1
|
Bello AK, Abdullahi MT, Tahir MN, Al-Saadi AA. SERS activity of silver nanoparticles and silver-modified 2D graphitic carbon nitride towards ciprofloxacin drug. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125237. [PMID: 39378830 DOI: 10.1016/j.saa.2024.125237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Herein, silver nanoparticles (AgNPs) and silver-loaded graphitic carbon nitride (Ag@g-C3N4) nanocomposites have been synthesized and used as an effective surface-enhanced Raman scattering (SERS) substrates for the detection of low concentrations (10-14 M) of ciprofloxacin (CIP), a commonly bioactive medication used to treat bacterial illnesses. A combined approach of vibrational spectroscopy and density functional theory (DFT) has been developed to understand the possible modes of analyte (CIP) and SERS substrate (AgNPs and Ag@g-C3N4) interactions. Furthermore, it has been noticed that the behavior of drug molecules in terms of SERS response and energetics of interaction changed significantly when interacted with the noble metal AgNPs decorated onto the g-C3N4 framework in comparison to only AgNPs as substrate. The most prominent interaction scenario between AgNPs and CIP is likely to be through the -NH moiety of drug molecule with an interaction energy of -306 kcal/mol. Whereas, the CIP molecules adsorbed onto Ag@g-C3N4 nanocomposite were more flexible with interaction energy of -107 kcal/mol, suggesting a greater association of analyte with the skeletal modes of substrate leading to Raman enhancements in the low wavenumber region i.e. below 600 cm-1. Hence, the Ag@g-C3N4 nanocomposite-based SERS substrates investigated served two distinct spectral ranges, making them complementary of each other in terms of SERS detection of CIP. The characteristics of the computed frontier molecular orbitals indicated a pronounced amount of charge transfer between the drug and the substrate, highlighting the significance of the chemical mechanism of the overall process. These results represent a successful approach to have an extended spectral range that covers lower wavenumber shifts by applying simple and meaningful modifications to the normally utilized noble metal-based nanoparticles, which can lead to more effective and reliable detection of bioactive drugs.
Collapse
Affiliation(s)
- Abdulraheem K Bello
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Mohammed T Abdullahi
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Muhammad N Tahir
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Abdulaziz A Al-Saadi
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia; Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
2
|
Ahmad N, Kumar A, Rachchh N, Jyothi S R, Bhanot D, Kumari B, Kumar A, Abosaoda MK. Developing a highly sensitive electrochemical sensor for malathion detection based on green g-C 3N 4@LiCoO 2 nanocomposites. RSC Adv 2025; 15:3378-3388. [PMID: 39902103 PMCID: PMC11788889 DOI: 10.1039/d4ra08023h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
Nowadays, developing pesticide-free agriculture is highly demanded by society. The development of electrochemical sensors to monitor and control pesticides is an effective step toward this desired goal. The current research has faced this issue by modifying of glassy carbon electrodes (GCEs) with green g-C3N4@LiCoO2 nanocomposites to probe malathion, an organophosphate pesticide. The g-C3N4@LiCoO2 modified GCE showed higher current than the net GCE, as a result of improved electrocatalytic performance of the modified GCE to oxidize malathion. Increased malathion concentration enhanced the malathion oxidation anodic peak current at +410 mV caused by the g-C3N4@LiCoO2 modified GCE. The developed probe showed an excellent linear response for malathion detection in the 5-120 nM (R 2 = 0.994) range and recorded a limit of detection of 4.38 nM. Besides, the modified GCE reveals considerable stability and reproducibility, which offers a cost-effective, sensitive, and selective electrode for malathion probing.
