, along with the limitations of existing wound therapies, have led to the development and emergence of novel and innovative therapeutic interventions. Nanotechnology presents unique and alternative approaches to accelerate the healing of chronic wounds by the interaction of nanomaterials during different phases of wound healing. This review focuses on recent innovative nanotechnology-based strategies for wound healing and tissue regeneration based on nanomaterials, including nanoparticles, nanocomposites and scaffolds. The efficacy of the intrinsic therapeutic potential of nanomaterials (including silver, gold, zinc oxide, copper, cerium oxide, etc.) and the ability of nanomaterials as carriers (liposomes, hydrogels, polymeric nanomaterials, nanofibers) as therapeutic agents associated with wound-healing applications have also been addressed. The significance of these nanomaterial-based therapeutic interventions for wound healing needs to be highlighted to engage researchers and clinicians towards this new and exciting area of bio-nanoscience. We believe that these recent developments will offer researchers an updated source on the use of nanomaterials as an advanced approach to improve wound healing.
Collapse
|
8
|
Salama A, Abouzeid RE, Owda ME, Cruz-Maya I, Guarino V. Cellulose-Silver Composites Materials: Preparation and Applications. Biomolecules 2021; 11:1684. [PMID: 34827681 PMCID: PMC8615592 DOI: 10.3390/biom11111684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 01/05/2023] Open
Abstract
Cellulose has received great attention owing to its distinctive structural features, exciting physico-chemical properties, and varied applications. The combination of cellulose and silver nanoparticles currently allows to fabricate different promising functional nanocomposites with unique properties. The current work offers a wide and accurate overview of the preparation methods of cellulose-silver nanocomposite materials, also providing a punctual discussion of their potential applications in different fields (i.e., wound dressing, high-performance textiles, electronics, catalysis, sensing, antimicrobial filtering, and packaging). In particular, different preparation methods of cellulose/silver nanocomposites based on in situ thermal reduction, blending and dip-coating, or additive manufacturing techniques were thoroughly described. Hence, the correlations among the structure and physico-chemical properties in cellulose/silver nanocomposites were investigated in order to better control the final properties of the nanocomposites and analyze the key points and limitations of the current manufacturing approaches.
Collapse
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Ragab E. Abouzeid
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Medhat E. Owda
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra D’Oltremare, Pad 20, V. J.F. Kennedy 54, 80125 Naples, Italy;
| | - Vincenzo Guarino
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra D’Oltremare, Pad 20, V. J.F. Kennedy 54, 80125 Naples, Italy;
| |
Collapse
|
9
|
Biocompatible and biomimetic keratin capped Au nanoparticles enable the inactivation of mesophilic bacteria via photo-thermal therapy. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
He S, Wu L, Li X, Sun H, Xiong T, Liu J, Huang C, Xu H, Sun H, Chen W, Gref R, Zhang J. Metal-organic frameworks for advanced drug delivery. Acta Pharm Sin B 2021; 11:2362-2395. [PMID: 34522591 PMCID: PMC8424373 DOI: 10.1016/j.apsb.2021.03.019] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/25/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Metal-organic frameworks (MOFs), comprised of organic ligands and metal ions/metal clusters via coordinative bonds are highly porous, crystalline materials. Their tunable porosity, chemical composition, size and shape, and easy surface functionalization make this large family more and more popular for drug delivery. There is a growing interest over the last decades in the design of engineered MOFs with controlled sizes for a variety of biomedical applications. This article presents an overall review and perspectives of MOFs-based drug delivery systems (DDSs), starting with the MOFs classification adapted for DDSs based on the types of constituting metals and ligands. Then, the synthesis and characterization of MOFs for DDSs are developed, followed by the drug loading strategies, applications, biopharmaceutics and quality control. Importantly, a variety of representative applications of MOFs are detailed from a point of view of applications in pharmaceutics, diseases therapy and advanced DDSs. In particular, the biopharmaceutics and quality control of MOFs-based DDSs are summarized with critical issues to be addressed. Finally, challenges in MOFs development for DDSs are discussed, such as biostability, biosafety, biopharmaceutics and nomenclature.
