1
|
Zhang D, Wei W, Xie T, Zhou X, He X, Qiao J, Guo R, Jin G, Li N. Magnetic Nanocarriers for pH/GSH/NIR Triple-Responsive Drug Release and Synergistic Therapy in Tumor Cells. ACS OMEGA 2024; 9:49749-49758. [PMID: 39713612 PMCID: PMC11656227 DOI: 10.1021/acsomega.4c08267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024]
Abstract
In this study, the mesoporous Fe3O4 nanodrug carriers containing disulfide bonds (CHO-SMNPs) were successfully synthesized and characterized. Doxorubicin (DOX) was loaded onto the CHO-SMNPs as a model drug and gatekeeper through the formation of imine bonds with the aldehyde groups on the surface of the mesoporous materials. This drug carrier demonstrates effective drug release triggered by pH, glutathione (GSH), and near-infrared (NIR) light, along with satisfactory photothermal conversion efficiency under NIR irradiation at 808 nm. Furthermore, CHO-SMNPs exhibit excellent blood compatibility and biodegradability. They also show good biocompatibility and efficient cellular uptake in HeLa and MCF-7 cancer cells. Most importantly, the CHO-SMNPs/DOX has shown significant effectiveness in killing both HeLa and MCF-7 cancer cells. Consequently, CHO-SMNPs/DOX presents substantial potential as a magnetic-targeted, pH/GSH/NIR triple-triggered drug delivery system for synergistic chemo-photothermal therapy in tumor treatment.
Collapse
Affiliation(s)
- Di Zhang
- School
of Basic Medical Sciences, Shanxi Medical
University, Taiyuan 030001, China
| | - Wanyu Wei
- School
of Basic Medical Sciences, Shanxi Medical
University, Taiyuan 030001, China
| | - Tianxiang Xie
- School
of Stomatology, Shanxi Medical University, Taiyuan 030001, China
| | - Xue Zhou
- School
of Basic Medical Sciences, Shanxi Medical
University, Taiyuan 030001, China
| | - Xu He
- School
of Basic Medical Sciences, Shanxi Medical
University, Taiyuan 030001, China
| | - Jie Qiao
- School
of Basic Medical Sciences, Shanxi Medical
University, Taiyuan 030001, China
| | - Rui Guo
- School
of Basic Medical Sciences, Shanxi Medical
University, Taiyuan 030001, China
| | - Gang Jin
- Department
of Medical Oncology, Second Hospital of
Shanxi Medical University, Taiyuan 030001, China
| | - Ningbo Li
- School
of Basic Medical Sciences, Shanxi Medical
University, Taiyuan 030001, China
| |
Collapse
|
2
|
Verma J, Kumar C, Sharma M, Saxena S. Biotechnological advances in microbial synthesis of gold nanoparticles: Optimizations and applications. 3 Biotech 2024; 14:263. [PMID: 39387004 PMCID: PMC11458872 DOI: 10.1007/s13205-024-04110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
This review discusses the eco-friendly and cost-effective biosynthesis of gold nanoparticles (AuNPs) in viable microorganisms, focusing on microbes-mediated AuNP biosynthesis. This process suits agricultural, environmental, and biomedical applications, offering renewable, eco-friendly, non-toxic, sustainable, and time-efficient methods. Microorganisms are increasingly used in green technology, nanotechnology, and RNAi technology, but several microorganisms have not been fully identified and characterized. Bio-nanotechnology offers eco-friendly and sustainable solutions for nanomedicine, with microbe-mediated nanoparticle biosynthesis producing AuNPs with anti-oxidation activity, stability, and biocompatibility. Ultrasmall AuNPs offer rapid distribution, renal clearance, and enhanced permeability in biomedical applications. The review explores nano-size dependent biosynthesis of AuNPs by bacteria, fungi, and viruses revealing their non-toxic, non-genotoxic, and non-oxidative properties on human cells. AuNPs with varying sizes and shapes, from nitrate reductase enzymes, have shown potential as a promising nano-catalyst. The synthesized AuNPs, with negative charge capping molecules, have demonstrated antibacterial activity against drug-resistant Pseudomonas aeruginosa, and Acinetobacter baumannii strains, and were non-toxic to Vero cell lines, indicating potential antibiotic resistance treatments. A green chemical method for the biosynthesis of AuNPs using reducing chloroauric acid and Rhizopus oryzae protein extract has been described, demonstrating excellent stability and strong catalytic activity. AuNPs are eco-friendly, non-toxic, and time-efficient, making them ideal for biomedical applications due to their antioxidant, antidiabetic, and antibacterial properties. In addition to the biomedical application, the review also highlights the role of microbially synthesized AuNPs in sustainable management of plant diseases, and environmental bioremediation.
Collapse
Affiliation(s)
- Jyoti Verma
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025 India
| | - Chitranjan Kumar
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, Uttar Pradesh 201313 India
| | - Monica Sharma
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025 India
| | - Sangeeta Saxena
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025 India
| |
Collapse
|
3
|
Eremina OE, Vazquez C, Larson KN, Mouchawar A, Fernando A, Zavaleta C. The evolution of immune profiling: will there be a role for nanoparticles? NANOSCALE HORIZONS 2024; 9:1896-1924. [PMID: 39254004 DOI: 10.1039/d4nh00279b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Immune profiling provides insights into the functioning of the immune system, including the distribution, abundance, and activity of immune cells. This understanding is essential for deciphering how the immune system responds to pathogens, vaccines, tumors, and other stimuli. Analyzing diverse immune cell types facilitates the development of personalized medicine approaches by characterizing individual variations in immune responses. With detailed immune profiles, clinicians can tailor treatment strategies to the specific immune status and needs of each patient, maximizing therapeutic efficacy while minimizing adverse effects. In this review, we discuss the evolution of immune profiling, from interrogating bulk cell samples in solution to evaluating the spatially-rich molecular profiles across intact preserved tissue sections. We also review various multiplexed imaging platforms recently developed, based on immunofluorescence and imaging mass spectrometry, and their impact on the field of immune profiling. Identifying and localizing various immune cell types across a patient's sample has already provided important insights into understanding disease progression, the development of novel targeted therapies, and predicting treatment response. We also offer a new perspective by highlighting the unprecedented potential of nanoparticles (NPs) that can open new horizons in immune profiling. NPs are known to provide enhanced detection sensitivity, targeting specificity, biocompatibility, stability, multimodal imaging features, and multiplexing capabilities. Therefore, we summarize the recent developments and advantages of NPs, which can contribute to advancing our understanding of immune function to facilitate precision medicine. Overall, NPs have the potential to offer a versatile and robust approach to profile the immune system with improved efficiency and multiplexed imaging power.
Collapse
Affiliation(s)
- Olga E Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Celine Vazquez
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Kimberly N Larson
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Anthony Mouchawar
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Augusta Fernando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
4
|
Patel KD, Keskin-Erdogan Z, Sawadkar P, Nik Sharifulden NSA, Shannon MR, Patel M, Silva LB, Patel R, Chau DYS, Knowles JC, Perriman AW, Kim HW. Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine. NANOSCALE HORIZONS 2024; 9:1630-1682. [PMID: 39018043 DOI: 10.1039/d4nh00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Many pathological conditions are predominantly associated with oxidative stress, arising from reactive oxygen species (ROS); therefore, the modulation of redox activities has been a key strategy to restore normal tissue functions. Current approaches involve establishing a favorable cellular redox environment through the administration of therapeutic drugs and redox-active nanomaterials (RANs). In particular, RANs not only provide a stable and reliable means of therapeutic delivery but also possess the capacity to finely tune various interconnected components, including radicals, enzymes, proteins, transcription factors, and metabolites. Here, we discuss the roles that engineered RANs play in a spectrum of pathological conditions, such as cancer, neurodegenerative diseases, infections, and inflammation. We visualize the dual functions of RANs as both generator and scavenger of ROS, emphasizing their profound impact on diverse cellular functions. The focus of this review is solely on inorganic redox-active nanomaterials (inorganic RANs). Additionally, we deliberate on the challenges associated with current RANs-based approaches and propose potential research directions for their future clinical translation.
Collapse
Affiliation(s)
- Kapil D Patel
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Zalike Keskin-Erdogan
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
- Department of Chemical Engineering, Imperial College London, Exhibition Rd, South Kensington, SW7 2BX, London, UK
| | - Prasad Sawadkar
- Division of Surgery and Interventional Science, UCL, London, UK
- The Griffin Institute, Northwick Park Institute for Medical Research, Northwick Park and St Mark's Hospitals, London, HA1 3UJ, UK
| | - Nik Syahirah Aliaa Nik Sharifulden
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Mark Robert Shannon
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Women University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Lady Barrios Silva
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Rajkumar Patel
- Energy & Environment Sciences and Engineering (EESE), Integrated Sciences and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdongwahak-ro, Yeonsungu, Incheon 21938, Republic of Korea
| | - David Y S Chau
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Adam W Perriman
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
5
|
Liu S, Sun J. Magnetic nanomaterials mediate precise magnetic therapy. Biomed Phys Eng Express 2024; 10:052001. [PMID: 38981447 DOI: 10.1088/2057-1976/ad60cb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Magnetic nanoparticle (MNP)-mediated precision magnet therapy plays a crucial role in treating various diseases. This therapeutic strategy compensates for the limitations of low spatial resolution and low focusing of magnetic stimulation, and realizes the goal of wireless teletherapy with precise targeting of focal areas. This paper summarizes the preparation methods of magnetic nanomaterials, the properties of magnetic nanoparticles, the biological effects, and the measurement methods for detecting magnetism; discusses the research progress of precision magnetotherapy in the treatment of psychiatric disorders, neurological injuries, metabolic disorders, and bone-related disorders, and looks forward to the future development trend of precision magnet therapy.
