1
|
Zhai X, Xue Y, Song W, Sun Y, Shen T, Zhang X, Li Y, Ding F, Zhang D, Zhou C, Arslan M, Tahir HE, Li Z, Shi J, Huang X, Zou X. A ratiometric fluorescent electrospun film with high amine sensitivity and stability for visual monitoring of livestock meat freshness. Food Chem X 2024; 24:101801. [PMID: 39290751 PMCID: PMC11406328 DOI: 10.1016/j.fochx.2024.101801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/02/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024] Open
Abstract
Ratiometric fluorescent films with high amine sensitivity and stability were developed to monitor the freshness of beef and pork. Fluorescein isothiocyanate (FITC) and red carbon quantum dots (R-CQD) were used as the amine-responsive indicator and internal reference, respectively. The electrospun films prepared by immobilizing FITC and R-CQD complex (F-R) into polyvinylidene fluoride (PVDF) under 35 %, 55 % and 75 % of relative humidity (RH) were named F-R@PVDF-1, F-R@PVDF-2 and F-R@PVDF-3, respectively. In comparison, the F-R@PVDF-2 film exhibited the highest sensitivity to trimethylamine (TMA), demonstrating a limit of detection (LOD) value of 1.59 μM, and meanwhile high stability during storage with ΔE value of 1.99 after 14 days of storage at 4 °C. The F-R@PVDF-2 film also showed a significant fluorescent red-to-brown color change during meat freshness monitoring at 4 °C. Conclusively, this study reported a new ratiometric fluorescent film that can be used to track the freshness of meats in food packaging.
Collapse
Affiliation(s)
- Xiaodong Zhai
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
- Institute of Modern Agriculture and Health Care Industry, Wencheng, 325300, China
| | - Yuhong Xue
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| | - Wenjun Song
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| | - Yue Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Tingting Shen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yanxiao Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Fuyuan Ding
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Chenguang Zhou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Muhammad Arslan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Haroon E Tahir
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| | - Xiaowei Huang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| |
Collapse
|
2
|
Lin L, Fang M, Lin Y, Zhang J, Liu W, Cui M. Fluorescent and colorimetric dual-mode recognition of Al 3+ in tablets based on chrome azurol S and pH-switchable boron, nitrogen co-doped carbon dots. Mikrochim Acta 2024; 191:708. [PMID: 39467875 DOI: 10.1007/s00604-024-06776-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
The synthesis and characterization of pH-sensitive boron and nitrogen co-doped CDs (B, N-CDs) is reported. The fluorescence of B, N-CDs exhibited pH-responsive behavior within the range pH 3.0-6.0, attributed to their controlled aggregation and disaggregation. Interestingly, the fluorescence of B, N-CDs was quenched by the inner filter effect from chrome azurol S (CAS). With the subsequent addition of Al3+, the fluorescence of B, N-CDs was restored due to the formation of blue Al3+-CAS and B, N-CDs-Al3+ complexes. Consequently, a fluorescent and colorimetric dual-mode sensor for Al3+ detection was developed. The proposed sensor enabled Al3+ detection in the ranges and limits of detection of 3.75-22.5 μM and 2.67 μM for the fluorescent mode and 5-20 μM and 4.8 μM for the colorimetric mode, respectively. Furthermore, the efficacy of the sensor was validated through successful detection of Al3+ in tablet samples. The obtained B, N-CDs promised the application in acid condition and the proposed sensor is expected to be applied to in situ on-line detection of Al3+.
Collapse
Affiliation(s)
- Liping Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Meng Fang
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yaojia Lin
- Department of Biotechnology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinye Zhang
- Department of Bioinformatics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Liu
- Department of Bioinformatics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Malin Cui
- Key Laboratory of Chemical Materials and Green Nanotechnology, The Key Laboratory of Fujian Provincial Higher Education, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, 362000, China
| |
Collapse
|
3
|
Salman BI, Hassan AI, Al-Harrasi A, Ibrahim AE, Saraya RE. Copper and nitrogen-doped carbon quantum dots as green nano-probes for fluorimetric determination of delafloxacin; characterization and applications. Anal Chim Acta 2024; 1327:343175. [PMID: 39266065 DOI: 10.1016/j.aca.2024.343175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Carbon quantum dots (CQDs) have gained much interest recently for being efficient probes. Their cost-effectiveness, eco-friendliness, and unique photocatalytic activities made them distinctive alternatives to other luminescent approaches like fluorescent dyes and luminous derivatization. Meanwhile, delafloxacin (DLF) is a recently approved antibacterial medicine. DLF has been authorized for the treatment of soft-tissue and skin infections as well as pneumonia. Therefore, new eco-friendly, cost-effective, and sensitive tools are needed its estimation in different matrices. RESULTS In the proposed study, green copper and nitrogen carbon dots (Cu-N@CDs) were synthesized from a green source (plum juice with copper sulphate). Cu-N@CQDs were then characterized using multiple tools including X-ray photon spectroscopy (XPS), FTIR and UV-VIS spectroscopy, Zeta potential measurements, High-resolution transmission electron microscopy (HRTEM), and fluorescence spectroscopy. After gradually adding DLF, the developed quantum dots' fluorescence was significantly enhanced within the working range of 0.5-100.0 ng mL-1. The limits of detection and quantification were 0.08 and 0.27 ng mL-1, respectively. The accuracy of the proposed method ranged from 96.00 to 99.12 % in recovery%, when recovered from milk and plasma samples. SIGNIFICANCE Cu-N@CDs were utilized and validated for selectively determining DLF in several matrices including pharmaceutical forms, human plasma and in milk samples using spectrofluorimetric technique. The bio-analytical method is simple and could be used in content uniformity testing as well as in therapeutic drug monitoring in human plasma.
Collapse
Affiliation(s)
- Baher I Salman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Ahmed I Hassan
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Sultanate of Oman.
| | - Adel Ehab Ibrahim
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Sultanate of Oman; Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Port-Said University, Port-Said, 42511, Egypt.
| | - Roshdy E Saraya
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Port-Said University, Port-Said, 42511, Egypt.
| |
Collapse
|
4
|
Zhou Y, Li H, Gu J, Fu Y, Liu J, Li Z, Li X, Liu X, Qiao Z, Liu Y. Construction of a Fluorescence/Phase-Change Dual-Mode Sensor Based on Carbon Dots/Poly(acrylic acid) for Highly Selective and Sensitive Detection of Ferric Ions. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39436028 DOI: 10.1021/acsami.4c14018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Fe3+ is one of the crucial metal ions in biological systems, and its excess or deficiency in the body can trigger various diseases, posing a serious threat to human health. Moreover, improper handling or disposal of Fe3+ can lead to water pollution, thereby harming the environment. Therefore, the development of highly selective and sensitive Fe3+ detection probes is particularly urgent. In this paper, a dual-mode sensor based on sol-gel and fluorescence signal responses was developed for the visual detection of Fe3+. The visual sensing method based on the simultaneous response of Fe3+-triggered dual signals can minimize the interference from false-positive signals and enhance detection accuracy. The dual-mode sensor, denoted as PAA@CDs, was constructed by incorporating high-brightness (high fluorescence emission intensity) green-yellow carbon dots (CDs) into poly(acrylic acid) (PAA), which possesses a large number of carboxyl functional groups. Based on the interaction of Fe3+ with the surface functional groups of CDs, nonfluorescent complexes are formed, leading to nonradiative electron transfer, which induces fluorescence quenching and produces a fluorescence signal visible to the naked eye. Additionally, the interaction of Fe3+ with the carboxyl groups of PAA triggers the cross-linking of PAA, causing a sol-gel phase change signal. Consequently, the PAA@CDs exhibit a dual-response signal in Fe3+ detection. Based on the fluorescence method, the linear detection range of PAA@CDs for Fe3+ is 0.05-2.60 mM with a limit of detection (LOD) of 5.14 μM. Meanwhile, using the sol-gel method, the linear detection range is 0.02-2.20 mM, and the LOD is 42.5 μM. Furthermore, the PAA@CDs probes can be successfully applied to the detection of Fe3+ in real water samples, demonstrating their potential value in the analysis of real samples containing multiple ions.
Collapse
Affiliation(s)
- Yao Zhou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Huidong Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Junqi Gu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yonglin Fu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Jingchun Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Zhaoyang Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xinlong Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xunyong Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China
| | - Zhuhui Qiao
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China
| | - Yi Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China
| |
Collapse
|
5
|
Sasikumar K, Prabakaran DS, Rajamanikandan R, Ju H. Yellow Emissive Carbon Dots - A Robust Nanoprobe for Highly Sensitive Quantification of Jaundice Biomarker and Mitochondria Targeting in Cancer Cells. ACS APPLIED BIO MATERIALS 2024; 7:6730-6739. [PMID: 39267591 DOI: 10.1021/acsabm.4c00888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The abnormally high level of bilirubin (BR) in biofluids (human serum and urine) indicates a high probability of jaundice and liver dysfunction. However, quantification of BR as the Jaundice biomarker is difficult due to the interference of various biomolecules in serum and urine. To address this issue, we developed a fluorescence-based detection strategy, for which yellow emissive carbon dots (YCDs) were produced from a one-step solvothermal process using phloroglucinol and thionin acetate as chemical precursors. The as-fabricated YCDs exhibited a strong fluorescence peak at the wavelength of 542 nm upon excitation at 390 nm. We used YCDs for detecting BR through the fluorescence turn-off mechanism, unveiling the excellent sensitivity in the linear range of 0.5-12.5 μM with a limit of detection (LOD) of 9.62 nM, which was far below the clinically relevant range. The analytical nanoprobe also offered excellent detection specificity for quantifying BR in real samples. Moreover, the biocompatible fluorescent nanoprobe was successfully employed to target mitochondria in live cancer cells. A colocalization study confirmed that YCDs possessed the ability to target mitochondria and overlapped completely with MitoTracker Red. The developed nanoprobe of YCDs turned out to be straightforward in their synthesis, noninvasive, and can be utilized for biomedical sensors to diagnose the onset of jaundice as well as for mitochondria targeting.
Collapse
Affiliation(s)
- Kandasamy Sasikumar
- Department of Physics, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
- Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Dhashnamoorthy Subramanian Prabakaran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ramar Rajamanikandan
- Department of Physics, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
- Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Heongkyu Ju
- Department of Physics, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
- Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| |
Collapse
|
6
|
Abbasi A, Bhat ZUH, Khan S, Owais M, Shakir M. Unveiling the multifaceted applications of pamoic acid carbon dots (PACDs) in sensing and oncology. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124564. [PMID: 38824756 DOI: 10.1016/j.saa.2024.124564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
In our research we explore the world of PACDs, carbon dots synthesized from pamoic acid through a single step pyrolysis method. Our findings reveal that PACDs have capabilities of serving as sensitive and selective sensors in both colorimetric and fluorescent modes. They are particularly effective, at colorimetrically and fluorometrically detecting ferric ions and can also act as fluorometric sensors for pH. When ferric ions are introduced an interesting transformation occurs. A noticeable change in color unfolds before our eyes, under 365 nm UV light the fluorescence shifts from green to blue while in daylight it changes from a yellow to a deep ink blue. Notably these detection techniques can precisely measure ferric ions within concentrations ranging from 5 µM to 80 µM with a detection limit of 0.1 µM for fluorescence response. Additionally, they can detect ferric ions colorimetrically within the range of 5 µM to 45 µM with a detection limit of 3.8 µM. Furthermore, the PACDs exhibit a capability to adapt to different pH levels. In alkaline environments with a pH range between 8 and 11 the fluorescence signal demonstrates a response that directly correlates with pH levels and slightly shifts its position. In contrast under acidic conditions a noticeable shift, towards blue is observed in the fluorescence signal leading to a change in color from green to blue when exposed to UV light. This shift persists as the fluorescence signal directly correlates with decreasing pH levels in settings. Apart from their proficiency in ferric ion detection and pH monitoring, the PACDs also demonstrate potential in cancer research. Through an assessment using the MTT assay it was discovered that the PACDs exhibit cytotoxic effects against five different cancer cell lines; HCT 116, MDA MB 231, Hep3B, MCF 7 and HeLa. The findings are promising as the PACDs show IC50 values of 12.5 µg/ml 6.25 µg/ml 25 µg/ml 50 µg/ml and 100 µg/ml for these cell lines. This research highlights the versatility and potential of PACDs as a tool, in both sensing applications and oncology research.