Collapse
Affiliation(s)
- Siyu He
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xue Li
- Institut de Sciences Moléculaires D'Orsay, Université Paris-Saclay, Orsay Cedex 91400, France
| | - Hongyu Sun
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting Xiong
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Key Laboratory of Modern Chinese Medicine Preparations, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jie Liu
- School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chengxi Huang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huipeng Xu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huimin Sun
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Weidong Chen
- School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ruxandra Gref
- Institut de Sciences Moléculaires D'Orsay, Université Paris-Saclay, Orsay Cedex 91400, France
| | - Jiwen Zhang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Modern Chinese Medicine Preparations, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
11
|
Muthukrishnan L. Imminent antimicrobial bioink deploying cellulose, alginate, EPS and synthetic polymers for 3D bioprinting of tissue constructs. Carbohydr Polym 2021; 260:117774. [PMID: 33712131 DOI: 10.1016/j.carbpol.2021.117774] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/16/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
3D printing, one of its kinds has been a recent technological trend to fabricate complex and patterned biomaterial with controlled precision. With the conventional kick-start of printing metals and plastics, advancements in printing viable cells, polysaccharides or microbes themselves have been achieved. The additive antimicrobial properties in bioinks sourced from organic and inorganic materials have profound implications in tissue engineering. Cellulose, alginate, exopolysaccharides, ceramics and synthetic polymers are integrated as a viable component in inks and used for bio-printing. To date, bacterial infection and immunogenicity pose a potential health risk during a tissue implant or bone substitution. In order to mitigate microbial infection, antimicrobial bioinks with significant antimicrobial potential have been the much sought after strategies. This approach could be an effective frontline defense against microbial interference in tissue engineering and biomedical applications. An overview on the antimicrobial potential of polysaccharides as bioinks for 3D bioprinting has been critically reviewed.
Collapse
Affiliation(s)
- Lakshmipathy Muthukrishnan
- Department of Conservative Dentistry & Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Chennai, Tamil Nadu, 600 077, India.
| |
Collapse
|
12
|
Kupnik K, Primožič M, Kokol V, Leitgeb M. Nanocellulose in Drug Delivery and Antimicrobially Active Materials. Polymers (Basel) 2020; 12:E2825. [PMID: 33261198 PMCID: PMC7760654 DOI: 10.3390/polym12122825] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022] Open
Abstract
In recent years, nanocellulose (NC) has also attracted a great deal of attention in drug delivery systems due to its unique physical properties, specific surface area, low risk of cytotoxicity, and excellent biological properties. This review is focused on nanocellulose based systems acting as carriers to be used in drug or antimicrobial delivery by providing different but controlled and sustained release of drugs or antimicrobial agents, respectively, thus showing potential for different routes of applications and administration. Microorganisms are increasingly resistant to antibiotics, and because, generally, the used metal or metal oxide nanoparticles at some concentration have toxic effects, more research has focused on finding biocompatible antimicrobial agents that have been obtained from natural sources. Our review contains the latest research from the last five years that tested nanocellulose-based materials in the field of drug delivery and antimicrobial activity.
