1
|
Li X, Jin Z, Bai Y, Svensson B. Progress in cyclodextrins as important molecules regulating catalytic processes of glycoside hydrolases. Biotechnol Adv 2024; 72:108326. [PMID: 38382582 DOI: 10.1016/j.biotechadv.2024.108326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Cyclodextrins (CDs) are important starch derivatives and commonly comprise α-, β-, and γ-CDs. Their hydrophilic surface and hydrophobic inner cavity enable regulation of enzyme catalysis through direct or indirect interactions. Clarifying interactions between CDs and enzyme is of great value for enzyme screening, mechanism exploration, regulation of catalysis, and applications. We summarize the interactions between CDs and glycoside hydrolases (GHs) according to two aspects: 1) CD as products, substrates, inhibitors and activators of enzymes, directly affecting the reaction process; 2) CDs indirectly affecting the enzymatic reaction by solubilizing substrates, relieving substrate/product inhibition, increasing recombinant enzyme production and storage stability, isolating and purifying enzymes, and serving as ligands in crystal structure to identify functional amino acid residues. Additionally, CD enzyme mimetics are developed and used as catalysts in traditional artificial enzymes as well as nanozymes, making the application of CDs no longer limited to GHs. This review concerns the regulation of GHs catalysis by CDs, and gives insights into research on interactions between enzymes and ligands.
Collapse
Affiliation(s)
- Xiaoxiao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
2
|
Liu Q, Li H, Zhang Y, Chen W, Yu S, Chen Y. Porphyrin/phthalocyanine-based porous organic polymers for pollutant removal and detection: Synthesis, mechanisms, and challenges. ENVIRONMENTAL RESEARCH 2023; 239:117406. [PMID: 37839529 DOI: 10.1016/j.envres.2023.117406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
The growing global concern about environmental threats due to environmental pollution requires the development of environmentally friendly and efficient removal/detection materials and methods. Porphyrin/phthalocyanine (Por/Pc) based porous organic polymers (POPs) as a newly emerging porous material are prepared through polymerizing building blocks with different structures. Benefiting from the high porosity, adjustable pore structure, and enzyme-like activities, the Por/Pc-POPs can be the ideal platform to study the removal and detection of pollutants. However, a systematic summary of their application in environmental treatment is still lacking to date. In this review, the development of various Por/Pc-POPs for pollutant removal and detection applications over the past decade was systematically addressed for the first time to offer valuable guidance on environmental remediation through the utilization of Por/Pc-POPs. This review is divided into two sections (pollutants removal and detection) focusing on Por/Pc-POPs for organic, inorganic, and gaseous pollutants adsorption, photodegradation, and chemosensing, respectively. The related removal and sensing mechanisms are also discussed, and the methods to improve removal and detection efficiency and selectivity are also summarized. For the future practical application of Por/Pc-POPs, this review provides the emerging research directions and their application possibility and challenges in the removal and detection of pollutants.
Collapse
Affiliation(s)
- Qi Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Hao Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Yuming Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Wenmiao Chen
- Department of Science, Texas A&M University at Qatar, Education City, P.O. Box 23874, Doha, Qatar.
| | - Sirong Yu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| |
Collapse
|
3
|
Bhaduri SN, Ghosh D, Chatterjee S, Biswas R, Bhaumik A, Biswas P. Fe(III)-incorporated porphyrin-based conjugated organic polymer as a peroxidase mimic for the sensitive determination of glucose and H 2O 2. J Mater Chem B 2023; 11:8956-8965. [PMID: 37671527 DOI: 10.1039/d3tb00977g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Nanozymes, i.e., nanomaterials that possess intrinsic enzyme-like behaviour, have thrived over the past few decades owing to their advantages of superior stability and effortless storage. Such artificial enzymes can be a perfect alternative to naturally occurring enzymes, which have disadvantages of high cost and limited functionality. In this work, we present the fabrication of an Fe(III)-incorporated porphyrin-based conjugated organic polymer as a nanozyme for the efficient detection of glucose through its intrinsic peroxidase activity and the amperometric detection of hydrogen peroxide. The iron-incorporated porphyrin-based conjugated organic polymer (Fe-DMP-POR) possesses a spherical morphology with high chemical and thermal stability. Exploiting the peroxidase-mimicking activity of the material for the determination of glucose, a detection limit of 4.84 μM is achieved with a linear range of 0-0.15 mM. The Fe-DMP-POR also exhibits a reasonable recovery range for the detection of human blood glucose. The as-synthesized material can also act as an H2O2 sensor, with a sensitivity of 947.67 μA cm-2 mM-1 and a limit of detection of 3.16 μM.
Collapse
Affiliation(s)
- Samanka Narayan Bhaduri
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, West Bengal, India.
| | - Debojit Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, West Bengal, India.
| | - Sauvik Chatterjee
- School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, West Bengal, India
| | - Rima Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, West Bengal, India.
| | - Asim Bhaumik
- School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, West Bengal, India
| | - Papu Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, West Bengal, India.
| |
Collapse
|
4
|
Bhaduri SN, Ghosh D, Chatterjee R, Das S, Pramanick I, Bhaumik A, Biswas P. Ni(II)-Incorporated Ethylene Glycol-Linked Tetraphenyl Porphyrin-Based Covalent Organic Polymer as a Catalyst for Methanol Electrooxidation. Inorg Chem 2023; 62:12832-12842. [PMID: 37527444 DOI: 10.1021/acs.inorgchem.3c01479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Methanol oxidation reaction (MOR) is a perfect alternative to the conventional oxygen evolution reaction (OER), generally utilized as the anode reaction for hydrogen generation via the electrochemical water splitting method. Moreover, MOR is also relevant to direct methanol fuel cells (DMFCs). These facts motivate the researchers to develop economical and efficient electrocatalysts for MOR. Herein, we have introduced an ethylene glycol-linked tetraphenyl porphyrin-based (EG-POR) covalent organic polymer (COP). The Ni(II)-incorporated EG-POR material Ni-EG-POR displayed excellent OER and MOR activities in an alkaline medium. The materials were thoroughly characterized using 13C solid-state NMR, Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET) surface area analyzer, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermogravimetric analyzer (TGA), and powder X-ray diffraction (PXRD) techniques. These organic-inorganic hybrid materials showed high chemical and thermal stability. Ni-EG-POR requires an overpotential of 400 mV (vs RHE) in OER and 190 mV (vs RHE) in MOR to achieve a current density of 10 mA cm-2. In addition, the catalyst also showed excellent chronoamperometric and chronopotentiometric stability, indicating that the catalyst can provide stable current over a longer period and its potential as a non-noble metal MOR catalyst.
Collapse
Affiliation(s)
- Samanka Narayan Bhaduri
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, West Bengal, India
| | - Debojit Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, West Bengal, India
| | - Rupak Chatterjee
- School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, West Bengal, India
| | - Samarpita Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, West Bengal, India
| | - Indrani Pramanick
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, West Bengal, India
| | - Asim Bhaumik
- School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, West Bengal, India
| | - Papu Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, West Bengal, India
| |
Collapse
|
5
|
Emerging tetrapyrrole porous organic polymers for chemosensing applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
6
|
Khoshfetrat SM, Fasihi K, Moradnia F, Kamil Zaidan H, Sanchooli E. A label-free multicolor colorimetric and fluorescence dual mode biosensing of HIV-1 DNA based on the bifunctional NiFe 2O 4@UiO-66 nanozyme. Anal Chim Acta 2023; 1252:341073. [PMID: 36935160 DOI: 10.1016/j.aca.2023.341073] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Finding the DNA of the human immune deficiency virus (HIV) with simple and sensitive detection is the main challenge in early diagnosis of AIDS. Herein, two-point separation strategies based on the colorimetric and fluorescence are introduced. The naked-eye qualitative and semiquantitative colorimetric, and also accuracy fluorescence quantification of HIV-1 DNA were applied using label-free NiFe2O4@UiO-66 nanozyme with both functions of peroxidase-mimetic like and emitting fluorescence. The DNA probe-conjugated nanozyme is employed to hybridize a sequence of HIV-1. NiFe2O4@UiO-66 nanozymes catalyze the decomposition of H2O2 to •OH which can produce a remarkable fluorescent product 2-hydroxyterephthalic acid (TAOH) by the oxidation of the bridging ligand of weakly fluorescent terephthalic acid (TA). The accessibility of H2O2 toward confined-NiFe2O4 MNPs was reduced by increasing the HIV-1 target DNA concentration, resulting in the fluorescence intensity of TAOH being decreased. Meanwhile, remaining the unreacted H2O2 was transferred an acidic colorimetric solution containing FeSO4 and gold nanorods (AuNRs). Increasing the amount of H2O2 available for longitudinal etching of AuNRs due to •OH-generating Fe+2-catalyzed H2O2 is reponsible for different colors from brownish to colorless depending on the HIV-1 target DNA concentration. The fluorescence intensity and obtained colors have offered the sensitive biosensing methods with a linear range from 0.05 to 300 and 1-200 pM, respectively with a detection limit as low as 1 fM. Our study revealed that the applied sensing assay provides a cost-effective and straightforward qualitative, semiquantitative, and sensitive quantitation visible monitoring without the necessity of high-end instruments for HIV-1 detection in a human blood plasma/serum samples.