Collapse
Affiliation(s)
- Ambreen Abbasi
- Division of Inorganic Chemistry, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Zia Ul Haq Bhat
- Division of Inorganic Chemistry, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Shamiuddin Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Shakir
- Division of Inorganic Chemistry, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
7
|
Dutta B, Datta S, Mir MH. Photoresponsive metal-organic framework materials for advance applications. Chem Commun (Camb) 2024; 60:9149-9162. [PMID: 39104303 DOI: 10.1039/d4cc02093f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The interaction between light and materials produces a range of phenomena within molecular systems, leading to advanced applications in the field of materials science. In this regard, metal-organic framework (MOF) materials have become superior candidates to others because of their easy tailor-made synthetic methods via incorporation of photoactive moieties into their structural assembly. Photoresponsive MOFs exhibit a massive variety of exciting properties, including photochromism, photomagnetism, photoluminescence, photon up or down conversion, photoconductivity, nonlinear optical properties, photosalient effects and photoinduced switching of conformations. These photoresponsive properties of MOFs regulate different potential applications, such as on-demand gas sorption and separation, optical sensing, fabrication of photoactuators and photosensing electronic devices, dye degradation, catalysis, cargo delivery, ink-free erasable printing, bio-imaging and drug delivery in biological systems. Therefore, judicious crystal engineering along with an understanding of their structure-property relationship will lead to the fabrication of desired photosensitive MOFs. Herein, we attempted to incorporate categorical descriptions based on advanced applications of photoresponsive MOFs considering a wide range of recent publications.
Collapse
Affiliation(s)
- Basudeb Dutta
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Sourav Datta
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
| | | |
Collapse
|
8
|
Ma Y, Mao L, Cui C, Hu Y, Chen Z, Zhan Y, Zhang Y. Nitrogen-doped carbon dots as fluorescent probes for sensitive and selective determination of Fe 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124347. [PMID: 38678843 DOI: 10.1016/j.saa.2024.124347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/07/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
At present, the contamination of water resources by heavy metal ions has posed a significant threat to human survival. Therefore, it is particularly critical to develop low-cost, easy-to-use, and highly efficient heavy metal detection technologies. In this work, a fast and cost-effective fluorescent probe for nitrogen-doped carbon dots (N-CDs) was prepared using one-step hydrothermal method with citric acid (CA) as carbon source, and melamine as nitrogen source. The structural and optical characterizations of the resulting N-CDs were investigated in details. The results showed that the quantum yield of the prepared fluorescent probe was as high as 45 %, and an average fluorescence lifetime was about 7.80 ns. N-CDs have excellent water solubility and dispersibility, with an average size of 2.58 nm. N-CDs exhibited excellent specific responsiveness to Fe3+ and can be used as an effective method for detecting Fe3+ at low-concentrations (the concentrations of N-CDs as low as 0.24 μg/mL) using fluorescent probes. The linear response of the fluorescent probe N-CDs to Fe3+ was formed in the concentration range of 20-80 μM, and the detection limit was 3.18 μM. In addition, in the actual water samples analysis, the recovery rate reached 97.05-100.58 %. The prepared of N-CDs provide available Fe3+ fluorescent probes in the environment.
Collapse
Affiliation(s)
- Yulin Ma
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Linhan Mao
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Congcong Cui
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yong Hu
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhaoxia Chen
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yuan Zhan
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Yuhong Zhang
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
9
|
Nandhini K, Ilanchelian M. Orange-Red-Emitting Carbon Dots for Bilirubin Detection and Its Antibacterial Activity Against Escherichia coli and Staphylococcus aureus. ACS APPLIED BIO MATERIALS 2024; 7:2936-2950. [PMID: 38593036 DOI: 10.1021/acsabm.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In this study, orange-red-emitting carbon dots (OR-CDs) were prepared from p-phenylenediamine (p-PDA) and urea as starting precursors through the hydrothermal method. The OR-CDs exhibited bright orange-red fluorescence at 618 nm when excited at 480 nm. The obtained OR-CDs exhibited stable photophysical properties under different physiological conditions. The unique photophysical property of OR-CDs were then utilized for fluorometric determination of bilirubin. The fluorometric assay revealed that the fluorescence intensity of OR-CDs is gradually quenched upon the addition of bilirubin (1-20 μM). The mechanism of fluorescence quenching was evaluated by steady-state fluorescence analysis and time-correlated single photon counting measurements. The OR-CDs showed good selectivity and sensitivity toward bilirubin over other common interfering biomolecules. The present fluorometric assay showed a linear response toward bilirubin between 1 and 10 μM with a limit of detection of 4.80 nM. Further, a fluorescence test cotton swab-based detection probe has been successfully developed by incorporating OR-CDs for the point-of-care detection of bilirubin in biofluids. Furthermore, a light-emitting diode light that emits orange-red light was prepared by embedding the OR-CDs within the poly(vinyl alcohol) polymer matrix. Moreover, the antibacterial activity of OR-CDs was tested against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. The antibacterial efficacy of OR-CDs was demonstrated by various mechanisms, such as reactive oxygen species generation, destruction of cell structure, chemical binding to membrane, and surface wrapping. Interestingly, the survival assay against L929 fibroblast cells exhibits favorable biocompatibility and bioimaging.
Collapse
Affiliation(s)
- Karuppasamy Nandhini
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | | |
Collapse
|
10
|
Wu J, Luo Y, Cui C, Han Q, Peng Z. Carbon dots as multifunctional fluorescent probe for Fe 3+ sensing in ubiquitous water environments and living cells as well as lysine detection via "on-off-on" mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123840. [PMID: 38217985 DOI: 10.1016/j.saa.2024.123840] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Iron and amino acids are essential nutrients for living organisms, and their deficiency or excess can cause a range of diseases. Therefore, there is considerable interest in developing sensing assays capable of detecting these nutrients with sensitivity, selectivity, and multifunctionality even in complex environments. In this report, hydrothermally synthesized blue fluorescent carbon dots (C-dots) from zinc gluconate were utilized for the detection of Fe3+ and lysine via "on-off" and "on-off-on" mechanisms, respectively. Specifically, the Fe3+ sensing assay achieved a broad linear range of 0-200 μM and a low limit of detection (LOD) of 1.9 μM. It is worth mentioning that the assay was also well adapted to natural aqueous environments (e.g., lake water), and its linear detection range could be extended to 0-1000 μM with a LOD of 3.3 μM. Furthermore, the assay was also effective for intracellular Fe3+ tracking. Most importantly, the assay could also be applied for the quantitative detection of lysine with a linear range of 0-1200 μM and LOD of 8.6 μM. Systematic mechanistic studies revealed that Fe3+ sensing was based on a static quenching process between C-dots and Fe3+, whereas a stronger complexation might have formed between Fe3+ and Lys, leading to the release of C-dots and thus the recovery of fluorescence.
Collapse
Affiliation(s)
- Jiajia Wu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China; Electron Microscopy Center, Yunnan University, Kunming 650091, China
| | - Yuanping Luo
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Chen Cui
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Qiurui Han
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Zhili Peng
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China.
| |
Collapse
|
11
|
Shi Y, Xia Y, Zhou M, Wang Y, Bao J, Zhang Y, Cheng J. Facile synthesis of Gd/Ru-doped fluorescent carbon dots for fluorescent/MR bimodal imaging and tumor therapy. J Nanobiotechnology 2024; 22:88. [PMID: 38431629 PMCID: PMC10908135 DOI: 10.1186/s12951-024-02360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Functional metal doping endows fluorescent carbon dots with richer physical and chemical properties, greatly expanding their potential in the biomedical field. Nonetheless, fabricating carbon dots with integrated functionality for diagnostic and therapeutic modalities remains challenging. Herein, we develop a simple strategy to prepare Gd/Ru bimetallic doped fluorescent carbon dots (Gd/Ru-CDs) via a one-step microwave-assisted method with Ru(dcbpy)3Cl2, citric acid, polyethyleneimine, and GdCl3 as precursors. Multiple techniques were employed to characterize the morphology and properties of the obtained carbon dots. The Gd/Ru-CDs are high mono-dispersity, uniform spherical nanoparticles with an average diameter of 4.2 nm. Moreover, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) confirmed the composition and surface properties of the carbon dots. In particular, the successful doping of Gd/Ru enables the carbon dots not only show considerable magnetic resonance imaging (MRI) performance but also obtain better fluorescence (FL) properties, especially in the red emission area. More impressively, it has low cytotoxicity, excellent biocompatibility, and efficient reactive oxygen species (ROS) generation ability, making it an effective imaging-guided tumor treatment reagent. In vivo experiments have revealed that Gd/Ru-CDs can achieve light-induced tumor suppression and non-invasive fluorescence/magnetic resonance bimodal imaging reagents to monitor the treatment process of mouse tumor models. Thus, this simple and efficient carbon dot manufacturing strategy by doping functional metals has expanded avenues for the development and application of multifunctional all-in-one theranostics.
Collapse
Affiliation(s)
- Yupeng Shi
- Department of MRI, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yaning Xia
- Department of MRI, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mengyang Zhou
- Department of MRI, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yifei Wang
- Department of MRI, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jianfeng Bao
- Department of MRI, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yong Zhang
- Department of MRI, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jingliang Cheng
- Department of MRI, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
12
|
Dos Santos de Almeida W, Gomes Abegão LM, Vinicius Silva Alves A, de Oliveira Souza Silva J, Oliveira de Souza S, d'Errico F, Midori Sussuchi E. Carbon Dots based Tissue Equivalent Dosimeter as an Ionizing Radiation Sensor. Chemistry 2024; 30:e202303771. [PMID: 38118132 DOI: 10.1002/chem.202303771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/22/2023]
Abstract
This work explores the potential of carbon dots as a fluorescent probe in the determination of heavy ions and as an electrochemical biosensor. It also discusses how carbon dots can be introduced into the Fricke solution to potentially serve as an ionizing radiation sensor. The study presents a novel tissue equivalent dosimeter carbon dots-based as an ionizing radiation sensor. The methodology for the synthesis of Nitrogen-doped Carbon Dots N-CDs and the characterization of the material are described. The results show that the N-CDs have a high sensitivity to ionizing radiation and can be used as a dosimeter for radiation detection. The study also discusses the limitations and challenges of using carbon dots as a dosimeter for ionizing radiation. Overall, this study provides valuable insights into the potential applications of carbon dots in different fields and highlights the importance of further research in this area.