Collapse
Affiliation(s)
- Kaja Kupnik
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Mateja Primožič
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
| | - Vanja Kokol
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|
13
|
Zhu W, Huang W, Zhou W, Qiu Z, Wang Z, Li H, Wang Y, Li J, Xie Y. Sustainable and antibacterial sandwich-like Ag-Pulp/CNF composite paper for oil/water separation. Carbohydr Polym 2020; 245:116587. [DOI: 10.1016/j.carbpol.2020.116587] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/24/2020] [Accepted: 06/04/2020] [Indexed: 01/14/2023]
|
14
|
Sperandeo P, Bosco F, Clerici F, Polissi A, Gelmi ML, Romanelli A. Covalent Grafting of Antimicrobial Peptides onto Microcrystalline Cellulose. ACS APPLIED BIO MATERIALS 2020; 3:4895-4901. [DOI: 10.1021/acsabm.0c00412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| | - Fabrizio Bosco
- Department of Pharmaceutical Sciences, University of Milan, via Venezian 21, 20133 Milan, Italy
| | - Francesca Clerici
- Department of Pharmaceutical Sciences, University of Milan, via Venezian 21, 20133 Milan, Italy
| | - Alessandra Polissi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| | - Maria Luisa Gelmi
- Department of Pharmaceutical Sciences, University of Milan, via Venezian 21, 20133 Milan, Italy
| | - Alessandra Romanelli
- Department of Pharmaceutical Sciences, University of Milan, via Venezian 21, 20133 Milan, Italy
| |
Collapse
|
15
|
Luo T, Shakya S, Mittal P, Ren X, Guo T, Bello MG, Wu L, Li H, Zhu W, Regmi B, Zhang J. Co-delivery of superfine nano-silver and solubilized sulfadiazine for enhanced antibacterial functions. Int J Pharm 2020; 584:119407. [DOI: 10.1016/j.ijpharm.2020.119407] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
|
16
|
Processing and valorization of cellulose, lignin and lignocellulose using ionic liquids. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2020. [DOI: 10.1016/j.jobab.2020.04.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Gambucci M, Aluigi A, Seri M, Sotgiu G, Zampini G, Donnadio A, Torreggiani A, Zamboni R, Latterini L, Posati T. Effect of Chemically Engineered Au/Ag Nanorods on the Optical and Mechanical Properties of Keratin Based Films. Front Chem 2020; 8:158. [PMID: 32219091 PMCID: PMC7078657 DOI: 10.3389/fchem.2020.00158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/21/2020] [Indexed: 11/25/2022] Open
Abstract
In this work we report the preparation and characterization of free-standing keratin-based films containing Au/Ag nanorods. The effect of nanorods surface chemistry on the optical and mechanical properties of keratin composite films is fully investigated. Colloid nanorods confer to the keratin films interesting color effects due to plasmonic absorptions of the metal nanostructures. The presence of metal NRs induces also substantial change in the protein fluorescence emission. In particular, the relative contribution of the ordered-protein aggregates emission is enhanced by the presence of cysteine and thus strictly related to the surface chemistry of nanorods. The presence of more packed supramolecular structures in the films containing metal nanorods (in particular cysteine modified ones) is confirmed by ATR measurements. In addition, the films containing nanorods show a higher Young's modulus compared to keratin alone and again the effect is more pronounced for cysteine modified nanorods. Collectively, the reported results indicate the optical and mechanical properties of keratin composites films are related to a common property and can be tuned simultaneously, paving the way to the optimization and improvement of their performances and enhancing the exploitation of keratin composites in highly technological optoelectronic applications.
Collapse
Affiliation(s)
- Marta Gambucci
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Annalisa Aluigi
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Bologna, Italy
| | - Mirko Seri
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Bologna, Italy
| | - Giovanna Sotgiu
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Bologna, Italy
| | - Giulia Zampini
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Anna Donnadio
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Perugia, Italy
| | - Armida Torreggiani
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Bologna, Italy
| | - Roberto Zamboni
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Bologna, Italy
| | - Loredana Latterini
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Tamara Posati
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Bologna, Italy
| |
Collapse
|
18
|
Lopez K, Ravula S, Pérez RL, Ayala CE, Losso JN, Janes ME, Warner IM. Hyaluronic Acid-Cellulose Composites as Patches for Minimizing Bacterial Infections. ACS OMEGA 2020; 5:4125-4132. [PMID: 32149241 PMCID: PMC7057694 DOI: 10.1021/acsomega.9b03852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
A facile method was used to synthesize biocomposites containing differing ratios of hyaluronic acid (HA) and cellulose (CEL). Based on the properties of the individual polymers, the resultant composite materials may have potentially great wound care properties. In the method outlined here, 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]), a simple ionic liquid, was used as the sole solvent without chemical modifiers to dissolve the biopolymers at ratios of 1:1 and 2:1 HA to CEL. This method was completely recyclable since the ionic liquid, [Bmim][Cl], can be recovered. Results from spectroscopic measurements [Fourier transform infrared (FT-IR) and X-ray diffraction (XRD)] confirm the interaction between HA and CEL. Scanning electron microscopy (SEM) images reflect differing biopolymer ratios and the resulting impact on the texture and porosity of these composite materials. The composites exhibited high swelling capacity in various media. These composites were also drug-loaded to examine drug release properties for greater potential in combating Staphylococcus aureus infections.