Collapse
Affiliation(s)
- Sha Liu
- Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, People's Republic of China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| | - Jianfei Sun
- Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, People's Republic of China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| |
Collapse
|
6
|
Qian Z, He K, Feng R, Chen J, Li B, Zhang Y, Yu S, Tang K, Gan N, Wu YX. Intelligent Biogenic Missile for Two-Photon Fluorescence Imaging-Guided Combined Photodynamic Therapy and Chemotherapy in Tumors. Anal Chem 2024; 96:6674-6682. [PMID: 38642044 DOI: 10.1021/acs.analchem.4c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
Photodynamic therapy (PDT) is a significant noninvasive therapeutic modality, but it is often limited in its application due to the restricted tissue penetration depth caused by the wavelength limitations of the light source. Two-photon (TP) fluorescence techniques are capable of having an excitation wavelength in the NIR region by absorbing two NIR photons simultaneously, which offers the potential to achieve higher spatial resolution for deep tissue imaging. Thus, the adoption of TP fluorescence techniques affords several discernible benefits for photodynamic therapy. Organic TP dyes possess a high fluorescence quantum yield. However, the biocompatibility of organic TP dyes is poor, and the method of coating organic TP dyes with silica can effectively overcome the limitations. Herein, based on the TP silica nanoparticles, a functionalized intelligent biogenic missile TP-SiNPs-G4(TMPyP4)-dsDNA(DOX)-Aptamer (TGTDDA) was developed for effective TP bioimaging and synergistic targeted photodynamic therapy and chemotherapy in tumors. First, the Sgc8 aptamer was used to target the PTK7 receptor on the surface of tumor cells. Under two-photon light irradiation, the intelligent biogenic missile can be activated for TP fluorescence imaging to identify tumor cells and the photosensitizer assembled on the nanoparticle surface can be activated for photodynamic therapy. Additionally, this intelligent biogenic missile enables the controlled release of doxorubicin (DOX). The innovative strategy substantially enhances the targeted therapeutic effectiveness of cancer cells. The intelligent biogenic missile provides an effective method for the early detection and treatment of tumors, which has a good application prospect in the real-time high-sensitivity diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Zhiling Qian
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Kangdi He
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Rong Feng
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jia Chen
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Bingqian Li
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yuhang Zhang
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shengrong Yu
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| | - Keqi Tang
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| | - Ning Gan
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yong-Xiang Wu
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| |
Collapse
|
7
|
Gupta D, Roy P, Sharma R, Kasana R, Rathore P, Gupta TK. Recent nanotheranostic approaches in cancer research. Clin Exp Med 2024; 24:8. [PMID: 38240834 PMCID: PMC10799106 DOI: 10.1007/s10238-023-01262-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024]
Abstract
Humanity is suffering from cancer which has become a root cause of untimely deaths of individuals around the globe in the recent past. Nanotheranostics integrates therapeutics and diagnostics to monitor treatment response and enhance drug efficacy and safety. We hereby propose to discuss all recent cancer imaging and diagnostic tools, the mechanism of targeting tumor cells, and current nanotheranostic platforms available for cancer. This review discusses various nanotheranostic agents and novel molecular imaging tools like MRI, CT, PET, SPEC, and PAT used for cancer diagnostics. Emphasis is given to gold nanoparticles, silica, liposomes, dendrimers, and metal-based agents. We also highlight the mechanism of targeting the tumor cells, and the limitations of different nanotheranostic agents in the field of research for cancer treatment. Due to the complexity in this area, multifunctional and hybrid nanoparticles functionalized with targeted moieties or anti-cancer drugs show the best feature for theranostics that enables them to work on carrying and delivering active materials to the desired area of the requirement for early detection and diagnosis. Non-invasive imaging techniques have a specificity of receptor binding and internalization processes of the nanosystems within the cancer cells. Nanotheranostics may provide the appropriate medicine at the appropriate dose to the appropriate patient at the appropriate time.
Collapse
Affiliation(s)
- Deepshikha Gupta
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India.
| | - Priyanka Roy
- Department of Chemistry, Jamia Hamdard University, New Delhi, 110062, India
| | - Rishabh Sharma
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Richa Kasana
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Pragati Rathore
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Tejendra Kumar Gupta
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| |
Collapse
|
8
|
Sun J, Han Y, Dong J, Lv S, Zhang R. Melanin/melanin-like nanoparticles: As a naturally active platform for imaging-guided disease therapy. Mater Today Bio 2023; 23:100894. [PMID: 38161509 PMCID: PMC10755544 DOI: 10.1016/j.mtbio.2023.100894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
The development of biocompatible and efficient nanoplatforms that combine diagnostic and therapeutic functions is of great importance for precise disease treatment. Melanin, an endogenous biopolymer present in living organisms, has attracted increasing attention as a versatile bioinspired functional platform owing to its unique physicochemical properties (e.g., high biocompatibility, strong chelation of metal ions, broadband light absorption, high drug binding properties) and inherent antioxidant, photoprotective, anti-inflammatory, and anti-tumor effects. In this review, the fundamental physicochemical properties and preparation methods of natural melanin and melanin-like nanoparticles were outlined. A systematical description of the recent progress of melanin and melanin-like nanoparticles in single, dual-, and tri-multimodal imaging-guided the visual administration and treatment of osteoarthritis, acute liver injury, acute kidney injury, acute lung injury, brain injury, periodontitis, iron overload, etc. Was then given. Finally, it concluded with a reasoned discussion of current challenges toward clinical translation and future striving directions. Therefore, this comprehensive review provides insight into the current status of melanin and melanin-like nanoparticles research and is expected to optimize the design of novel melanin-based therapeutic platforms and further clinical translation.
Collapse
Affiliation(s)
- Jinghua Sun
- The Molecular Medicine Research Team of First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yahong Han
- Shanxi Medical University, Taiyuan 030001, China
| | - Jie Dong
- Shanxi Medical University, Taiyuan 030001, China
| | - Shuxin Lv
- Shanxi Medical University, Taiyuan 030001, China
| | - Ruiping Zhang
- The Molecular Medicine Research Team of First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- The Radiology Department of Shanxi Provincial People’ Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
9
|
Xu B, Li S, Shi R, Liu H. Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduct Target Ther 2023; 8:435. [PMID: 37996406 PMCID: PMC10667354 DOI: 10.1038/s41392-023-01654-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 11/25/2023] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are recognized as a prime example of nanotechnology applied in the biomedical field, due to their easily tunable structure and composition, diverse surface functionalization properties, and excellent biocompatibility. Over the past two decades, researchers have developed a wide variety of MSNs-based nanoplatforms through careful design and controlled preparation techniques, demonstrating their adaptability to various biomedical application scenarios. With the continuous breakthroughs of MSNs in the fields of biosensing, disease diagnosis and treatment, tissue engineering, etc., MSNs are gradually moving from basic research to clinical trials. In this review, we provide a detailed summary of MSNs in the biomedical field, beginning with a comprehensive overview of their development history. We then discuss the types of MSNs-based nanostructured architectures, as well as the classification of MSNs-based nanocomposites according to the elements existed in various inorganic functional components. Subsequently, we summarize the primary purposes of surface-functionalized modifications of MSNs. In the following, we discuss the biomedical applications of MSNs, and highlight the MSNs-based targeted therapeutic modalities currently developed. Given the importance of clinical translation, we also summarize the progress of MSNs in clinical trials. Finally, we take a perspective on the future direction and remaining challenges of MSNs in the biomedical field.
Collapse
Affiliation(s)
- Bolong Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Shanshan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Rui Shi
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, 100035, Beijing, China.
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
10
|
Akiyama N, Patel KD, Jang EJ, Shannon MR, Patel R, Patel M, Perriman AW. Tubular nanomaterials for bone tissue engineering. J Mater Chem B 2023; 11:6225-6248. [PMID: 37309580 DOI: 10.1039/d3tb00905j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanomaterial composition, morphology, and mechanical performance are critical parameters for tissue engineering. Within this rapidly expanding space, tubular nanomaterials (TNs), including carbon nanotubes (CNTs), titanium oxide nanotubes (TNTs), halloysite nanotubes (HNTs), silica nanotubes (SiNTs), and hydroxyapatite nanotubes (HANTs) have shown significant potential across a broad range of applications due to their high surface area, versatile surface chemistry, well-defined mechanical properties, excellent biocompatibility, and monodispersity. These include drug delivery vectors, imaging contrast agents, and scaffolds for bone tissue engineering. This review is centered on the recent developments in TN-based biomaterials for structural tissue engineering, with a strong focus on bone tissue regeneration. It includes a detailed literature review on TN-based orthopedic coatings for metallic implants and composite scaffolds to enhance in vivo bone regeneration.
Collapse
Affiliation(s)
- Naomi Akiyama
- Department of Chemical Engineering, The Cooper Union of the Advancement of Science and Art, New York City, NY 10003, USA
| | - Kapil D Patel
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Eun Jo Jang
- Nano Science and Engineering (NSE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Yeonsu-gu, Incheon 21983, South Korea
| | - Mark R Shannon
- Bristol Composites Institute (BCI), University of Bristol, Bristol, BS8 1UP, UK
| | - Rajkumar Patel
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Yeonsu-gu, Incheon 21983, South Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea.
| | - Adam Willis Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
11
|
Hirao R, Shigetoh K, Inagaki S, Ishida N. Virus Inactivation Based on Optimal Surfactant Reservoir of Mesoporous Silica. ACS APPLIED BIO MATERIALS 2023; 6:1032-1040. [PMID: 36780326 PMCID: PMC10031556 DOI: 10.1021/acsabm.2c00901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) caused a pandemic in 2019 and reaffirmed the importance of environmental sanitation. To prevent the spread of viral infections, we propose the application of a mesoporous silica (MS)-based virus-inactivating material. MS is typically synthesized using a micellar surfactant template; hence, the intermediate before removal of the surfactant template is expected to have a virus-inactivating activity. MS-CTAC particles filled with cetyltrimethylammonium chloride (CTAC), a cationic surfactant with an alkyl chain length of 16, were used to test this hypothesis. Plaque assays revealed that the MS-CTAC particles inactivated the enveloped bacteriophage φ6 by approximately 4 orders of magnitude after a contact time of 10 min. The particles also indicated a similar inactivation effect on the nonenveloped bacteriophage Qβ. In aqueous solution, CTAC loaded on MS-CTAC was released until the equilibrium concentration of loading and release on MS was reached. The released CTAC acted on viruses. Thus, MS is likely a good reservoir for the micellar surfactant. Surfactant readsorption also occurred in the MS particles, and the highest retention rate was observed when micellar surfactants with alkyl chain lengths appropriate for the pore size were used. The paper containing MS-CTAC particles was shown to maintain stable viral inactivation for at least three months in a typical indoor environment. Applying this concept to indoor wallpaper and air-conditioning filters could contribute to the inactivation of viruses in aerosols. These findings open possibilities for mesoporous materials with high surface areas, which can further develop into virus inactivation materials.
