1
|
Wu R, Hao J, Wang Y. Recent Advances in Engineering of 2D Layered Metal Chalcogenides for Resistive-Type Gas Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404821. [PMID: 39344560 DOI: 10.1002/smll.202404821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/22/2024] [Indexed: 10/01/2024]
Abstract
2D nanomaterials have triggered widespread attention in sensing applications. Especially for 2D layered metal chalcogenides (LMCs), the unique semiconducting properties and high surface area endow them with great potential for gas sensors. The assembly of 2D LMCs with guest species is an effective functionalization method to produce the synergistic effects of hybridization for greatly enhancing the gas-sensing properties. This review starts with the synthetic techniques, sensing properties, and principles, and then comprehensively compiles the advanced achievements of the pristine 2D LMCs gas sensors. Key advances in the development of the functionalization of 2D LMCs for enhancing gas-sensing properties are categorized according to the spatial architectures. It is systematically discussed in three aspects: surface, lattice, and interlayer, to comprehend the benefits of the functionalized 2D LMCs from surface chemical effect, electronic properties, and structure features. The challenges and outlooks for developing high-performance 2D LMCs-based gas sensors are also proposed.
Collapse
Affiliation(s)
- Ruozhen Wu
- Fujian Provincial Collaborative Innovation Center of Bamboo Ecological Industry, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, P. R. China
- Department of Polymer Materials and Engineering, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, P. R. China
| | - Juanyuan Hao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - You Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
2
|
Li X, Zeng W, Zhuo S, Qian B, Chen Q, Luo Q, Qian R. Highly Sensitive Room-Temperature Detection of Ammonia in the Breath of Kidney Disease Patients Using Fe 2Mo 3O 8/MoO 2@MoS 2 Nanocomposite Gas Sensor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405942. [PMID: 38958529 PMCID: PMC11347992 DOI: 10.1002/advs.202405942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/24/2024] [Indexed: 07/04/2024]
Abstract
A novel Fe2Mo3O8/MoO2@MoS2 nanocomposite is synthesized for extremely sensitive detection of NH3 in the breath of kidney disease patients at room temperature. Compared to MoS2, α-Fe2O3/MoS2, and MoO2@MoS2, it shows the optimal gas-sensing performance by optimizing the formation of Fe2Mo3O8 at 900 °C. The annealed Fe2Mo3O8/MoO2@MoS2 nanocomposite (Fe2Mo3O8/MoO2@MoS2-900 °C) sensor demonstrates a remarkably high selectivity of NH3 with a response of 875% to 30 ppm NH3 and an ultralow detection limit of 3.7 ppb. This sensor demonstrates excellent linearity, repeatability, and long-term stability. Furthermore, it effectively differentiates between patients at varying stages of kidney disease through quantitative NH3 measurements. The sensing mechanism is elucidated through the analysis of alterations in X-ray photoelectron spectroscopy (XPS) signals, which is supported by density functional theory (DFT) calculations illustrating the NH3 adsorption and oxidation pathways and their effects on charge transfer, resulting in the conductivity change as the sensing signal. The excellent performance is mainly attributed to the heterojunction among MoS2, MoO2, and Fe2Mo3O8 and the exceptional adsorption and catalytic activity of Fe2Mo3O8/MoO2@MoS2-900 °C for NH3. This research presents a promising new material optimized for detecting NH3 in exhaled breath and a new strategy for the early diagnosis and management of kidney disease.
Collapse
Affiliation(s)
- Xian Li
- National Centre for Inorganic Mass Spectrometry in ShanghaiShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Centre of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100864P. R. China
- School of Material Science and EngineeringShanghai UniversityShanghai200444P. R. China
| | - Wang Zeng
- National Centre for Inorganic Mass Spectrometry in ShanghaiShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Centre of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100864P. R. China
| | - Shangjun Zhuo
- National Centre for Inorganic Mass Spectrometry in ShanghaiShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Centre of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100864P. R. China
| | - Bangwei Qian
- Shanghai Pudong New Area People's HospitalShanghai201299P. R. China
| | - Qiao Chen
- Department of ChemistrySchool of Life SciencesUniversity of SussexBrightonBN1 9QJUK
| | - Qun Luo
- School of Material Science and EngineeringShanghai UniversityShanghai200444P. R. China
| | - Rong Qian
- National Centre for Inorganic Mass Spectrometry in ShanghaiShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Centre of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100864P. R. China
| |
Collapse
|
3
|
Yin Y, Gao Y, Wang J, Wang Q, Wang F, Li H, French PJ, Paoprasert P, Umar Siddiqui AM, Wang Y, Zhou G. Si, O-Codoped Carbonized Polymer Dots with High Chemiresistive Gas Sensing Performance at Room Temperature. ACS Sens 2024; 9:3282-3289. [PMID: 38864828 DOI: 10.1021/acssensors.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
A new type of carbonized polymer dot was prepared by the one-step hydrothermal method of triethoxylsilane (TEOS) and citric acid (CA). The sensor made from carbonized polymer dots (CPDs) showed superior gas sensing performance toward ammonia at room temperature. The Si, O-codoped CPDs exhibited superior ammonia sensing performance at room temperature, including a low practical limit of detection (pLOD) of 1 ppm (Ra/Rg: 1.10, 1 ppm), short response/recovery time (30/36 s, 1 ppm), high humidity resistance (less than 5% undulation when changing relative humidity to 80 from 30%), high stability (less than 5% initial response undulation after 120 days), reliable repeatability, and high selectivity against other interferential gases. The gas sensing mechanism was investigated through control experiments and in situ FTIR, indicating that Si, O-codoping essentially improves the electron transfer capability of CPDs and synergistically dominates the superior ammonia sensing properties of the CPDs. This work presents a facile strategy for constructing novel high-performance, single-component carbonized polymer dots for gas sensing.
Collapse
Affiliation(s)
- Yubo Yin
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Yixun Gao
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Jianqiang Wang
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Quan Wang
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Fengnan Wang
- Department of Thoracic Oncology, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510006, P. R. China
| | - Hao Li
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Paddy J French
- BE Laboratory, EWI, Delft University of Technology, Delft 2628CD, The Netherlands
| | - Peerasak Paoprasert
- Department of Chemistry, Faculty of Science and technology Thammasat University, 99 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12121, Thailand
| | - Ahmad M Umar Siddiqui
- Department of Chemistry, Faculty of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia
| | - Yao Wang
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Guofu Zhou
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
4
|
Mirzaei A, Alizadeh M, Ansari HR, Moayedi M, Kordrostami Z, Safaeian H, Lee MH, Kim TU, Kim JY, Kim HW, Kim SS. Resistive gas sensors for the detection of NH 3gas based on 2D WS 2, WSe 2, MoS 2, and MoSe 2: a review. NANOTECHNOLOGY 2024; 35:332002. [PMID: 38744265 DOI: 10.1088/1361-6528/ad4b22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Transition metal dichalcogenides (TMDs) with a two-dimensional (2D) structure and semiconducting features are highly favorable for the production of NH3gas sensors. Among the TMD family, WS2, WSe2, MoS2, and MoSe2exhibit high conductivity and a high surface area, along with high availability, reasons for which they are favored in gas-sensing studies. In this review, we have discussed the structure, synthesis, and NH3sensing characteristics of pristine, decorated, doped, and composite-based WS2, WSe2, MoS2, and MoSe2gas sensors. Both experimental and theoretical studies are considered. Furthermore, both room temperature and higher temperature gas sensors are discussed. We also emphasized the gas-sensing mechanism. Thus, this review provides a reference for researchers working in the field of 2D TMD gas sensors.
Collapse
Affiliation(s)
- Ali Mirzaei
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Morteza Alizadeh
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Hamid Reza Ansari
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Mehdi Moayedi
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Zoheir Kordrostami
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Haniyeh Safaeian
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Myoung Hoon Lee
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Tae-Un Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jin-Young Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyoun Woo Kim
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of Korea
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
5
|
Dai Y, He Q, Huang Y, Duan X, Lin Z. Solution-Processable and Printable Two-Dimensional Transition Metal Dichalcogenide Inks. Chem Rev 2024; 124:5795-5845. [PMID: 38639932 DOI: 10.1021/acs.chemrev.3c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) with layered crystal structures have been attracting enormous research interest for their atomic thickness, mechanical flexibility, and excellent electronic/optoelectronic properties for applications in diverse technological areas. Solution-processable 2D TMD inks are promising for large-scale production of functional thin films at an affordable cost, using high-throughput solution-based processing techniques such as printing and roll-to-roll fabrications. This paper provides a comprehensive review of the chemical synthesis of solution-processable and printable 2D TMD ink materials and the subsequent assembly into thin films for diverse applications. We start with the chemical principles and protocols of various synthesis methods for 2D TMD nanosheet crystals in the solution phase. The solution-based techniques for depositing ink materials into solid-state thin films are discussed. Then, we review the applications of these solution-processable thin films in diverse technological areas including electronics, optoelectronics, and others. To conclude, a summary of the key scientific/technical challenges and future research opportunities of solution-processable TMD inks is provided.