Collapse
Affiliation(s)
- Wandson Dos Santos de Almeida
- Grupo de Pesquisa em sensores eletroquímicos e Nano(Materiais) - SenM, Laboratório de Corrosão e Nanotecnolodia- LCNT, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas, 304, Rosa Elze - São Cristóvão/SE, CEP 49107230
| | - Luis Miguel Gomes Abegão
- Grupo de Fotônica, Instituto de Física, Universidade Federal de Goiás, Av. Esperança, 1533, Campus, Samambaia, Goiânia/GO, CEP 74690900
| | - Anderson Vinicius Silva Alves
- Programa de Pós-Graduação em Física, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas, 304, Rosa Elze - São Cristóvão/SE, CEP 49107230
| | - Jonatas de Oliveira Souza Silva
- Grupo de Pesquisa em sensores eletroquímicos e Nano(Materiais) - SenM, Laboratório de Corrosão e Nanotecnolodia- LCNT, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas, 304, Rosa Elze - São Cristóvão/SE, CEP 49107230
| | - Susana Oliveira de Souza
- Programa de Pós-Graduação em Física, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas, 304, Rosa Elze - São Cristóvão/SE, CEP 49107230
| | | | - Eliana Midori Sussuchi
- Grupo de Pesquisa em sensores eletroquímicos e Nano(Materiais) - SenM, Laboratório de Corrosão e Nanotecnolodia- LCNT, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas, 304, Rosa Elze - São Cristóvão/SE, CEP 49107230
| |
Collapse
|
13
|
Ghosh T, Nandi S, Girigoswami A, Bhattacharyya SK, Ghosh SK, Mandal M, Ghorai UK, Banerji P, Das NC. Carbon Dots for Multiuse Platform: Intracellular pH Sensing and Complementary Intensified T1-T2 Dual Imaging Contrast Nanoprobes. ACS Biomater Sci Eng 2024; 10:1112-1127. [PMID: 38163852 DOI: 10.1021/acsbiomaterials.3c01389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Measurement of pH in living cells is a great and decisive factor for providing an early and accurate diagnosis factor. Along with this, the multimodal transverse and longitudinal relaxivity enhancement potentiality over single modality within a single platform in the magnetic resonance imaging (MRI) field is a very challenging issue for diagnostic purposes in the biomedical field of application. Therefore, this work aims to design a versatile platform by fabricating a novel nanoprobe through holmium- and manganese-ion doping in carbon quantum dots (Ho-Mn-CQDs), which can show nearly neutral intracellular pH sensing and MRI imaging at the same time. These manufactured Ho-Mn-CQDs acted as excellent pH sensors in the near-neutral range (4.01-8.01) with the linearity between 6.01 and 8.01, which could be useful for the intracellular pH-sensing capability. An innumerable number of carboxyl and amino groups are present on the surface of the prepared nanoprobe, making it an excellent candidate for pH sensing through fluorescence intensity quenching phenomena. Cellular uptake and cell viability experiments were also executed to affirm the intracellular accepting ability of Ho-Mn-CQDs. Furthermore, with this pH-sensing quality, these Ho-Mn-CQDs are also capable of acting as T1-T2 dual modal imaging contrast agents in comparison with pristine Ho-doped and Mn-doped CQDs. The Ho-Mn-CQDs showed an increment of r1 and r2 relaxivity values simultaneously compared with only the negative contrast agent, holmium in holmium-doped CQDs, and the positive contrast agent, manganese in manganese-doped CQDs. The above-mentioned observations elucidate that its tiny size, excitation dependence of fluorescence behavior, low cytotoxicity, and dual modal contrast imaging capability make it an ideal candidate for pH monitoring in the near-neutral range and also as a dual modal MRI imaging contrast enhancement nanoprobe at the same time.
Collapse
Affiliation(s)
- Trisita Ghosh
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Suvendu Nandi
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603 103, India
| | | | - Suman Kumar Ghosh
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Uttam Kumar Ghorai
- Department of Industrial Chemistry and Applied Chemistry, Ramakrishna Mission Vidyamandira, Howrah 711202, India
| | - Pallab Banerji
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Narayan Chandra Das
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
14
|
Du J, Zhou S, Ma Y, Wei Y, Li Q, Huang H, Chen L, Yang Y, Yu S. Folic acid functionalized gadolinium-doped carbon dots as fluorescence / magnetic resonance imaging contrast agent for targeted imaging of liver cancer. Colloids Surf B Biointerfaces 2024; 234:113721. [PMID: 38176338 DOI: 10.1016/j.colsurfb.2023.113721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Gadolinium-doped carbon dots (Gd-CDs), as a new class of nanomaterial, has a wide application prospect in targeted imaging and monitoring diagnosis and treatment of liver cancer because of their good fluorescence (FL)-magnetic resonance (MR) imaging properties. First, Gd-CDs were synthesized by hydrothermal method with gadodiamide as gadolinium source, citric acid as carbon source and silane coupling agent (KH-792) as coupling agent with FL quantum yield (QY) of 48.2%. Then, folic acid (FA), which is highly expressed in liver cancer, was used as a targeting component to modify Gd-CDs to obtain targeted imaging agent (Gd-CDs-FA). The results showed that Gd-CDs and Gd-CDs-FA have low cytotoxicity and good biocompatibility, and the targeting and selectivity of Gd-CDs-FA to HepG2 cells could be observed under confocal laser scanning microscope (CLSM). The T1 longitudinal relaxation rates (r1) of Gd-CDs and Gd-CDs-FA are 15.92 mM-1s-1 and 13.56 mM-1s-1, respectively. They showed good MR imaging ability in vitro and in vivo, and MR imaging in nude mice further proved the targeting imaging performance of Gd-CDs-FA. Therefore, Gd-CDs-FA with higher QY showed good FL-MR targeting imaging ability of liver cancer, which broke through the limitations of single molecular imaging probe in sensitivity and soft tissue resolution. This study provides a new idea for the application of Gd-CDs in FL and MR targeting imaging of liver cancer.
Collapse
Affiliation(s)
- Jinglei Du
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China
| | - Shizhao Zhou
- Shanxi Medical University, Taiyuan 030001, China
| | - Yihua Ma
- Honghui Hospital of Xi' an Jiaotong University, Xi' an 710054, China
| | - Yingying Wei
- Shanxi Medical University, Taiyuan 030001, China
| | - Qiang Li
- Interventional Treatment Department, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Hui Huang
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China
| | - Lin Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, China.
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, China
| | - Shiping Yu
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
15
|
Gao J, Zhu X, Long Y, Liu M, Li H, Zhang Y, Yao S. Boronic Acid-Decorated Carbon Dot-Based Semiselective Multichannel Sensor Array for Cytokine Discrimination and Oral Cancer Diagnosis. Anal Chem 2024; 96:1795-1802. [PMID: 38241199 DOI: 10.1021/acs.analchem.3c05240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Cytokines are essential components of the immune system and are recognized as significant biomarkers. However, detection of a single cytokine is not precise and reliable enough to satisfy the requirements for diagnosis. Herein, we developed a pattern recognition-based method for the multiplexed sensing of cytokines, which involves three-color-emitting boronic acid-decorated carbon dots (BCDs) and arginine-modified titanium carbide (Ti3C2 MXenes) as the sensor array. Initially, the fluorescence signals of the three BCDs were quenched by Ti3C2 MXenes. In the presence of cytokines, the fluorescence intensity of the BCDs was restored or further quenched by different cytokines. The fluorescence response occurs in two steps: first, boronic acid interacts with cis-diol functional groups of cytokines, and second, arginine headgroup selectively interacts with glycans. By exploiting the different competing binding of the BCDs and the cytokines toward Ti3C2 MXenes, seven cytokines and their mixtures can be effectively discriminated at a concentration of 20 ng mL-1. Furthermore, our sensor array demonstrated an excellent performance in classifying human oral cancer saliva samples from healthy individuals with clinically relevant specificity. The noninvasive method offers a rapid approach to cytokine analysis, benefiting early and timely clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Jie Gao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Ying Long
- Translational Medicine Centre, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
16
|
Li R, Qi X, Wu F, Liu C, Huang X, Bai T, Xing S. Development of a fluorometric and colorimetric dual-mode sensing platform for acid phosphatase assay based on Fe 3+ functionalized CuInS 2/ZnS quantum dots. Anal Chim Acta 2024; 1287:342121. [PMID: 38182392 DOI: 10.1016/j.aca.2023.342121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND The spectral dual-mode response towards analyte has been attracted much attention, benefiting from the higher detection accuracy of such strategy in comparison to single signal readout. However, the currently reported dual-mode sensors for acid phosphatase (ACP) activity are still limited, and most of them more or less exist some deficiencies, such as complicated construction procedure, high-cost, poor biocompatibility, aggregation-caused quenching and limited emission capacity. RESULTS Herein, we employed Fe3+ functionalized CuInS2/ZnS quantum dots (CIS/ZnS QDs) as nanosensor to develop a novel fluorometric and colorimetric dual-mode assay for ACP activity, combing with ACP-triggered hydrolysis of ascorbic acid 2-phosphate (AAP) into ascorbic acid (AA). The Fe3+ binding to CIS/ZnS QDs can be reduced into Fe2+ during the determination, resulting in the dramatically weakened photoinduced electron transfer (PET) effect and the disappearance of competition absorption. Thus, a highly sensitive ACP assay in the range of 0.22-12.5 U L-1 through fluorescence "turn-on" mode has been achieved with a detection of limit (LOD) of 0.064 U L-1. Meanwhile, the ACP activity can also be quantified by spectrophotometry based on the chromogenic reaction of the formed Fe2+ with 1,10-phenanthroline (Phen). Moreover, the designed nanosensor with good biocompatibility was successfully applied to image and monitor the ACP levels in living cells. SIGNIFICANCE We believe that the proposed method has remarkable advantages and potential application for ACP assay in terms of the high accuracy, simplicity, low cost, as well as its adequate sensitivity.
Collapse
Affiliation(s)
- Ruyi Li
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, PR China
| | - Xiaofei Qi
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, PR China
| | - Fengyao Wu
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, PR China
| | - Cong Liu
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, PR China
| | - Xiaohua Huang
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, PR China
| | - Tianyu Bai
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, PR China.
| | - Shanghua Xing
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China.
| |
Collapse
|
17
|
Kolekar AG, Pawar SP, Gunjal DB, Nille OS, Anbhule PV, Koparde SV, Nguyen NQ, Sohn D, Kolekar GB, Gokavi GS, More VR. Facile synthesis of sulphur-doped carbon dots (S-CDs) using a hydrothermal method for the selective sensing of Cr 6+ and Fe 3+ ions: application to environmental water sample analysis. RSC Adv 2024; 14:3473-3479. [PMID: 38260000 PMCID: PMC10801354 DOI: 10.1039/d3ra07545a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
In this work, we used a one-step hydrothermal method to synthesize blue-emission sulfur-doped carbon dots (S-CDs) using jaggery as a carbon precursor. The synthesized carbon quantum dots showed low toxicity, good water solubility, anti-interference properties, and stable fluorescence. When excited at 310 nm, the S-CDs produced bright emission with a quantum yield of 7.15% at 397 nm. The S-CDs exhibited selective and sensitive quenching responses with limits of detection (LODs) of 4.25 μg mL-1 and 3.15 μg mL-1 for variable concentrations of Cr6+ and Fe3+, respectively, accompanied by a consistent linear relationship between fluorescence intensity and these concentrations. Fluorescence lifetime measurements were used to investigate the fluorescence quenching mechanism, which supports the static type of quenching. Outstanding benefits of the developed S-CD based fluorescence probe include its low cost, excellent sensitivity and selectivity, and ease of use for the detection of Cr6+ and Fe3+ ions. The developed carbon dot based fluorescent probe was successfully used to detect Cr6+ and Fe3+ ions in real water samples with an excellent recovery ratio.