Collapse
Affiliation(s)
- Nafis Ahmad
- Department of Physics, College of Science, King Khalid University Abha 61413 Saudi Arabia
| | - Anjan Kumar
- Department of Electronics and Communication Engineering, GLA University Mathura-281406 India
| | - Nikunj Rachchh
- Marwadi University Research Center, Department of Mechanical Engineering, Faculty of Engineering & Technology, Marwadi University Rajkot-360003 Gujarat India
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University) Bangalore Karnataka India
| | - Deepak Bhanot
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura 140401 Punjab India
| | - Bharti Kumari
- NIMS School of Petroleum & Chemical Engineering, NIMS University Rajasthan Jaipur India
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin Ekaterinburg 620002 Russia
- Department of Mechanical Engineering, Karpagam Academy of Higher Education Coimbatore 641021 India
| | - Munthar Kadhim Abosaoda
- College of Pharmacy, The Islamic University Najaf Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah Al Diwaniyah Iraq
| |
Collapse
|
3
|
Kang L, Wang Y, Du R, Zhang J, Kang C. Construction of S/g-C 3N 4@β-Bi 2O 3 heterojunction and its photocatalytic degradation of toluene in the gas phase. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55836-55849. [PMID: 39245673 DOI: 10.1007/s11356-024-34840-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024]
Abstract
In this paper, a modification of g-C3N4 was carried out by combining non-metal doping with the construction of heterojunctions, and a type II heterojunction composite, S/g-C3N4@β-Bi2O3, was prepared. The phase structure, morphology, elemental composition, valence band structure, and light absorption performance of the photocatalyst were analyzed using characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The performance of the composite photocatalyst in the photocatalytic degradation of gaseous toluene, one of the typical volatile organic compounds (VOCs), under simulated solar light was studied. The effects of preparation conditions, toluene concentration, and recycling on the photocatalytic performance of the composite photocatalyst were investigated. The results show that under the optimal preparation conditions, S/g-C3N4@β-Bi2O3 achieved a degradation efficiency of 74.0% for 5 ppm toluene after 5 h of light irradiation. Although the degradation efficiency decreased to 61.2% after five cycles, it maintained 83% of its initial activity, indicating good stability of the composite photocatalyst. Free radical quenching experiments demonstrated that h+ was the main active species in the photocatalytic degradation of toluene, followed by ·O2-. Based on all experimental results, the migration law of photo-generated charges was analyzed, and a possible photocatalytic mechanism was proposed. In this study, a new material was obtained for the photocatalytic removal of VOCs by improving the photocatalytic properties of g-C3N4.
Collapse
Affiliation(s)
- Lu Kang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China
| | - Ying Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Ruihan Du
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Jinpu Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Chunli Kang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China.
| |
Collapse
|
4
|
Shanthini K, Manivannan V, Govindan R, Praburaman L, Al-Humaid LA, Oh TH, Vignesh S. Facile construction of efficient WO 3/V 2O 5 coupled g-C 3N 4 ternary composite photocatalyst for environmental emergent aqueous pollutant degradation: Stability, degradation reaction pathway and effect of pH evaluation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:376. [PMID: 39167294 DOI: 10.1007/s10653-024-02152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
Currently, one of the primary challenges that human society must overcome is the task of decreasing the amount of energy used and the adverse effects that it has on the environment. The daily increase in liquid waste (comprising organic pollutants) is a direct result of the creation and expansion of new companies, causing significant environmental disruption. Water contamination is attributed to several industries such as textile, chemical, poultry, dairy, and pharmaceutical. In this study, we present the successful degradation of methylene blue dye using g-C3N4 (GCN) mixed with WO3 and V2O5 composites (GCN/WO3/V2O5 ternary composite) as a photocatalyst, prepared by a simple mechanochemistry method. The GCN/WO3/V2O5 ternary composite revealed a notable enhancement in photocatalytic performance, achieving around 97% degradation of aqueous methylene blue (MB). This performance surpasses that of the individual photocatalysts, namely pure GCN, GCN/WO3, and GCN/V2O5 composites. Furthermore, the GCN/WO3/V2O5 ternary composite exhibited exceptional stability even after undergoing five consecutive cycles. The exceptional photocatalytic activity of the GCN/WO3/V2O5 ternary composite can be ascribed to the synergistic effect of metal-free GCN and metal oxides, resulting in the alteration of the band gap and suppression of charge recombination in the ternary photocatalyst. This study offers a better platform for understanding the characteristics of materials and their photocatalytic performance under visible light conditions.
Collapse
Affiliation(s)
- K Shanthini
- Department of Chemistry, Thiruvalluvar Government Arts College, Rasipuram, 637401, India
- Department of Chemistry, Padmavani Arts & Science College for Women, Salem, 636011, India
| | - V Manivannan
- Department of Chemistry, Thiruvalluvar Government Arts College, Rasipuram, 637401, India.
| | - R Govindan
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602105, India.