Collapse
Affiliation(s)
- Rie Hirao
- Toyota
Central R&D Labs., Inc., Nagakute, Aichi 480-1192, Japan
| | | | - Shinji Inagaki
- Toyota
Central R&D Labs., Inc., Nagakute, Aichi 480-1192, Japan
| | - Nobuhiro Ishida
- Toyota
Central R&D Labs., Inc., Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
12
|
Chen B, Li L, Yang Q, Liu B, Hu Y, Zhang M. Fluorescence Signal Amplification: Red Carbon Dots@SiO 2-Induced Ultra-sensitive Immunoassay for Diethyl Phthalate. J Fluoresc 2023; 33:487-495. [PMID: 36445510 DOI: 10.1007/s10895-022-03100-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
Carbon dots as new nanomaterials, have been widely used in rapid detection because of their nondestructive, real-time detection characteristics. Improving the sensitivity and selectivity of the method in complex real samples is new challenge and requirement for sensing technology. Here, we report an ultrasensitive fluorescence immunoassay (FIA) for trace diethyl phthalate (DEP) using red carbon dots@SiO2 (R-CDs@SiO2) as tags. SiO2 as a nanocarrier can effectively improve the bio-functionalization and utilization rate of carbon dots. Moreover, several R-CDs embedded in SiO2 nanospheres can magnify the fluorescence signal and improve sensitivity. R-CDs@SiO2 conjugate anti-DEP antibody (Ab) as fluorescent immunosensor, which can specifically recognize DEP. Under optimization conditions, the detection limit (LOD) of this FIA was calculated as 0.0011 ng/mL. In addition, the recoveries of this established FIA ranged from 96.8 to 108.5%, showing satisfactory accuracy. Compared with GC-MS/MS (LOD µg/mL), the sensitivity of the FIA was significantly improved. As a result, the FIA developed using R-CDs@SiO2 as tags has a high potential for determining trace DEP.
Collapse
Affiliation(s)
- Biru Chen
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, 241002, Wuhu, P. R. China
| | - Lei Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, 241002, Wuhu, P. R. China
| | - Qianqian Yang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, 241002, Wuhu, P. R. China
| | - Bolin Liu
- Anhui Provincial Center for Disease Control and Prevention, 230000, Hefei, Anhui, P. R. China
| | - Yue Hu
- Anhui Provincial Center for Disease Control and Prevention, 230000, Hefei, Anhui, P. R. China
| | - Mingcui Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, 241002, Wuhu, P. R. China.
| |
Collapse
|
13
|
Li D, Dai D, Xiong G, Lan S, Zhang C. Metal-Based Nanozymes with Multienzyme-Like Activities as Therapeutic Candidates: Applications, Mechanisms, and Optimization Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205870. [PMID: 36513384 DOI: 10.1002/smll.202205870] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Most nanozymes in development for medical applications only exhibit single-enzyme-like activity, and are thus limited by insufficient catalytic activity and dysfunctionality in complex pathological microenvironments. To overcome the impediments of limited substrate availabilities and concentrations, some metal-based nanozymes may mimic two or more activities of natural enzymes to catalyze cascade reactions or to catalyze multiple substrates simultaneously, thereby amplifying catalysis. Metal-based nanozymes with multienzyme-like activities (MNMs) may adapt to dissimilar catalytic conditions to exert different enzyme-like effects. These multienzyme-like activities can synergize to realize "self-provision of the substrate," in which upstream catalysts produce substrates for downstream catalytic reactions to overcome the limitation of insufficient substrates in the microenvironment. Consequently, MNMs exert more potent antitumor, antibacterial, and anti-inflammatory effects in preclinical models. This review summarizes the cellular effects and underlying mechanisms of MNMs. Their potential medical utility and optimization strategy from the perspective of clinical requirements are also discussed, with the aim to provide a theoretical reference for the design, development, and therapeutic application of their catalytic effects.
Collapse
Affiliation(s)
- Dan Li
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Danni Dai
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Gege Xiong
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Shuquan Lan
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Chao Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
14
|
Organically surface engineered mesoporous silica nanoparticles control the release of quercetin by pH stimuli. Sci Rep 2022; 12:20661. [PMID: 36450792 PMCID: PMC9712501 DOI: 10.1038/s41598-022-25095-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Controlling the premature release of hydrophobic drugs like quercetin over physiological conditions remains a challenge motivating the development of smart and responsive drug carriers in recent years. This present work reported a surface modification of mesoporous silica nanoparticles (MSN) by a functional compound having both amines (as a positively charged group) and carboxylic (negatively charged group), namely 4-((2-aminoethyl)amino)-4-oxobut-2-enoic acid (AmEA) prepared via simple mechanochemistry approach. The impact of MSN surface modification on physical, textural, and morphological features was evaluated by TGA, N2 adsorption-desorption, PSA-zeta, SEM, and TEM. The BET surface area of AmEA-modified MSN (MSN-AmEA) was found to be 858.41 m2 g-1 with a pore size of 2.69 nm which could accommodate a high concentration of quercetin 118% higher than MSN. In addition, the colloidal stability of MSN-AmEA was greatly improved as indicated by high zeta potential especially at pH 4 compared to MSN. In contrast to MSN, MSN-AmEA has better in controlling quercetin release triggered by pH, thanks to the presence of the functional groups that have a pose-sensitive interaction hence it may fully control the quercetin release, as elaborated by the DFT study. Therefore, the controlled release of quercetin over MSN-AmEA verified its capability of acting as a smart drug delivery system.
Collapse
|
15
|
Jing X, Xiong Z, Lin Z, Sun T. The Application of Black Phosphorus Nanomaterials in Bone Tissue Engineering. Pharmaceutics 2022; 14:pharmaceutics14122634. [PMID: 36559127 PMCID: PMC9787998 DOI: 10.3390/pharmaceutics14122634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Recently, research on and the application of nanomaterials such as graphene, carbon nanotubes, and metal-organic frameworks has become increasingly popular in tissue engineering. In 2014, a two-dimensional sheet of black phosphorus (BP) was isolated from massive BP crystals. Since then, BP has attracted significant attention as an emerging nanomaterial. BP possesses many advantages such as light responsiveness, electrical conductivity, degradability, and good biocompatibility. Thus, it has broad prospects in biomedical applications. Moreover, BP is composed of phosphorus, which is a key bone tissue component with good biocompatibility and osteogenic repair ability. Thereby, BP exhibits excellent advantages for application in bone tissue engineering. In this review, the structure and the physical and chemical properties of BP are described. In addition, the current applications of BP in bone tissue engineering are reviewed to aid the future research and application of BP.
Collapse
Affiliation(s)
- Xirui Jing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zekang Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zian Lin
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tingfang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence:
| |
Collapse
|
16
|
Zhang W, Ye G, Liao D, Chen X, Lu C, Nezamzadeh-Ejhieh A, Khan MS, Liu J, Pan Y, Dai Z. Recent Advances of Silver-Based Coordination Polymers on Antibacterial Applications. Molecules 2022; 27:7166. [PMID: 36363993 PMCID: PMC9656551 DOI: 10.3390/molecules27217166] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 07/30/2023] Open
Abstract
With the continuous evolution of bacteria and the constant use of traditional antibiotics, the emergence of drug-resistant bacteria and super viruses has attracted worldwide attention. Antimicrobial therapy has become the most popular and important research field at present. Coordination Polymer (CP) and/or metal-organic framework (MOF) platforms have the advantages of a high biocompatibility, biodegradability, and non-toxicity, have a great antibacterial potential and have been widely used in antibacterial treatment. This paper reviewed the mechanism and antibacterial effect of three typical MOFs (pure Ag-MOFs, hybrid Ag-MOFs, and Ag-containing-polymer @MOFs) in silver-based coordination polymers. At the same time, the existing shortcomings and future views are briefly discussed. The study on the antibacterial efficacy and mechanism of Ag-MOFs can provide a better basis for its clinical application and, meanwhile, open up a novel strategy for the preparation of more advanced Ag-contained materials with antibacterial characteristics.
Collapse
Affiliation(s)
- Wenfeng Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Gaomin Ye
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Donghui Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xuelin Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
| | - Chengyu Lu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
| | | | - M. Shahnawaz Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Jianqiang Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
| | - Ying Pan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Zhong Dai
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
17
|
Kong J, Park SS, Ha CS. pH-Sensitive Polyacrylic Acid-Gated Mesoporous Silica Nanocarrier Incorporated with Calcium Ions for Controlled Drug Release. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5926. [PMID: 36079309 PMCID: PMC9457024 DOI: 10.3390/ma15175926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
In this work, polyacrylic acid-functionalized MCM-41 was synthesized, which was made to interact with calcium ions, in order to realize enhanced pH-responsive nanocarriers for sustained drug release. First, mesoporous silica nanoparticles (MSNs) were prepared by the sol-gel method. Afterward, a (3-trimethoxysilyl)propyl methacrylate (TMSPM) modified surface was prepared by using the post-grafting method, and then the polymerization of the acrylic acid was performed. After adding a calcium chloride solution, polyacrylic acid-functionalized MSNs with calcium-carboxyl ionic bonds in the polymeric layer, which can prevent the cargo from leaking out of the mesopore, were prepared. The structure and morphology of the modified nanoparticles (PAA-MSNs) were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), and N2 adsorption-desorption analysis, etc. The controlled release of guest molecules was studied by using 5-fluorouracil (5-FU). The drug molecule-incorporated nanoparticles showed different releasing rates under different pH conditions. It is considered that our current materials have the potential as pH-responsive nanocarriers in the field of medical treatment.