Collapse
Affiliation(s)
- Seyyed Mehdi Khoshfetrat
- Department of Chemistry, Faculty of Basic Science, Ayatollah Boroujerdi University, Boroujerd, Iran.
| | - Kamran Fasihi
- Department of Chemistry, Faculty of Basic Science, Ayatollah Boroujerdi University, Boroujerd, Iran
| | - Farzaneh Moradnia
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Haider Kamil Zaidan
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hillah, Babylon, Iraq
| | - Esmael Sanchooli
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran
| |
Collapse
|
7
|
Bhaduri SN, Ghosh D, Debnath S, Biswas R, Chatterjee PB, Biswas P. Copper(II)-Incorporated Porphyrin-Based Porous Organic Polymer for a Nonenzymatic Electrochemical Glucose Sensor. Inorg Chem 2023; 62:4136-4146. [PMID: 36862998 DOI: 10.1021/acs.inorgchem.2c04072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
To date, the fabrication of multifunctional nanoplatforms based on a porous organic polymer for electrochemical sensing of biorelevant molecules has received considerable attention in the search for a more active, robust, and sensitive electrocatalyst. Here, in this report, we have developed a new porous organic polymer based on porphyrin (TEG-POR) from a polycondensation reaction between a triethylene glycol-linked dialdehyde and pyrrole. The Cu(II) complex of the polymer Cu-TEG-POR shows high sensitivity and a low detection limit for glucose electro-oxidation in an alkaline medium. The characterization of the as-synthesized polymer was done by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and 13C CP-MAS solid-state NMR. The N2 adsorption/desorption isotherm was carried out at 77 K to analyze the porous property. TEG-POR and Cu-TEG-POR both show excellent thermal stability. The Cu-TEG-POR-modified GC electrode shows a low detection limit (LOD) value of 0.9 μM and a wide linear range (0.001-1.3 mM) with a sensitivity of 415.8 μA mM-1 cm-2 toward electrochemical glucose sensing. The interference of the modified electrode from ascorbic acid, dopamine, NaCl, uric acid, fructose, sucrose, and cysteine was insignificant. Cu-TEG-POR exhibits acceptable recovery for blood glucose detection (97.25-104%), suggesting its scope in the future for selective and sensitive nonenzymatic glucose detection in human blood.
Collapse
Affiliation(s)
- Samanka Narayan Bhaduri
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, West Bengal, India
| | - Debojit Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, West Bengal, India
| | - Snehasish Debnath
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar 364002, Gujarat, India
| | - Rima Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, West Bengal, India
| | - Pabitra B Chatterjee
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Papu Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, West Bengal, India
| |
Collapse
|
8
|
Li Y, Wang Q, Qu X, Zhang Q, Zhang X. A metalloporphyrin and hydantoin functionalized nanozyme with synergistically enhanced bacterial inhibition. Biomater Sci 2023; 11:1785-1796. [PMID: 36648752 DOI: 10.1039/d2bm01337a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An elaborate design of multimodal antibacterial agents has been revealed to be a promising strategy to address bacterial resistance, originating from the abuse of antibiotics. In this work, we have developed a positively charged and porous material, FePPOPHydantoin, as a disinfectant via introducing 1,3-dibromo-5,5-dimethylhydantoin (Hydantoin) and porphyrin iron units into a polymer framework. The extended π conjugated networks of FePPOPHydantoin endowed the material with strong near-infrared (NIR) absorption, high density of surface catalytic active centers, superior stability, and reproducibility. FePPOPHydantoin exhibits high peroxidase mimetic and photo-Fenton activity, which can catalyze the biologically allowable maximum concentrations of hydrogen peroxide (100 μM) to produce a vast amount of hydroxyl radicals. Simultaneously, the effective electrostatic interaction between the positively charged FePPOPHydantoin and the negatively charged bacteria facilitates the binding of FePPOPHydantoin on the bacterial membrane, restricting bacteria within the destruction range of hydroxyl radicals and thus making the bacteria more vulnerable. Finally, further close contact between bacteria and Hydantoin units in FePPOPHydantoin gave the material an antibacterial efficiency of over 99.999%. Compared with chemical therapy, photo-Fenton therapy, or peroxidase catalytic therapy alone, FePPOPHydantoin had a noteworthy multi-amplified antibacterial efficiency. Furthermore, FePPOPHydantoin exhibited good biocompatibility and negligible cytotoxicity. The in vivo antibacterial therapy on the Staphylococcus aureus (S. aureus) infected mouse wound model clearly proved the effectiveness of FePPOPHydantoin for fighting bacterial infections. This work highlights opportunities for the design of nanozymes with enhanced bacteriostatic activity, providing a new avenue for the construction of novel antibiotics.
Collapse
Affiliation(s)
- Yanhong Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Quanbo Wang
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Xinyan Qu
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Qiang Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
9
|
Wang Q, Lv L, Chi W, Bai Y, Gao W, Zhu P, Yu J. Porphyrin-Based Covalent Organic Frameworks with Donor-Acceptor Structure for Enhanced Peroxidase-like Activity as a Colorimetric Biosensing Platform. BIOSENSORS 2023; 13:188. [PMID: 36831954 PMCID: PMC9953433 DOI: 10.3390/bios13020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen peroxide (H2O2) and glucose play a key role in many cellular signaling pathways. The efficient and accurate in situ detection of H2O2 released from living cells has attracted extensive research interests. Herein, a new porphyrin-based porous covalent organic framework (TAP-COF) was fabricated via one-step condensation of 1,6,7,12-tetrachloroperylene tetracarboxylic acid dianhydride and 5,10,15,20-tetrakis (4-aminophenyl)porphyrin iron(III). The obtained TAP-COF has high surface areas, abundant surface catalytic active sites, and highly effective electron transport due to its precisely controllable donor-acceptor arrangement and 3D porous structure. Then, the new TAP-COF exhibited excellent peroxidase-like catalytic activity, which could effectively catalyze oxidation of the substrate 3,3',5,5'-tetramethylbenzidine by H2O2 to produce a typical blue-colored reaction. On this basis, simple, rapid and selective colorimetric methods for in situ H2O2 detection were developed with the detection limit of 2.6 nM in the wide range of 0.01 to 200 μM. The colorimetric approach also could be used for in situ detection of H2O2 released from living MCF-7 cells. This portable sensor based on a COF nanozyme not only opens a new path for point-of-care testing, but also has potential applications in the field of cell biology and clinical diagnosis.