Collapse
Affiliation(s)
- Akanksha G Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University Kolhapur 416004 Maharashtra India
- Department of Chemistry, The New College Kolhapur 416012 Maharashtra India
| | - Samadhan P Pawar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University Kolhapur 416004 Maharashtra India
- Department of Chemistry, Rajarshi Chhatrapati Shahu College Kolhapur 416003 Maharashtra India
| | - Dattatray B Gunjal
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University Kolhapur 416004 Maharashtra India
| | - Omkar S Nille
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University Kolhapur 416004 Maharashtra India
| | - Prashant V Anbhule
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University Kolhapur 416004 Maharashtra India
| | - Sneha V Koparde
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University Kolhapur 416004 Maharashtra India
- Department of Chemistry, Rajarshi Chhatrapati Shahu College Kolhapur 416003 Maharashtra India
| | - Ngoc Quang Nguyen
- Department of Chemistry and Research Institute for Convergence of Basic Science, Department of Chemistry 222 Wangsimni-ro Seoul 04763 South Korea
| | - Daewon Sohn
- Department of Chemistry and Research Institute for Convergence of Basic Science, Department of Chemistry 222 Wangsimni-ro Seoul 04763 South Korea
| | - Govind B Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University Kolhapur 416004 Maharashtra India
| | | | - Vishalkumar R More
- Department of Chemistry, The New College Kolhapur 416012 Maharashtra India
| |
Collapse
|
18
|
Li C, Liu L, Zhang D. Aggregation enhanced emissive orange carbon dots for information encryption and detection of Fe 3+ and tetracycline. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123504. [PMID: 37866262 DOI: 10.1016/j.saa.2023.123504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/22/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023]
Abstract
In this study, N-doped fluorescent carbon dots with aggregation enhanced emission (N-CDs) were synthesized by a simple and rapid microwave-assisted method using o-phenylenediamine (OPD) and urea as raw materials and water as solvent. The fluorescence quantum yield of N-CDs was 20.64 %. N-CDs can be applied as invisible inks for message encryption. Furthermore, the fluorescence intensity of N-CDs can be quenched by Fe3+ and enhanced by tetracycline (TC). Therefore, two fluorescent probes were simultaneously designed in this study. Namely, "turn-off" fluorescence probe for Fe3+ and "turn-on" fluorescence probe for TC. The linear detection range of Fe3+ is from 1 to 70 μM, and detection limit is 0.1011 μM; the linear detection range of TC is from 0.1 to 10 μM, and the detection limit can be as low as 0.0555 μM. In this paper, the mutual interference between Fe3+ and TC was investigated for the first time. The detection of Fe3+ and TC was made more accurate by optimizing pH conditions and adding masking agent.
Collapse
Affiliation(s)
- Chunyan Li
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Lei Liu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Provincial Key Laboratory of Medicinal Molecular Chemistry - State Key Laboratory Breeding Base, Shijiazhuang 050018, China.
| | - Daohan Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
19
|
Liang LY, Chen BB, Gao YT, Lv J, Liu ML, Li DW. Aqueous Solution Enhanced Room Temperature Phosphorescence through Coordination-Induced Structural Rigidity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308180. [PMID: 37799108 DOI: 10.1002/adma.202308180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Achieving aqueous solution enhanced room temperature phosphorescence (RTP) is critical for the applications of RTP materials in solution phase, but which faces a great challenge. Herein, for the first time, a strategy of coordination-induced structural rigidity is proposed to achieve enhanced quantum efficiency of aluminum/scandium-doped phosphorescent microcubes (Al/Sc-PMCs) in aqueous solution. The Al/Sc-PMCs in a dry state exhibit a nearly invisible blue RTP. However, they emit a strong RTP emission in aqueous solution with a RTP intensity increase of up to 22.16-times, which is opposite to common solution-quenched RTP. The RTP enhancement mechanism is attributed to the abundant metal sites (Al3+ and Sc3+ ions) on the Al/Sc-PMCs surface that can tightly combine with water molecules through the strong coordination. Subsequently, these coordinated water molecules as the bridging agent can bind with surface groups by hydrogen bonding interaction, thereby rigidifying chemical groups and inhibiting their motions, resulting in the transition from the nonradiative decay to the radiative decay, which greatly enhances the RTP efficiency of the Al/Sc-PMCs. This work not only develops a coordination rigidity strategy to enhance RTP intensity in aqueous solution, but also constructs a phosphorescent probe to achieve reliable and accurate determination of analyte in complex biological matrices.
Collapse
Affiliation(s)
- Li Ya Liang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bin Bin Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong, 518172, China
| | - Ya Ting Gao
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jian Lv
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meng Li Liu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong, 518172, China
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P. R. China
| | - Da Wei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
20
|
Wang B, Luo W, Wu D, Li S, Geng F. One-pot synthesis of full-color carbon dots with N, O surface-state energy-gap-controlled emission. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123117. [PMID: 37459663 DOI: 10.1016/j.saa.2023.123117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/24/2023] [Accepted: 07/07/2023] [Indexed: 09/20/2023]
Abstract
An easy and effective route for preparing full-color (blue, green, yellow and red) carbon dots (CDs) with brilliant and stable photoluminescent (PL) was developed by using gallic acid and o-Phenylenediamine as precursors. The resulting CDs were then separated by silica-gel column chromatography. The prepared four types of CDs owned high quantum yields (up to 11.2%) and exhibited attractive features such as excellent solubility, high stability, excitation wavelength-independent PL, mono-exponential PL lifetimes, low cell toxicity and homogeneous optical properties. Then, the mechanism of full-color CDs PL was explored. The results suggested that the surface-states of prepared CDs, especially the pyridine N (C = N) and C = O functional groups, were primarily responsible for the full-color PL emission. The blue CDs had the largest content of C = O while the CDs turned to be green as the C = O decreased and the C = N content increased. The surface state regulation of C = N bond was dominant in yellow CDs while red CDs possessed highest content of C = N and new -COOH appeared. The gradual substitution of C = N to C = O made the band gap of CDs narrowed, which is the main reason for the redshift of CDs PL emission peak. Importantly, the easy preparation and unique optical features of these CDs made them potentially useful in numerous applications such as full-color cell labeling, drug delivery and optoelectronic technologies.
Collapse
Affiliation(s)
- Beibei Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei Luo
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Di Wu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shugang Li
- Engineering Research Center of Bio-process (Ministry of Education), Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Fang Geng
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
21
|
Mohandoss S, Ahmad N, Rizwan Khan M, Sakthi Velu K, Kalaiselvi K, Palanisamy S, You S, Rok Lee Y. Multicolor emission-based nitrogen, sulfur and boron co-doped photoluminescent carbon dots for sequential sensing of Fe 3+ and cysteine: RGB color sensor and live cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123040. [PMID: 37354858 DOI: 10.1016/j.saa.2023.123040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Herein, a simple hydrothermal synthesis is used to prepare multiple heteroatom-doped photoluminescent carbon dots (CDs) from thiourea (N and S source) and boric acid (B source) as precursors. The optical and physicochemical properties of the as-synthesized NSB-CDs were studied using UV-Vis, photoluminescence, TEM, FT-IR, XRD, Raman, and XPS analyses. The NSB-CDs exhibited excellent stability, high photostability, pH, and ionic strength tolerance; they retained their excellent stability independent of excitation. The NSB-CDs featured small sizes of approximately 3.2 ± 0.4 nm (range: 2.0-5.0 nm) as evidenced using TEM measurements. The NSB-CDs were used as a photoluminescent sensing platform to detect Fe3+ as well as cysteine (Cys) molecules. The competitive binding of Cys to Fe3+ resulted in NSB-CDs that retained their photoluminescence. For the rapid identification and quantification of Fe3+ and Cys, NSB-CDs were developed as a "switch-on" dual-function sensing platform. The linear detection range of Fe3+ was 0-20 μM (limit of detection [LOD]: 54.4 nM) and that of Cys was 0-50 μM (LOD: 4.9 nM). We also introduced a smartphone RGB analysis method for detecting low-concentration solutions based on digital images. The NSB-CDs showed no toxicity at 100 μg/mL. Photoluminescent probes for multicolor live-cell imaging can be used with NSB-CDs at this concentration, suggesting that NSB-CDs may be promising photoluminescent probes.
Collapse
Affiliation(s)
- Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Kuppu Sakthi Velu
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Karuppiah Kalaiselvi
- Department of Chemistry, Government Arts and Science College, Paramakudi 623701, Tamil Nadu, India
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneungdaehangno, Gangneung, Gangwon 25457, Republic of Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneungdaehangno, Gangneung, Gangwon 25457, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
22
|
Wu X, Luo Z, Li W, Xia L, Xiong Y. An optical and visual multi-mode sensing platform base on nitrogen, sulfur, boron co-doped carbon dots for rapid and simple determination of ferric ions in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:122995. [PMID: 37329831 DOI: 10.1016/j.saa.2023.122995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Abnormal iron ions levels may lead to some diseases and serious environmental pollution. Herein, optical and visual detection strategies of Fe3+ in water based on co-doped carbon dots (CDs) were established in the present study. Firstly, a one-pot synthetic strategy for the preparation of the N, S, B co-doped CDs with a home microwave oven was developed. Secondly, the optical properties, chemical structures, and morphology of CDs were further characterized by fluorescence spectroscopy, Uv-vis absorption spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscope. Finally, the results indicated that the fluorescence of the co-doped CDs was quenched by ferric ions via the static mechanism and the aggregation of CDs, accompanied by the increased red color. The multi-mode sensing strategies of Fe3+ with fluorescence photometer, UV-visible spectrophotometer, portable colorimeter and smartphone had the advantages of good selectivity, excellent stability and high sensitivity. Fluorophotometry based on co-doped CDs was a powerful probe platform for measuring lower concentrations of Fe3+ due to its higher sensitivity, better linear relationship, lower limit of detection (0.27 μM) and limit of quantitation (0.91 μM). In addition, the visual detection methods with a portable colorimeter and smartphone had been proven to be very suitable for rapid and simple sensing of higher concentrations of Fe3+. Moreover, the co-doped CDs utilized for Fe3+ probes in tap water and boiler water obtained satisfactory results. Consequently, the efficient, versatile optical and visual multi-mode sensing platform could be extended to apply such a visual analysis of ferric ions in the biological, chemical and other fields.