Collapse
Affiliation(s)
- Yongping Dai
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 99907, China
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zhaoyang Lin
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Wawrzyniak J. Advancements in Improving Selectivity of Metal Oxide Semiconductor Gas Sensors Opening New Perspectives for Their Application in Food Industry. SENSORS (BASEL, SWITZERLAND) 2023; 23:9548. [PMID: 38067920 PMCID: PMC10708670 DOI: 10.3390/s23239548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
Volatile compounds not only contribute to the distinct flavors and aromas found in foods and beverages, but can also serve as indicators for spoilage, contamination, or the presence of potentially harmful substances. As the odor of food raw materials and products carries valuable information about their state, gas sensors play a pivotal role in ensuring food safety and quality at various stages of its production and distribution. Among gas detection devices that are widely used in the food industry, metal oxide semiconductor (MOS) gas sensors are of the greatest importance. Ongoing research and development efforts have led to significant improvements in their performance, rendering them immensely useful tools for monitoring and ensuring food product quality; however, aspects related to their limited selectivity still remain a challenge. This review explores various strategies and technologies that have been employed to enhance the selectivity of MOS gas sensors, encompassing the innovative sensor designs, integration of advanced materials, and improvement of measurement methodology and pattern recognize algorithms. The discussed advances in MOS gas sensors, such as reducing cross-sensitivity to interfering gases, improving detection limits, and providing more accurate assessment of volatile organic compounds (VOCs) could lead to further expansion of their applications in a variety of areas, including food processing and storage, ultimately benefiting both industry and consumers.
Collapse
Affiliation(s)
- Jolanta Wawrzyniak
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-624 Poznań, Poland
| |
Collapse
|
7
|
Wang S, Fu Y, Wang T, Liu W, Wang J, Zhao P, Ma H, Chen Y, Cheng P, Zhang Z. Fabrication of robust and cost-efficient Hoffmann-type MOF sensors for room temperature ammonia detection. Nat Commun 2023; 14:7261. [PMID: 37945558 PMCID: PMC10636145 DOI: 10.1038/s41467-023-42959-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
The development of fast-response sensors for detecting NH3 at room temperature remains a formidable challenge. Here, to address this challenge, two highly robust Hoffmann-type metal-organic frameworks are rationally applied as the NH3 sensing materials which possess ultra-high static adsorption capacity for NH3, only lower than the current benchmark material. The adsorption mechanism is in-depth unveiled by dynamic adsorption and simulation studies. The assembled interdigital electrode device exhibits low detection limit (25 ppb) and short response time (5 s) at room temperature, which set a record among all electrical signal sensors. Moreover, the sensor exhibits excellent selectivity towards NH3 in the presence of 13 other potential interfering gases. Prominently, the sensor can stably output signals for more than two months at room temperature and can be recovered by simply purging nitrogen at room temperature without heating. This study opens up a way for reasonably designing gas sensing materials for toxic gases.
Collapse
Affiliation(s)
- Sa Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yu Fu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Ting Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Wansheng Liu
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jian Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
- College of Pharmacy, Nankai University, Tianjin, 300071, China
| | - Peng Zhao
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Heping Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yao Chen
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
- College of Pharmacy, Nankai University, Tianjin, 300071, China
| | - Peng Cheng
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, China
- Frontiers Science Center for New Organic Matter, Renewable energy conversion and storage center, Nankai University, Tianjin, 300071, China
| | - Zhenjie Zhang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, China.
- Frontiers Science Center for New Organic Matter, Renewable energy conversion and storage center, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
8
|
Huang Y, Li D, Chai W, Jin D, Jin H. Effect of fluorine doping on the NO 2-sensing properties of MoS 2nanoflowers. NANOTECHNOLOGY 2023; 34:505501. [PMID: 37722367 DOI: 10.1088/1361-6528/acfaa7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/17/2023] [Indexed: 09/20/2023]
Abstract
The somewhat slow recovery kinetics of NO2sensing at low temperatures are still challenging to overcome. To enhance the gas sensing property, fluorine is doped to MoS2nanoflowers by facile hydrothermal method. Extensive characterization data demonstrate that F was effectively incorporated into the MoS2nanoflowers, and that the microstructure of the MoS2nanoflowers did not change upon F doping. The two MoS2doped with varying concentrations of fluorine were tested for their sensing property to NO2gas. Both of them show good repeatability and stability. A smaller recovery time was seen in the F-MoS2-1 sample with a little amount of F loading, which was three times quicker than that of pure MoS2. The key reason for the quicker recovery time of this material was found to be the fluorine ions that had been adsorbed on the surface of F-MoS2-1 would take up some of the NO2adsorption site. Additionally, the sample F-MoS2-2 with a higher F doping level demonstrated increased sensitivity. The F-MoS2-2 sensor's high sensitivity was mostly due to the lattice fluorine filled to the sulfur vacancy, which generated impurity levels and reduced the energy required for its electronic transition. This study might contribute to the development of new molybdenum sulfide based gas sensor.
Collapse
Affiliation(s)
- Yixuan Huang
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, People's Republic of China
| | - Donglin Li
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, People's Republic of China
| | - Wenxiang Chai
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, People's Republic of China
| | - Dingfeng Jin
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, People's Republic of China
| | - Hongxiao Jin
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, People's Republic of China
| |
Collapse
|
9
|
Linto Sibi SP, Rajkumar M, Govindharaj K, Mobika J, Nithya Priya V, Rajendra Kumar RT. Electronic sensitization enhanced p-type ammonia gas sensing of zinc doped MoS 2/RGO composites. Anal Chim Acta 2023; 1248:340932. [PMID: 36813461 DOI: 10.1016/j.aca.2023.340932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Zinc (Zn) doping induced synergetic effects of defects engineering and heterojunction in Molybdenum disulphide/Reduced graphene oxide (MoS2/RGO) effectively enhances the p-type Volatile organic compounds (VOC) gas sensing traits and helps in tailoring the over dependence on noble metals for surface sensitization. Through this work, we have successfully prepared Zn doped MoS2 grafted on RGO employing an in-situ hydrothermal method. Optimal doping concentration of Zn dopants in the MoS2 lattice triggered more active sites on the basal plane of MoS2 with the aid of defects promoted by the zinc dopants. Effective intercalation of RGO further boost up the exposed surface area of Zn doped MoS2 for further interaction of ammonia gas molecules. Besides, smaller crystallite size brought out by 5% Zn dopants aids in efficient charge transfer across the heterojunctions that further amplifies the ammonia sensing traits with a peak response of 32.40% along with a response time of 21.3 s and recovery time of 44.90 s. The as prepared ammonia gas sensor exhibited excellent selectivity and repeatability. The obtained results reveal that transition metal doping into the host lattice proves to be a promising approach for VOC sensing characteristics of p-type gas sensors and gives insight about the importance of dopants and defects for the development of highly efficient gas sensors in the future.
Collapse
Affiliation(s)
- S P Linto Sibi
- Department of Physics, PSG College of Arts and Science, Coimbatore, 641014, Tamil Nadu, India
| | - M Rajkumar
- Department of Physics, PSG College of Arts and Science, Coimbatore, 641014, Tamil Nadu, India.
| | - Kamaraj Govindharaj
- Advanced Materials and Devices Laboratory (AMDL), Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - J Mobika
- Department of Physics, Nandha Engineering College, Erode, Tamil Nadu, 638052, India
| | - V Nithya Priya
- Department of Physics, PSG College of Arts and Science, Coimbatore, 641014, Tamil Nadu, India
| | - R T Rajendra Kumar
- Advanced Materials and Devices Laboratory (AMDL), Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| |
Collapse
|
10
|
Zhu C, Zhou T, Xia H, Zhang T. Flexible Room-Temperature Ammonia Gas Sensors Based on PANI-MWCNTs/PDMS Film for Breathing Analysis and Food Safety. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1158. [PMID: 37049261 PMCID: PMC10097228 DOI: 10.3390/nano13071158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Gas sensors have played a critical role in healthcare, atmospheric environmental monitoring, military applications and so on. In particular, flexible sensing devices are of great interest, benefitting from flexibility and wearability. However, developing flexible gas sensors with a high sensitivity, great stability and workability is still challenging. In this work, multi-walled carbon nanotubes (MWCNTs) were grown on polydimethylsiloxane (PDMS) films, which were further modified with polyaniline (PANI) using a simple chemical oxidation synthesis. The superior flexibility of the PANI-MWCNTs/PDMS film enabled a stable initial resistance value, even under bending conditions. The flexible sensor showed excellent NH3 sensing performances, including a high response (11.8 ± 0.2 for 40 ppm of NH3) and a low limit of detection (10 ppb) at room temperature. Moreover, the effect of a humid environment on the NH3 sensing performances was investigated. The results show that the response of the sensor is enhanced under high humidity conditions because water molecules can promote the adsorption of NH3 on the PANI-MWCNTs/PDMS films. In addition, the PANI-MWCNTs/PDMS film sensor had the abilities of detecting NH3 in the simulated breath of patients with kidney disease and the freshness of shrimp. These above results reveal the potential application of the PANI-MWCNTs/PDMS sensor for monitoring NH3 in human breath and food.
Collapse
|
11
|
Kim T, Lee TH, Park SY, Eom TH, Cho I, Kim Y, Kim C, Lee SA, Choi MJ, Suh JM, Hwang IS, Lee D, Park I, Jang HW. Drastic Gas Sensing Selectivity in 2-Dimensional MoS 2 Nanoflakes by Noble Metal Decoration. ACS NANO 2023; 17:4404-4413. [PMID: 36825770 DOI: 10.1021/acsnano.2c09733] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Noble metal nanoparticle decoration is a representative strategy to enhance selectivity for fabricating chemical sensor arrays based on the 2-dimensional (2D) semiconductor material, represented by molybdenum disulfide (MoS2). However, the mechanism of selectivity tuning by noble metal decoration on 2D materials has not been fully elucidated. Here, we successfully decorated noble metal nanoparticles on MoS2 flakes by the solution process without using reducing agents. The MoS2 flakes showed drastic selectivity changes after surface decoration and distinguished ammonia, hydrogen, and ethanol gases clearly, which were not observed in general 3D metal oxide nanostructures. The role of noble metal nanoparticle decoration on the selectivity change is investigated by first-principles density functional theory (DFT) calculations. While the H2 sensitivity shows a similar tendency with the calculated binding energy, that of NH3 is strongly related to the binding site deactivation due to preferred noble metal particle decoration at the MoS2 edge. This finding is a specific phenomenon which originates from the distinguished structure of the 2D material, with highly active edge sites. We believe that our study will provide the fundamental comprehension for the strategy to devise the highly efficient sensor array based on 2D materials.