Collapse
Affiliation(s)
- Qian Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Liang Lv
- Jinan Agricultural Product Quality and Safety Center, Jinan 250316, China
| | - Wenhao Chi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yujiao Bai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Wenqing Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
10
|
Goswami J, Saikia L, Hazarika P. Carbon Dots‐Decorated g‐C
3
N
4
as Peroxidase Nanozyme for Colorimetric Detection of Cr(VI) in Aqueous Medium. ChemistrySelect 2022. [DOI: 10.1002/slct.202201963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Juri Goswami
- Jorhat Institute of Science and Technology Jorhat 785010 Assam India
- Assam Science and Technology University, Jalukbari Guwahati 781013 Assam India
| | - Lakshi Saikia
- Advanced Materials Group Materials Sciences and Technology Division CSIR- North-East Institute of Science and Technology Jorhat 785006 Assam India
| | - Parasa Hazarika
- Jorhat Institute of Science and Technology Jorhat 785010 Assam India
- Assam Science and Technology University, Jalukbari Guwahati 781013 Assam India
| |
Collapse
|
11
|
Visible Light-Responsive Sulfone-Based Covalent Organic Framework as Metal-Free Nanoenzyme for Visual Colorimetric Determination of Uranium. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Covalent organic framework (COF) has been attracting considerable attention as a novel crystalline material owing to its extended π-electron conjugation and excellent spectral behavior. In this study, we present an imine-linked two-dimensional (2D) crystalline sulfone-based covalent organic framework (TAS-COF) synthesized by 2,4,6-triformylphloroglucinol (Tp) and 3,7-diaminodibenzo[b,d]thiophene (DAS) via a Schiff base condensation reaction. The benzothiophene sulfone endows the as-synthesized TAS-COF with excellent oxidase-like activity under visible light irradiation, ascribed to the generation of superoxide radicals (O2•−) by photo-generated electron transfer. TAS-COF can efficiently oxidase the colorless substrate 3,3′,5,5′-tetramethylbenzydine (TMB) into blue oxidized TMB (oxTMB) when exposed to visible light, and the presence of uranium (UO22+) leads to clear color fading due to the coordination between the imine of oxTMB and UO22+. A colorimetric strategy is thus developed for UO22+ determination with a detection limit of 0.07 μmol L−1. Moreover, a paper-based visual sensing platform is also constructed to offer simple and fast UO22+ content evaluation in water samples. The present study not only provides a promising strategy to prepare visible light-triggered COF-based metal-free nanoenzymes but also extends the applications of COF material in radionuclide detection.
Collapse
|
12
|
Kong Y, Liu F, Liu Z, Zhao J, Wu Q, Zhang X, Liu M, Zhang H, Liu S, Zhang X, Chen M. Synthesis of globotriose-modified peptides for the preparation of a colorimetric biosensor to detect Shiga toxins. Talanta 2022; 243:123353. [DOI: 10.1016/j.talanta.2022.123353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 10/19/2022]
|
13
|
Lai W, Guo J, Wang Y, Lin Y, Ye S, Zhuang J, Tang D. Enzyme-controllable just-in-time production system of copper hexacyanoferrate nanoparticles with oxidase-mimicking activity for highly sensitive colorimetric immunoassay. Talanta 2022; 247:123546. [PMID: 35594834 DOI: 10.1016/j.talanta.2022.123546] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
Abstract
Nanozymes are a series of elaborately designed nanomaterials that can mimic the catalytic sites of natural enzymes for reactions. Bypassing the tedious design and preparation of nanomaterial, in this work, we report on a novel just-in-time production system of copper hexacyanoferrate nanoparticles (CHNPs), which act as an oxidase-mimicking nanozyme. This system can rapidly produce CHNPs nanozyme on demand by simply mixing Cu(II) with potassium hexacyanoferrate(III) (K3[Fe(CN)6]). It is found that once K3[Fe(CN)6] is reduced to K4[Fe(CN)6], the formation of CHNPs is inhibited. Therefore, the just-in-time production system of CHNPs was coupled with alkaline phosphatase (ALP) to construct an enzyme-controllable just-in-time production (ECJP) system, in which ALP could inhibit the production of by catalyzing the hydrolysis of ascorbic acid 2-phosphate (AAP) to generating ascorbic acid (AA). The ECJP system is then used to probe the activity of ALP by employing 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) as the chromogenic substrate, and a detection limit of 0.003 U L-1 was achieved. Moreover, by adapting ALP as the enzyme label, an ECJP system-based colorimetric immunoassay protocol was established for sensitive detection of aflatoxin B1 (AFB1), and a detection limit as low as 0.73 pg mL-1 was achieved. The developed immunoassay method is successfully applied to the detection of AFB1 in peanut samples. The operation of ECJP system is quite simple and the coupling of ALP with CHNPs nanozyme can arouse dual enzyme-like cascade signal amplification. So, we believe this work can offer a new perspective for the development of nanozymes-based biodetection methods and colorimetric immunoassay strategies.
Collapse
Affiliation(s)
- Wenqiang Lai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China.
| | - Jiaqing Guo
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Yuqin Wang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China
| | - Youxiu Lin
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China
| | - Shuai Ye
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| | - Junyang Zhuang
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou, 350108, Fujian Province, China.
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education & Fujian Province), Institute of Nanomedicine and Nanobiosensing, Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| |
Collapse
|
14
|
Lu J, Wang M, Han Y, Deng Y, Zeng Y, Li C, Yang J, Li G. Functionalization of Covalent Organic Frameworks with DNA via Covalent Modification and the Application to Exosomes Detection. Anal Chem 2022; 94:5055-5061. [PMID: 35290034 DOI: 10.1021/acs.analchem.1c05222] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The functionalization of covalent organic frameworks (COFs) with biomacromolecules can extend their functions, which is the premise of their application in biomedical research. However, strategies to functionalize COFs with biomacromolecules, which can ensure the stability in complex medium and minimize the undesired effects, are still lacking. In this work, we have proposed a strategy to functionalize COFs with DNA by covalently linking DNA to the functional group on the COF surface through Cu(I)-catalyzed azide/alkyne cycloaddition (CuAAC) reaction. The as-prepared DNA-functionalized COFs (DNA-COFs) can exhibit good hybridization ability and cargo loading ability; thus, we have designed a DNA-COF-based nanoprobe and then fabricated an electrochemical biosensor for the detection of exosomes. In this design, the functionalization with DNA enables COFs to recognize and capture exosomes, and the encapsulation of a large number of methylene blue (MB) in COFs facilitates signal amplification, which can enhance the sensitivity of the biosensor. Moreover, by simply replacing the oligonucleotide sequences, the strategy proposed here can generally be used to build different DNA-COFs with diverse functions for broader biomedical applications.
Collapse
Affiliation(s)
- Jianyang Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Minghui Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Yiwei Han
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Ying Deng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Yujing Zeng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Chao Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China.,Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
15
|
Sun X, Xie Y, chu H, long M, zhang M, Wang Y, Hu X. A highly sensitive electrochemical biosensor for the detection of hydroquinone based on magnetic covalent organic frameworks and enzyme for signal amplification. NEW J CHEM 2022. [DOI: 10.1039/d2nj01764d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Possessing prominent customization in structural design as well as unique physicochemical properties, covalent organic frameworks (COFs) show great potential in biosensing field. In this paper, we prepared a novel COF...
Collapse
|
16
|
Verma PK, Sawant SD. Unravelling reaction selectivities via bio-inspired porphyrinoid tetradentate frameworks. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Yan J, Liu Z, Sun H, Tong S, Guo S. A facile one-pot preparation of porphyrin-based microporous organic polymers for adsorption of carbon dioxide, ethane, and methane. NEW J CHEM 2022. [DOI: 10.1039/d2nj03749a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Achieving a cost-effective preparation of 3D porphyrin-based microporous organic polymers (PMOPs) for the adsorption and separation of carbon dioxide (CO2), ethane (C2H6), and methane (CH4) remains difficult.