Collapse
Affiliation(s)
- Xuewen Wu
- Department of Chemical and Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Zhenfeng Luo
- Department of Chemical and Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Wei Li
- Department of Chemical and Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Lingfeng Xia
- Department of Chemical and Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yan Xiong
- Department of Chemical and Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
23
|
Yan J, Zhou Y, Shen J, Zhang N, Liu X. Facile synthesis of S, N-co-doped carbon dots for bio-imaging, Fe 3+ detection and DFT calculation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123105. [PMID: 37421697 DOI: 10.1016/j.saa.2023.123105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Turning waste into wealth, herein, two highly fluorescent N and S co-doped carbon dots (N, S-CDs-A and N, S-CDs-B) were synthesized by the hydrothermal reaction of contaminant reactive red 2 (RR2) and L-cysteine or L-methionine, respectively. The detailed morphology and structure of N, S-CDs were characterized by XRD, Raman spectrum, FTIR spectra, TEM, HRTEM, AFM and XPS. The maximum fluorescent of N, S-CDs-A and N, S-CDs-B are 565 and 615 nm under different excitation wavelengths with moderate fluorescence intensity of 14.0 % and 6.3 %, respectively. The microstructure models of N, S-CDs-A and N, S-CDs-B, which were induced by FT-IR, XPS and element analysis, had been applied in DFT calculation. The result indicated that the doping of S and N is beneficial to obtain the red-shift of fluorescent spectra. Both N, S-CDs-A and N, S-CDs-B showed highly sensitive and selective to Fe3+. N, S-CDs-A can also detect Al3+ ion with high sensitivity and selectivity. Finally, N, S-CDs-B was successfully applied in cell imaging.
Collapse
Affiliation(s)
- Jiaying Yan
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, 443002 Yichang, Hubei, China
| | - Yuhang Zhou
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, 443002 Yichang, Hubei, China
| | - Jialu Shen
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, 443002 Yichang, Hubei, China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Nuonuo Zhang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, 443002 Yichang, Hubei, China.
| | - Xiang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, 443002 Yichang, Hubei, China.
| |
Collapse
|
24
|
Liu Y, Duan W, Li H, Wu J, Liu D, Mi J, Qi S, Ren C, Chen H. Red Emission Carbon Nanoparticles Which Can Simultaneously Responding to Hypochlorite and pH. J Fluoresc 2023:10.1007/s10895-023-03517-4. [PMID: 37999858 DOI: 10.1007/s10895-023-03517-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Multi-targets detection has obtained much attention because this sensing mode can realize the detection of multi-targets simultaneously, which is helpful for biomedical analysis. Carbon nanoparticles have attracted extensive attention due to their superior optical and chemical properties, but there are few reports about red emission carbon nanoparticles for simultaneous detection of multi-targets. In this paper, a red emission fluorescent carbon nanoparticles were prepared by 1, 2, 4-triaminobenzene dihydrochloride at room temperature. The as-prepared red emission fluorescent carbon nanoparticles exhibited strong emission peak located at 635 nm with an absolute quantum yield up to 24%. They showed excellent solubility, high photostability and good biocompatibility. Furthermore, it could sensitively and selectively response to hypochlorite and pH, thus simultaneous detection of hypochlorite and pH was achieved by combining the red emission fluorescent carbon nanoparticles with computational chemistry. The formation mechanisms of red emission fluorescent carbon nanoparticles and their response to hypochlorite and pH were investigated, respectively.
Collapse
Affiliation(s)
- Yinghua Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wenxiu Duan
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Huiqing Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jiang Wu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Dan Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Jiaying Mi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Shengda Qi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Cuiling Ren
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
25
|
Xiao Q, Mu P, Ning G, Zhang W, Li B, Huang S. A ratiometric fluorescent probe for simultaneous detection of L-ascorbic acid and alkaline phosphatase activity based on red carbon dots/polydopamine nanocomposite. Talanta 2023; 264:124724. [PMID: 37271005 DOI: 10.1016/j.talanta.2023.124724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Herein, efficient red carbon dots (R-CDs) were synthesized by one-step hydrothermal treatment of N-(4-amino phenyl) acetamide and (2,3-difluoro phenyl) boronic acid. The optimal emission peak of R-CDs was at 602 nm (under 520 nm excitation) and the absolute fluorescence quantum yield of R-CDs was 12.9%. Polydopamine, which was formed by the self-polymerization and cyclization of dopamine in alkaline condition, emitted characteristic fluorescence with peak position of 517 nm (under 420 nm excitation) and affected the fluorescence intensity of R-CDs through inner filter effect. L-Ascorbic acid (AA), which was the hydrolysis product of L-ascorbic acid-2-phosphate trisodium salt under the catalytic reaction of alkaline phosphatase (ALP), effectively prevented the polymerization of dopamine. Combined with the ALP-mediated AA production and the AA-mediated polydopamine generation, the ratiometric fluorescence signal of polydopamine with R-CDs was correlated closely with the concentration of both AA and ALP. Under optimal conditions, the detection limits of AA and ALP were 0.28 μM during linear range of 0.5-30 μM and 0.044 U/L with linear range of 0.05-8 U/L, respectively. This ratiometric fluorescence detection platform can efficiently shield the background interference of sophisticated samples by introducing a self-calibration as reference signal in a multi-excitation mode, which can detect AA and ALP in human serum samples with satisfactory results. Such R-CDs/polydopamine nanocomposite provides a steadfast quantitative information and makes R-CDs be excellent candidate for biosensors via combining target recognition strategy.
Collapse
Affiliation(s)
- Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China.
| | - Pingping Mu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China
| | - Gan Ning
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China
| | - Wenqian Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China
| | - Bo Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China
| | - Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China.
| |
Collapse
|
26
|
He M, Xiao Y, Wei Y, Zheng B. Semiquantitative and visual detection of ferric ions in real samples using a fluorescent paper-based analytical device constructed with green emitting carbon dots. RSC Adv 2023; 13:31720-31727. [PMID: 37908650 PMCID: PMC10613948 DOI: 10.1039/d3ra05320b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
A simple and portable paper-based analytical device was developed for visual and semiquantitative detection of ferric ion in real samples using green emitting carbon dots (CDs), which were prepared via microwave method using sodium citrate, urea and sodium hydroxide as raw materials and then loaded on the surface of paper substrate. When Fe3+ exists, the green fluorescence of CDs was quenched and significant color change from green to dark blue were observed, resulting the visual detection of Fe3+ with a minimum distinguishable concentration of 100 μM. By analyzing the intensity changes of green channels of test paper with the help of smartphone, the semiquantitative detection was realized within the range of 100 μM to 1200 μM. The proposed paper-based analytical devices have great application prospects in on site detection of Fe3+ in real samples.
Collapse
Affiliation(s)
- Mengyuan He
- College of Chemistry and Chemical Engineering, Xinyang Normal University Xinyang 464000 China
| | - Yu Xiao
- College of Chemistry and Chemical Engineering, Xinyang Normal University Xinyang 464000 China
| | - Yuanhang Wei
- College of Chemistry and Chemical Engineering, Xinyang Normal University Xinyang 464000 China
| | - Bo Zheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University Xinyang 464000 China
| |
Collapse
|
27
|
Liao X, Wu B, Li H, Zhang M, Cai M, Lang B, Wu Z, Wang F, Sun J, Zhou P, Chen H, Di D, Ren C, Zhang H. Fluorescent/Colorimetric Dual-Mode Discriminating Gln and Val Enantiomers Based on Carbon Dots. Anal Chem 2023; 95:14573-14581. [PMID: 37729469 DOI: 10.1021/acs.analchem.3c01854] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Discrimination and quantification of amino acid (AA) enantiomers are particularly important for diagnosing and treating diseases. Recently, dual-mode probes have gained a lot of research interest because they can catch more detecting information compared with the single-mode probes. Thus, it is of great significance to develop a dual-mode sensor realizing AA enantiomer discrimination conveniently and efficiently. In this work, carbon dot L-TCDs were prepared by N-methyl-1,2-benzenediamine dihydrochloride (OTD) and l-tryptophan. With the assistance of H2O2, L-TCDs show an excellent discrimination performance for enantiomers of glutamine (Gln) and valine (Val) in both fluorescent and colorimetric modes. The fluorescence enantioselectivity of Gln (FD/FL) and Val (FL/FD) is 5.29 and 4.13, respectively, and the colorimetric enantioselectivity of Gln (ID/IL) and Val (IL/ID) is 13.26 and 3.42, individually. The chiral recognition mechanism of L-TCDs was systematically studied. L-TCDs can be etched by H2O2, and the participation of AA enantiomers results in different amounts of the released OTD, which provides fluorescent and colorimetric signals for identifying and quantifying the enantiomers of Gln and Val. This work provides a more convenient and flexible dual-mode sensing strategy for discriminating AA enantiomers, which is expected to be of great value in facile and high-throughput chiral recognition.
Collapse
Affiliation(s)
- Xuan Liao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Bingyan Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Haixia Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Mengtao Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Muzi Cai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Bozhi Lang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhizhen Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Fangling Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jianong Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Panpan Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Duolong Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Cuiling Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
28
|
Warjurkar K, Panda S, Sharma V. Red emissive carbon dots: a promising next-generation material with intracellular applicability. J Mater Chem B 2023; 11:8848-8865. [PMID: 37650569 DOI: 10.1039/d3tb01378b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The accidental discovery of carbon dots (CDs) back in 2004 has led to their widespread use in the biomedical field. CDs have demonstrated their effectiveness in reporting 3D structures of biological specimens, identifying normal and cancer cells, and even detecting analytes within cells. However, the limitations of blue-green emitting CDs, such as their shallow penetration, photodamage, and auto-fluorescence, have hindered their practical applications. To overcome these limitations, red emissive CDs (RCDs) have been developed, which have deep tissue penetration, minimal photo-damage, low auto-fluorescence, and high imaging contrast. In this article, we present a thorough review on the use of RCDs in biomedical applications, including in vivo and in vitro bioimaging, photoacoustic imaging, monitoring temperature and polarity changes in living cells, tumour therapy, and drug delivery. With the rapid progress being made in the development of RCDs for intracellular applications, their clinical application is expected to become a reality in the near future.
Collapse
Affiliation(s)
- Khushboo Warjurkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jagti, Jammu-180012, India.
| | - Satyajit Panda
- Department of Materials Engineering, National Institute of Technology Rourkela, Odisha-769008, India
| | - Vinay Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jagti, Jammu-180012, India.
| |
Collapse
|
29
|
Salman BI. A Novel Design Eco-friendly Microwave-assisted Cu-N@CQDs Sensor for the Quantification of Eravacycline via Spectrofluorimetric Method; Application to Greenness Assessments, Dosage Form and Biological Samples. J Fluoresc 2023; 33:1887-1896. [PMID: 36867288 PMCID: PMC10539432 DOI: 10.1007/s10895-023-03190-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 03/04/2023]
Abstract
Community-acquired pneumonia is one of the most common infectious diseases and a substantial cause of mortality and morbidity worldwide. Therefore eravacycline (ERV) was approved by the FDA in 2018 for the treatment of acute bacterial skin infections, GIT infections, and community-acquired bacterial pneumonia caused by susceptible bacteria. Hence, a green highly sensitive, cost-effective, fast, and selective fluorimetric approach was developed for the estimation of ERV in milk, dosage form, content uniformity, and human plasma. The selective method is based on the utilization of plum juice and copper sulphate for the synthesis of green copper and nitrogen carbon dots (Cu-N@CDs) with high quantum yield. The quantum dots' fluorescence was enhanced after the addition of ERV. The calibration range was found to be in the range 1.0 - 80.0 ng mL-1 with LOQ equal to 0.14 ng mL-1 and LOD was found to be 0.05 ng mL-1. The creative method is simple to deploy in clinical labs and therapeutic drug health monitoring system. The current approach has been bioanalytically validated using US-FDA and validated ICH criteria. High-resolution transmission electron microscopy (HR-TEM), X-ray photon spectroscopy (XPS), Zeta potential measurements, fluorescence, UV-VIS, and FTIR spectroscopy have all been used to fully characterize the Cu-N@CQDs. The Cu-N@CQDs were effectively applied in human plasma and milk samples with a high percentage of recovery ranging from 97.00 to 98.80%.