Collapse
Affiliation(s)
- Taehoon Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Hyung Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Seo Yun Park
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Hoon Eom
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Incheol Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yeonhoo Kim
- Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
| | - Changyeon Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Sol A Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Ju Choi
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jun Min Suh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | - Donghwa Lee
- Department of Materials Science and Engineering and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| |
Collapse
|
12
|
Rahaman M, Ahmed MH, Sadman SM, Islam MR. Defect mediated visible light induced photocatalytic activity of Co 3O 4 nanoparticle decorated MoS 2 nanoflower: A combined experimental and theoretical study. Heliyon 2023; 9:e14536. [PMID: 36950618 PMCID: PMC10025921 DOI: 10.1016/j.heliyon.2023.e14536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
In this work, Co3O4 nanoparticle-decorated MoS2 (MoS2@Co3O4) hetero-nanoflowers were synthesized by a facile hydrothermal method, and the effect of Co3O4 on the morphological, structural, optical, electronic, and photocatalytic properties of MoS2 was analyzed. The surface morphology of MoS2 and MoS2@Co3O4 was studied via field emission electron microscopy (FE-SEM) and transmission electron microscopy (TEM), which revealed a strong interaction between the MoS2 nanoflower and the nanoparticles. The X-ray diffraction pattern showed a decrease in the crystallite sizes from 7.35 nm to 6.26 nm due to the incorporation of Co3O4. The UV-Vis spectroscopy of the analysis revealed that the indirect band gap of MoS2 was reduced from 1.89 eV to 1.65 eV with the incorporation of Co3O4 nanoparticles. Density functional theory (DFT) calculations were used to investigate the electronic properties of MoS2 and MoS2@Co3O4 hetero-nanoflowers, which also showed a reduction in the electronic band gap for the Co3O4 nanoparticles that were injected. The presence of defect states was also observed in the electronic property of MoS2@Co3O4. The photocatalytic activity of the prepared composite and nanoflower is studied using an aqueous solution of methylene blue (MB), and the efficiencies are found to be 27.96% for MoS2 and 78.89% for MoS2@Co3O4. The improved photocatalytic efficiency of MoS2@Co3O4 hetero-nanoflower can be attributed to narrowing the band gap together with the creation of defect states by the injection of nanoparticles that slows down electron-hole recombination rate by trapping charge carrier. The degradation analysis of the composite provides a new route for the purification of polluted water.
Collapse
Affiliation(s)
- Mizanur Rahaman
- Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Md Hasive Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | | | - Muhammad Rakibul Islam
- Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
- Corresponding author.
| |
Collapse
|
13
|
Chen X, Zhang D, Luan H, Yang C, Yan W, Liu W. Flexible Pressure Sensors Based on Molybdenum Disulfide/Hydroxyethyl Cellulose/Polyurethane Sponge for Motion Detection and Speech Recognition Using Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2043-2053. [PMID: 36571453 DOI: 10.1021/acsami.2c16730] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Flexible pressure sensors with excellent performance have broad application potential in wearable devices, motion monitoring, and human-computer interaction. In this paper, a flexible pressure sensor with a porous structure is proposed by coating molybdenum disulfide (MoS2) and hydroxyethyl cellulose (HEC) on a polyurethane (PU) sponge skeleton. The obtained sensor has excellent sensitivity (0.746 kPa-1), a wide detection range (250 kPa), fast response (120 ms), and outstanding repeatability over 2000 cycles. It is proven that the sensor can realize human motion detection and distinguish the touch of varying strength. In addition, a pressure sensing array was fabricated to reflect the pressure distribution and recognize the writing of Arabic numerals. Finally, the sensor performs speech detection through throat muscle movements, and high-accuracy (97.14%) speech recognition for seven words was achieved by a machine learning algorithm based on the support vector machine (SVM). This work provides an opportunity to fabricate simple flexible pressure sensors with potential applications in next-generation electronic skin, health detection, and intelligent robotics.
Collapse
Affiliation(s)
- Xiaoya Chen
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Dongzhi Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Huixin Luan
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Chunqing Yang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Weiyu Yan
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenzhe Liu
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
14
|
Cao L, Huang Y, Parakhonskiy B, Skirtach AG. Nanoarchitectonics beyond perfect order - not quite perfect but quite useful. NANOSCALE 2022; 14:15964-16002. [PMID: 36278502 DOI: 10.1039/d2nr02537j] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoarchitectonics, like architectonics, allows the design and building of structures, but at the nanoscale. Unlike those in architectonics, and even macro-, micro-, and atomic-scale architectonics, the assembled structures at the nanoscale do not always follow the projected design. In fact, they do follow the projected design but only for self-assembly processes producing structures with perfect order. Here, we look at nanoarchitectonics allowing the building of nanostructures without a perfect arrangement of building blocks. Here, fabrication of structures from molecules, polymers, nanoparticles, and nanosheets to polymer brushes, layer-by-layer assembly structures, and hydrogels through self-assembly processes is discussed, where perfect order is not necessarily the aim to be achieved. Both planar substrate and spherical template-based assemblies are discussed, showing the challenging nature of research in this field and the usefulness of such structures for numerous applications, which are also discussed here.
Collapse
Affiliation(s)
- Lin Cao
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Yanqi Huang
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
15
|
Li S, Li Z, Zhang M, Wu Z, Kong D, Qian H, Su B. Etching process enhanced H 2O 2 sensing performance of SnO 2/Zn 2SnO 4 with reliable anti-humidity ability. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3335-3344. [PMID: 35972397 DOI: 10.1039/d2ay00573e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this work, sol-gel and chemical etching methods are adopted to synthesize zinc hydroxystannate materials. Cubic tin dioxide and zinc stannate composite materials with a definite structure are successfully prepared at varied annealing temperatures and times by using the synthesized zinc hydroxystannate as a sacrificial template. After a gas sensing test, tin dioxide and zinc stannate composite samples etched at 650 °C and annealed for 4 h exhibit a strong response and outstanding selectivity to hydrogen peroxide. Furthermore, the samples prepared under such conditions demonstrate long-term stability, and also a specified level of tolerance after the humidity stability test. Moreover, because of the simple preparation method and rapid detection of hydrogen peroxide, it is worth noting that samples prepared following the etching process at the 650 °C annealing temperature for 4 h exhibit the significant benefits of tin dioxide and zinc stannate composites. In this modern era, this research emphasizes the sample's potential for the rapid identification and detection of hydrogen peroxide.
Collapse
Affiliation(s)
- Shiqing Li
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.
| | - ZhenJiang Li
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.
| | - Min Zhang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Xinjiang University, Urumqi, Xinjiang 830046, China
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.
| | - Zhaofeng Wu
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Xinjiang University, Urumqi, Xinjiang 830046, China
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.
| | - DeZheng Kong
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.
| | - HongJun Qian
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.
| | - BaoXue Su
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.
| |
Collapse
|
16
|
Norizan MN, Abdullah N, Halim NA, Demon SZN, Mohamad IS. Heterojunctions of rGO/Metal Oxide Nanocomposites as Promising Gas-Sensing Materials-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2278. [PMID: 35808113 PMCID: PMC9268638 DOI: 10.3390/nano12132278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 01/25/2023]
Abstract
Monitoring environmental hazards and pollution control is vital for the detection of harmful toxic gases from industrial activities and natural processes in the environment, such as nitrogen dioxide (NO2), ammonia (NH3), hydrogen (H2), hydrogen sulfide (H2S), carbon dioxide (CO2), and sulfur dioxide (SO2). This is to ensure the preservation of public health and promote workplace safety. Graphene and its derivatives, especially reduced graphene oxide (rGO), have been designated as ideal materials in gas-sensing devices as their electronic properties highly influence the potential to adsorb specified toxic gas molecules. Despite its exceptional sensitivity at low gas concentrations, the sensor selectivity of pristine graphene is relatively weak, which limits its utility in many practical gas sensor applications. In view of this, the hybridization technique through heterojunction configurations of rGO with metal oxides has been explored, which showed promising improvement and a synergistic effect on the gas-sensing capacity, particularly at room temperature sensitivity and selectivity, even at low concentrations of the target gas. The unique features of graphene as a preferential gas sensor material are first highlighted, followed by a brief discussion on the basic working mechanism, fabrication, and performance of hybridized rGO/metal oxide-based gas sensors for various toxic gases, including NO2, NH3, H2, H2S, CO2, and SO2. The challenges and prospects of the graphene/metal oxide-based based gas sensors are presented at the end of the review.