Collapse
Affiliation(s)
- Jungwon Kong
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Korea
| | - Sung Soo Park
- Division of Advanced Materials Engineering, Dong-Eui University, Busan 47340, Korea
| | - Chang-Sik Ha
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Korea
| |
Collapse
|
18
|
Kong T, Liu T, Zhang Y, Wang M. Carbon dots with intrinsic theranostic properties for photodynamic therapy of oral squamous cell carcinoma. J Biomater Appl 2022; 37:850-858. [PMID: 35856880 DOI: 10.1177/08853282221116855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Carbon dots (CDs) are one of the carbon-based materials with remarkable optical properties, good water dispersibility and high biocompatibility. However, few studies have emphasized the intrinsic photodynamic and anticancer properties of CDs. Herein, we used CDs as photosensitizers to explore their photodynamic therapy (PDT) effect on oral squamous cell carcinoma (OSCC) cells. The obtained CDs had an effective cellular internalization capacity and possessed good biocompatibility in both CAL-27 and UM1 cells. After irradiation, the CDs showed obvious photodynamic effects on the test cells, which were confirmed by apoptosis analysis. In addition, the CDs exhibited excellent intracellular ROS generation under irradiation, and the subsequent induced cell death may be related to a lysosome-associated pathway.
Collapse
Affiliation(s)
- Tingting Kong
- Department of Stomatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tongjun Liu
- Department of Stomatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yujun Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Mingguo Wang
- Department of Stomatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
19
|
Ornelas-Hernández LF, Garduno-Robles A, Zepeda-Moreno A. A Brief Review of Carbon Dots-Silica Nanoparticles Synthesis and their Potential Use as Biosensing and Theragnostic Applications. NANOSCALE RESEARCH LETTERS 2022; 17:56. [PMID: 35661270 PMCID: PMC9167377 DOI: 10.1186/s11671-022-03691-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Carbon dots (CDs) are carbon nanoparticles with sizes below 10 nm and have attracted attention due to their relatively low toxicity, great biocompatibility, water solubility, facile synthesis, and exceptional photoluminescence properties. Accordingly, CDs have been widely exploited in different sensing and biomedical applications, for example, metal sensing, catalysis, biosensing, bioimaging, drug and gene delivery, and theragnostic applications. Similarly, the well-known properties of silica, such as facile surface functionalization, good biocompatibility, high surface area, and tunable pore volume, have allowed the loading of diverse inorganic and organic moieties and nanoparticles, creating complex hybrid nanostructures that exploit distinct properties (optical, magnetic, metallic, mesoporous, etc.) for sensing, biosensing, bioimaging, diagnosis, and gene and drug delivery. In this context, CDs have been successfully grafted into diverse silica nanostructures through various synthesis methods (e.g., solgel chemistry, inverse microemulsion, surfactant templating, and molecular imprinting technology (MIT)), imparting hybrid nanostructures with multimodal properties for distinct objectives. This review discusses the recently employed synthesis methods for CDs and silica nanoparticles and their typical applications. Then, we focus on combined synthesis techniques of CD-silica nanostructures and their promising biosensing operations. Finally, we overview the most recent potential applications of these materials as innovative smart hybrid nanocarriers and theragnostic agents for the nanomedical field.
Collapse
Affiliation(s)
- Luis Fernando Ornelas-Hernández
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México
| | - Angeles Garduno-Robles
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México
| | - Abraham Zepeda-Moreno
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México.
- Unidad de Biología Molecular, Investigación Y Diagnóstico SA de CV, Hospital San Javier, Pablo Casals 640, Guadalajara, Jalisco, México.
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara, Jalisco, México.
| |
Collapse
|
20
|
Yu X, Wang X, Yamazaki A, Li X. Tumor microenvironment-regulated nanoplatforms for the inhibition of tumor growth and metastasis in chemo-immunotherapy. J Mater Chem B 2022; 10:3637-3647. [PMID: 35439801 DOI: 10.1039/d2tb00337f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemotherapy is one of the major clinical anticancer therapies. However, its efficiency is limited by many factors, including the complex tumor microenvironment (TME). Herein, manganese-doped mesoporous silica nanoparticles (MM NPs) were constructed and applied to regulate the TME and enhance the efficiency of the combination of chemotherapy and immunotherapy (chemo-immunotherapy). Notably, the combination of MM NPs, doxorubicin hydrochloride, and immune checkpoint inhibitors enhanced the synergistic efficiency of chemo-immunotherapy in a bilateral animal model, which simultaneously inhibited the growth of primary tumors and distant untreated tumors. Moreover, Mn-doping endowed MSNs with six new regulatory functions for the TME by inducing glutathione depletion, ROS generation, oxygenation, cell-killing effect, immune activation, and degradation promotion. These results demonstrated that MM NPs with TME regulatory functions can potentially improve the efficiency of chemo-immunotherapy.
Collapse
Affiliation(s)
- Xueping Yu
- Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shin-Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Xiupeng Wang
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Atsushi Yamazaki
- Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shin-Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Xia Li
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
21
|
|
22
|
Mirzaeinia S, Zeinali S, Budisa N, Karbalaei-Heidari HR. Targeted Codelivery of Prodigiosin and Simvastatin Using Smart BioMOF: Functionalization by Recombinant Anti-VEGFR1 scFv. Front Bioeng Biotechnol 2022; 10:866275. [PMID: 35402395 PMCID: PMC8987009 DOI: 10.3389/fbioe.2022.866275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
Biological metal-organic frameworks (BioMOFs) are hybrid compounds in which metal nodes are linked to biocompatible organic ligands and have potential for medical application. Herein, we developed a novel BioMOF modified with an anti-VEGFR1 scFv antibody (D16F7 scFv). Our BioMOF is co-loaded with a combination of an anticancer compound and a lipid-lowering drug to simultaneously suppress the proliferation, growth rate and metastases of cancer cells in cell culture model system. In particular, Prodigiosin (PG) and Simvastatin (SIM) were co-loaded into the newly synthesized Ca-Gly BioMOF nanoparticles coated with maltose and functionalized with a recombinant maltose binding protein-scFv fragment of anti-VEGFR1 (Ca-Gly-Maltose-D16F7). The nanoformulation, termed PG + SIM-NP-D16F7, has been shown to have strong active targeting behavior towards VEGFR1-overexpresing cancer cells. Moreover, the co-delivery of PG and SIM not only effectively inhibits the proliferation of cancer cells, but also prevents their invasion and metastasis. The PG + SIM-NP-D16F7 nanocarrier exhibited stronger cytotoxic and anti-metastatic effects compared to mono-treatment of free drugs and drug-loaded nanoparticles. Smart co-delivery of PG and SIM on BioMOF nanoparticles had synergistic effects on growth inhibition and prevented cancer cell metastasis. The present nanoplatform can be introduced as a promising tool for chemotherapy compared with mono-treatment and/or non-targeted formulations.
Collapse
Affiliation(s)
- Somayyeh Mirzaeinia
- Molecular Biotechnology Lab, Department of Biology, Faculty of Science, Shiraz University, Shiraz, Iran
| | - Sedighe Zeinali
- Department of Nanochemical Engineering, School of Advanced Technologies, Nanotechnology Research Institute, Shiraz University, Shiraz, Iran
| | - Nediljko Budisa
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Hamid Reza Karbalaei-Heidari
- Molecular Biotechnology Lab, Department of Biology, Faculty of Science, Shiraz University, Shiraz, Iran
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
23
|
Shariatzadeh S, Moghimi N, Khalafi F, Shafiee S, Mehrabi M, Ilkhani S, Tosan F, Nakhaei P, Alizadeh A, Varma RS, Taheri M. Metallic Nanoparticles for the Modulation of Tumor Microenvironment; A New Horizon. Front Bioeng Biotechnol 2022; 10:847433. [PMID: 35252155 PMCID: PMC8888840 DOI: 10.3389/fbioe.2022.847433] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/01/2022] [Indexed: 01/15/2023] Open
Abstract
Cancer is one of the most critical human challenges which endangers many people’s lives every year with enormous direct and indirect costs worldwide. Unfortunately, despite many advanced treatments used in cancer clinics today, the treatments are deficiently encumbered with many side effects often encountered by clinicians while deploying general methods such as chemotherapy, radiotherapy, surgery, or a combination thereof. Due to their low clinical efficacy, numerous side effects, higher economic costs, and relatively poor acceptance by patients, researchers are striving to find better alternatives for treating this life-threatening complication. As a result, Metal nanoparticles (Metal NPs) have been developed for nearly 2 decades due to their important therapeutic properties. Nanoparticles are quite close in size to biological molecules and can easily penetrate into the cell, so one of the goals of nanotechnology is to mount molecules and drugs on nanoparticles and transfer them to the cell. These NPs are effective as multifunctional nanoplatforms for cancer treatment. They have an advantage over routine drugs in delivering anticancer drugs to a specific location. However, targeting cancer sites while performing anti-cancer treatment can be effective in improving the disease and reducing its complications. Among these, the usage of these nanoparticles (NPs) in photodynamic therapy and sonodynamic therapy are notable. Herein, this review is aimed at investigating the effect and appliances of Metal NPs in the modulation tumor microenvironment which bodes well for the utilization of vast and emerging nanomaterial resources.