Collapse
Affiliation(s)
- Jun Yan
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Zhenghua Liu
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Haiyu Sun
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Sihan Tong
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| | - Shengwei Guo
- Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China
| |
Collapse
|
18
|
Meng Z, Mirica KA. Covalent organic frameworks as multifunctional materials for chemical detection. Chem Soc Rev 2021; 50:13498-13558. [PMID: 34787136 PMCID: PMC9264329 DOI: 10.1039/d1cs00600b] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 12/17/2022]
Abstract
Sensitive and selective detection of chemical and biological analytes is critical in various scientific and technological fields. As an emerging class of multifunctional materials, covalent organic frameworks (COFs) with their unique properties of chemical modularity, large surface area, high stability, low density, and tunable pore sizes and functionalities, which together define their programmable properties, show promise in advancing chemical detection. This review demonstrates the recent progress in chemical detection where COFs constitute an integral component of the achieved function. This review highlights how the unique properties of COFs can be harnessed to develop different types of chemical detection systems based on the principles of chromism, luminescence, electrical transduction, chromatography, spectrometry, and others to achieve highly sensitive and selective detection of various analytes, ranging from gases, volatiles, ions, to biomolecules. The key parameters of detection performance for target analytes are summarized, compared, and analyzed from the perspective of the detection mechanism and structure-property-performance correlations of COFs. Conclusions summarize the current accomplishments and analyze the challenges and limitations that exist for chemical detection under different mechanisms. Perspectives on how future directions of research can advance the COF-based chemical detection through innovation in novel COF design and synthesis, progress in device fabrication, and exploration of novel modes of detection are also discussed.
Collapse
Affiliation(s)
- Zheng Meng
- Department of Chemistry, Burke Laboratory, 41 College Street, Dartmouth College, Hanover, NH 03755, USA.
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, 41 College Street, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
19
|
Shao Y, Zhou H, Wu Q, Xiong Y, Wang J, Ding Y. Recent advances in enzyme-enhanced immunosensors. Biotechnol Adv 2021; 53:107867. [PMID: 34774928 DOI: 10.1016/j.biotechadv.2021.107867] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022]
Abstract
Among the products for rapid detection in different fields, enzyme-based immunosensors have received considerable attention. Recently, great efforts have been devoted to enhancing the output signals of enzymes through different strategies that can significantly improve the sensitivity of enzyme-based immunosensors for the need of practical applications. In this manuscript, the significance of enzyme-based signal transduction patterns in immunoassay and the central role of enzymes in achieving precise control of reaction systems are systematically described. In view of the rapid development of this field, we classify these strategies based on the combination of immune recognition and enzyme amplification into three categories, namely enzyme-based enhancement strategies, combination of the catalytic amplification of enzymes with other signal amplification methods, and substrate-based enhancement strategies. The current focus and future direction of enzyme-based immunoassays are also discussed. This article is not exhaustive, but focuses on the latest advances in different signal generation methods based on enzyme-initiated catalytic reactions and their applications in the detection field, which could provide an accessible introduction of enzyme-based immunosensors for the community with a view to further improving its application efficiency.
Collapse
Affiliation(s)
- Yanna Shao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huan Zhou
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qingping Wu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510432, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
20
|
Zhang L, Yang GP, Xiao SJ, Tan QG, Zheng QQ, Liang RP, Qiu JD. Facile Construction of Covalent Organic Framework Nanozyme for Colorimetric Detection of Uranium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102944. [PMID: 34569138 DOI: 10.1002/smll.202102944] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/20/2021] [Indexed: 06/13/2023]
Abstract
2D covalent organic frameworks (2D COFs) have been recognized as a novel class of photoactive materials owing to their extended π-electron conjugation and high chemical stabilities. Herein, a new covalent organic framework (Tph-BDP) is facilely synthesized by using a porphyrin derivative and an organic dye BODIPY derivative (5,5-difluoro-2,8-diformyl-1,3,7,9-tetramethyl-10-phenyl-5H-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazabori-nin-4-ium-5-uide) as monomers for the first time, and their unique photosensitive properties endow them excellent simulated oxidase activity under 635 nm laser irradiation that can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). Further findings demonstrate that the presence of uranium (UO22+ ) can coordinate with imines of the oxidation products of TMB, thus modulating the charge transfer process of the colored products accompanied with intensive aggregation and remarkable color fading. This research provides a preparation strategy for COFs with excellent photocatalytic properties and nanozyme activity, and broadens the applications of the simple colorimetric methods for sensitive and selective radionuclide detection.
Collapse
Affiliation(s)
- Li Zhang
- College of Chemistry, Nanchang University, Nanchang, 330031, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang, 330013, China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China
| | - Gui-Ping Yang
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Sai-Jin Xiao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang, 330013, China
| | - Quan-Gen Tan
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Qiong-Qing Zheng
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Ru-Ping Liang
- College of Chemistry, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China
| | - Jian-Ding Qiu
- College of Chemistry, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
21
|
Li Y, Wang L, Liu H, Pan Y, Li C, Xie Z, Jing X. Ionic Covalent-Organic Framework Nanozyme as Effective Cascade Catalyst against Bacterial Wound Infection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100756. [PMID: 34212509 DOI: 10.1002/smll.202100756] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/19/2021] [Indexed: 06/13/2023]
Abstract
The increasing resistance risks of conventional antibiotic abuse and the formed biofilm on the surface of wounds have been demonstrated to be the main problems for bacteria-caused infections and unsuccessful wound healing. Treatment by reactive oxygen species, such as the commercial H2 O2 , is a feasible way to solve those problems, but limits in its lower efficiency. Herein, an ionic covalent-organic framework-based nanozyme (GFeF) with self-promoting antibacterial effect and good biocompatibility has been developed as glucose-triggered cascade catalyst against bacterial wound infection. Besides the efficient conversion of glucose to hydrogen peroxide, the produced gluconic acid by loading glucose oxidase can supply a compatible catalytic environment to substantially improve the peroxidase activity for generating more toxic hydroxyl radicals. Meanwhile, the adhesion between the positively charged GFeF and the bacterial membrane can greatly enhance the healing effects. This glucose-triggered cascade strategy can reduce the harmful side effects by indirectly producing H2 O2 , potentially used in the wound healing of diabetic patients.
Collapse
Affiliation(s)
- Yite Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Hao Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Yong Pan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Chaonan Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| |
Collapse
|
22
|
Skorjanc T, Shetty D, Trabolsi A. Pollutant removal with organic macrocycle-based covalent organic polymers and frameworks. Chem 2021. [DOI: 10.1016/j.chempr.2021.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Chen Y, Fang Y, Yu J, Gao W, Zhao H, Zhang X. A silsesquioxane-porphyrin-based porous organic polymer as a highly efficient and recyclable absorbent for wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124769. [PMID: 33316666 DOI: 10.1016/j.jhazmat.2020.124769] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/10/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Effective capture of pollutants from wastewater is crucial for protecting the environment and human health. An azo-based porous organic polymer (AzoPPOP) containing porphyrin and inorganics cage polyhedral oligomeric silsesquioxane units was synthesized via a catalyst-free coupling reaction. Results showed that AzoPPOP possess a high surface area, a hierarchically porous structure, good thermal stability, abundant adsorption sites, and an electronegative nature. Based on these properties, AzoPPOP had an extremely high adsorption capacity (1357.58 mg g-1) for RhB, a fast adsorption rate, and good selectivity. Study of the mechanism revealed that in addition to electrostatic interactions, the high specific surface area, existence of -NH2, and the strong π-π interaction between AzoPPOP and RhB also play important roles for the adsorption of RhB. AzoPPOP also displayed excellent adsorption properties for heavy metal ions (230.45, 192.24 and 162.11 mg g-1 for Ag+, Hg2+, and Pb2+, respectively). More importantly, simulation of the purification experiment of waste water and the recycling regeneration experiment revealed that AzoPPOP has good high-level recyclability and could remove multi-pollutants in one pass through a simple adsorption column.