Collapse
Affiliation(s)
- Mohd Nurazzi Norizan
- Centre for Defence Foundation Studies, National Defence University of Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia; (M.N.N.); (N.A.H.); (S.Z.N.D.)
| | - Norli Abdullah
- Centre for Defence Foundation Studies, National Defence University of Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia; (M.N.N.); (N.A.H.); (S.Z.N.D.)
| | - Norhana Abdul Halim
- Centre for Defence Foundation Studies, National Defence University of Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia; (M.N.N.); (N.A.H.); (S.Z.N.D.)
| | - Siti Zulaikha Ngah Demon
- Centre for Defence Foundation Studies, National Defence University of Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia; (M.N.N.); (N.A.H.); (S.Z.N.D.)
| | - Imran Syakir Mohamad
- Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka 76100, Malaysia;
| |
Collapse
|
17
|
Mphuthi N, Sikhwivhilu L, Ray SS. Functionalization of 2D MoS 2 Nanosheets with Various Metal and Metal Oxide Nanostructures: Their Properties and Application in Electrochemical Sensors. BIOSENSORS 2022; 12:bios12060386. [PMID: 35735534 PMCID: PMC9220812 DOI: 10.3390/bios12060386] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 05/24/2023]
Abstract
Two-dimensional transition metal dichalcogenides (2D TMDs) have gained considerable attention due to their distinctive properties and broad range of possible applications. One of the most widely studied transition metal dichalcogenides is molybdenum disulfide (MoS2). The 2D MoS2 nanosheets have unique and complementary properties to those of graphene, rendering them ideal electrode materials that could potentially lead to significant benefits in many electrochemical applications. These properties include tunable bandgaps, large surface areas, relatively high electron mobilities, and good optical and catalytic characteristics. Although the use of 2D MoS2 nanosheets offers several advantages and excellent properties, surface functionalization of 2D MoS2 is a potential route for further enhancing their properties and adding extra functionalities to the surface of the fabricated sensor. The functionalization of the material with various metal and metal oxide nanostructures has a significant impact on its overall electrochemical performance, improving various sensing parameters, such as selectivity, sensitivity, and stability. In this review, different methods of preparing 2D-layered MoS2 nanomaterials, followed by different surface functionalization methods of these nanomaterials, are explored and discussed. Finally, the structure-properties relationship and electrochemical sensor applications over the last ten years are discussed. Emphasis is placed on the performance of 2D MoS2 with respect to the performance of electrochemical sensors, thereby giving new insights into this unique material and providing a foundation for researchers of different disciplines who are interested in advancing the development of MoS2-based sensors.
Collapse
Affiliation(s)
- Ntsoaki Mphuthi
- DSI-Mintek Nanotechnology Innovation Centre, Randburg 2125, South Africa;
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Lucky Sikhwivhilu
- DSI-Mintek Nanotechnology Innovation Centre, Randburg 2125, South Africa;
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Suprakas Sinha Ray
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, South Africa
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific Industrial Research, Pretoria 0001, South Africa
| |
Collapse
|
18
|
Leve ZD, Iwuoha EI, Ross N. The Synergistic Properties and Gas Sensing Performance of Functionalized Graphene-Based Sensors. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1326. [PMID: 35207867 PMCID: PMC8877958 DOI: 10.3390/ma15041326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
The detection of toxic gases has long been a priority in industrial manufacturing, environmental monitoring, medical diagnosis, and national defense. The importance of gas sensing is not only of high benefit to such industries but also to the daily lives of people. Graphene-based gas sensors have elicited a lot of interest recently, due to the excellent physical properties of graphene and its derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO). Graphene oxide and rGO have been shown to offer large surface areas that extend their active sites for adsorbing gas molecules, thereby improving the sensitivity of the sensor. There are several literature reports on the promising functionalization of GO and rGO surfaces with metal oxide, for enhanced performance with regard to selectivity and sensitivity in gas sensing. These synthetic and functionalization methods provide the ideal combination/s required for enhanced gas sensors. In this review, the functionalization of graphene, synthesis of heterostructured nanohybrids, and the assessment of their collaborative performance towards gas-sensing applications are discussed.
Collapse
Affiliation(s)
| | | | - Natasha Ross
- SensorLab, Chemistry Department, University of the Western Cape, Cape Town 7535, South Africa; (Z.D.L.); (E.I.I.)
| |
Collapse
|
19
|
Wang QY, Wu ZF, Zhang M, Qin ZJ, Wang L, Zhong FR, Duan HM. Gas-Sensing Properties and Preparation of Waste Mask Fibers/ZnS Composites. JOURNAL OF ELECTRONIC MATERIALS 2022; 51:3843-3850. [PMID: 35497373 PMCID: PMC9040696 DOI: 10.1007/s11664-022-09644-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/05/2022] [Indexed: 05/07/2023]
Abstract
UNLABELLED To realize the resource utilization of waste mask fibers (MF), a layer of ZnS nanoparticles was grown on MF by a one-step hydrothermal method, and a MF/ZnS sensor was successfully prepared. This is the first time that resource utilization of MF has been combined with the development of a high-performance gas sensor. The MF/ZnS sensor showed high sensitivity and recoverability to target vapors at room temperature. Compared with ZnS powder loaded on a ceramic substrate, the MF/ZnS composite responses to four analytes have been improved by 8.4~35.2 times. In addition, the time for the MF/ZnS sensor to complete one response-recovery cycle for all four analytes was less than 30 s. This should be attributed to the high gas permeability of the MF substrate, which made the ZnS particles loaded on the MF more fully exposed to contact with the target vapors. This work not only provides a simple and low-cost method to optimize the sensing performance of gas sensors but also provides a new way for the resource utilization of MF. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11664-022-09644-1.
Collapse
Affiliation(s)
- Q. Y. Wang
- Xinjiang Key Laboratory of Solid State Physics and Devices, Urumqi, 830046 Xinjiang China
- School of Physics Science and Technology, Xinjiang University, Urumqi, 830046 Xinjiang China
| | - Z. F. Wu
- Xinjiang Key Laboratory of Solid State Physics and Devices, Urumqi, 830046 Xinjiang China
- School of Physics Science and Technology, Xinjiang University, Urumqi, 830046 Xinjiang China
| | - M. Zhang
- Xinjiang Key Laboratory of Solid State Physics and Devices, Urumqi, 830046 Xinjiang China
- School of Physics Science and Technology, Xinjiang University, Urumqi, 830046 Xinjiang China
| | - Z. J. Qin
- Xinjiang Key Laboratory of Solid State Physics and Devices, Urumqi, 830046 Xinjiang China
- School of Physics Science and Technology, Xinjiang University, Urumqi, 830046 Xinjiang China
| | - L. Wang
- Xinjiang Key Laboratory of Solid State Physics and Devices, Urumqi, 830046 Xinjiang China
- School of Physics Science and Technology, Xinjiang University, Urumqi, 830046 Xinjiang China
| | - F. R. Zhong
- School of Physics and Electronic Science, Zunyi Normal College, Zunyi, 563006 Guizhou People’s Republic of China
| | - H. M. Duan
- Xinjiang Key Laboratory of Solid State Physics and Devices, Urumqi, 830046 Xinjiang China
- School of Physics Science and Technology, Xinjiang University, Urumqi, 830046 Xinjiang China
| |
Collapse
|
20
|
Adamu BI, Chen P, Chu W. Role of nanostructuring of sensing materials in performance of electrical gas sensors by combining with extra strategies. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/ac3636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Burman D, Raha H, Manna B, Pramanik P, Guha PK. Substitutional Doping of MoS 2 for Superior Gas-Sensing Applications: A Proof of Concept. ACS Sens 2021; 6:3398-3408. [PMID: 34494827 DOI: 10.1021/acssensors.1c01258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-dimensional layered materials (like MoS2 and WS2) those are being used as sensing layers in chemoresistive gas sensors suffer from poor sensitivity and selectivity. Mere surface functionalization (decorating of material surface) with metal nanoparticles (NPs) might not improve the sensor performance significantly. In this respect, doping of the layered material can play a significant role. Here, we report a simple yet effective substitutional doping technique to dope MoS2 with noble metals. Through various material characterization techniques like X-ray diffraction, scanning tunneling spectroscopy images, and selected area electron diffraction pattern, we were able to put forward the difference between surface decoration and substitutional doping by Au at S-vacancy sites of MoS2. Lattice strain was found to exist in the Au-doped MoS2 samples, while being absent in the Au NP-decorated samples. Surface chemistry studies performed using X-ray photoelectron spectroscopy showed a shift of Mo 3d peaks to lower binding energies, thus realizing p-type doping due to Au. The blue shift of the peaks as observed in Raman spectroscopy further confirmed the p-type doping. We found that gold-doped MoS2 was more sensitive and selective toward ammonia (with a response of 150% for 500 ppm of ammonia at 90 °C) as compared to gold NP-decorated MoS2. The advantages of substitutional doping and the gas-sensing mechanism were also explained by the density functional theory study. From the first principles study, it was found that the adsorption of Au atoms on the S-vacancy site of a monolayer of the MoS2 sheet was thermodynamically favorable with the adsorption energy of 2.39 eV. We also successfully doped MoS2 with Pt using the same technique. It was found that Pt-doped MoS2 gives huge response toward humidity (60,000% at 80% relative humidity). Thus, various noble metal doping of MoS2 selectively improved the sensing response toward specific analytes. From this work, we believe that this method could also be useful to dope other layered nanomaterials to design gas sensors with improved selectivity.
Collapse
Affiliation(s)
- Debasree Burman
- Department of Electrical Engineering, Indian Institute of Technology, Bombay 400076, India
| | - Himadri Raha
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Bibhas Manna
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Panchanan Pramanik
- Department of Chemistry and Nanoscience, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Prasanta Kumar Guha
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
22
|
Zhou T, Zhang T. Recent Progress of Nanostructured Sensing Materials from 0D to 3D: Overview of Structure-Property-Application Relationship for Gas Sensors. SMALL METHODS 2021; 5:e2100515. [PMID: 34928067 DOI: 10.1002/smtd.202100515] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/23/2021] [Indexed: 05/27/2023]
Abstract
Along with the progress of nanoscience and nanotechnology, nanomaterials with attractive structural and functional properties have gained more attention than ever before, especially in the field of electronic sensors. In recent years, the gas sensing devices have made great achievement and also created wide application prospects, which leads to a new wave of research for designing advanced sensing materials. There is no doubt that the characteristics are highly governed by the sensitive layers. For this reason, important advances for the outstanding, novel sensing materials with different dimensional structures including 0D, 1D, 2D, and 3D are reported and summarized systematically. The sensing materials cover noble metals, metal oxide semiconductors, carbon nanomaterials, metal dichalcogenides, g-C3 N4 , MXenes, and complex composites. Discussion is also extended to the relation between sensing performances and their structure, electronic properties, and surface chemistry. In addition, some gas sensing related applications are also highlighted, including environment monitoring, breath analysis, food quality and safety, and flexible wearable electronics, from current situation and the facing challenges to the future research perspectives.