Collapse
Affiliation(s)
- Baher I Salman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| |
Collapse
|
30
|
Zhang H, Guo X, Jian K, Fu L, Zhao X. Rapid Preparation of Long-Wavelength Emissive Carbon Dots for Information Encryption Using the Microwave-Assisted Method. Inorg Chem 2023; 62:13847-13856. [PMID: 37583357 DOI: 10.1021/acs.inorgchem.3c01677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The synthesis of long-wavelength emission fluorescent carbon dots is not common, and it is even more difficult to quickly synthesize within 10 min. In this experiment, yellow, orange, and red B, N codoped fluorescent carbon dots were successfully synthesized using a microwave-assisted method with o-phenylenediamine as the carbon-nitrogen source, boric acid as the boron source, and potassium chloride as the catalyst in just 7 min. Based on the different contents of B, N element doping, there are differences in their surface structures, resulting in differences in the luminescence properties of the synthesized carbon dots. Long-wavelength carbon dots can avoid interference from the blue fluorescence of filter papers and have a clearer display in information encryption. Therefore, three types of carbon dots were mixed with PVP to produce fluorescent inks, and anticounterfeiting and encryption patterns were designed on the filter paper, displaying different fluorescence information under sunlight and UV light. In addition, the rich fluorescent colors were combined ingeniously to enable secondary encryption of information in the form of binary codes that increase the difficulty of decoding. These indicate that the three synthesized long-wavelength carbon dots have good application prospects in information encryption.
Collapse
Affiliation(s)
- Hongmei Zhang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Xiangjun Guo
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Ke Jian
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Liming Fu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Xihui Zhao
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| |
Collapse
|
31
|
Liu J, Wu S, Fu S, Wang J, Zhang P, Wang Y, Chen C, Zhao X, Li Z, Yang Q. Acylhydrazone functionalized naphthalene-based self-assembled supramolecular gels for efficient fluorescence detection of Fe 3. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:3948-3954. [PMID: 37525948 DOI: 10.1039/d3ay00912b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
A new gel factor (named N) has been successfully designed and synthesized, which contains the conventional fluorophore naphthalene with the acylhydrazone bond as the self-assembly site. It can be self-assembled into stable organogels (named ON) in dimethyl sulfoxide (DMSO) and water mixed medium (V : V = 4 : 1) with a critical gel temperature and concentration (55 °C and 10 mg mL-1). Interestingly, under 365 nm UV light, the ON exhibits bright yellow Aggregation Induced Emission (AIE). The supramolecular organogel ON shows a fluorescent "OFF" response to the metal ions Fe3+, and the state of the gel ON remains constant before and after detection. Notably, the minimum detection limits (LODs) of the gel ON for Fe3+ are as low as 1.30 × 10-7 M. The binding mechanism of supramolecular organogels (ON) to ions has been investigated through a series of characterizations. Meanwhile, the organogel sensor ON can also be used as an ion-responsive membrane for the detection of Fe3+ in the aqueous phase.
Collapse
Affiliation(s)
- Jutao Liu
- Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China.
| | - Shang Wu
- Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China.
| | - Shuaishuai Fu
- Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China.
| | - Jiajia Wang
- Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China.
| | - Penghui Zhang
- Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China.
| | - Yanbin Wang
- Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China.
| | - Chen Chen
- Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China.
| | - Xiangfei Zhao
- Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China.
| | - Zhenhua Li
- Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China.
| | - Quanlu Yang
- College of Chemical Engineering, Lanzhou University of Arts and Science, Beimiantan 400, Lanzhou, Gansu 730000, P. R. China.
| |
Collapse
|
32
|
Wang L, Wang X, Zhou S, Ren J, Liu L, Xiao C, Deng C. Single-particle dispersion of carbon dots in the nano-hydroxyapatite lattice achieving solid-state green fluorescence. NANOSCALE ADVANCES 2023; 5:3304-3315. [PMID: 37325540 PMCID: PMC10263101 DOI: 10.1039/d3na00106g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/06/2023] [Indexed: 06/17/2023]
Abstract
Carbon dots (CDs), as new carbon nanomaterials, have potential applications in multiple fields due to their superior optical properties, good biocompatibility, and easy preparation. However, CDs are typically an aggregation-caused quenching (ACQ) material, which has a huge limitation on the practical application of CDs. To solve this problem, in this paper, CDs were prepared by the solvothermal method using citric acid and o-phenylenediamine as precursors and dimethylformamide as solvent. Then using CDs as nucleating agents, solid-state green fluorescent CDs were synthesized by in situ growth of nano-hydroxyapatite (HA) crystals on the surface of CDs. The results show that CDs are stably dispersed single-particlely in the form of bulk defects in the nano-HA lattice matrices with a dispersion concentration of 3.10%, and solid-state green fluorescence of CDs is achieved with a stable emission wavelength peak position near 503 nm, which provides a new solution to the ACQ problem. CDs-HA nanopowders were further used as LED phosphors to obtain bright green LEDs. In addition, CDs-HA nanopowders showed excellent performance in cell imaging (mBMSCs and 143B) applications, which provides a new scheme for further applications of CDs in the field of cell imaging and even in vivo imaging.
Collapse
Affiliation(s)
- Lunzhu Wang
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology China
| | - Xinru Wang
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology China
| | - Shuoshuo Zhou
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology China
| | - Jian Ren
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology China
| | - Liting Liu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology China
| | - Cairong Xiao
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology China
| | - Chunlin Deng
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology China
| |
Collapse
|
33
|
Liu X, Liu H, Wang Y, Zheng X, Xu H, Ding J, Sun J, Jiang T, Li Q, Liu Y. A facile approach for sulphur and nitrogen co-doped carbon nanodots to improve photothermal eradication of drug-resistant bacteria. Biochem Biophys Res Commun 2023; 671:301-308. [PMID: 37327701 DOI: 10.1016/j.bbrc.2023.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
In this study, we produced S, N co-doped CNDs (SN@CNDs) by using dimethyl sulfoxide (DMSO) and formamide (FA) as single sources of S and N, respectively. We varied the S/N ratios by adjusting the volume ratios of DMSO and FA and investigated their effect on the red-shift of the CNDs' absorption peak. Our findings demonstrate that SN@CNDs synthesized using a volume ratio of 5:6 between DMSO and FA exhibit the most significant absorption peak redshift and enhanced near-infrared absorption performance. Based on comparative analysis of the particle size, surface charge, and fluorescence spectrum of the S@CNDs, N@CNDs, and SN@CNDs, we propose a possible mechanism to explain the change of optical properties of CNDs due to S, N doping. Co-doping creates a more uniform and smaller band gap, resulting in a shift of the Fermi level and a change in energy dissipation from radioactive to non-radiative decay. Importantly, the as-prepared SN@CNDs exhibited a photothermal conversion efficiency of 51.36% at 808 nm and demonstrated exceptional photokilling effects against drug-resistant bacteria in both in vitro and in vivo experiments. Our facile method for synthesizing S and N co-doped CNDs can be extended to the preparation of other S and N co-doped nanomaterials, potentially improving their performance.
Collapse
Affiliation(s)
- Xinyue Liu
- School of Life Sciences, Ludong University, Yantai, 264025, China
| | - Huaze Liu
- School of Life Sciences, Ludong University, Yantai, 264025, China
| | - Yu Wang
- School of Life Sciences, Ludong University, Yantai, 264025, China
| | - Xueliang Zheng
- School of Life Sciences, Ludong University, Yantai, 264025, China
| | - Hui Xu
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou, 313000, China
| | - Juan Ding
- School of Life Sciences, Ludong University, Yantai, 264025, China
| | - Jie Sun
- School of Life Sciences, Ludong University, Yantai, 264025, China
| | - Tingting Jiang
- School of Life Sciences, Ludong University, Yantai, 264025, China.
| | - Qin Li
- School of Life Sciences, Ludong University, Yantai, 264025, China.
| | - Yang Liu
- School of Life Sciences, Ludong University, Yantai, 264025, China.
| |
Collapse
|
34
|
Zhou Y, Chen G, Ma C, Gu J, Yang T, Li L, Gao H, Xiong Y, Wu Y, Zhu C, Wu H, Yin W, Hu A, Qiu X, Guan W, Zhang W. Nitrogen-doped carbon dots with bright fluorescence for highly sensitive detection of Fe 3+ in environmental waters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122414. [PMID: 36791662 DOI: 10.1016/j.saa.2023.122414] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/12/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
In this study, we synthesized stable nitrogen-doped carbon dots by a simple and economical one-step hydrothermal method using l-cysteine and anhydrous ethylenediamine as precursors. The prepared carbon dots have bright and stable blue light emission near 383 nm and can be used as fluorescent probes to detect the concentration of Fe3+ in environmental waters. It was demonstrated that due to intermolecular electrostatic interaction, a non-fluorescent complex N-CDs/Fe3+ is formed by coordination of Fe3+ with amino and carboxyl functional groups on the surface of carbon dots. Therefore, in combination with internal filtration effect, the fluorescence of carbon dots can be quenched in the presence of Fe3+, and the degree of quenching is linearly related to the concentration of Fe3+. The limit of detection in deionized water was as low as 0.069 μM with R2 of 0.998 and a linear range of 0.3 to 20 μM. In addition, satisfactory recoveries were achieved for the determination of Fe3+ in environmental water samples. The method is reliable, with highly sensitivity and selectivity, and has potential for practical applications in environmental metal analysis.
Collapse
Affiliation(s)
- Yan Zhou
- School of Science, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| | - Guoqing Chen
- School of Science, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China.
| | - Chaoqun Ma
- School of Science, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| | - Jiao Gu
- School of Science, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| | - Taiqun Yang
- School of Science, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| | - Lei Li
- School of Science, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| | - Hui Gao
- School of Science, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| | - Yi Xiong
- School of Science, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| | - Yamin Wu
- School of Science, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| | - Chun Zhu
- School of Science, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| | - Hui Wu
- School of Science, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| | - Wenzhi Yin
- School of Science, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| | - Anqi Hu
- School of Science, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| | - Xiaoqian Qiu
- School of Science, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| | - Weinan Guan
- School of Science, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| | - Wei Zhang
- School of Science, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| |
Collapse
|
35
|
Wu FY, Yang JL, Ye YS, Kong YQ, Wu R, Wang HY, Wang X. Polychromatic fluorescent MoS 2 quantum dots: fabrication and off-on sensing for fluorine ions in water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2490-2496. [PMID: 37183653 DOI: 10.1039/d3ay00346a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Recently, MoS2 quantum dots (QDs) have receive widespread attention as a promising luminescent material. However, so far, little effort has been made on the multicolor emission of MoS2 QDs. Herein, an in situ iodine doping strategy is presented and used to synthesize tunable-photoluminescent (PL) MoS2 QDs. By fine iodine doping, the PL of the MoS2 QDs (I-MoS2 QDs) can be tuned in the range from 423 nm to 529 nm, which exceeds the as-reported emission wavelength range. Studies using controlled experiments and density functional theory (DFT) reveal that the change in electronic state of MoS2 QDs is responsible for the changing PL due to iodine doping. As-synthesized I-MoS2 QDs combined with Fe3+ is developed as a "turn-off-on" fluorescence sensor for F- ions in water. The fluorescence probe has a fine linear response to F- ions in the concentration range of 2.5-80 μM, and the limit of detection is 1.4 μM (S/N = 3).