Collapse
Affiliation(s)
- Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negin Moghimi
- Department of Anatomy, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farima Khalafi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Shafiee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Saba Ilkhani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Foad Tosan
- Semnan University of Medical Sciences Dental Student Research Committee, Semnan, Iran
| | - Pooria Nakhaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Alizadeh
- Deputy of Research and Technology, Ministry of Health and Medical Education, Tehran, Iran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Mohammad Taheri
- Skull Base Research Center, Loghmna Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri,
| |
Collapse
|
24
|
Zhang C, Xie H, Zhang Z, Wen B, Cao H, Bai Y, Che Q, Guo J, Su Z. Applications and Biocompatibility of Mesoporous Silica Nanocarriers in the Field of Medicine. Front Pharmacol 2022; 13:829796. [PMID: 35153797 PMCID: PMC8832880 DOI: 10.3389/fphar.2022.829796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/10/2022] [Indexed: 12/29/2022] Open
Abstract
Mesoporous silica nanocarrier (MSN) preparations have a wide range of medical applications. Studying the biocompatibility of MSN is an important part of clinical transformation. Scientists have developed different types of mesoporous silica nanocarriers (MSNs) for different applications to realize the great potential of MSNs in the field of biomedicine, especially in tumor treatment. MSNs have achieved good results in diagnostic bioimaging, tissue engineering, cancer treatment, vaccine development, biomaterial application and diagnostics. MSNs can improve the therapeutic efficiency of drugs, introduce new drug delivery strategies, and provide advantages that traditional drugs lack. It is necessary not only to innovate MSNs but also to comprehensively understand their biological distribution. In this review, we summarize the various medical uses of MSN preparations and explore the factors that affect their distribution and biocompatibility in the body based on metabolism. Designing more reasonable therapeutic nanomedicine is an important task for the further development of the potential clinical applications of MSNs.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongyi Xie
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhengyan Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bingjian Wen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Guangzhou, China
| | - Jiao Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Jiao Guo, ; Zhengquan Su,
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Jiao Guo, ; Zhengquan Su,
| |
Collapse
|
25
|
Resveratrol Encapsulation and Release from Pristine and Functionalized Mesoporous Silica Carriers. Pharmaceutics 2022; 14:pharmaceutics14010203. [PMID: 35057098 PMCID: PMC8780957 DOI: 10.3390/pharmaceutics14010203] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Resveratrol, a naturally occurring polyphenol, has attracted significant attention due to its antioxidant, cardioprotective and anticancer potential. However, its low aqueous solubility limits resveratrol bioavailability and use. In this work, different mesoporous silica matrices were used to encapsulate the polyphenol and to increase its dissolution rate. Pristine MCM-41, MCM-48, SBA-15, SBA-16, FDU-12 and MCF silica were obtained. The influence of SBA-15 functionalized with aminopropyl, isocyanate, phenyl, mercaptopropyl, and propionic acid moieties on resveratrol loading and release profiles was also assessed. The cytotoxic effects were evaluated for mesoporous carriers and resveratrol-loaded samples against human lung cancer (A549), breast cancer (MDA-MB-231) and human skin fibroblast (HSF) cell lines. The effect on apoptosis and cell cycle were assayed for selected resveratrol-loaded carriers. The polyphenol molecules are encapsulated only inside the mesopores, mostly in amorphous state. All materials containing either pristine or functionalized silica carriers increased polyphenol dissolution rate. The influence of the physico-chemical properties of the mesoporous carriers and resveratrol–loaded supports on the kinetic parameters was identified. Resv@SBA-15-SH and Resv@SBA-15-NCO samples exhibited the highest anticancer effect against A549 cells (IC50 values were 26.06 and 36.5 µg/mL, respectively) and against MDA-MB-231 (IC50 values were 35.56 and 19.30 µg/mL, respectively), which highlights their potential use against cancer.
Collapse
|
26
|
Han H, Li S, Zhong Y, Huang Y, Wang K, Jin Q, Ji J, Yao K. Emerging pro-drug and nano-drug strategies for gemcitabine-based cancer therapy. Asian J Pharm Sci 2022; 17:35-52. [PMID: 35261643 PMCID: PMC8888143 DOI: 10.1016/j.ajps.2021.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/19/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Gemcitabine has been extensively applied in treating various solid tumors. Nonetheless, the clinical performance of gemcitabine is severely restricted by its unsatisfactory pharmacokinetic parameters and easy deactivation mainly because of its rapid deamination, deficiencies in deoxycytidine kinase (DCK), and alterations in nucleoside transporter. On this account, repeated injections with a high concentration of gemcitabine are adopted, leading to severe systemic toxicity to healthy cells. Accordingly, it is highly crucial to fabricate efficient gemcitabine delivery systems to obtain improved therapeutic efficacy of gemcitabine. A large number of gemcitabine pro-drugs were synthesized by chemical modification of gemcitabine to improve its biostability and bioavailability. Besides, gemcitabine-loaded nano-drugs were prepared to improve the delivery efficiency. In this review article, we introduced different strategies for improving the therapeutic performance of gemcitabine by the fabrication of pro-drugs and nano-drugs. We hope this review will provide new insight into the rational design of gemcitabine-based delivery strategies for enhanced cancer therapy.
Collapse
Affiliation(s)
- Haijie Han
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Su Li
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yueyang Zhong
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kai Wang
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ke Yao
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Zhejiang Provincial Key Lab of Ophthalmology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
27
|
Ravi Kiran AVVV, Kusuma Kumari G, Krishnamurthy PT, Khaydarov RR. Tumor microenvironment and nanotherapeutics: intruding the tumor fort. Biomater Sci 2021; 9:7667-7704. [PMID: 34673853 DOI: 10.1039/d1bm01127h] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over recent years, advancements in nanomedicine have allowed new approaches to diagnose and treat tumors. Nano drug delivery systems exploit the enhanced permeability and retention (EPR) effect and enter the tumor tissue's interstitial space. However, tumor barriers play a crucial role, and cause inefficient EPR or the homing effect. Mounting evidence supports the hypothesis that the components of the tumor microenvironment, such as the extracellular matrix, and cellular and physiological components collectively or cooperatively hinder entry and distribution of drugs, and therefore, limit the theragnostic applications of cancer nanomedicine. This abnormal tumor microenvironment plays a pivotal role in cancer nanomedicine and was recently recognized as a promising target for improving nano-drug delivery and their therapeutic outcomes. Strategies like passive or active targeting, stimuli-triggered nanocarriers, and the modulation of immune components have shown promising results in achieving anticancer efficacy. The present review focuses on the tumor microenvironment and nanoparticle-based strategies (polymeric, inorganic and organic nanoparticles) for intruding the tumor barrier and improving therapeutic effects.
Collapse
Affiliation(s)
- Ammu V V V Ravi Kiran
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Garikapati Kusuma Kumari
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Renat R Khaydarov
- Institute of Nuclear Physics, Uzbekistan Academy of Sciences, Tashkent, 100047, Uzbekistan.
| |
Collapse
|
28
|
Thangam R, Patel KD, Kang H, Paulmurugan R. Advances in Engineered Polymer Nanoparticle Tracking Platforms towards Cancer Immunotherapy-Current Status and Future Perspectives. Vaccines (Basel) 2021; 9:vaccines9080935. [PMID: 34452059 PMCID: PMC8402739 DOI: 10.3390/vaccines9080935] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022] Open
Abstract
Engineering polymeric nanoparticles for their shape, size, surface chemistry, and functionalization using various targeting molecules has shown improved biomedical applications for nanoparticles. Polymeric nanoparticles have created tremendous therapeutic platforms, particularly applications related to chemo- and immunotherapies in cancer. Recently advancements in immunotherapies have broadened this field in immunology and biomedical engineering, where "immunoengineering" creates solutions to target translational science. In this regard, the nanoengineering field has offered the various techniques necessary to manufacture and assemble multifunctional polymeric nanomaterial systems. These include nanoparticles functionalized using antibodies, small molecule ligands, targeted peptides, proteins, and other novel agents that trigger and encourage biological systems to accept the engineered materials as immune enhancers or as vaccines to elevate therapeutic functions. Strategies to engineer polymeric nanoparticles with therapeutic and targeting molecules can provide solutions for developing immune vaccines via maintaining the receptor storage in T- and B cells. Furthermore, cancer immunotherapy using polymeric nanomaterials can serve as a gold standard approach for treating primary and metastasized tumors. The current status of the limited availability of immuno-therapeutic drugs highlights the importance of polymeric nanomaterial platforms to improve the outcomes via delivering anticancer agents at localized sites, thereby enhancing the host immune response in cancer therapy. This review mainly focuses on the potential scientific enhancements and recent developments in cancer immunotherapies by explicitly discussing the role of polymeric nanocarriers as nano-vaccines. We also briefly discuss the role of multifunctional nanomaterials for their therapeutic impacts on translational clinical applications.
Collapse
Affiliation(s)
- Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea; (K.D.P.); (H.K.)
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
- Correspondence: (R.T.); (R.P.)
| | - Kapil D. Patel
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea; (K.D.P.); (H.K.)
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea; (K.D.P.); (H.K.)
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Korea
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Correspondence: (R.T.); (R.P.)
| |
Collapse
|
29
|
Formulation of DNA Nanocomposites: Towards Functional Materials for Protein Expression. Polymers (Basel) 2021; 13:polym13152395. [PMID: 34371999 PMCID: PMC8347857 DOI: 10.3390/polym13152395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
DNA hydrogels are an emerging class of materials that hold great promise for numerous biotechnological applications, ranging from tissue engineering to targeted drug delivery and cell-free protein synthesis (CFPS). In addition to the molecular programmability of DNA that can be used to instruct biological systems, the formulation of DNA materials, e.g., as bulk hydrogels or microgels, is also relevant for specific applications. To advance the state of knowledge in this research area, the present work explores the scope of a recently developed class of complex DNA nanocomposites, synthesized by RCA polymerization of DNA-functionalized silica nanoparticles (SiNPs) and carbon nanotubes (CNTs). SiNP/CNT-DNA composites were produced as bulk materials and microgels which contained a plasmid with transcribable genetic information for a fluorescent marker protein. Using confocal microscopy and flow cytometry, we found that the materials are very efficiently taken up by various eukaryotic cell lines, which were able to continue dividing while the ingested material was evenly distributed to the daughter cells. However, no expression of the encoded protein occurred within the cells. While the microgels did not induce production of the marker protein even in a CFPS procedure with eukaryotic cell lysate, the bulk composites proved to be efficient templates for CFPS. This work contributes to the understanding of the molecular interactions between DNA composites and the functional cellular machinery. Implications for the use of such materials for CFPS procedures are discussed.
Collapse
|
30
|
Golsanamlou Z, Soleymani J, Abbaspour S, Siahi-Shadbad M, Rahimpour E, Jouyban A. Sensing and bioimaging of lead ions in intracellular cancer cells and biomedical media using amine-functionalized silicon quantum dots fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119747. [PMID: 33819757 DOI: 10.1016/j.saa.2021.119747] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 05/28/2023]
Abstract
A novel amine-functionalized silica quantum dots (SiQDs) fluorescent nanoprobe was developed for sensing of lead concentration in water, plasma and cell lysate. In addition, the developed probe was utilized for bioimaging of intracellular lead ions in HT 29 cancer cells. The amine-functionalized nanoprobe exhibited fluorescence emission at 445 nm under excitation at 355 nm. Upon addition of lead ions, the fluorescence of SiQDs linearly enhanced from 50 ng/mL to 5 µg/mL and 50 ng/mL to 25 µg/mL for plasma and standard media, respectively. The synthesis and fabrication of this probe are simple and serves high sensitivity with a limit of detection down to around 20 ng/mL. In the presence of various molecular and ion interfering, reliable results are obtained, confirming the specificity of the nanoprobe for lead ion detection. Meanwhile, amine-functionalized SiQD-based nanoprobe exhibits excellent cell membrane-permeability and biocompatibility. Thus, this probe is utilized for lead tracing in HT 29 cancer live cells. Fluorescent microscopy results confirmed the attachment of the produced nanomaterials to the HT 29 cancer cells.