Collapse
Affiliation(s)
- Yanli Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yishan Fang
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Jingkun Yu
- Jinan Shanda Experimental High School, Jinan, Shandong 250353, China
| | - Wenqiang Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Huijuan Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
24
|
Alizadeh N, Salimi A. Multienzymes activity of metals and metal oxide nanomaterials: applications from biotechnology to medicine and environmental engineering. J Nanobiotechnology 2021; 19:26. [PMID: 33468160 PMCID: PMC7815196 DOI: 10.1186/s12951-021-00771-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/08/2021] [Indexed: 12/28/2022] Open
Abstract
With the rapid advancement and progress of nanotechnology, nanomaterials with enzyme-like catalytic activity have fascinated the remarkable attention of researchers, due to their low cost, high operational stability, adjustable catalytic activity, and ease of recycling and reuse. Nanozymes can catalyze the same reactions as performed by enzymes in nature. In contrast the intrinsic shortcomings of natural enzymes such as high manufacturing cost, low operational stability, production complexity, harsh catalytic conditions and difficulties of recycling, did not limit their wide applications. The broad interest in enzymatic nanomaterial relies on their outstanding properties such as stability, high activity, and rigidity to harsh environments, long-term storage and easy preparation, which make them a convenient substitute instead of the native enzyme. These abilities make the nanozymes suitable for multiple applications in sensing and imaging, tissue engineering, environmental protection, satisfactory tumor diagnostic and therapeutic, because of distinguished properties compared with other artificial enzymes such as high biocompatibility, low toxicity, size dependent catalytic activities, large surface area for further bioconjugation or modification and also smart response to external stimuli. This review summarizes and highlights latest progress in applications of metal and metal oxide nanomaterials with enzyme/multienzyme mimicking activities. We cover the applications of sensing, cancer therapy, water treatment and anti-bacterial efficacy. We also put forward the current challenges and prospects in this research area, hoping to extension of this emerging field. In addition to therapeutic potential of nanozymes for disease prevention, their practical effects in diagnostics, to monitor the presence of SARS-CoV-2 and related biomarkers for future pandemics will be predicted.
Collapse
Affiliation(s)
- Negar Alizadeh
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran.
- Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| |
Collapse
|
25
|
Huang X, Wu N, Liu W, Shang Y, Liu H, He Y, Meng H, Dong Y. Construction of electrochemical immunosensors based on redox hydrogels for ultrasensitive detection of carcinoembryonic antigens. NEW J CHEM 2021. [DOI: 10.1039/d1nj01282g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The introduction of cellulose nanocrystals (CNCs) endows a redox hydrogel with a larger specific surface area and better adhesion to an electrode.
Collapse
Affiliation(s)
- Xiangrong Huang
- Key Laboratory for Advanced Materials
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Na Wu
- Key Laboratory for Advanced Materials
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Wenxiu Liu
- Key Laboratory for Advanced Materials
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Honglai Liu
- Key Laboratory for Advanced Materials
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yifan He
- Key Laboratory of Cosmetic
- China National Light Industry
- School of Science
- Beijing Technology and Business University
- Beijing 100048
| | - Hong Meng
- Key Laboratory of Cosmetic
- China National Light Industry
- School of Science
- Beijing Technology and Business University
- Beijing 100048
| | - Yinmao Dong
- Key Laboratory of Cosmetic
- China National Light Industry
- School of Science
- Beijing Technology and Business University
- Beijing 100048
| |
Collapse
|
26
|
Liao X, Zhang C, Machuki JO, Wen X, Tang Q, Shi H, Gao F. Proximity hybridization-triggered DNA assembly for label-free surface-enhanced Raman spectroscopic bioanalysis. Anal Chim Acta 2020; 1139:42-49. [PMID: 33190708 DOI: 10.1016/j.aca.2020.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/01/2020] [Accepted: 09/13/2020] [Indexed: 11/24/2022]
Abstract
We have developed a versatile label-free surface-enhanced Raman spectroscopic platform for detecting various biotargets via proximity hybridization-triggered DNA assembly based on the 736 cm-1 Raman peak of adenine breathing mode. We initially immobilized the first probe to AuNPs and modified the second with poly adenine. Presence of target DNA or protein molecules assembled a sandwich complex that brought the poly adenine close to the AuNPs surface, generating Raman signals, that were proportional to target molecule concentration. These approach exhibits high sensitivity, with a detection limit of 5.4 pM, 47 fM, and 0.51 pg/mL for target DNA, thrombin and CEA, respectively. Owing to a one step proximity dependent complex formation, this technique is simple and can be completed within 40 min, making it a promising candidate for point-of-care testing applications.
Collapse
Affiliation(s)
- Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Caiyi Zhang
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, 221004, Xuzhou, China
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Xiaoqing Wen
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Qianli Tang
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China.
| | - Hengliang Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China.
| |
Collapse
|
27
|
Tang Q, Cao S, Ma T, Xiang X, Luo H, Borovskikh P, Rodriguez RD, Guo Q, Qiu L, Cheng C. Engineering Biofunctional Enzyme‐Mimics for Catalytic Therapeutics and Diagnostics. ADVANCED FUNCTIONAL MATERIALS 2020. [DOI: 10.1002/adfm.202007475] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Qing Tang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Sujiao Cao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Tian Ma
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Xi Xiang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 China
| | - Pavel Borovskikh
- Martin‐Luther‐University Halle‐Wittenberg Universitätsplatz 10 Halle (Saale) 06108 Germany
| | | | - Quanyi Guo
- Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics No. 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Li Qiu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Chong Cheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
- Department of Chemistry and Biochemistry Freie Universität Berlin Takustrasse 3 Berlin 14195 Germany
| |
Collapse
|
28
|
Aboonajmi J, Sharghi H, Aberi M, Shiri P. Consecutive Oxidation/Condensation/Cyclization/Aromatization Sequences Catalyzed by Nanostructured Iron(III)‐Porphyrin Complex towards Benzoxazole Derivatives. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jasem Aboonajmi
- Department of Chemistry College of Sciences Shiraz University 71454 Shiraz Iran
| | - Hashem Sharghi
- Department of Chemistry College of Sciences Shiraz University 71454 Shiraz Iran
| | - Mahdi Aberi
- Department of Chemical and Materials Engineering Faculty of Shahid Rajaee, Shiraz Branch Technical and Vocational University (TVU) Shiraz Iran
| | - Pezhman Shiri
- Department of Chemistry College of Sciences Shiraz University 71454 Shiraz Iran
| |
Collapse
|
29
|
Mei G, Cui L, Dou Z, He X. Heat-treated multi-walled carbon nanotubes-supported (Fe,Co,Ni)-coordinated polyporphyrin: A robust air cathode catalyst for rechargeable zinc-air batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
Zhao Y, Xu X, Ma Y, Tan H, Li Y. A novel peroxidase/oxidase mimetic Fe-porphyrin covalent organic framework enhanced the luminol chemiluminescence reaction and its application in glucose sensing. LUMINESCENCE 2020; 35:1366-1372. [PMID: 32533573 DOI: 10.1002/bio.3899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
A Fe-porphyrin covalent organic framework (Fe-PorCOF) was prepared through a postmodification strategy and characterized using different techniques. Fe-PorCOF exhibits an inherent peroxidase/oxidase mimetic catalytic activity and sharply accelerates chemiluminescence (CL) reactions between luminol and hydrogen peroxide (H2 O2 ) or dissolved oxygen (O2 ) under alkaline conditions. The catalytic role was attributed to a significant increase in production of reactive oxygen species. Using the imminent peroxidase mimetic catalytic activity of Fe-PorCOF, a new CL method was developed for determination of H2 O2 over a linear range from 0.01 to 10.0 μmol·L-1 and with a limit of detection of 5.3 nmol·L-1 . The combination of the peroxidase mimetic catalytic activity of Fe-PorCOF with the catalytic activity of glucose oxidase on glucose oxidation presents a sensitive CL method for glucose assay. The linear range and the detection limit for glucose were 0.05-8.0 μmol·L-1 and 4.0 nmol·L-1 , respectively. The practicability of this method was assessed by determination of glucose in human sera. As a peroxidase/oxidase mimetic, Fe-PorCOF is easy to prepare and exhibits good catalytic efficiency in the luminol reaction. We believe that this strategy will promote the development of a CL field with functional COFs as a catalyst.