Collapse
Affiliation(s)
- Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
23
|
Ranjbar F, Hajati S, Ghaedi M, Dashtian K, Naderi H, Toth J. Highly selective MXene/V 2O 5/CuWO 4-based ultra-sensitive room temperature ammonia sensor. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126196. [PMID: 34492960 DOI: 10.1016/j.jhazmat.2021.126196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
A Schottky junction based on Ti3C2Tx MXene sheet integrated with marigold flower-like V2O5/CuWO4 heterojunction was designed and fabricated for robust ammonia sensing by monitoring the electrical resistance changes in air and ammonia. The electron transport behavior of the sensor was investigated by electrochemical analysis, ultraviolet photoelectron spectroscopy and reflection electron energy loss spectroscopy. Besides, negative zeta potential obtained for sensor components was in consistent with surface functional groups (e.g. OH and F) observed by XPS analysis helping better understanding of the ammonia sensing mechanism. The results desirably confirmed high sensitivity, selectivity, linear range (1-160 ppm), the limit of quantification, repeatability, long-term stability, very short response time (few seconds) and low working temperature (25 °C) of the sensor. The measurements on the resistance changes of the MXene/V2O5/CuWO4-based sensor under the exposure to various types of analytes (Ammonia, Acetone, Benzene, Chloroform, DMF, Ethanol, humidity (80%), Methanol and Toluene as well as NO, NO2, H2S, SO2, CO and CH4) at different concentrations revealed that the fabricated sensor is excellently selective to ammonia with ultra-high sensitivity. Intra-day stability (7 runs a day) and long-term stability (every 10 days over 70 days) as important sensor characteristics were investigated at 51 ppm and ambient temperature, which showed very good repeatability and recoverability in both short and long periods for sensing the ammonia. Overall, MXene/V2O5/CuWO4 was shown to be cost-effective, easy to handle and suitably applicable for simple, ultrafast and extremely efficient trace ammonia detection, which could be of high interest for future exhaled breath analysis and the development of a novel noninvasive diagnostic strategy to monitor chronic kidney disease to stop a large measure of unnecessary invasive testing.
Collapse
Affiliation(s)
- F Ranjbar
- Department of Physics, Yasouj University, Yasouj 75918-74831, Iran
| | - S Hajati
- Department of Semiconductors, Materials and Energy Research Center (MERC), P.O. Box 31787-316, Tehran, Iran.
| | - M Ghaedi
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran
| | - K Dashtian
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran
| | - H Naderi
- Department of Physics, Yasouj University, Yasouj 75918-74831, Iran
| | - J Toth
- Institute for Nuclear Research, Hungarian Academy of Sciences (MTA ATOMKI), P.O. Box 51, H-4001 Debrecen, Hungary
| |
Collapse
|
24
|
Guo J, Zhang D, Li T, Zhang J, Yu L. Green light-driven acetone gas sensor based on electrospinned CdS nanospheres/Co 3O 4 nanofibers hybrid for the detection of exhaled diabetes biomarker. J Colloid Interface Sci 2021; 606:261-271. [PMID: 34390993 DOI: 10.1016/j.jcis.2021.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 12/18/2022]
Abstract
Morphological and structural characteristics of semiconductors have a significant impact on their gas sensing characteristics. Reasonable design and synthesis of heterojunctions with special structures can effectively improve sensor performance. Herein, a cobalt oxide (Co3O4) nanofibers/cadmium sulfide (CdS) nanospheres hybrid was synthesized by an electrospinning method combined with a hydrothermal method to detect acetone gas. By adjusting loading amount of CdS, the sensing performance of CdS/Co3O4 sensor for acetone at room temperature (25 °C) was greatly ameliorated. In particular, the response of CdS/Co3O4 to 50 ppm acetone gas increased by 25% under 520 nm green light, meanwhile, the response/recovery time was shortened to 5 s/4 s. This is attributed to the heterojunction formed between CdS and Co3O4 as well as the influence of light excitation on the carrier concentration of the surfaces. Meanwhile, the unique high-porosity fiber structure and the catalytic action of cobalt ions also play an essential role in improving the performance. Furthermore, practical diabetic breath was experimentally simulated and proved the potential of the sensor in the future application of disease-assisted diagnosis.
Collapse
Affiliation(s)
- Jingyu Guo
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Dongzhi Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Tingting Li
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jianhua Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Liandong Yu
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
25
|
Zhang D, Pan W, Zhou L, Yu S. Room-Temperature Benzene Sensing with Au-Doped ZnO Nanorods/Exfoliated WSe 2 Nanosheets and Density Functional Theory Simulations. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33392-33403. [PMID: 34228931 DOI: 10.1021/acsami.1c03884] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A gold-doped zinc oxide (Au-ZnO)/exfoliated tungsten diselenide (exfoliated WSe2) nanocomposite-based gas sensor toward benzene with high sensing properties was demonstrated. Epoxy resin was used as the matrix of the Au-ZnO/exfoliated WSe2 nanocomposite sensor. The straw-shaped Au-ZnO was synthesized by the hydrothermal method, and WSe2 nanosheets (NSs) were prepared via hydrothermal and liquid-phase exfoliation methods. The properties of Au-ZnO/exfoliated WSe2 nanoheterostructures constructed by self-assembly technology have been confirmed via a series of characterization methods. The benzene-sensing performances of sensors were tested at 25 °C. Compared with Au-ZnO, WSe2, and their composites, the Au-ZnO/exfoliated WSe2 sensor has a significant performance improvement, including a higher response and linear fit degree, better selectivity and repeatability, and faster detection rate. The significantly enhanced sensing properties of the Au-ZnO/exfoliated WSe2 sensor can be ascribed to the doping of Au nanoparticles, the increase in the specific surface area and adsorption sites of NSs after exfoliation, and the cooperative interface combination of the ZnO/WSe2 heterojunction. Furthermore, the sensitivity mechanism of the composite sensor to benzene was explored by density functional theory simulations.
Collapse
Affiliation(s)
- Dongzhi Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenjing Pan
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Lanjuan Zhou
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Sujing Yu
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
26
|
Bead Necklace-Shaped Single Walled Carbon Nanotube-Polypyrrole Nanocomposites for Ammonia Gas Sensor. Macromol Res 2021. [DOI: 10.1007/s13233-021-9049-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Gui Y, Zhu S, Chen X. Gas-Sensing Properties of Cu 2S-MoSe 2 Nanosheets to NO 2 and NH 3 Gases. ACS OMEGA 2021; 6:16517-16523. [PMID: 34235323 PMCID: PMC8246449 DOI: 10.1021/acsomega.1c01704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Cu2S-MoSe2 was selected as a gas-sensing material to detect NO2 and NH3. Based on density functional theory calculations, the adsorption structures, density of states, molecular orbit, and recovery time were studied to analyze the gas-sensing mechanism of Cu2S-MoSe2 to gases. Calculation results show that Cu2S clusters receive a stable doping structure on the MoSe2 surface. Compared with intrinsic MoSe2, Cu2S-MoSe2 shows more excellent adsorption performance to NO2 and NH3 due to the active feature of the Cu2S dopant. After NO2 and NH3 adsorption, the energy gap decreases, indicating an improvement of the conductivity, which is greatly significant for gas sensing. For double NH3 adsorption, the conductivity of the entire system increases more than that of a double NO2 adsorption system, signifying the sensitivity of Cu2S-MoSe2 is greater for NH3 than NO2. The results of theoretical recovery time show that Cu2S-MoSe2 is sensitive for NH3 detection at room temperature (298 K) and NO2 detection at high temperature (400 K).