Collapse
Affiliation(s)
- Zahra Golsanamlou
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheil Abbaspour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Kashapov R, Ibragimova A, Pavlov R, Gabdrakhmanov D, Kashapova N, Burilova E, Zakharova L, Sinyashin O. Nanocarriers for Biomedicine: From Lipid Formulations to Inorganic and Hybrid Nanoparticles. Int J Mol Sci 2021; 22:7055. [PMID: 34209023 PMCID: PMC8269010 DOI: 10.3390/ijms22137055] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Encapsulation of cargoes in nanocontainers is widely used in different fields to solve the problems of their solubility, homogeneity, stability, protection from unwanted chemical and biological destructive effects, and functional activity improvement. This approach is of special importance in biomedicine, since this makes it possible to reduce the limitations of drug delivery related to the toxicity and side effects of therapeutics, their low bioavailability and biocompatibility. This review highlights current progress in the use of lipid systems to deliver active substances to the human body. Various lipid compositions modified with amphiphilic open-chain and macrocyclic compounds, peptide molecules and alternative target ligands are discussed. Liposome modification also evolves by creating new hybrid structures consisting of organic and inorganic parts. Such nanohybrid platforms include cerasomes, which are considered as alternative nanocarriers allowing to reduce inherent limitations of lipid nanoparticles. Compositions based on mesoporous silica are beginning to acquire no less relevance due to their unique features, such as advanced porous properties, well-proven drug delivery efficiency and their versatility for creating highly efficient nanomaterials. The types of silica nanoparticles, their efficacy in biomedical applications and hybrid inorganic-polymer platforms are the subject of discussion in this review, with current challenges emphasized.
Collapse
Affiliation(s)
- Ruslan Kashapov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, 420088 Kazan, Russia; (A.I.); (R.P.); (D.G.); (N.K.); (E.B.); (L.Z.); (O.S.)
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ibragimova AR, Gabdrakhmanov DR, Valeeva FG, Vasileva LA, Sapunova AS, Voloshina AD, Saifina AF, Gubaidullin AT, Danilaev MP, Egorova SR, Tyryshkina AA, Lamberov AA, Khamatgalimov AR, Sibgatullina GV, Samigullin DV, Petrov KA, Zakharova LY, Sinyashin OG. Mitochondria-targeted mesoporous silica nanoparticles noncovalently modified with triphenylphosphonium cation: Physicochemical characteristics, cytotoxicity and intracellular uptake. Int J Pharm 2021; 604:120776. [PMID: 34098055 DOI: 10.1016/j.ijpharm.2021.120776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022]
Abstract
Novel nanocomposite system based on mesoporous silica nanoparticles (MSNs) noncovalently modified with hexadecyltriphenylphosphonium bromide (HTPPB) has been prepared, thoroughly characterized and used for encapsulation of model cargo Rhodamine B (RhB). The high encapsulation efficacy of this dye by HTPPB-modified mesoporous particles was demonstrated by spectrophotometry and thermography techniques. The bioavailability of MSN@HTPPB was testified. Cytotoxicity assay revealed that a marked suppression of M-HeLa cancer cells (epithelioid carcinoma of the cervix) occurs at concentration of 0.06 μg/mL, while the higher viability of Chang liver normal cell line was preserved in the concentration range of 0.98-0.06 μg/mL. Hemolysis assay demonstrated that only 2% of red blood cells are destructed at ~ 30 μg/mL concentration. This allows us to select the most harmless compositions based on MSN@HTPPB with minimal side effects toward normal cells and recommend them for the development of antitumor formulations. Fluorescence microscopy technique testified satisfactory penetration of HTPPB-modified carriers into M-HeLa cells. Importantly, modification of the MSN with HTPPB is shown to promote efficient delivery to mitochondria. To the best of our knowledge, it is one of the first successful examples of noncovalent surface modification of the MSNs with lipophilic phosphonium cation that improves targeted delivery of loads to mitochondria.
Collapse
Affiliation(s)
- Alsu R Ibragimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan 420088, Russian Federation
| | - Dinar R Gabdrakhmanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan 420088, Russian Federation.
| | - Farida G Valeeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan 420088, Russian Federation
| | - Leysan A Vasileva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan 420088, Russian Federation
| | - Anastasiia S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan 420088, Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan 420088, Russian Federation
| | - Alina F Saifina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan 420088, Russian Federation
| | - Aidar T Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan 420088, Russian Federation
| | - Maxim P Danilaev
- Kazan National Research Technical University Named After A. N. Tupolev - KAI, Kazan 420111, Russian Federation
| | - Svetlana R Egorova
- Kazan (Volga Region) Federal University, Kazan 420008, Russian Federation
| | - Anna A Tyryshkina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan 420088, Russian Federation
| | | | - Ayrat R Khamatgalimov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan 420088, Russian Federation
| | - Gusel V Sibgatullina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan 420111, Russian Federation
| | - Dmitry V Samigullin
- Kazan National Research Technical University Named After A. N. Tupolev - KAI, Kazan 420111, Russian Federation; Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan 420111, Russian Federation
| | - Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan 420088, Russian Federation
| | - Lucia Ya Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan 420088, Russian Federation
| | - Oleg G Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan 420088, Russian Federation
| |
Collapse
|
33
|
Sun B, Zhen X, Jiang X. Development of mesoporous silica-based nanoprobes for optical bioimaging applications. Biomater Sci 2021; 9:3603-3620. [PMID: 34008597 DOI: 10.1039/d1bm00204j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A mesoporous silica nanoparticle (MSN)-based nanoplatform has attracted growing attention in the biomedical field due to the unique characteristics of MSNs including a high surface area, tunable pore sizes, colloidal stability, ease of functionalization, and desirable biocompatibility. Typically, MSNs are designed as nanocarriers for the incorporation of a variety of contrast agents for bioimaging, which can address the intrinsic drawbacks of contrast agents, including poor solubility in water, rapid photobleaching, and low stability. This review summarizes the recent advances in the field of MSN-based nanoprobes for fluorescence imaging and photoacoustic (PA) imaging applications. The approaches for the incorporation of contrast agents into MSN-based nanoplatforms including encapsulating contrast agents within MSNs, covalently conjugating contrast agents on the surface or pores of MSNs, physically absorbing contrast agents in the pores of MSNs, and doping contrast agents in the framework of MSNs are introduced. MSN-based nanoprobes for fluorescence imaging and PA imaging are discussed. The enhanced fluorescence imaging and PA imaging performances of MSN-based nanoprobes relative to the bare contrast agents are introduced and the underlying mechanisms are discussed in detail. Finally, current challenges and perspectives of MSN-based nanoprobes in the bioimaging field are discussed.
Collapse
Affiliation(s)
- Bo Sun
- College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China. and Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
| | - Xu Zhen
- College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China.
| | - Xiqun Jiang
- College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China.
| |
Collapse
|
34
|
Deng YD, Zhang XD, Yang XS, Huang ZL, Wei X, Yang XF, Liao WZ. Subacute toxicity of mesoporous silica nanoparticles to the intestinal tract and the underlying mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124502. [PMID: 33229260 DOI: 10.1016/j.jhazmat.2020.124502] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/22/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
The biological safety of mesoporous silica nanoparticles (MSNs) has gradually attracted attention. However, few studies of their toxicity to the intestine and mechanism are available. In this study, their primary structures were characterized, and their subacute toxicity to mice was investigated. After 2 weeks of intragastric administration of MSNs, they significantly enhanced serum ALP, ALT, AST and TNF-α levels and caused infiltration of inflammatory cells in the spleen and intestines. MSNs induced intestinal oxidative stress and colonic epithelial cell apoptosis in mice. Intestinal epithelial cells exhibited mitochondrial ridge rupture and membrane potential decrease after MSN treatment. Additionally, MSNs increased ROS and NLRP3 levels and inhibited expression of the autophagy proteins LC3-II and Beclin1. MSNs significantly changed the intestinal flora diversity in mice, especially for harmful bacteria, leading to intestinal microecology imbalance. Meanwhile, MSNs influenced the expression of metabolites, which were involved in a range of metabolic pathways, including pyrimidine metabolism, central carbon metabolism in cancer, protein digestion and absorption, mineral absorption, ABC transport and purine metabolism. These results indicated that the subacute toxicity of mesoporous silicon was mainly caused by intestinal damage. Thus, our research provides additional evidence about the safe dosage of MSNs in the clinical and food industries.
Collapse
Affiliation(s)
- Yu-Di Deng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xu-Dong Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xu-Shan Yang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhen-Lie Huang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xi Wei
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xing-Fen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Wen-Zhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
35
|
Wei F, Cui X, Wang Z, Dong C, Li J, Han X. Recoverable peroxidase-like Fe 3O 4@MoS 2-Ag nanozyme with enhanced antibacterial ability. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021. [PMID: 33052192 DOI: 10.1016/j.cej.2020.127245] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Antibacterial agents with enzyme-like properties and bacteria-binding ability have provided an alternative method to efficiently disinfect drug-resistance microorganism. Herein, a Fe3O4@MoS2-Ag nanozyme with defect-rich rough surface was constructed by a simple hydrothermal method and in-situ photodeposition of Ag nanoparticles. The nanozyme exhibited good antibacterial performance against E. coli (~69.4%) by the generated ROS and released Ag+, while the nanozyme could further achieve an excellent synergistic disinfection (~100%) by combining with the near-infrared photothermal property of Fe3O4@MoS2-Ag. The antibacterial mechanism study showed that the antibacterial process was determined by the collaborative work of peroxidase-like activity, photothermal effect and leakage of Ag+. The defect-rich rough surface of MoS2 layers facilitated the capture of bacteria, which enhanced the accurate and rapid attack of •OH and Ag+ to the membrane of E. coli with the assistance of local hyperthermia. This method showed broad-spectrum antibacterial performance against Gram-negative bacteria, Gram-positive bacteria, drug-resistant bacteria and fungal bacteria. Meanwhile, the magnetism of Fe3O4 was used to recycle the nanozyme. This work showed great potential of engineered nanozymes for efficient disinfection treatment.