Collapse
Affiliation(s)
- Kelsey
M. Lopez
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sudhir Ravula
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Department
of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Science Center, New Orleans, Louisiana 70119, United States
| | - Rocío L. Pérez
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Caitlan E. Ayala
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jack N. Losso
- Department
of Food Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Marlene E. Janes
- Department
of Food Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Isiah M. Warner
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
19
|
Chen J, Wei Y, Yang X, Ni S, Hong F, Ni S. Construction of selenium-embedded mesoporous silica with improved antibacterial activity. Colloids Surf B Biointerfaces 2020; 190:110910. [PMID: 32126358 DOI: 10.1016/j.colsurfb.2020.110910] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/06/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
Abstract
In this work, different concentrations of Se-incorporated mesoporous silica nanospheres (MSNs) (5Se/MSNs and 10Se/MSNs) were successfully synthesized via an in-situ one-pot method. Their physicochemical properties were characterized by X-ray diffraction (XRD), transmission electron microscopy, and X-ray photoelectron spectroscopy (XPS). The release behaviors of Se and Si were investigated in a phosphate-buffered saline (pH = 5.5, 7.4) solution (PBS). In vitro antibacterial properties of the prepared samples were evaluated with Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The cytocompatibilities of the samples were then assessed using L929 cells. Se nanoparticles were successfully loaded onto the outer and inner surfaces of hierarchical mesoporous silica. The sizes of the Se/MSNs nanoparticles were approximately 120 nm for 5Se/MSNs and 210 nm for 10Se/MSNs. The XRD and XPS results showed that Se mainly existed in the form of Se0 in the samples. The Se/MSNs exhibited stable and sustained release of both Si and Se in PBS solution. In vitro antibactericidal tests indicated that the Se/MSNs could exhibit better antibacterial activity against S. aureus than pure Se nanoparticles after 6 and 24 h of culturing. The minimal inhibitory concentration (MIC) of 10Se/MSN was 100 μg mL-1. However, the Se/MSNs exhibited no inhibitory effect on E. coli bacteria. Furthermore, all the samples exhibited excellent cell viability. These studies demonstrate initial in vitro antibacterial activity and good cytocompatibility of Se/MSNs and their potential application in antibacterial nanomedicine.
Collapse
Affiliation(s)
- Jingjing Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Renmin Road 2999, Shanghai 201620, PR China; Key Lab of Eco-Textile, Ministry of Education, Donghua University, North Renmin Road 2999, Shanghai 201620, PR China
| | - Yuanyuan Wei
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Renmin Road 2999, Shanghai 201620, PR China; Key Lab of Eco-Textile, Ministry of Education, Donghua University, North Renmin Road 2999, Shanghai 201620, PR China
| | - Xuexia Yang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Renmin Road 2999, Shanghai 201620, PR China; Key Lab of Eco-Textile, Ministry of Education, Donghua University, North Renmin Road 2999, Shanghai 201620, PR China
| | - Shirong Ni
- Department of Pathology, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Feng Hong
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Renmin Road 2999, Shanghai 201620, PR China; Key Lab of Eco-Textile, Ministry of Education, Donghua University, North Renmin Road 2999, Shanghai 201620, PR China
| | - Siyu Ni
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Renmin Road 2999, Shanghai 201620, PR China; Key Lab of Eco-Textile, Ministry of Education, Donghua University, North Renmin Road 2999, Shanghai 201620, PR China.