Collapse
Affiliation(s)
- Yingang Gui
- Faculty
of Quality Management and Inspection & Quarantine, Yibin University, Yibin 644000, China
- College
of Engineering and Technology, Southwest
University, Chongqing 400715, China
| | - Shengyan Zhu
- Faculty
of Quality Management and Inspection & Quarantine, Yibin University, Yibin 644000, China
| | - Xianping Chen
- College
of Optoelectronic Engineering and Key Laboratory of Optoelectronic
Technology & Systems Education Ministry of China, Chongqing University, Chongqing 400044, China
| |
Collapse
|
28
|
Kalidoss R, Kothalam R, Manikandan A, Jaganathan SK, Khan A, Asiri AM. Socio-economic demands and challenges for non-invasive disease diagnosis through a portable breathalyzer by the incorporation of 2D nanosheets and SMO nanocomposites. RSC Adv 2021; 11:21216-21234. [PMID: 35478818 PMCID: PMC9034087 DOI: 10.1039/d1ra02554f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/23/2021] [Indexed: 12/15/2022] Open
Abstract
Breath analysis for non-invasive clinical diagnostics and treatment progression has penetrated the research community owing to the technological developments in novel sensing nanomaterials. The trace level selective detection of volatile organic compounds (VOCs) in breath facilitates the study of physiological disorder and real-time health monitoring. This review focuses on advancements in chemiresistive gas sensor technology for biomarker detection associated with different diseases. Emphasis is placed on selective biomarker detection by semiconducting metal oxide (SMO) nanostructures, 2-dimensional nanomaterials (2DMs) and nanocomposites through various optimization strategies and sensing mechanisms. Their synergistic properties for incorporation in a portable breathalyzer have been elucidated. Furthermore, the socio-economic demands of a breathalyzer in terms of recent establishment of startups globally and challenges of a breathalyzer are critically reviewed. This initiative is aimed at highlighting the challenges and scope for improvement to realize a high performance chemiresistive gas sensor for non-invasive disease diagnosis. Breath analysis for non-invasive clinical diagnostics and treatment progression has penetrated the research community owing to the technological developments in novel sensing nanomaterials.![]()
Collapse
Affiliation(s)
- Ramji Kalidoss
- Department of Biomedical Engineering, Bharath Institute of Higher Education and Research Selaiyur Tamil Nadu 600 073 India +91-9840-959832
| | - Radhakrishnan Kothalam
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology Kattankulathur Tamil Nadu 603 203 India
| | - A Manikandan
- Department of Chemistry, Bharath Institute of Higher Education and Research Selaiyur Tamil Nadu 600 073 India.,Centre for Nanoscience and Nanotechnology, Bharath Institute of Higher Education and Research Selaiyur Tamil Nadu 600 073 India
| | - Saravana Kumar Jaganathan
- Bionanotechnology Research Group, Ton Duc Thang University Ho Chi Minh City Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam.,Department of Engineering, Faculty of Science and Engineering, University of Hull HU6 7RX UK
| | - Anish Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia.,Center of Excellence for Advanced Materials Research, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia.,Center of Excellence for Advanced Materials Research, King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
29
|
Liu J, Zhu B, Zhang L, Fan J, Yu J. 0D/2D CdS/ZnO composite with n-n heterojunction for efficient detection of triethylamine. J Colloid Interface Sci 2021; 600:898-909. [PMID: 34058608 DOI: 10.1016/j.jcis.2021.05.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 01/04/2023]
Abstract
It is imperative to seek for novel materials with pronounced gas sensing performance towards triethylamine for the sake of human health. Herein, we successfully fabricate an outstanding triethylamine sensor based on CdS/ZnO composite with 0D/2D structure, which are prepared by in-situ growth of CdS quantum dots on ultra-thin ZnO nanosheets. The ratios between the two ingredients are adjusted and their effect is evaluated. The optimal sample exhibits the lowest operating temperature of 200 °C, the highest response value of ~20 and the fastest response time of 2 s. Besides, it also has the virtues of durable stability, excellent selectivity and superior anti-interference ability. The mechanism behind the aforementioned intriguing performance is investigated by X-ray photoelectron spectroscopy, Kelvin probe and density function theory (DFT) simulation. All the results verify that the enhanced gas sensing properties are derived from splendid 0D/2D structure, n-n heterojunction and large specific surface area. Additionally, this study opens an avenue for designing sensors with 0D/2D structure.
Collapse
Affiliation(s)
- Jingjing Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, PR China
| | - Bicheng Zhu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
| | - Liuyang Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, PR China.
| |
Collapse
|
30
|
Ye Z, Yang W, Yuan Z, Zhang K, Tai H. Facile depositing strategy to fabricate a hetero-affinity hybrid film for improving gas-sensing performance. NANOTECHNOLOGY 2021; 32:205502. [PMID: 33524964 DOI: 10.1088/1361-6528/abe1ee] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel co-spray method was proposed to fabricate a reduced graphene oxide (rGO)-poly (3-hexylthiophene) (P3HT) hybrid sensing device utilizing immiscible solution for ammonia detection at room temperature. The spectrum and Scanning Electron Microscopy (SEM) results revealed uniformly crimped morphology and favorable π-π interaction for the hybrid film. The hybrid film-based sensor showed obviously enhanced ammonia sensing performance, such as increased response, reduced response time, and reinforced sensitivity, in comparison to bare rGO, P3HT, and traditional rGO/P3HT layered film-based sensors, which could be attributed to an adsorption energy barrier and the p-n heterojunction effect. The synergetic strengthened sensing mechanism is discussed. Meanwhile, recovery ratio was introduced to evaluate the abnormal baseline drift induced high-response behavior. The excellent sensing properties of the hybrid sensor indicate that the co-spray method could be an alternative process for the preparation of hetero-affinity hybrid films or functional devices.
Collapse
Affiliation(s)
- Zongbiao Ye
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, People's Republic of China
| | - Wenyao Yang
- Chongqing Engineering Research Center of New Energy Storage Devices and Applications, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China
| | - Zhen Yuan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Kun Zhang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, People's Republic of China
| | - Huiling Tai
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
31
|
Singh S, Sattigeri RM, Kumar S, Jha PK, Sharma S. Superior Room-Temperature Ammonia Sensing Using a Hydrothermally Synthesized MoS 2/SnO 2 Composite. ACS OMEGA 2021; 6:11602-11613. [PMID: 34056316 PMCID: PMC8154003 DOI: 10.1021/acsomega.1c00805] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/09/2021] [Indexed: 05/31/2023]
Abstract
Layered two-dimensional transition metal dichalcogenides, due to their semiconducting nature and large surface-to-volume ratio, have created their own niche in the field of gas sensing. Their large recovery time and accompanied incomplete recovery result in inferior sensing properties. Here, we report a composite-based strategy to overcome these issues. In this study, we report a facile double-step synthesis of a MoS2/SnO2 composite and its successful use as a superior room-temperature ammonia sensor. Contrary to the pristine nanosheet-based sensors, the devices made using the composite display superior gas sensing characteristics with faster response. Specifically, at room temperature (30° C), the composite-based sensor exhibited excellent sensitivity (10%) at an ammonia concentration down to 0.4 ppm along with the response and recovery times of 2 and 10 s, respectively. Moreover, the device also exhibited long-term durability, reproducibility, and selectivity toward ammonia against hydrogen sulfide, methanol, ethanol, benzene, acetone, and formaldehyde. Sensor devices made on quartz and alumina substrates with different roughnesses have yielded almost an identical response, except for slight variations in response and recovery transients. Further, to shed light on the underlying adsorption energetics and selectivity, density functional theory simulations were employed. The improved response and enhanced selectivity of the composite were explicitly discussed in terms of adsorption energy. Lowdin charge analysis was performed to understand the charge transfer mechanism between NH3, H2S, CH3OH, HCHO, and the underlying MoS2/SnO2 composite surface. The long-term durability of the sensor was evident from the stable response curves even after 2 months. These results indicate that hydrothermally synthesized MoS2/SnO2 composite-based gas sensors can be used as a promising sensing material for monitoring ammonia gas in real fields.
Collapse
Affiliation(s)
- Sukhwinder Singh
- Department
of Physics, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Raghottam M. Sattigeri
- Department
of Physics, The Maharaja Sayajirao University
of Baroda, Vadodara 390002, Gujarat, India
| | - Suresh Kumar
- Department
of Physics, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Prafulla K. Jha
- Department
of Physics, The Maharaja Sayajirao University
of Baroda, Vadodara 390002, Gujarat, India
| | - Sandeep Sharma
- Department
of Physics, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| |
Collapse
|
32
|
Facile Preparation of PANI-Sr Composite Flexible Thin Film for Ammonia Sensing at Very Low Concentration. Macromol Res 2021. [DOI: 10.1007/s13233-021-9034-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Yang S, Lei G, Xu H, Lan Z, Wang Z, Gu H. Metal Oxide Based Heterojunctions for Gas Sensors: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1026. [PMID: 33920589 PMCID: PMC8073732 DOI: 10.3390/nano11041026] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
The construction of heterojunctions has been widely applied to improve the gas sensing performance of composites composed of nanostructured metal oxides. This review summarises the recent progress on assembly methods and gas sensing behaviours of sensors based on nanostructured metal oxide heterojunctions. Various methods, including the hydrothermal method, electrospinning and chemical vapour deposition, have been successfully employed to establish metal oxide heterojunctions in the sensing materials. The sensors composed with the built nanostructured heterojunctions were found to show enhanced gas sensing performance with higher sensor responses and shorter response times to the targeted reducing or oxidising gases compare with those of the pure metal oxides. Moreover, the enhanced gas sensing mechanisms of the metal oxide-based heterojunctions to the reducing or oxidising gases are also discussed, with the main emphasis on the important role of the potential barrier on the accumulation layer.
Collapse
Affiliation(s)
- Shulin Yang
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Physics and Electronic Information, Huanggang Normal University, Huanggang 438000, China; (S.Y.); (G.L.); (Z.L.)
- Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics and Electronic Sciences, Hubei University, Wuhan 430062, China;
| | - Gui Lei
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Physics and Electronic Information, Huanggang Normal University, Huanggang 438000, China; (S.Y.); (G.L.); (Z.L.)
- Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics and Electronic Sciences, Hubei University, Wuhan 430062, China;
| | - Huoxi Xu
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Physics and Electronic Information, Huanggang Normal University, Huanggang 438000, China; (S.Y.); (G.L.); (Z.L.)
| | - Zhigao Lan
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Physics and Electronic Information, Huanggang Normal University, Huanggang 438000, China; (S.Y.); (G.L.); (Z.L.)
| | - Zhao Wang
- Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics and Electronic Sciences, Hubei University, Wuhan 430062, China;
| | - Haoshuang Gu
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Physics and Electronic Information, Huanggang Normal University, Huanggang 438000, China; (S.Y.); (G.L.); (Z.L.)
- Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics and Electronic Sciences, Hubei University, Wuhan 430062, China;
| |
Collapse
|
34
|
Chu J, Yang A, Wang Q, Yang X, Wang D, Wang X, Yuan H, Rong M. Multicomponent SF 6 decomposition product sensing with a gas-sensing microchip. MICROSYSTEMS & NANOENGINEERING 2021; 7:18. [PMID: 34567732 PMCID: PMC8433328 DOI: 10.1038/s41378-021-00246-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/08/2021] [Accepted: 01/26/2021] [Indexed: 06/13/2023]
Abstract
A difficult issue restricting the development of gas sensors is multicomponent recognition. Herein, a gas-sensing (GS) microchip loaded with three gas-sensitive materials was fabricated via a micromachining technique. Then, a portable gas detection system was built to collect the signals of the chip under various decomposition products of sulfur hexafluoride (SF6). Through a stacked denoising autoencoder (SDAE), a total of five high-level features could be extracted from the original signals. Combined with machine learning algorithms, the accurate classification of 47 simulants was realized, and 5-fold cross-validation proved the reliability. To investigate the generalization ability, 30 sets of examinations for testing unknown gases were performed. The results indicated that SDAE-based models exhibit better generalization performance than PCA-based models, regardless of the magnitude of noise. In addition, hypothesis testing was introduced to check the significant differences of various models, and the bagging-based back propagation neural network with SDAE exhibits superior performance at 95% confidence.
Collapse
Affiliation(s)
- Jifeng Chu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, 710049 Xi’an, China
| | - Aijun Yang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, 710049 Xi’an, China
| | - Qiongyuan Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, 710049 Xi’an, China
| | - Xu Yang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, 710049 Xi’an, China
| | - Dawei Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, 710049 Xi’an, China
| | - Xiaohua Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, 710049 Xi’an, China
| | - Huan Yuan
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, 710049 Xi’an, China
| | - Mingzhe Rong
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, 710049 Xi’an, China
| |
Collapse
|
35
|
Yu S, Zhang D, Pan W, Zeng J. Adsorption of atmospheric gas molecules (NH3, H2S, CO, H2, CH4, NO, NO2, C6H6 and C3H6O) on two-dimensional polyimide with hydrogen bonding: a first-principles study. NEW J CHEM 2021. [DOI: 10.1039/d0nj06013e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, we investigated the effects of hydrogen bond acceptors on the surface of two-dimensional polyimide towards NH3, H2S, CO, H2, CH4, NO, NO2, C6H6 and C3H6O gas molecules through first-principles study based on density functional theory.
Collapse
Affiliation(s)
- Sujing Yu
- College of Control Science and Engineering
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Dongzhi Zhang
- College of Control Science and Engineering
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Wenjing Pan
- College of Control Science and Engineering
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Jingbin Zeng
- College of Science
- China University of Petroleum (East China)
- Qingdao 266580
- China
| |
Collapse
|
36
|
Sun L, Yuan X, Sun J, Zhang K, Liao D, Chen S. Bimetallic organic framework-derived SnO 2/Co 3O 4 heterojunctions for highly sensitive acetone sensors. NEW J CHEM 2021. [DOI: 10.1039/d1nj03025f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Excellent gas-sensing performance of SnO2/Co3O4 is attributed to the synergistic effect of catalysis of Co3+ and the formation of p–n heterojunctions.
Collapse
Affiliation(s)
- Lixia Sun
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xueling Yuan
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jianhua Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Kewei Zhang
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Dankui Liao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Shan Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
37
|
Graphene and Perovskite-Based Nanocomposite for Both Electrochemical and Gas Sensor Applications: An Overview. SENSORS 2020; 20:s20236755. [PMID: 33255958 PMCID: PMC7731062 DOI: 10.3390/s20236755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 01/16/2023]
Abstract
Perovskite and graphene-based nanocomposites have attracted much attention and been proven as promising candidates for both gas (H2S and NH3) and electrochemical (H2O2, CH3OH and glucose) sensor applications. In this review, the development of portable sensor devices on the sensitivity, selectivity, cost effectiveness, and electrode stability of chemical and electrochemical applications is summarized. The authors are mainly focused on the common analytes in gas sensors such as hydrogen sulfide, ammonia, and electrochemical sensors including non-enzymatic glucose, hydrazine, dopamine, and hydrogen peroxide. Finally, the article also addressed the stability of composite performance and outlined recent strategies for future sensor perspectives.
Collapse
|
38
|
Yu S, Zhang D, Zhang Y, Pan W, Meteku BE, Zhang F, Zeng J. Green light-driven enhanced ammonia sensing at room temperature based on seed-mediated growth of gold-ferrosoferric oxide dumbbell-like heteronanostructures. NANOSCALE 2020; 12:18815-18825. [PMID: 32970068 DOI: 10.1039/d0nr05530a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Since there is excellent synergy between heterostructures and noble metals due to their unique electro-optical and catalytic properties, the introduction of noble metals into metal oxide semiconductors has substantially improved the performance of gas sensors. However, most of the reported noble metal-metal oxide composites are generally prepared as simple hybrids; hence, there is lack of control over their structure, morphology and dimension. Herein, we report a seed-mediated growth of dumbbell-like Au-Fe3O4 heteronanostructured gas sensors for ammonia detection under green light illumination, in which the particle sizes of Au and Fe3O4 were readily tuned in a wide range. The ammonia gas-sensing performances of Au-Fe3O4 heteronanostructures were greatly improved at room temperature by regulating their dimensions. In particular, the sensitivity improved by 30% while the response and recovery time shortened by 20 s and 50 s for the 7.5 nm Au-loaded Fe3O4-based sensor toward 5 ppm ammonia under 520 nm green light illumination as compared to that in the absence of light. This can be ascribed to the localized surface plasmon effect of Au and the Schottky junction formed at the interface between Au and Fe3O4. Interestingly, the Au-Fe3O4 heteronanostructure exhibits a unique p-type to n-type reversible transition for ammonia detection due to the nature of Fe3O4 NPs related to the trade-off between oxygen vacancies and electron transfer caused by ammonia adsorption. In addition, the calculation based on first-principle theory reveals enhanced adsorption capacities of Fe3O4 for ammonia after Au-doping.
Collapse
Affiliation(s)
- Sujing Yu
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | | | | | | | | | | | | |
Collapse
|
39
|
Yamamoto S, Ono A, Matsui J, Hoshino N, Akutagawa T, Miyashita T, Mitsuishi M. Titania Nanofilms from Titanium Complex-Containing Polymer Langmuir-Blodgett Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10371-10378. [PMID: 32841566 DOI: 10.1021/acs.langmuir.0c01446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper proposes a method of fabricating low-dimensional TiO2 nanofilms at room temperature under ambient pressure conditions. The titanium-containing polymer complex Ti-p(DDA/acac) was synthesized by reacting an amphiphilic copolymer (p(DDA/acac)) with a titanium complex. Its ultrathin films were prepared using the Langmuir-Blodgett (LB) technique. The monolayer was found to be free from hydrolysis and cross-linking side reactions, even at the air-water interface. The transferred LB films (nanosheets) were oxidized by ultraviolet irradiation at room temperature. The photo-oxidized material has an amorphous and porous structure with subnanometer-scale controllability (0.18 nm per layer). Photocatalytic performance was demonstrated by converting multilayered LB films of Ti-(DDA/acac) and the silicon-containing polymer p(DDA/SQ) into ultrathin hetero-multilayers of TiO2 and SiO2 under UV-O3 treatment. The scalability affords a uniform photopattern formation of photo-oxidized TiO2 films over several hundreds of micrometers.
Collapse
Affiliation(s)
- Shunsuke Yamamoto
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Asami Ono
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Jun Matsui
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12 Kojirakawamachi, Yamagata 990-8560, Japan
| | - Norihisa Hoshino
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Tomoyuki Akutagawa
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Tokuji Miyashita
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Masaya Mitsuishi
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
40
|
|
41
|
Gao J, Qin J, Chang J, Liu H, Wu ZS, Feng L. NH 3 Sensor Based on 2D Wormlike Polypyrrole/Graphene Heterostructures for a Self-Powered Integrated System. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38674-38681. [PMID: 32805960 DOI: 10.1021/acsami.0c10794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The rapid development of a NH3 sensor puts forward a great challenge for active materials and integrated sensing systems. In this work, an ultrasensitive NH3 sensor based on two-dimensional (2D) wormlike mesoporous polypyrrole/reduced graphene oxide (w-mPPy@rGO) heterostructures, synthesized by a universal soft template method is reported, revealing the structure-property coupling effect of the w-mPPy/rGO heterostructure for sensing performance improvement, and demonstrates great potential in the integration of a self-powered sensor system. Remarkably, the 2D w-mPPy@rGO heterostructrure exhibits preferable response toward NH3 (ΔR/R0 = 45% for 10 ppm NH3 with a detection limit of 41 ppb) than those of the spherical mesoporous hybrid (s-mPPy@rGO) and the nonporous hybrid (n-PPy@rGO) due to its large specific surface area (193 m2/g), which guarantees fast gas diffusion and transport of carriers. Moreover, the w-mPPy@rGO heterostructures display outstanding selectivity to common volatile organic compounds (VOCs), H2S, and CO, prominent antihumidity inteference superior to most existing chemosensors, superior reversibility and favorable repeatability, providing high potential for practicability. Thus, a self-powered sensor system composed of a nanogenerator, a lithium-ion battery, and a w-mPPy@rGO-based sensor was fabricated to realize wireless, portable, cost-effective, and light-weight NH3 monitoring. Impressively, our self-powered sensor system exhibits high response toward 5-40 mg NH4NO3, which is a common explosive to generate NH3 via alkaline hydrolysis, rendering it a highly prospective technique in a NH3-based sensing field.