Collapse
Affiliation(s)
- Yaxin Zhao
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, China
| | - Xiaotong Xu
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, China
| | - Yuyu Ma
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, China
| | - Haonan Tan
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, China
| | - Yinhuan Li
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
31
|
Jin P, Niu X, Zhang F, Dong K, Dai H, Zhang H, Wang W, Chen H, Chen X. Stable and Reusable Light-Responsive Reduced Covalent Organic Framework (COF-300-AR) as a Oxidase-Mimicking Catalyst for GSH Detection in Cell Lysate. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20414-20422. [PMID: 32283916 DOI: 10.1021/acsami.0c01763] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Covalent organic frameworks (COFs), as one of the most significant members of the porous organic frameworks, have been well used in the photocatalysis owing to their outspread π-conjugated framework, high crystallinity and regular pore structure. Herein, after reducing the labile imine-linked COF-300 to the more stable amine-linked COF-300-AR, we for the first time demonstrated that COF-300-AR was the light-responsive oxidase mimic. COF-300-AR exhibited excellent oxidase-mimicking activity under purple light stimulation (λ = 400 nm), which can catalyze the oxidation of classical substrates such as 3,3',5,5'-tetramethylbenzydine (TMB) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) by the formation of •OH and O2•- free radicals in the presence of dissolved oxygen. The COF-300-AR oxidase mimic has outstanding advantages of easy light control, high stability, good reusability, and highly catalytic oxidation capacity and has been applied to detect glutathione (GSH) levels in HL60 cells with good selectivity and high sensitivity. This study will broaden the sensing applications of COFs and offer a promising build block for the construction of artificial enzymes.
Collapse
Affiliation(s)
- Peng Jin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaoying Niu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Fang Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Kui Dong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hongxia Dai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Huige Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Weifeng Wang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xingguo Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
32
|
Gao W, Tian J, Fang Y, Liu T, Zhang X, Xu X, Zhang X. Visible-light-driven photo-Fenton degradation of organic pollutants by a novel porphyrin-based porous organic polymer at neutral pH. CHEMOSPHERE 2020; 243:125334. [PMID: 31995864 DOI: 10.1016/j.chemosphere.2019.125334] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/27/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Developing novel heterogeneous photo-Fenton catalysts with high efficiency and stability, driven by visible-light rather ultraviolet light at neutral pH has been a major challenge for degradation of organic pollutants. In this work, we successfully synthesized a metalloporphyrin-based porous organic polymer (FePPOP-1) by the Sonogashira cross-coupling reaction. UV-vis absorption spectra showed FePPOP-1 exhibits a significant coverage of the natural solar irradiance spectrum. As a result, the prepared FePPOP-1 has a significantly enhanced photocatalytic activity for the visible-light-driven degradation of methylene blue. By using only 4 mg of FePPOP-1 as a catalyst, it was found that 50 mL of organic wastewater containing 70 ppm MB could be totally degraded in 80 min even at neutral pH. The effects of the initial MB, H2O2 concentrations, pH value and common ions on MB degradation were studied in detail. Both the catalytic mechanism of FePPOP-1 and the degradation route of MB were also proposed.
Collapse
Affiliation(s)
- Wenqiang Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jing Tian
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China; Shandong Product Quality Inspection Research Institute, Jinan, Shandong, 250100, China
| | - Yishan Fang
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Tingting Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xiumei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xiaohong Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
| |
Collapse
|
33
|
Li D, Fang Y, Zhang X. Bacterial Detection and Elimination Using a Dual-Functional Porphyrin-Based Porous Organic Polymer with Peroxidase-Like and High Near-Infrared-Light-Enhanced Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8989-8999. [PMID: 32023028 DOI: 10.1021/acsami.9b20102] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The efficient fabrication of multifunctional nanoplatforms for bacterial detection and elimination is of great importance in nanobiotechnology. A new porphyrin-based porous organic polymer, FePPOPBFPB, was synthesized via the reaction between pyrrole and 4-{2,2-bis[(4-formylphenoxy)methyl]-3-(4-formylphenoxy) propoxy} benzaldehyde (BFPB). The C-centric tetrahedral structure of BFPB promoted the formation of FePPOPBFPB with a 3D interconnected porous structure, high specific surface area, and plentiful surface catalytic active sites. The adjustable structural alkyl chain also enhanced the absorption capability of FePPOPBFPB in the long-wavelength visible and near-infrared regions (NIR). FePPOPBFPB exhibited excellent peroxidase-like activity toward a representative peroxidase substrate, 3,3',5,5'-tetramethylbenzidine (TMB) with H2O2. Utilizing these features, a rapid and visual detection of Staphylococcus aureus (S. aureus) based on FePPOPBFPB was established and exhibited high sensitivity and stability. Combining the catalysis with near-infrared-light (NIR) absorption, FePPOPBFPB can effectively catalyze the decomposition of biologically relevant concentrations of H2O2 to produce vast amounts of •OH radicals via the photo-Fenton reaction, which avoids the utilization of high toxic concentrations of H2O2. On the basis of these satisfactory features, FePPOPBFPB had a conspicuous bactericidal performance against S. aureus under NIR irradiation. To our knowledge, this is the first example of a porphyrin-based porous organic polymer antibacterial agent. The main reactive oxygen species (ROS) produced in this system and the possible antibacterial mechanism of FePPOPBFPB was also proposed through a series of experiments.
Collapse
Affiliation(s)
- Dekang Li
- School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , P. R. China
| | - Yishan Fang
- School of Food Science and Engineering , Qilu University of Technology, Shandong Academy of Sciences , Jinan 250353 , P. R. China
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , P. R. China
| |
Collapse
|
34
|
Lu J, Zhang H, Li S, Guo S, Shen L, Zhou T, Zhong H, Wu L, Meng Q, Zhang Y. Oxygen-Vacancy-Enhanced Peroxidase-like Activity of Reduced Co3O4 Nanocomposites for the Colorimetric Detection of H2O2 and Glucose. Inorg Chem 2020; 59:3152-3159. [DOI: 10.1021/acs.inorgchem.9b03512] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jitao Lu
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang 261061, China
| | - Haowen Zhang
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang 261061, China
| | - Sheng Li
- Weifang Traditional Chinese Hospital, Weifang 261061, China
| | - Shanshan Guo
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang 261061, China
| | - Li Shen
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang 261061, China
| | - Tingting Zhou
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang 261061, China
| | - Hua Zhong
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lu Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Qingguo Meng
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang 261061, China
| | - Yuexing Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
35
|
Li B, Qin L, Zhou J, Cai X, Lai G, Yu A. Hybridization chain reaction-enhanced enzyme biomineralization for ultrasensitive colorimetric biosensing of a protein biomarker. Analyst 2019; 144:5003-5009. [PMID: 31332403 DOI: 10.1039/c9an00898e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
By employment of an aptamer-initiated hybridization chain reaction (HCR) to enhance the enzyme biomineralization of cupric subcarbonate, this work develops a novel colorimetric biosensing method for protein analysis. The HCR product was used to specifically attach a large amount of urease-functionalized gold nanoparticles (Au NPs) for the preparation of a gold nanoprobe. After the sandwich biorecognition reactions, this nanoprobe could be quantitatively captured onto the antibody-functionalized magnetic bead (MB) platform. Then, numerous copper ions would be enriched onto the MB surface through the urease-induced biomineralization of cupric subcarbonate. Based on the complete release of Cu2+ ions for the sensitive copper chromogenic reaction, convenient colorimetric signal transduction was thus achieved for the quantitative analysis of the target analyte of the carcinoembryonic antigen. The HCR product provides a large number of biotin sites for the attachment of Au NP nanotags. The biomineralization reaction of high-content urease loaded onto Au NPs leads to highly efficient Cu2+ enrichment for signal amplification. So this method features excellent performance including a very wide linear range and a low detection limit down to 0.071 pg mL-1. In addition, the satisfactory results of real sample experiments reveal that this method possesses huge potential for practical applications.