Collapse
Affiliation(s)
- Feng Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyu Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Changchang Dong
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiadong Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
36
|
Are Biogenic and Pyrogenic Mesoporous SiO 2 Nanoparticles Safe for Normal Cells? Molecules 2021; 26:molecules26051427. [PMID: 33800774 PMCID: PMC7961954 DOI: 10.3390/molecules26051427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/28/2022] Open
Abstract
Silicon dioxide, in the form of nanoparticles, possesses unique physicochemical properties (size, shape, and a large surface to volume ratio). Therefore, it is one of the most promising materials used in biomedicine. In this paper, we compare the biological effects of both mesoporous silica nanoparticles extracted from Urtica dioica L. and pyrogenic material. Both SEM and TEM investigations confirmed the size range of tested nanoparticles was between 6 and 20 nanometers and their amorphous structure. The cytotoxic activity of the compounds and intracellular ROS were determined in relation to cells HMEC-1 and erythrocytes. The cytotoxic effects of SiO2 NPs were determined after exposure to different concentrations and three periods of incubation. The same effects for endothelial cells were tested under the same range of concentrations but after 2 and 24 h of exposure to erythrocytes. The cell viability was measured using spectrophotometric and fluorimetric assays, and the impact of the nanoparticles on the level of intracellular ROS. The obtained results indicated that bioSiO2 NPs, present higher toxicity than pyrogenic NPs and have a higher influence on ROS production. Mesoporous silica nanoparticles show good hemocompatibility but after a 24 h incubation of erythrocytes with silica, the increase in hemolysis process, the decrease in osmotic resistance of red blood cells, and shape of erythrocytes changed were observed.
Collapse
|
37
|
Wu H, Su W, Xu H, Zhang Y, Li Y, Li X, Fan L. Applications of carbon dots on tumour theranostics. VIEW 2021. [DOI: 10.1002/viw.20200061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Hao Wu
- College of Chemistry Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education Beijing Normal University Beijing China
| | - Wen Su
- College of Chemistry Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education Beijing Normal University Beijing China
| | - Huimin Xu
- College of Chemistry Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education Beijing Normal University Beijing China
| | - Yang Zhang
- College of Chemistry Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education Beijing Normal University Beijing China
| | - Yunchao Li
- College of Chemistry Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education Beijing Normal University Beijing China
| | - Xiaohong Li
- College of Chemistry Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education Beijing Normal University Beijing China
| | - Louzhen Fan
- College of Chemistry Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education Beijing Normal University Beijing China
| |
Collapse
|
38
|
Gong J, Wang HX, Lao YH, Hu H, Vatan N, Guo J, Ho TC, Huang D, Li M, Shao D, Leong KW. A Versatile Nonviral Delivery System for Multiplex Gene-Editing in the Liver. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003537. [PMID: 33053221 PMCID: PMC8274731 DOI: 10.1002/adma.202003537] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/25/2020] [Indexed: 05/23/2023]
Abstract
Recent advances in CRISPR present attractive genome-editing toolsets for therapeutic strategies at the genetic level. Here, a liposome-coated mesoporous silica nanoparticle (lipoMSN) is reported as an effective CRISPR delivery system for multiplex gene-editing in the liver. The MSN provides efficient loading of Cas9 plasmid as well as Cas9 protein/guide RNA ribonucleoprotein complex (RNP), while liposome-coating offers improved serum stability and enhanced cell uptake. Hypothesizing that loss-of-function mutation in the lipid-metabolism-related genes pcsk9, apoc3, and angptl3 would improve cardiovascular health by lowering blood cholesterol and triglycerides, the lipoMSN is used to deliver a combination of RNPs targeting these genes. When targeting a single gene, the lipoMSN achieved a 54% gene-editing efficiency, besting the state-of-art Lipofectamine CRISPRMax. For multiplexing, lipoMSN maintained significant gene-editing at each gene target despite reduced dosage of target-specific RNP. By delivering combinations of targeting RNPs in the same nanoparticle, synergistic effects on lipid metabolism are observed in vitro and vivo. These effects, such as a 50% decrease in serum cholesterol after 4 weeks of post-treatment with lipoMSN carrying both pcsk9 and angptl3-targeted RNPs, could not be reached with a single gene-editing approach. Taken together, this lipoMSN represents a versatile platform for the development of efficient, combinatorial gene-editing therapeutics.
Collapse
Affiliation(s)
- Jing Gong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Hong-Xia Wang
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Naazanene Vatan
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jonathan Guo
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Tzu-Chieh Ho
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Dantong Huang
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Mingqiang Li
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Dan Shao
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
- Institute of Life Sciences, School of Biomedical Science and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY, 10032, USA
| |
Collapse
|
39
|
Ma C, Wang Z, Huang X, Lu G, Manners I, Winnik MA, Feng C. Water-Dispersible, Colloidally Stable, Surface-Functionalizable Uniform Fiberlike Micelles Containing a π-Conjugated Oligo(p-phenylenevinylene) Core of Controlled Length. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chen Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Zhiqin Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Ian Manners
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
40
|
Yuan D, Ellis CM, Davis JJ. Mesoporous Silica Nanoparticles in Bioimaging. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3795. [PMID: 32867401 PMCID: PMC7504327 DOI: 10.3390/ma13173795] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
A biomedical contrast agent serves to enhance the visualisation of a specific (potentially targeted) physiological region. In recent years, mesoporous silica nanoparticles (MSNs) have developed as a flexible imaging platform of tuneable size/morphology, abundant surface chemistry, biocompatibility and otherwise useful physiochemical properties. This review discusses MSN structural types and synthetic strategies, as well as methods for surface functionalisation. Recent applications in biomedical imaging are then discussed, with a specific emphasis on magnetic resonance and optical modes together with utility in multimodal imaging.
Collapse
Affiliation(s)
| | | | - Jason J. Davis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK; (D.Y.); (C.M.E.)
| |
Collapse
|
41
|
Hu X, Zhang Y, Ding T, Liu J, Zhao H. Multifunctional Gold Nanoparticles: A Novel Nanomaterial for Various Medical Applications and Biological Activities. Front Bioeng Biotechnol 2020; 8:990. [PMID: 32903562 PMCID: PMC7438450 DOI: 10.3389/fbioe.2020.00990] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/29/2020] [Indexed: 02/05/2023] Open
Abstract
Nanotechnology has become a trending area in science and has made great advances with the development of functional, engineered nanoparticles. Various metal nanoparticles have been widely exploited for a wide range of medical applications. Among them, gold nanoparticles (AuNPs) are widely reported to guide an impressive resurgence and are highly remarkable. AuNPs, with their multiple, unique functional properties, and easy of synthesis, have attracted extensive attention. Their intrinsic features (optics, electronics, and physicochemical characteristics) can be altered by changing the characterization of the nanoparticles, such as shape, size and aspect ratio. They can be applied to a wide range of medical applications, including drug and gene delivery, photothermal therapy (PTT), photodynamic therapy (PDT) and radiation therapy (RT), diagnosis, X-ray imaging, computed tomography (CT) and other biological activities. However, to the best of our knowledge, there is no comprehensive review that summarized the applications of AuNPs in the medical field. Therefore, in this article we systematically review the methods of synthesis, the modification and characterization techniques of AuNPs, medical applications, and some biological activities of AuNPs, to provide a reference for future studies.
Collapse
Affiliation(s)
| | | | | | - Jiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | |
Collapse
|
42
|
Azizi S, Soleymani J, Shadjou N. Synthesis of folic acid functionalized terbium-doped dendritic fibrous nano-silica and Interaction with HEK 293 normal, MDA breast cancer and HT 29 colon cancer cells. J Mol Recognit 2020; 33:e2871. [PMID: 32677119 DOI: 10.1002/jmr.2871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/28/2020] [Accepted: 06/06/2020] [Indexed: 01/25/2023]
Abstract
A novel folic acid functionalized terbium-doped dendritic fibrous nanoparticle (Tb@KCC-1-NH2 -FA) with high surface area was synthesized using a novel hydrothermal protocol. In the present work, we report the fluorescent Tb-doted nanomaterial with emission wavelength at 497 nm which confirms the formation of Tb@KCC-1-NH2 -FA. Synthesized nanoparticles were investigated through transmission electron microscope, field emission scanning electron Microscopy, Fourier transform infrared spectra, Brunauer-Emmett-Teller, energy dispersive X-ray, Zeta potential and particle size distribution values and AFM (Atomic force microscopy) techniques. Specially, our desired nanomaterial which has FA moieties on the surface of Tb@KCC-1-NH2-FA where interact with folate receptor (FR) which there is on the surface of the various cancer cells. For this purpose, fluorescence microscopy images were used to prove the uptake of FA based nanomaterial with FR-positive MDA breast cancer and HT 29 colon cancer cells. Also HEK 293 normal cells as FR-negative cells verified the specificity of our desired nanomaterial toward the FR-positive cells. The cytotoxicity survey of Tb@KCC-1-NH2 -FA was examined by MTT assays against MDA breast cancer, HT 29 colon cancer and HEK 293 Normal cell lines which confirmed their biocompatible nature with any significant cytotoxic effects even for concentration higher than 900 μg/mL which could be used as a non-toxic catalyst or carrier in biological ambient. Hence, Tb@KCC-1-NH2 -FA were synthesized using green and hydrothermal method; the process was simple with good productivity and desired nanocomposite was non-toxic.