| |
Collapse
|
20
|
Zou Z, Sun J, Li Q, Pu Y, Liu J, Sun R, Wang L, Jiang T. Vancomycin modified copper sulfide nanoparticles for photokilling of vancomycin-resistant enterococci bacteria. Colloids Surf B Biointerfaces 2020; 189:110875. [PMID: 32087532 DOI: 10.1016/j.colsurfb.2020.110875] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/13/2020] [Accepted: 02/12/2020] [Indexed: 10/25/2022]
Abstract
Due to the overuse of antibiotics, vancomycin resistant enterococci (VRE) has caused serious infections and become more and more difficult to deal with. Herein, we reported a facile one-pot strategy to synthesize copper sulfide nanoparticles using vancomycin (Van) as reductant and capping agent (CuS@Van). The as-prepared CuS@Van nanocomposites presented excellent uniformity in particle size and strong near infrared (NIR) absorbance. Fourier Transform infrared spectroscopy (FTIR) and Energy dispersive spectrometry (EDS) analysis confirmed the successful modification of Van molecules on the surface of CuS@Van nanoparticles. Bacterial TEM images verified the specific binding affinity between CuS@Van and VRE pathogen. CuS@Van also exhibited effective photokilling capability based on a combination of photothermal therapy (PTT) and photodynamic therapy (PDT). Fluorescent bacterial viability staining and bacterial growth curves monitoring were performed to explore the photokilling ablation of CuS@Van against VRE pathogens. The in vitro results indicated that CuS@Van nanocomposites had no antibacterial activity in the dark but displayed satisfying bactericidal effect against VRE pathogens upon the NIR irradiation. Mouse infection assays were also implemented to evaluate in vivo antibacterial photokilling effectiveness. CuS@Van with NIR irradiation showed the highest antibacterial capability and fastest infection regression compared with the control groups. Considering the low cost, easy preparation, good biocompatibility and excellent photokilling capability, CuS@Van nanocomposites will shed bright light on the photokilling ablation of vancomycin-resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Zhonghao Zou
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Jie Sun
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Qing Li
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Yang Pu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jiaqi Liu
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Ruiqi Sun
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Luyao Wang
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Tingting Jiang
- School of Life Sciences, Ludong University, Yantai 264025, China.
| |
Collapse
|
21
|
Jiang X, Fan X, Xu W, Zhang R, Wu G. Biosynthesis of Bimetallic Au–Ag Nanoparticles Using Escherichia coli and its Biomedical Applications. ACS Biomater Sci Eng 2019; 6:680-689. [DOI: 10.1021/acsbiomaterials.9b01297] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xinglu Jiang
- Medical School of Southeast University, Nanjing 210009, People’s Republic of China
| | - Xiaobo Fan
- Medical School of Southeast University, Nanjing 210009, People’s Republic of China
| | - Wei Xu
- Medical School of Southeast University, Nanjing 210009, People’s Republic of China
| | - Rui Zhang
- Medical School of Southeast University, Nanjing 210009, People’s Republic of China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, People’s Republic of China
| |
Collapse
|
22
|
Zeng M, Xu J, Luo Q, Hou C, Qiao S, Fu S, Fan X, Liu J. Constructing antibacterial polymer nanocapsules based on pyridine quaternary ammonium salt. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110383. [PMID: 31923992 DOI: 10.1016/j.msec.2019.110383] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/22/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022]
Abstract
Excessive use of antibiotics accelerates the development and spread of drug-resistant strains, which is a huge challenge for the field of medical health worldwide. Quaternary ammonium salt polymers are considered to be membrane-active bactericidal groups with vast potential to control bacterial infections and inhibit drug resistance. Herein, we report on the creative synthesis and characterization of novel antimicrobial polymer nanocapsules based on pyridine quaternary ammonium salt. The antimicrobial polymer nanocapsules were formed by reaction of C3 symmetrical rigid monomer 2,4,6‑tris(4‑pyridyl)‑1,3,5‑triazine (TPT) and a flexible linker 1,2‑dibromoethane. The polymer nanocapsule was constructed as a cationic hollow sphere composed of a two-dimensional sheet whose main chain was formed by the pyridine quaternary ammonium salt, and a part of the bromide ion was adsorbed on the sphere. This hollow nanocapsule was characterized in detail by DLS, SEM, TEM, AFM, EDS and EA. When the cationic polymer nanocapsules are close to the Gram-negative Escherichia coli, the negatively charged phospholipid molecules in the bacterial membrane are attracted to the cationic surface and lead to rupture of cells. SEM confirmed the breakage of Escherichia coli membranes. The minimum inhibitory concentration was found to be 0.04 mg/mL, and the minimum bactericidal concentration was 0.1 mg/mL. Our experiments demonstrated that the adsorption of negatively charged phospholipid molecules on the surface of the pyridine quaternary ammonium salt polymer can kill Gram-negative bacteria without inserting quaternary ammonium salt hydrophobic groups into the cell membrane.