Collapse
Affiliation(s)
- Bo Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China.
| | | | | | | | | | | |
Collapse
|
36
|
Facile strategy to prepare a metalloporphyrin-based hydrophilic porous organic polymer with enhanced peroxidase-like activity and high stability for colorimetric detection of H2O2 and glucose. Colloids Surf B Biointerfaces 2019; 178:137-145. [DOI: 10.1016/j.colsurfb.2019.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/20/2019] [Accepted: 03/03/2019] [Indexed: 01/21/2023]
|
37
|
Alizadeh N, Salimi A, Hallaj R, Fathi F, Soleimani F. CuO/WO3 nanoparticles decorated graphene oxide nanosheets with enhanced peroxidase-like activity for electrochemical cancer cell detection and targeted therapeutics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1374-1383. [DOI: 10.1016/j.msec.2019.02.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/31/2019] [Accepted: 02/14/2019] [Indexed: 01/03/2023]
|
38
|
Lian J, Liu P, Li X, Bian B, Zhang X, Liu Z, Zhang X, Fan G, Gao L, Liu Q. Multi-layer CeO2-wrapped Ag2S microspheres with enhanced peroxidase-like activity for sensitive detection of dopamine. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.12.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
Liu L, Hao Y, Deng D, Xia N. Nanomaterials-Based Colorimetric Immunoassays. NANOMATERIALS 2019; 9:nano9030316. [PMID: 30818816 PMCID: PMC6473401 DOI: 10.3390/nano9030316] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 01/05/2023]
Abstract
Colorimetric immunoassays for tumor marker detection have attracted considerable attention due to their simplicity and high efficiency. With the achievements of nanotechnology and nanoscience, nanomaterials-based colorimetric immunoassays have been demonstrated to be promising alternatives to conventional colorimetric enzyme-linked immunoassays. This review is focused on the progress in colorimetric immunoassays with the signal amplification of nanomaterials, including nanomaterials-based artificial enzymes to catalyze the chromogenic reactions, analyte-induced aggregation or size/morphology change of nanomaterials, nanomaterials as the carriers for loading enzyme labels, and chromogenic reactions induced by the constituent elements released from nanomaterials.
Collapse
Affiliation(s)
- Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China.
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| | - Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| | - Dehua Deng
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China.
| | - Ning Xia
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China.
| |
Collapse
|
40
|
Chen Z, Wang H, Zhang Z, Chen L. Chemical Redox-Cycling for Improving the Sensitivity of Colorimetric Enzyme-Linked Immunosorbent Assay. Anal Chem 2018; 91:1254-1259. [PMID: 30557502 DOI: 10.1021/acs.analchem.8b05095] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, a redox-cycling was proposed to amplify the signal of enzyme-linked immunosorbent assay (ELISA), which was performed in a polystyrene microplate based on a classic sandwich-type. After the sandwich immunoreactions were finished, the alkaline phosphatase captured on a microplate triggered the hydrolyzation of l-ascorbic acid 2-phosphate to generate ascorbic acid (AA), which then reduced colorless tris(bathophenanthroline) iron(III) (Fe(BPT)33+) encapsulated in the micelle of TX-100 to pink red tris(bathophenanthroline) iron(II) (Fe(BPT)32+). In the presence of tris(2-carboxyethyl)phosphine, the oxidation product, dehydroascorbic acid, was transformed to AA quickly which then reduced Fe(BPT)33+ again and again, resulting in the generation of abundant Fe(BPT)32+ that could be read out conveniently by a commercial microplate reader or the naked eye. Because the negative charged TCEP with large size could hardly pass through the micelle, the reduction of Fe(BPT)33+ by TCEP directly was negligible. Experiment results for assay of alpha-fetoprotein (a model antigen) showed the cycling greatly improved the detection limit to 5 pg/mL, 2 orders of magnitude lower than that of conventional ELISA. The cycling also exhibited the advantages of simplicity and high reproducibility, implying its great potential for practical applications in biological and clinical diagnosis.
Collapse
Affiliation(s)
- Zhaopeng Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS) and Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS , Yantai , Shandong 264003 , P. R. China.,Department of Applied Chemistry, School of Science , Xi'an University of Technology , Xi'an 710061 , P. R. China
| | - Han Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS) and Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS , Yantai , Shandong 264003 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS) and Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS , Yantai , Shandong 264003 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS) and Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS , Yantai , Shandong 264003 , P. R. China.,Laboratory for Marine Biology and Biotechnology , Pilot National Laboratory for Marine Science and Technology , Qingdao 266237 , P.R. China
| |
Collapse
|
41
|
Alizadeh N, Salimi A, Hallaj R, Fathi F, Soleimani F. Ni-hemin metal-organic framework with highly efficient peroxidase catalytic activity: toward colorimetric cancer cell detection and targeted therapeutics. J Nanobiotechnology 2018; 16:93. [PMID: 30458781 PMCID: PMC6245618 DOI: 10.1186/s12951-018-0421-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/07/2018] [Indexed: 11/10/2022] Open
Abstract
Background Given the great benefits of artificial enzymes, a simple approach is proposed via assembling of Ni2+ with hemin for synthesis of Ni-hemin metal–organic-frameworks (Ni-hemin MOFs) mimic enzyme. The formation of the Ni-hemin MOFs was verified by scanning electron microscopy, Transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Energy-dispersive X-ray spectroscopy and UV–vis absorption spectroscopy. This novel nanocomposite exhibited surprising peroxidase like activity monitored by catalytic oxidation of a typical peroxidase substrate, 3,3,5,5′-tetramethylbenzidine, in the presence of H2O2. By using folic acid conjugated MOF nanocomposite as a recognition element, we develop a colorimetric assay for the direct detection of cancer cells. Results The proposed sensor presented high sensitivity and selectivity for the detection of human breast cancer cells (MCF-7) and Human Caucasian gastric adenocarcinoma. By measuring UV–vis absorbance response, a wide detection range from 50 to 105 cells/mL with a detection limit as low as 10 cells/mLwas reached for MCF-7 cells. We further discuss therapeutics efficiency of Ni-hemin MOFs in the presence of H2O2 and ascorbic acid. Peroxidase-mimic Ni-hemin MOFs as reactive oxygen species which could damage MCF-7 cancer cells, however for normal cells (human embryonic kidney HEK 293 cells) killing effect was negligible. Conclusions Based on these behaviors, the developed method offers a fast, easy and cheap assay for the interest in future diagnostic and treatment application.
Collapse
Affiliation(s)
- Negar Alizadeh
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran. .,Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| | - Rahman Hallaj
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Fardin Fathi
- Cellular and Molecular Reserch Center, Kurdistan University of Medical Sciences, 66177-13446, Sananandaj, Iran
| | - Farzad Soleimani
- Cellular and Molecular Reserch Center, Kurdistan University of Medical Sciences, 66177-13446, Sananandaj, Iran
| |
Collapse
|
42
|
Zheng HQ, Liu CY, Zeng XY, Chen J, Lü J, Lin RG, Cao R, Lin ZJ, Su JW. MOF-808: A Metal–Organic Framework with Intrinsic Peroxidase-Like Catalytic Activity at Neutral pH for Colorimetric Biosensing. Inorg Chem 2018; 57:9096-9104. [DOI: 10.1021/acs.inorgchem.8b01097] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- He-Qi Zheng
- Department of Applied Chemistry, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People’s Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| | - Chun-Yan Liu
- Department of Applied Chemistry, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People’s Republic of China
| | - Xue-Yu Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Jin Chen
- Department of Applied Chemistry, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People’s Republic of China
| | - Jian Lü
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Rong-Guang Lin
- Department of Applied Chemistry, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People’s Republic of China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| | - Zu-Jin Lin
- Department of Applied Chemistry, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People’s Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| | - Jin-Wei Su
- Department of Applied Chemistry, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People’s Republic of China
| |
Collapse
|
43
|
Xu W, Fang Y, Ou Z, Chen M, Kadish KM. Synthesis, electrochemical and spectroelectrochemical characterization of iron(III) tetraarylporphyrins containing four β,β′-butano and β,β′-benzo fused rings. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Six iron(III) tetraarylporphyrins containing four [Formula: see text]-butano or [Formula: see text]-benzo fused rings were synthesized and characterized by electrochemistry and spectroelectrochemistry in nonaqueous media. The examined compounds are represented as butano(TpYPP)FeCl and benzo(TpYPP)FeCl, where TpYPP is a dianion of the meso-substituted porphyrin, Y is a CH[Formula: see text], H or Cl substituent on the para-position of the four meso-phenyl rings and butano and benzo are the [Formula: see text]-substituents on each of the four pyrrole rings of the compound. Up to three reductions are observed for each Fe(III) butano- and benzoporphyrin in CH[Formula: see text]Cl[Formula: see text] or pyridine containing 0.1 M TBAP, the first of which is assigned in each case to a metal-centered electron transfer. The second reduction is also metal-centered in CH[Formula: see text]Cl[Formula: see text] and leads to formation of an Fe(I) porphyrin, but it is porphyrin ring-centered and gives an Fe(II) porphyrin [Formula: see text]-anion radical reduction product when pyridine is used as the solvent. The effects of the solvent and type of fused ring system (butano or benzo) on the UV-vis spectra and electrochemical properties of the Fe(III) porphyrins are discussed and comparisons are made to both the structurally related non-[Formula: see text]-substituted iron porphyrins and earlier described butano- or benzotetraarylporphyrins containing Cu(II) or Co(II) central metal ions.