Collapse
Affiliation(s)
- Sajjad Azizi
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Shadjou
- Department of Nanotechnology, Faculty of Science and Chemistry, Urmia University, Urmia, Iran
| |
Collapse
|
43
|
Li J, Lee MMS, Li H, Tong C, Huang J, Yan Y, Wang D, Tang BZ. Programmed Self-Assembly of Protein-Coated AIE-Featured Nanoparticles with Dual Imaging and Targeted Therapy to Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29641-29649. [PMID: 32500997 DOI: 10.1021/acsami.0c06204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Modifying different functional moieties into one platform is a conventional strategy for constructing theranostic systems. However, this strategy usually suffers from the unsatisfied efficiency of each individual function. Herein, a programmed self-assembly strategy is presented to fabricate theranostic nanoparticles, which significantly exhibit a dual-modality imaging function involving fluorescence imaging and magnetic resource imaging (MRI), and an efficient targeted therapy to cancer cells. Fluorescent vesicles are first self-assembled by aggregation-induced emission (AIE)-active molecules. Gd3+, serving as an MRI agent, is subsequently bound to the vesicles to provide highly positive charges, which have been realized to be anticancer active. Thereafter, transferrin (Tf) protein is introduced onto the surface of Gd3+ coordinated vesicles, shielding the positive charges and making the nanoparticles nontoxic to cells. With the assistance of Tf protein, the constructed nanoparticles are specifically targeted to cancer cells. Moreover, Tf proteins further peel off from nanoparticles in lysosomes due to their charge reversion, resulting in highly positive charges and heavy toxicity of nanoparticles to kill cancer cells. In the nanoparticles, each of the functional components acts as double-sided adhesive tape to glue the next layer, so that the abilities of functional components are not compromised. This strategy holds great potential for theranostic nanomedicine.
Collapse
Affiliation(s)
- Jie Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518061, P. R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Michelle M S Lee
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Haoxuan Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518061, P. R. China
| | - Chen Tong
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
44
|
Odda AH, Li H, Kumar N, Ullah N, Khan MI, Wang G, Liang K, Liu T, Pan YY, Xu AW. Polydopamine Coated PB-MnO 2 Nanoparticles as an Oxygen Generator Nanosystem for Imaging-Guided Single-NIR-Laser Triggered Synergistic Photodynamic/Photothermal Therapy. Bioconjug Chem 2020; 31:1474-1485. [DOI: doi.org/10.1021/acs.bioconjchem.0c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Affiliation(s)
- Atheer Hameid Odda
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Biochemistry, College of Medicine, Kerbala University, Kerbala 56001, Iraq
| | - Hailiang Li
- Department II of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Naveen Kumar
- Department of Otolaryngology-Head and Neck Surgery, Zhuhai People’s Hospital, Kangning Road, Zhuhai 519000, Guangdong, China
| | - Naseeb Ullah
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Malik Ihsanullah Khan
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Gang Wang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Kuang Liang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tan Liu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yue-Yin Pan
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| | - An-Wu Xu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
45
|
Chakravarty S, Hix JML, Wiewiora KA, Volk MC, Kenyon E, Shuboni-Mulligan DD, Blanco-Fernandez B, Kiupel M, Thomas J, Sempere LF, Shapiro EM. Tantalum oxide nanoparticles as versatile contrast agents for X-ray computed tomography. NANOSCALE 2020; 12:7720-7734. [PMID: 32211669 PMCID: PMC7185737 DOI: 10.1039/d0nr01234c] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Here, we describe the synthesis, characterization and in vitro and in vivo performance of a series of tantalum oxide (TaOx) based nanoparticles (NPs) for computed tomography (CT). Five distinct versions of 9-12 nm diameter silane coated TaOx nanocrystals (NCs) were fabricated by a sol-gel method with varying degrees of hydrophilicity and with or without fluorescence, with the highest reported Ta content to date (78%). Highly hydrophilic NCs were left bare and were evaluated in vivo in mice for micro-CT of full body vasculature, where following intravenous injection, TaOx NCs demonstrate high vascular CT contrast, circulation in blood for ∼3 h, and eventual accumulation in RES organs; and following injection locally in the mammary gland, where the full ductal tree structure can be clearly delineated. Partially hydrophilic NCs were encapsulated within mesoporous silica nanoparticles (MSNPs; TaOx@MSNPs) and hydrophobic NCs were encapsulated within poly(lactic-co-glycolic acid) (PLGA; TaOx@PLGA) NPs, serving as potential CT-imagable drug delivery vehicles. Bolus intramuscular injections of TaOx@PLGA NPs and TaOx@MSNPs to mimic the accumulation of NPs at a tumor site produce high signal enhancement in mice. In vitro studies on bare NCs and formulated NPs demonstrate high cytocompatibility and low dissolution of TaOx. This work solidifies that TaOx-based NPs are versatile contrast agents for CT.
Collapse
Affiliation(s)
- Shatadru Chakravarty
- Department of Radiology, Michigan State University, East Lansing, MI 48823, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Odda AH, Li H, Kumar N, Ullah N, Khan MI, Wang G, Liang K, Liu T, Pan YY, Xu AW. Polydopamine Coated PB-MnO 2 Nanoparticles as an Oxygen Generator Nanosystem for Imaging-Guided Single-NIR-Laser Triggered Synergistic Photodynamic/Photothermal Therapy. Bioconjug Chem 2020; 31:1474-1485. [PMID: 32286806 DOI: 10.1021/acs.bioconjchem.0c00165] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exploring a combined phototherapeutic strategy to overcome the limitations of a single mode therapy and inducing high anticancer efficiency is highly promising for precision cancer nanomedicine. However, a single-wavelength laser activates dual photothermal/photodynamic therapy (PTT/PDT) treatment is still a formidable challenge. Herein, we strategically design and fabricate a multifunctional theranostic nanosystem based on chlorin e6-functionalized polydopamine (PDA) coated prussian blue/manganese dioxide nanoparticles (PB-MnO2@PDA-Ce6 NPs). Interestingly, the obtained PB-MnO2@PDA NPs not only offer an effective delivery system for Ce6 but also provide strong optical absorption in the near-infrared range, endowing high antitumor efficacy of PTT. More importantly, the as-prepared PB-MnO2@PDA-Ce6 nanoagents exhibit an effective oxygen generation, superior reactive oxygen species (ROS), and outstanding photothermal conversion ability to greatly improve PTT and PDT treatments. As a result, both in vitro and in vivo treatments guided by MR imaging on liver cancer cells reveal the complete cell/tumor eradication under a single wavelength of 660 nm laser irradiation, implying the simultaneous synergistic PDT/PTT effects triggered by PB-MnO2@PDA-Ce6 nanoplatform, which are much higher than individual treatment. Taken together, our phototherapeutic nanoagents exhibit an excellent therapeutic performance, which may act as a nanoplatform to find safe and clinically translatable routes to accelerate cancer therapeutics.
Collapse
Affiliation(s)
- Atheer Hameid Odda
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China.,Department of Biochemistry, College of Medicine, Kerbala University, Kerbala 56001, Iraq
| | - Hailiang Li
- Department II of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Naveen Kumar
- Department of Otolaryngology-Head and Neck Surgery, Zhuhai People's Hospital, Kangning Road, Zhuhai 519000, Guangdong, China
| | - Naseeb Ullah
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Malik Ihsanullah Khan
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Gang Wang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Kuang Liang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tan Liu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yue-Yin Pan
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| | - An-Wu Xu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
47
|
Singh RK, Kurian AG, Patel KD, Mandakhbayar N, Lee NH, Knowles JC, Lee JH, Kim HW. Label-Free Fluorescent Mesoporous Bioglass for Drug Delivery, Optical Triple-Mode Imaging, and Photothermal/Photodynamic Synergistic Cancer Therapy. ACS APPLIED BIO MATERIALS 2020; 3:2218-2229. [DOI: 10.1021/acsabm.0c00050] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rajendra K. Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London WC1X8LD, U.K
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Na-Hyun Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Jonathan C. Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London WC1X8LD, U.K
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
48
|
Xu W, Leskinen J, Tick J, Happonen E, Tarvainen T, Lehto VP. Black Mesoporous Silicon as a Contrast Agent for LED-Based 3D Photoacoustic Tomography. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5456-5461. [PMID: 31920072 PMCID: PMC7497618 DOI: 10.1021/acsami.9b18844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/10/2020] [Indexed: 05/24/2023]
Abstract
Mesoporous silicon (PSi) nanoparticles have been widely studied in different biomedical imaging modalities due to their several beneficial material properties. However, they have not been found to be suitable for photoacoustic imaging due to their poor photothermal conversion performance. In the present study, biodegradable black mesoporous silicon (BPSi) nanoparticles with strong light absorbance were developed as superior image contrast agents for photoacoustic tomography (PAT), which was realized with a light-emitting diode (LED) instead of the commonly used laser. LED-based PAT offers the advantages of low cost, compactness, good mobility, and easy operation as compared to the traditional laser-based PAT modality. Nevertheless, the poor imaging sensitivity of the LED-PAT systems has been the main barrier to prevent their wide biomedical application because the LED light has low optical energy. The present study demonstrated that the imaging sensitivity of the LED-PAT system was significantly enhanced with the PEGylated BPSi (PEG-BPSi) nanoparticles. The PEG-BPSi nanoparticles were clearly detectable with a low concentration of 0.05 mg/mL in vitro and with an LED radiation energy of 5.2 μJ. The required concentration of the PEG-BPSi nanoparticles was 10 times lesser than that of the reference gold nanoparticles to reach the corresponding level of the imaging contrast. The ex vivo studies demonstrated that the submillimeter BPSi nanoparticle-based absorbers were distinguishable in chicken breast tissues. The strong contrast provided by the BPSi particles indicated that these particles can be utilized as novel contrast agents in PAT, especially in LED-based systems with low light intensity.
Collapse
|
49
|
Ahmadpoor F, Delavari H. H, Shojaosadati SA. Porous versus Dense ‐ Effect of Silica Coating on Contrast Enhancement of Iron Carbide Nanoparticles in T
2
‐Weighted Magnetic Resonance Imaging. ChemistrySelect 2020. [DOI: 10.1002/slct.201902548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Fatemeh Ahmadpoor
- Department of Materials EngineeringTarbiat Modares University, Tehran Iran
| | - Hamid Delavari H.
- Department of Materials EngineeringTarbiat Modares University, Tehran Iran
| | | |
Collapse
|
50
|
Cui Y, Deng R, Li X, Wang X, Jia Q, Bertrand E, Meguellati K, Yang YW. Temperature-sensitive polypeptide brushes-coated mesoporous silica nanoparticles for dual-responsive drug release. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|