Collapse
Affiliation(s)
- Feng-Yi Wu
- Water Environment Research Center, College of Chemistry and Material Engineering, Chaohu University, Hefei 238000, China.
| | - Ji-Liang Yang
- Water Environment Research Center, College of Chemistry and Material Engineering, Chaohu University, Hefei 238000, China.
| | - You-Sheng Ye
- Water Environment Research Center, College of Chemistry and Material Engineering, Chaohu University, Hefei 238000, China.
| | - Ya-Qiong Kong
- Water Environment Research Center, College of Chemistry and Material Engineering, Chaohu University, Hefei 238000, China.
| | - Rong Wu
- Water Environment Research Center, College of Chemistry and Material Engineering, Chaohu University, Hefei 238000, China.
| | - Hai-Yan Wang
- Water Environment Research Center, College of Chemistry and Material Engineering, Chaohu University, Hefei 238000, China.
| | - Xin Wang
- Water Environment Research Center, College of Chemistry and Material Engineering, Chaohu University, Hefei 238000, China.
| |
Collapse
|
36
|
Yang J, Liu H, Huang Y, Li L, Zhu X, Ding Y. One-step hydrothermal synthesis of near-infrared emission carbon quantum dots as fluorescence aptamer sensor for cortisol sensing and imaging. Talanta 2023; 260:124637. [PMID: 37172433 DOI: 10.1016/j.talanta.2023.124637] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Fluorescence carbon quantum dots (CQDs) have been widely applied to sensing and bioimaging. In this paper, near-infrared carbon quantum dots (NIR-CQDs) were prepared through a simple one-step hydrothermal approach using reduced glutathione and formamide as raw materials. Based on NIR-CQDs, aptamer (Apt) and graphene oxide (GO) has been applied to fluorescence sensing cortisol. NIR-CQDs-Apt adsorbed to the surface of GO through π-π stacking and an inner filter effect (IFE) occurred between NIR-CQDs-Apt and GO leading to NIR-CQDs-Apt fluorescence "off". The IFE process is disrupted in the presence of cortisol, allowing NIR-CQDs-Apt fluorescence "on". This led us to construct a detection method with excellent selectivity over other cortisol sensors. The sensor can detect cortisol from 0.4 to 500 nM and has a detection limit as low as 0.13 nM. Importantly, this sensor can be used to detect intracellular cortisol with excellent biocompatibility and cellular imaging capabilities, which is promising for biosensing.
Collapse
Affiliation(s)
- Jing Yang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Hao Liu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yan Huang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Li Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, PR China.
| | - Yaping Ding
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
37
|
Du Y, Cao L, Li X, Zhu T, Yan R, Dong WF, Li L. Preparation and application of high-brightness red carbon quantum dots for pH and oxidized L-glutathione dual response. Analyst 2023; 148:2375-2386. [PMID: 37129055 DOI: 10.1039/d3an00383c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Carbon dots (CDs) with red fluorescence emission are highly desirable for use in bioimaging and trace- substance detection, with potential applications in biotherapy, photothermal therapy, and tumor visualization. Most CDs emit green or blue fluorescence, thus limiting their applicability. We report a novel fluorescent detection platform based on high-brightness red fluorescence emission carbon dots (R-CDs) co-doped with nitrogen and bromine, which exhibit pH and oxidized L-glutathione (GSSG) dual-responsive characteristics. The absolute quantum yield of the R-CDs was as high as 11.93%. We discovered that the R-CDs were able to detect acidic pH in live cells and zebrafish owing to protonation and deprotonation. In addition, GSSG was detected in vitro over a broad linear range (8-200 μM) using the R-CDs with excitation-independent emission. Furthermore, cell imaging and bioimaging experiments demonstrated that the R-CDs were highly cytocompatible and could be used as fluorescent probes to target lysosomes and nucleolus. These studies highlight the promising prospects of R-CDs as biosensing tools for bioimaging and trace-substance detection applications.
Collapse
Affiliation(s)
- Yuwei Du
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| | - Lei Cao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| | - Xinlu Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| | - Tongtong Zhu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| | - Ruhong Yan
- Department of Clinical Laboratory, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China.
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| | - Wen-Fei Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| | - Li Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
- Jinan Guokeyigong Science and Technology Development Co., Ltd, Jinan, 250104, China.
| |
Collapse
|
38
|
Li L, Zhao W, Wang Y, Liu X, Jiang P, Luo L, Bi X, Meng X, Niu Q, Wu X, You T. Gold nanocluster-confined covalent organic frameworks as bifunctional probes for electrochemiluminescence and colorimetric dual-response sensing of Pb 2. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131558. [PMID: 37269568 DOI: 10.1016/j.jhazmat.2023.131558] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 06/05/2023]
Abstract
The development of bifunctional signal probes based on a single component is highly desirable for sensitive and simple dual-mode detection of Pb2+. Here, novel gold nanocluster-confined covalent organic frameworks (AuNCs@COFs) were fabricated as a bisignal generator to enable electrochemiluminescence (ECL) and colorimetric dual-response sensing. AuNCs with both intrinsic ECL and peroxidase-like activity were confined into the ultrasmall pores of the COFs via an in situ growth method. On the one hand, the space-confinement effect of the COFs closed the ligand motion-induced nonradiative transition channels of the AuNCs. As a result, the AuNCs@COFs exhibited a 3.3-fold enhancement in anodic ECL efficiency compared to the solid-state aggregated AuNCs using triethylamine as the coreactant. On the other hand, due to the outstanding spatial dispersibility of the AuNCs in the structurally ordered COFs, a high density of active catalytic sites and accelerated electron transfer were obtained, leading to the promotion of the enzyme-like catalytic capacity of the composite. To validate its practical applicability, a Pb2+-triggered dual-response sensing system was proposed based on the aptamer-regulated ECL and peroxidase-like activity of the AuNCs@COFs. Sensitive determinations down to 7.9 pM for the ECL mode and 0.56 nM for the colorimetric mode were obtained. This work provides an approach for designing single element-based bifunctional signal probes for dual-mode detection of Pb2+.
Collapse
Affiliation(s)
- Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wanlin Zhao
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yan Wang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaohong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Panao Jiang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lijun Luo
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaoya Bi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiangle Meng
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qijian Niu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaofeng Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
39
|
Jiang L, Cai H, Zhou W, Li Z, Zhang L, Bi H. RNA-Targeting Carbon Dots for Live-Cell Imaging of Granule Dynamics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210776. [PMID: 36645339 DOI: 10.1002/adma.202210776] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/02/2023] [Indexed: 05/26/2023]
Abstract
It is significant to monitor the different RNA granules dynamics and phase separation process inside cells under various stresses, for example, oxidative stress. The current small-molecule RNA probes work well only in fixed cells and usually encounter problems such as insufficient stability and biocompatibility, and thus a specific RNA-targeting fluorescent nanoprobe that can be used in the living cells is urgently desired. Here, the de novo design and microwave-assisted synthesis of a novel RNA-targeting, red-emissive carbon dots (named as M-CDs) are reported by choosing neutral red and levofloxacin as precursors. The as-synthesized M-CDs is water-soluble with a high fluorescence quantum yield of 22.83% and can selectively bind to RNA resulting in an enhanced red fluorescence. More interestingly, such an RNA-targeting, red-emissive M-CDs can be fast internalized into cells within 5 s and thus used for real-time imaging the dynamic process of intracellular stress granules under oxidative stress, revealing some characteristics of granules that have not been identified by previously reported RNA and protein biomarkers. This research paves a new pathway for visualizing bulk RNA dynamics and studying phase-separation behaviors in living cells by rational design of the fluorescent carbon dots in terms of structure and functionality.
Collapse
Affiliation(s)
- Lei Jiang
- School of Chemistry and Chemical Engineering, Anhui University, 111 Jiulong Road, Hefei, 230601, P. R. China
| | - Hao Cai
- School of Materials Science and Engineering, Anhui University, 111 Jiulong Road, Hefei, 23060, P. R. China
| | - Wanwan Zhou
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road, Hefei, Anhui, 230027, P. R. China
| | - Zijian Li
- School of Materials Science and Engineering, Anhui University, 111 Jiulong Road, Hefei, 23060, P. R. China
| | - Liang Zhang
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road, Hefei, Anhui, 230027, P. R. China
| | - Hong Bi
- School of Materials Science and Engineering, Anhui University, 111 Jiulong Road, Hefei, 23060, P. R. China
| |
Collapse
|
40
|
Li Z, Cao Y, Feng T, Wei T, Xue C, Li Z, Xu J. Nitrogen-doped carbon dots/Fe 3+-based fluorescent probe for the "off-on" sensing of As(V) in seafood. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1923-1931. [PMID: 37009737 DOI: 10.1039/d2ay02098j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
To better satisfy the application of rapid detection methods in the detection of As(V) in complex food substrates, we developed an "off-on" fluorescence assay to detect As(V) based on the competition between the electron transfer effect of nitrogen-doped carbon dots (N-CDs)/Fe3+ and the complexation reaction of As(V)/Fe3+, using N-CDs/Fe3+ as a fluorescence probe. Solid-phase extraction (SPE) was used to eliminate matrix interference during sample pretreatment. The detection limit was 7.6 ng g-1, with a linear range of 10-100 ng g-1. The method was further used to determine As(V) in different seafood products including snapper, shrimp, clams, and kelp. At the same time, the recovery of the method was validated by high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP/MS), indicating that the developed method had good recoveries from 86% to 117% and met the needs for accurate determination of As(V). This approach has shown excellent application potential in the field of As(V) detection in various seafood products.
Collapse
Affiliation(s)
- Zeyi Li
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, PR China.
| | - Yunrui Cao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, PR China.
| | - Tingyu Feng
- Qingdao Institute of Marine Resources for Nutrition & Health Innovation, Qingdao 266109, PR China.
| | - Tingting Wei
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, PR China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, PR China.
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, PR China
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, PR China.