Collapse
Affiliation(s)
- Minghao Zeng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Jiayun Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Shanpeng Qiao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Shuang Fu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Xiaotong Fan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| |
Collapse
|
23
|
Li Y, Liu C, Mo H, Zhang J, Jiang X, Zhang L, Yang L, Fu L, He L, Zhao Y, Shen J, Qiao T. Sodium triphosphate–capped silver nanoparticles on a decellularized scaffold-based polyurethane vascular patch for bacterial infection inhibition and rapid endothelialization. J BIOACT COMPAT POL 2019. [DOI: 10.1177/0883911519872779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With increasing incidence rate of cardiovascular diseases and implant-related infections, there is growing demand for vascular patches that can promote endothelialization and resist bacterial infection. In this work, we immobilized sodium triphosphate–capped silver nanoparticles onto a polyurethane film to obtain a composite film and evaluated its in vitro biocompatibility. Subsequently, we anchored sodium triphosphate–capped silver nanoparticles onto a polyurethane-coated decellularized scaffold to prepare a vascular patch and investigated its in vivo performance in a mouse model. The prepared vascular patch demonstrated excellent biocompatibility and potent antibacterial activity against Escherichia coli and Staphylococcus aureus. It still maintained the surgical artery patency at 30 days after implantation. At the same time, the endothelialization at the surgical site was achieved, showing its ability to facilitate endothelialization. Therefore, it may be a promising candidate for combating bacterial infection and treating diseased blood vessels.
Collapse
Affiliation(s)
- Yajuan Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Cheng Liu
- Medical School, Nanjing University, Nanjing, P. R. China
| | - Hong Mo
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Jun Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Xuefeng Jiang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Luxia Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Lutao Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Lei Fu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Lei He
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Yue Zhao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Tong Qiao
- Medical School, Nanjing University, Nanjing, P. R. China
| |
Collapse
|
24
|
Li Y, Guo R, Lu W, Zhu D. Research progress on resource utilization of leather solid waste. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2019. [DOI: 10.1186/s42825-019-0008-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
|
26
|
Muñoz-Bonilla A, Echeverria C, Sonseca Á, Arrieta MP, Fernández-García M. Bio-Based Polymers with Antimicrobial Properties towards Sustainable Development. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E641. [PMID: 30791651 PMCID: PMC6416599 DOI: 10.3390/ma12040641] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/11/2022]
Abstract
This article concisely reviews the most recent contributions to the development of sustainable bio-based polymers with antimicrobial properties. This is because some of the main problems that humanity faces, nowadays and in the future, are climate change and bacterial multi-resistance. Therefore, scientists are trying to provide solutions to these problems. In an attempt to organize these antimicrobial sustainable materials, we have classified them into the main families; i.e., polysaccharides, proteins/polypeptides, polyesters, and polyurethanes. The review then summarizes the most recent antimicrobial aspects of these sustainable materials with antimicrobial performance considering their main potential applications in the biomedical field and in the food industry. Furthermore, their use in other fields, such as water purification and coating technology, is also described. Finally, some concluding remarks will point out the promise of this theme.