Collapse
Affiliation(s)
- Weijie Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yuanyuan Fang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhongping Ou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| | - Mingyuan Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| | - Karl M. Kadish
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| |
Collapse
|
44
|
Mimicking peroxidase activity of Co 2(OH) 2CO 3-CeO 2 nanocomposite for smartphone based detection of tumor marker using paper-based microfluidic immunodevice. Talanta 2018; 189:100-110. [PMID: 30086892 DOI: 10.1016/j.talanta.2018.06.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/10/2018] [Accepted: 06/10/2018] [Indexed: 01/10/2023]
Abstract
We present a paper-based microfluidic colorimetric immunosensor for the detection of carcinoembryonic antigen (CEA), using Co2(OH)2CO3-CeO2 nanocomposite with extraordinary intrinsic peroxidase like activity. The morphology and composition of the nanocomposite characterized with Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques. The proposed immunosensor facilely fabricated by loading mixture of ionic liquid and chitosan functionalized primary antibodies (Ab1) on the surface of paper. Compared to traditional paper based immunodevice, when ionic liquid was used the nonspecific binding protein from the paper surface was more effectively removed. Secondary antibodies (Ab2) were stacked on the surface of the carboxylated Co2(OH)2CO3-CeO2 nanocomposite. The immunosensor response was obtained by a color change resulting from Co2(OH)2CO3-CeO2 nanocomposite catalyzing the oxidation of 3,3',5,5'-tetramethyl benzidine in the presence of H2O2. The colorimetric sensing was accomplished on the paper, using smartphone for taking a photo and then analyzing the colors with an installed application. Detection of CEA was performed by this method with a linear range from 0.002 to 75.0 ng mL-1 and a detection limit of 0.51 pg mL-1. In this paper we developed simple, cost-effective and portable design for sensitive immunoassay and point-of-care diagnostics of cancer marker.
Collapse
|
45
|
Zhou Y, Huang X, Zhang W, Ji Y, Chen R, Xiong Y. Multi-branched gold nanoflower-embedded iron porphyrin for colorimetric immunosensor. Biosens Bioelectron 2018; 102:9-16. [DOI: 10.1016/j.bios.2017.10.046] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/07/2017] [Accepted: 10/25/2017] [Indexed: 12/27/2022]
|
46
|
Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nat Commun 2018; 9:576. [PMID: 29422540 PMCID: PMC5805684 DOI: 10.1038/s41467-018-02889-7] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 01/05/2018] [Indexed: 12/24/2022] Open
Abstract
Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical flexibility at the molecular level, environmental benefit, and cost advantage. However, before any practical implementation takes place, the low capacity, poor structural stability, and sluggish ion/electron diffusion kinetics remain the obstacles that have to be overcome. Here, we report the synthesis of a few-layered two-dimensional covalent organic framework trapped by carbon nanotubes as the anode of lithium-ion batteries. Remarkably, upon activation, this organic electrode delivers a large reversible capacity of 1536 mAh g−1 and can sustain 500 cycles at 100 mA g−1. Aided by theoretical calculations and electrochemical probing of the electrochemical behavior at different stages of cycling, the storage mechanism is revealed to be governed by 14-electron redox chemistry for a covalent organic framework monomer with one lithium ion per C=N group and six lithium ions per benzene ring. This work may pave the way to the development of high-capacity electrodes for organic rechargeable batteries. Conjugated polymeric molecules are promising electrode materials for batteries. Here the authors show a two-dimensional few-layered covalent organic framework that delivers a large reversible capacity of more than 1500 mAh g−1 with the storage mechanism governed by 14-electron redox chemistry.
Collapse
|
47
|
Li M, Yang J, Ou Y, Shi Y, Liu L, Sun C, Zheng H, Long Y. Peroxidase-like activity of 2',7'-difluorofluorescein and its application for galactose detection. Talanta 2018; 182:422-427. [PMID: 29501173 DOI: 10.1016/j.talanta.2018.02.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/29/2018] [Accepted: 02/06/2018] [Indexed: 01/19/2023]
Abstract
The peroxidase-like activity of 2',7'-difluorofluorescein (DFF), was investigated using 3,3',5,5'-tetramethylbenzidine (TMB) as a chromogenic substrate in the presence of H2O2. DFF could catalyze oxidization of TMB by H2O2 to produce a blue colored oxidation product. Effect of various reaction conditions, such as pH, temperature, H2O2 concentration and reaction time on the catalytic activity of DFF was studied. The peroxidase-like activity of DFF was found to follow Michaelis-Menten kinetics, and its catalysis accorded with ping-pong mechanism. The calculated kinetic parameters (Kcat) of DFF catalysis showed higher peroxidase-like activity than fluorescein and 2',7'-dichlorofluorescein (DCF). According to the radical capture and electron spin resonance (ESR) spectroscopy results, we confirmed that hydroxyl radical (•OH) is the active specie of catalytic process. It is known that the oxidation of galactose by galactose oxidase (GAOx) enzyme leads to the formation of H2O2, the H2O2 released in this reaction was consequently quantified using DFF as peroxides mimics and TMB as the chromogen. Thus, a combination of above two reactions was exploited to establish a method for galactose detection. Under the optimum conditions, the linear range of this method was from 10 μM to 20 mM with the detection limit down to 3 μM. Moreover, the developed method was applied to detect galactose in urine samples. Our work will facilitate the utilization of DFF intrinsic peroxidase-like activity in medical diagnostics and biotechnology.
Collapse
Affiliation(s)
- Menglu Li
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Juan Yang
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yining Ou
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ying Shi
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Li Liu
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Chaoqun Sun
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Huzhi Zheng
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yijuan Long
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
48
|
Zhu W, Wang X, Li T, Shen R, Hao SJ, Li Y, Wang Q, Li Z, Gu ZG. Porphyrin-based porous polyimide polymer/Pd nanoparticle composites as efficient catalysts for Suzuki–Miyaura coupling reactions. Polym Chem 2018. [DOI: 10.1039/c8py00092a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two porphyrin-based porous polyimide polymer/Pd nanoparticle composites were synthesized, which exhibit high stability and excellent catalytic efficiency as Suzuki–Miyaura coupling catalysts.
Collapse
Affiliation(s)
- Wei Zhu
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Xuan Wang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Tao Li
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Rui Shen
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Si-Jia Hao
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Yunxing Li
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Qingqing Wang
- The Key Laboratory of Eco-textiles of Ministry of Education
- College of Textiles and Clothing
- Jiangnan University
- Wuxi 214122
- China
| | - Zaijun Li
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
49
|
Dai H, Li Y, Fu Y, Li Y. Enzyme Catalysis Induced Polymer Growth in Nanochannels: A New Approach to Regulate Ion Transport and to Study Enzyme Kinetics in Nanospace. ELECTROANAL 2017. [DOI: 10.1002/elan.201700703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huang Dai
- College of Biosystems Engineering and Food Science; Zhejiang University; Hangzhou 310058 China
| | - Yuqing Li
- College of Biosystems Engineering and Food Science; Zhejiang University; Hangzhou 310058 China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science; Zhejiang University; Hangzhou 310058 China
| | - Yanbin Li
- College of Biosystems Engineering and Food Science; Zhejiang University; Hangzhou 310058 China
- Department of Biological and Agricultural Engineering; University of Arkansas; Fayetteville, AR 72701 USA
| |
Collapse
|
50
|
Tang Z, Ma Z. Multiple functional strategies for amplifying sensitivity of amperometric immunoassay for tumor markers: A review. Biosens Bioelectron 2017; 98:100-112. [DOI: 10.1016/j.bios.2017.06.041] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 02/07/2023]
|