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, PR China.
| |
Collapse
|
41
|
Sarmanova OE, Laptinskiy KA, Burikov SA, Chugreeva GN, Dolenko TA. Implementing neural network approach to create carbon-based optical nanosensor of heavy metal ions in liquid media. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122003. [PMID: 36323084 DOI: 10.1016/j.saa.2022.122003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The present study is devoted to the creation of multifunctional optical carbon dots-based nanosensor to simultaneously measure concentrations of metal ions (Cu2+, Ni2+, Cr3+) and NO3- anion in liquid media. Such nanosensor operates on the basis of its fluorescence (FL) change under the influence of ions in the medium. However, the absence of analytical model, describing CD FL mechanism, the superposition of various luminescence quenching mechanisms during the interaction of carbon dots (CD) with cations, hampers the usage of classical approaches to solve this inverse multiparametric spectroscopic problem. To solve it neural networks were used that analyzed complex fluorescence signal from CD aqueous suspensions comprising Cu2+, Ni2+, Cr3+, NO3- ions in the concentration range from 0 to 4.95 mM. The following neural network architectures ensured optical spectroscopy inverse problem solution: multilayer perceptrons, 1D and 2D convolutional neural networks. The developed sensor enables simultaneous determination of the concentrations of heavy metal ions Cu2+, Ni2+, Cr3+ with a root mean squared error of 0.28 mM, 0.79 mM, 0.24 mM respectively. Based on the data given in the literature we can assert that the accuracy of the studied nanosensor satisfies the needs of monitoring the composition of waste and technological water. The developed nanosensor has a unique multimodality: with the simplicity of the synthesis protocol the sensor enables simultaneous determination of three heavy metal ions concentrations, while analogues are being developed mainly to measure the concentration of one (in rare cases two) heavy metal ions.
Collapse
Affiliation(s)
- O E Sarmanova
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - K A Laptinskiy
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
| | - S A Burikov
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - G N Chugreeva
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - T A Dolenko
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
42
|
He L, Wang J, Wan Z, Xiong Y, Man J, Wang Y, Mao G, Yu F. Biomimetic-compartmented nanoprobe for in-situ imaging of iron storage and release from ferritin in cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121967. [PMID: 36274535 DOI: 10.1016/j.saa.2022.121967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Ferritin plays an important role in regulating the homeostasis of iron in cells by storing/releasing iron. Current methods usually explored the determination of iron content, but in-situ imaging of the iron storage/release from ferritin in cells cannot be achieved. Hence, an engineered self-assembled biomimetic-compartmented nanoprobe (APO@CDs) has been constructed. The protein shell of APO (apoferritin) acted as ion channel module to control iron ions entering/exiting ferritin cavity; the inner core of CDs (carbon dots) acted as signal module for iron ions response. Compared with CDs, the response sensitivity and specificity to iron ions (Fe3+) have been improved by using APO@CDs, and the cytotoxicity was significantly reduced. Additionally, compared with cells containing APO@CDs alone, the normalized fluorescence gray value of Fe3+-treated cells was significantly decreased (0.275), indicating that Fe3+ has effectively entered the ferritin. Furtherly, that of Fe3+-treated cells incubated with deferoxamine (DFO) was significantly enhanced (0.712), showing that Fe3+ was released from ferritin under the mediation of DFO. The results demonstrate that APO@CDs can be successfully applied to in-situ imaging of iron storage/release from ferritin in cells, providing a potential platform for the in-situ dynamic study of the iron storage/release in biomedical field.
Collapse
Affiliation(s)
- Leiliang He
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jingjing Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhen Wan
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yamin Xiong
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jin Man
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Ya Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Fei Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
43
|
Zhang J, Song Z, Cai P, Wang X. Structures, photoluminescence, and principles of self-activated phosphors. Phys Chem Chem Phys 2023; 25:1565-1587. [PMID: 36602112 DOI: 10.1039/d2cp03742d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Self-activated phosphors without any luminescent dopants, usually display excellent optical properties, such as high oscillator strength, large Stokes shift, and strong luminescence efficiency, and thus have been widely investigated by researchers for several decades. However, their recent advancements in scintillators, white-light illumination, displays and optical sensors compel us to urgently understand the basic principles and significant technological relevance of this worthy family of materials. Herein, we review the structures, photoluminescence principles, and applications of state-of-the-art self-activated phosphors, such as borate, gallate, niobate, phosphate, titanate, vanadate, tungstate, nitrides, oxyfluoride, perovskite, metal halides, and carbon dots. The photoluminescence principles of self-activated phosphors are mainly summarized as transitions between energy levels of rare-earth and transition metal ions, charge transfer transitions of some oxide compounds, and luminescence in all-inorganic semiconductors. The different self-activated phosphors exhibit various structures and site-dependent spectra. Additionally, we discuss the application prospect and main challenges of self-activated phosphors.
Collapse
Affiliation(s)
- Jiawei Zhang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Ziling Song
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Peiqing Cai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Xiangfu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
44
|
Xue S, Li P, Sun L, An L, Qu D, Wang X, Sun Z. The Formation Process and Mechanism of Carbon Dots Prepared from Aromatic Compounds as Precursors: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206180. [PMID: 36650992 DOI: 10.1002/smll.202206180] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Fluorescent carbon dots are a novel type of nanomaterial. Due to their excellent optical properties, they have extensive application prospects in many fields. Studying the formation process and fluorescence mechanism of CDs will assist scientists in understanding the synthesis of CDs and guide more profound applications. Due to their conjugated structures, aromatic compounds have been continuously used to synthesize CDs, with emissions ranging from blue to NIR. There is a lack of a systematic summary of the formation process and fluorescence mechanism of aromatic precursors to form CDs. In this review, the formation process of CDs is first categorized into three main classes according to the precursor types of aromatic compounds: amines, phenols, and polycyclics. And then, the fluorescence mechanism of CDs synthesized from aromatic compounds is summarized. The challenges and prospects are proposed in the last section.
Collapse
Affiliation(s)
- Shanshan Xue
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, P. R. China
| | - Pengfei Li
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, P. R. China
| | - Lu Sun
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, P. R. China
| | - Li An
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, P. R. China
| | - Dan Qu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, P. R. China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, P. R. China
| | - Zaicheng Sun
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, P. R. China
| |
Collapse
|
45
|
Li X, Hu Y, Zhang C, Xiao C, Cheng J, Chen Y. Electro-activating of peroxymonosulfate via boron and sulfur co-doped macroporous carbon nanofibers cathode for high-efficient degradation of levofloxacin. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130016. [PMID: 36179625 DOI: 10.1016/j.jhazmat.2022.130016] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
To address the difficulty of precisely regulating the two-electron oxygen reduction reaction (2e-ORR) and investigate the synergistic effect of hydrogen peroxide (H2O2) and peroxymonosulfate (PMS), a heterogeneous electro-catalyst was synthesized via carbonation of boron (B) and sulfur (S) co-doping electrospun nanofibers containing iron and cobalt (B, S-Fe/Co@C-NCNFs-900), and used to degrade levofloxacin (Levo) in the electro-activating PMS with self-made cathode material (E-cathode-PMS) system. The morphological, structural, and electrochemical characteristics have been investigated. The results showed that B and S co-doping could remarkably enhance electron transfer and manage two-electron oxygen reduction, which was more favorable for H2O2 generation. Levo degradation efficiency could reach 99.63% with a reaction rate of 0.3056 min-1 in 20 min under the appropriate conditions (pH = 4, current = 20 mA, and [PMS] = 8.0 mM). The steady-state concentration of singlet oxygen (1O2) was calculated to be 669.17 × 10-14 M, which was 15.42, 29.74, and 45.00 times respectively than that of HO2·/O2·- (43.40 × 10-14 M), ·OH (22.25 × 10-14 M) and SO4-·(14.87 × 10-14 M), signifying that 1O2 was the predominant reactive oxygen species (ROS) involved in Levo removal. The high TOC removal (74.19%), low energy consumption (0.14 kWh m-3 order-1), few intermediates toxicity, and excellent Levo degradation efficiency for complex wastewater with various anions and matrixes showed the prospective practical applications of the E-cathode-PMS system. Overall, this study provides a useful strategy to regulate and control the 2e-ORR pathway.
Collapse
Affiliation(s)
- Xian Li
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, China.
| | - Changyong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chun Xiao
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
46
|
Qi H, Qiu L, Zhang X, Yi T, Jing J, Sami R, Alanazi SF, Alqahtani Z, Aljabri MD, Rahman MM. Novel N-doped carbon dots derived from citric acid and urea: fluorescent sensing for determination of metronidazole and cytotoxicity studies. RSC Adv 2023; 13:2663-2671. [PMID: 36741170 PMCID: PMC9846458 DOI: 10.1039/d2ra07150a] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Blue emitting nitrogen-doped carbon dots were synthesized using citric acid and urea through the hydrothermal method, and the fluorescence quantum yield was 35.08%. We discovered that N-CDs featured excellent robust fluorescence stability and chemical resistance. For metronidazole detection, our N-CDs exhibited quick response time, high selectivity and sensitivity, and low cytotoxicity. Specifically, our N-CDs could detect metronidazole in the linear range of 0-179 μM, and the LOD was 0.25 μM. Furthermore, metronidazole efficaciously quenches the fluorescence of N-CDs, possibly owing to the inner filter effect. Lastly, we have employed our N-CDs to detect metronidazole in commercial metronidazole tablets with high accuracy. Overall, the newly prepared fluorescence sensor, N-CDs, demonstrated a huge potential to detect metronidazole in a simple, efficient, sensitive, and rapid manner.
Collapse
Affiliation(s)
- Haiyan Qi
- College of Chemistry and Chemical Engineering, Qiqihar UniversityQiqiharHeilongjiang Province161006China,Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar UniversityQiqihar 161006China
| | - Lixin Qiu
- College of Chemistry and Chemical Engineering, Qiqihar UniversityQiqiharHeilongjiang Province161006China
| | - Xiaohong Zhang
- College of Chemistry and Chemical Engineering, Qiqihar UniversityQiqiharHeilongjiang Province161006China
| | - Tonghui Yi
- Laboratory of Molecular Biology, Health Inspection Center of Qiqihar Medical UniversityQiqihar 161006HeilongjiangChina
| | - Jing Jing
- School of Medicine and Health, Harbin Institute of TechnologyNo.92, West Dazhi StreetHarbin150000China
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif UniversityP.O. 11099Taif 21944Saudi Arabia
| | - Sitah F. Alanazi
- Imam Mohammad Ibn Saud Islamic University, College of Science, Department of PhysicsRiyadh11642Saudi Arabia
| | - Zahrah Alqahtani
- Department of Physics, Faculty of Science, Taif UniversityP.O. 11099Taif 21944Saudi Arabia
| | - Mahmood D. Aljabri
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura UniversityMakkah21955Saudi Arabia
| | - Mohammed M. Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz UniversityJeddah 2158980203Saudi Arabia
| |
Collapse
|
47
|
Synthesis of trichromatic carbon dots from a single precursor by solvent effect and its versatile applications. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
48
|
Mahmoud AM, Mahnashi MH, Alshareef F, El-Wekil MM. Functionalized vanadium disulfide quantum dots as a novel dual-mode sensor for ultrasensitive and highly selective determination of rutin. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
49
|
Transformation of bulk MnO2 to fluorescent quantum dots for selective and sensitive detection of ferric ions and ascorbic acid by turn-off-on strategy. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Jin XJ, Tan L, Zhao ZQ, Li MC, Zhou QY, Zhang JJ, Lv TB, Deng Q, Wang J, Zeng Z, Deng S, Dai GP. Facile synthesis of graphene quantum dots with red emission and high quantum yield. NEW J CHEM 2023. [DOI: 10.1039/d2nj04491a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Preparation of GQDs for application in cell imaging.
Collapse
Affiliation(s)
- Xin-Jian Jin
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Long Tan
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Zhi-Qing Zhao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Meng-Chao Li
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qun-Yi Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jing-Jian Zhang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Tong-Bao Lv
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qiang Deng
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jun Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Zheling Zeng
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Shuguang Deng
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Gui-Ping Dai
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| |
Collapse
|