Collapse
Affiliation(s)
- Alexandra Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Coro Echeverria
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Águeda Sonseca
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Marina P Arrieta
- Facultad de Ciencias Químicas, Universidad Complutense de Madrid (UCM), Av. Complutense s/n, Ciudad Universitaria, 28040 Madrid, Spain.
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
27
|
Thomas J, Perikaruppan P, Thomas V, John J, Mathew RM, Thomas J, Rejeena I, Mathew S, Mujeeb A. Green Synthesized Plasmonic Silver Systems for Potential Non-Linear Optical Applications: Optical Limiting and Dual Beam Mode Matched Thermal Lensing. Aust J Chem 2019. [DOI: 10.1071/ch18617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bioactive compound functionalized plasmonic systems are evolving as a promising branch of nanotechnology. In this communication the synthesis of bioactive compound mimosine-based silver nanoparticles (AgNPs) and their non-linear optical and thermo-optic properties are presented. UV-Visible spectroscopy, optical bandgap measurement, fluorescence spectroscopy, and high-resolution transmission electron microscopy (HRTEM) techniques were used to characterize the synthesized AgNPs. An open aperture z-scan technique was used to determine the non-linear optical parameters. A very strong reverse saturable absorption (RSA) and low optical limiting threshold were observed for the present mimosine decorated AgNP system. The thermo-optic property of the present system was evaluated using a highly sensitive dual beam mode matched thermal lensing spectroscopic technique. A comparison of the low limiting threshold (242MWcm−2) and thermo-optic property (thermal diffusivity, D=1.13×10−7m2s−1) with similar systems proves its capability for non-linear optical and thermo-optic applications.
Collapse
|
28
|
Raghava Reddy K, Reddy PA, Reddy CV, Shetti NP, Babu B, Ravindranadh K, Shankar MV, Reddy MC, Soni S, Naveen S. Functionalized magnetic nanoparticles/biopolymer hybrids: Synthesis methods, properties and biomedical applications. METHODS IN MICROBIOLOGY 2019. [DOI: 10.1016/bs.mim.2019.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications. Int J Biol Macromol 2018; 115:165-175. [DOI: 10.1016/j.ijbiomac.2018.04.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/20/2018] [Accepted: 04/03/2018] [Indexed: 01/07/2023]
|
30
|
Tran CD, Prosenc F, Franko M. Facile synthesis, structure, biocompatibility and antimicrobial property of gold nanoparticle composites from cellulose and keratin. J Colloid Interface Sci 2018; 510:237-245. [DOI: 10.1016/j.jcis.2017.09.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 12/26/2022]
|
31
|
Sharma S. Enhanced antibacterial efficacy of silver nanoparticles immobilized in a chitosan nanocarrier. Int J Biol Macromol 2017; 104:1740-1745. [DOI: 10.1016/j.ijbiomac.2017.07.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/30/2017] [Accepted: 07/07/2017] [Indexed: 11/28/2022]
|
32
|
Singh AK, Tripathi M, Srivastava ON, Verma RK. Silver Nanoparticles/Gelatin Composite: A New Class of Antibacterial Material. ChemistrySelect 2017. [DOI: 10.1002/slct.201701245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ashwani Kumar Singh
- School of Physical Sciences; Jawaharlal Nehru University; New Delhi India- 110067
| | - Manish Tripathi
- Department of Gastroenterology; Institute of Medical Sciences, Banaras Hindu University; Varanasi India- 221005
| | | | | |
Collapse
|