Collapse
Affiliation(s)
- Jianmei Gao
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieqiong Qin
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyu Chang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanqing Liu
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
42
|
Park CH, Koo WT, Lee YJ, Kim YH, Lee J, Jang JS, Yun H, Kim ID, Kim BJ. Hydrogen Sensors Based on MoS 2 Hollow Architectures Assembled by Pickering Emulsion. ACS NANO 2020; 14:9652-9661. [PMID: 32700897 DOI: 10.1021/acsnano.0c00821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
For rapid hydrogen gas (H2) sensing, we propose the facile synthesis of the hollow structure of Pt-decorated molybdenum disulfide (h-MoS2/Pt) using ultrathin (mono- or few-layer) two-dimensional nanosheets. The controlled amphiphilic nature of MoS2 surface produces ultrathin MoS2 NS-covered polystyrene particles via one-step Pickering emulsification. The incorporation of Pt nanoparticles (NPs) on the MoS2, followed by pyrolysis, generates the highly porous h-MoS2/Pt. This hollow hybrid structure produces sufficiently permeable pathways for H2 and maximizes the active sites of MoS2, while the Pt NPs on the hollow MoS2 induce catalytic H2 spillover during H2 sensing. The h-MoS2/Pt-based chemiresistors show sensitive H2 sensing performances with fast sensing speed (response, 8.1 s for 1% of H2 and 2.7 s for 4%; and recovery, 16.0 s for both 1% and 4% H2 at room temperature in the air). These results mark the highest H2 sensing speed among 2D material-based H2 sensors operated at room temperature in air. Our fabrication method of h-MoS2/Pt structure through Pickering emulsion provides a versatile platform applicable to various 2D material-based hollow structures and facilitates their use in other applications involving surface reactions.
Collapse
|
43
|
Fabricating electrochemical aptasensors for detecting aflatoxin B1 via layer-by-layer self-assembly. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
|
45
|
Chu J, Yang X, Yang A, Wang D, Yuan H, Wang X, Rong M. Multivariate Evaluation Method for Screening Optimum Gas-Sensitive Materials for Detecting SF 6 Decomposition Products. ACS Sens 2020; 5:2025-2035. [PMID: 32608225 DOI: 10.1021/acssensors.0c00463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In previous studies, the selection of optimal gas-sensing materials for detecting target gases mainly relied on their response value, but other indices, such as the recovery capability of materials, have usually been overlooked. Here, we propose a new method for evaluating sensor effectiveness that includes a broader range of performance indices. In this study, four gas sensors based on metal-oxide semiconductors (WO3, CeO2, In2O3, and SnO2) were used as examples, and their performance in the detection of four decomposition products of sulfur hexafluoride (SF6) was investigated. After gas-sensing experiments, values for working temperature, response value, and recovery capability were obtained. A multivariate evaluation method of mixing principal component analysis, information entropy, and variation coefficient was developed to calculate the weights of various indices, and the sensors' optimal working temperatures could be identified quantitatively. Using five variables (working temperature, response value, recovery capability, fluctuation rate, and detection limit), we continued to apply this multivariate evaluation method to calculate the weights and acquire comprehensive scores for the four sensors. Finally, these scores were used to identify the optimal materials for detecting SF6 decomposition products. This procedure has the potential for selecting the best sensors for other gases.
Collapse
Affiliation(s)
- Jifeng Chu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Xu Yang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Aijun Yang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Dawei Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Huan Yuan
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Xiaohua Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Mingzhe Rong
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| |
Collapse
|
46
|
Diversiform metal oxide-based hybrid nanostructures for gas sensing with versatile prospects. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213272] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
47
|
Zhang X, Teng SY, Loy ACM, How BS, Leong WD, Tao X. Transition Metal Dichalcogenides for the Application of Pollution Reduction: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1012. [PMID: 32466377 PMCID: PMC7353444 DOI: 10.3390/nano10061012] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/29/2023]
Abstract
The material characteristics and properties of transition metal dichalcogenide (TMDCs) have gained research interest in various fields, such as electronics, catalytic, and energy storage. In particular, many researchers have been focusing on the applications of TMDCs in dealing with environmental pollution. TMDCs provide a unique opportunity to develop higher-value applications related to environmental matters. This work highlights the applications of TMDCs contributing to pollution reduction in (i) gas sensing technology, (ii) gas adsorption and removal, (iii) wastewater treatment, (iv) fuel cleaning, and (v) carbon dioxide valorization and conversion. Overall, the applications of TMDCs have successfully demonstrated the advantages of contributing to environmental conversation due to their special properties. The challenges and bottlenecks of implementing TMDCs in the actual industry are also highlighted. More efforts need to be devoted to overcoming the hurdles to maximize the potential of TMDCs implementation in the industry.
Collapse
Affiliation(s)
- Xixia Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China;
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Sin Yong Teng
- Institute of Process Engineering & NETME Centre, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic;
| | - Adrian Chun Minh Loy
- Department of Chemical Engineering, Monash University, Clayton, Melbourne 3800, Australia;
| | - Bing Shen How
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, Kuching 93350, Malaysia;
| | - Wei Dong Leong
- Department of Chemical and Environmental Engineering, University of Nottingham, Semenyih 43500, Malaysia;
| | - Xutang Tao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China;
| |
Collapse
|
48
|
Zhang S, Wang J, Torad NL, Xia W, Aslam MA, Kaneti YV, Hou Z, Ding Z, Da B, Fatehmulla A, Aldhafiri AM, Farooq WA, Tang J, Bando Y, Yamauchi Y. Rational Design of Nanoporous MoS 2 /VS 2 Heteroarchitecture for Ultrahigh Performance Ammonia Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1901718. [PMID: 31515944 DOI: 10.1002/smll.201901718] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/27/2019] [Indexed: 06/10/2023]
Abstract
2D transition metal dichalcogenides (TMDs) have received widespread interest by virtue of their excellent electrical, optical, and electrochemical characteristics. Recent studies on TMDs have revealed their versatile utilization as electrocatalysts, supercapacitors, battery materials, and sensors, etc. In this study, MoS2 nanosheets are successfully assembled on the porous VS2 (P-VS2 ) scaffold to form a MoS2 /VS2 heterostructure. Their gas-sensing features, such as sensitivity and selectivity, are investigated by using a quartz crystal microbalance (QCM) technique. The QCM results and density functional theory (DFT) calculations reveal the impressive affinity of the MoS2 /VS2 heterostructure sensor toward ammonia with a higher adsorption uptake than the pristine MoS2 or P-VS2 sensor. Furthermore, the adsorption kinetics of the MoS2 /VS2 heterostructure sensor toward ammonia follow the pseudo-first-order kinetics model. The excellent sensing features of the MoS2 /VS2 heterostructure render it attractive for high-performance ammonia sensors in diverse applications.
Collapse
Affiliation(s)
- Shuaihua Zhang
- Department of Chemistry, Hebei Agricultural University, Baoding, 071001, Hebei, China
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jiayu Wang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Nagy L Torad
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Wei Xia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Muhammad Aamir Aslam
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yusuf Valentino Kaneti
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Zhufeng Hou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China
| | - Zejun Ding
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Bo Da
- Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Amanullah Fatehmulla
- Department of Physics & Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdullah M Aldhafiri
- Department of Physics & Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Wazirzada Aslam Farooq
- Department of Physics & Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jing Tang
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yoshio Bando
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Innovative Materials, University of Wollongong, Squires Way, North Wollongong, NSW, 2500, Australia
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
49
|
Yang A, Chu J, Li W, Wang D, Yang X, Lan T, Wang X, Rong M, Koratkar N. Short period sinusoidal thermal modulation for quantitative identification of gas species. NANOSCALE 2020; 12:220-229. [PMID: 31815990 DOI: 10.1039/c9nr05863j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The field of chemical (gas) sensing has witnessed an unprecedented increase in device sensitivity with single molecule detection now becoming a reality. In contrast to this, the ability to distinguish or discriminate between gas species has lagged behind. This is problematic and results in a high rate of false alarms. Here, we demonstrate a short period sinusoidal thermal modulation strategy to quantitatively and rapidly identify two industrially relevant gases (hydrogen sulfide (H2S) and sulfur dioxide (SO2)) by using a single semiconducting metal oxide sensor device. By applying sinusoidal heating voltages with a fixed short period, we were able to simultaneously obtain distinct patterns of dynamic responses. These characteristic patterns were adopted to build and validate a gas recognition library. Our approach does not rely on large-scale sensor arrays and complex algorithms and is amenable for real-time and low-power gas monitoring.
Collapse
Affiliation(s)
- Aijun Yang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Jifeng Chu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Weijuan Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Dawei Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Xu Yang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Tiansong Lan
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Xiaohua Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Mingzhe Rong
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Nikhil Koratkar
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA and Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
50
|
Flexible and Highly Sensitive Humidity Sensor Based on Sandwich-Like Ag/Fe 3O 4 Nanowires Composite for Multiple Dynamic Monitoring. NANOMATERIALS 2019; 9:nano9101399. [PMID: 31581599 PMCID: PMC6835934 DOI: 10.3390/nano9101399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/14/2019] [Accepted: 09/24/2019] [Indexed: 11/17/2022]
Abstract
Functional textiles with unique functions, including free cutting, embroidery and changeable shape, will be attractive for smart wear of human beings. Herein, we fabricated a sandwich-like humidity sensor made from silver coated one-dimensional magnetite nanowire (Fe3O4 NW) arrays which were in situ grown on the surface of modified polypropylene nonwoven fabric via simultaneous radiation induced graft polymerization and co-precipitation. The humidity sensor exhibits an obvious response to the relative humidity (RH) ranging from RH 11% to RH 95% and its response value reaches a maximum of 6600% (ΔI/I0) at 95% relative humidity (RH). The humidity sensor can be tailored into various shapes and embroidered on its surface without affecting its functionalities. More interesting, the intensity of its response is proportional to the size of the material. These features permit the sensor to be integrated into commercial textiles or a gas mask to accurately monitor a variety of important human activities including respiration, blowing, speaking and perspiration. Moreover, it also can distinguish different human physical conditions by recognizing respiration response patterns. The sandwich-like sensor can be readily integrated with textiles to fabricate promising smart electronics for human healthcare.
Collapse
|