| | - Loganathan Praburaman
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
| | - Latifah A Al-Humaid
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Shanmugam Vignesh
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
5
|
Ruan X, Li S, Huang C, Zheng W, Cui X, Ravi SK. Catalyzing Artificial Photosynthesis with TiO 2 Heterostructures and Hybrids: Emerging Trends in a Classical yet Contemporary Photocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305285. [PMID: 37818725 DOI: 10.1002/adma.202305285] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Titanium dioxide (TiO2) stands out as a versatile transition-metal oxide with applications ranging from energy conversion/storage and environmental remediation to sensors and optoelectronics. While extensively researched for these emerging applications, TiO2 has also achieved commercial success in various fields including paints, inks, pharmaceuticals, food additives, and advanced medicine. Thanks to the tunability of their structural, morphological, optical, and electronic characteristics, TiO2 nanomaterials are among the most researched engineering materials. Besides these inherent advantages, the low cost, low toxicity, and biocompatibility of TiO2 nanomaterials position them as a sustainable choice of functional materials for energy conversion. Although TiO2 is a classical photocatalyst well-known for its structural stability and high surface activity, TiO2-based photocatalysis is still an active area of research particularly in the context of catalyzing artificial photosynthesis. This review provides a comprehensive overview of the latest developments and emerging trends in TiO2 heterostructures and hybrids for artificial photosynthesis. It begins by discussing the common synthesis methods for TiO2 nanomaterials, including hydrothermal synthesis and sol-gel synthesis. It then delves into TiO2 nanomaterials and their photocatalytic mechanisms, highlighting the key advancements that have been made in recent years. The strategies to enhance the photocatalytic efficiency of TiO2, including surface modification, doping modulation, heterojunction construction, and synergy of composite materials, with a specific emphasis on their applications in artificial photosynthesis, are discussed. TiO2-based heterostructures and hybrids present exciting opportunities for catalyzing solar fuel production, organic degradation, and CO2 reduction via artificial photosynthesis. This review offers an overview of the latest trends and advancements, while also highlighting the ongoing challenges and prospects for future developments in this classical yet rapidly evolving field.
Collapse
Affiliation(s)
- Xiaowen Ruan
- School of Energy and Environment, City Universitsy of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Shijie Li
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Chengxiang Huang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Weitao Zheng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Sai Kishore Ravi
- School of Energy and Environment, City Universitsy of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
6
|
Zhao X, Long M, Li Z, Zhang Z. A two dimensional Co(OH) 2 catalytic gravity-driven membrane for water purification: a green and facile fabrication strategy and excellent water decontamination performance. MATERIALS HORIZONS 2024; 11:1435-1447. [PMID: 38189551 DOI: 10.1039/d3mh01924a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Cobalt-based materials are reported to be the most efficient catalysts in sulfate radical advanced oxidation processes (SR-AOPs). A green and facile method was developed in this work to prepare uniform Co(OH)2 hexagonal nanosheets, which was void of any organic solvents via mere ambient temperature stirring. The obtained nanosheets were assembled into a catalytic gravity-driven membrane, through which the removal efficiency of a typical pharmaceutical contaminant, ranitidine (RNTD), could reach ∼100% within 20 min. Meanwhile, the catalytic membrane also demonstrated effective removal performance towards various pollutants. In order to augment the long-term stability of catalytic membranes, Co(OH)2/rGO composites were fabricated using the same strategy, and a Co(OH)2/rGO catalytic membrane was prepared correspondingly. The Co(OH)2/rGO membrane could maintain a ∼100% removal of RNTD over a constant reaction period lasting for up to 165 hours, which was approximately 11 times that of the sole Co(OH)2 membrane (15 h). Analysis of element chemical states, metal ion concentration in filtrates, and quenching experiments suggested that the combination with rGO could promote the electron transfer to accelerate the Co(II) regeneration, restrain the cobalt dissolution to alleviate the active site loss, and contribute to the production of 1O2via synergistic effects of oxygen-containing groups in rGO. Toxicity assessment was performed on RNTD and its degradation intermediates to confirm the reduction in ecotoxicity of the treated feed. Overall, this work not only offered guidance for the application of nanosheets in AOP membranes, but also had implications for the environmentally-friendly preparation protocol to obtain functional metal hydroxides.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Membrane & Nanotechnology-Enabled Water Treatment Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Mei Long
- Membrane & Nanotechnology-Enabled Water Treatment Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhixing Li
- Membrane & Nanotechnology-Enabled Water Treatment Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenghua Zhang
- Membrane & Nanotechnology-Enabled Water Treatment Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Wang L, Zhu W. Organic Donor-Acceptor Systems for Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307227. [PMID: 38145342 PMCID: PMC10933655 DOI: 10.1002/advs.202307227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/06/2023] [Indexed: 12/26/2023]
Abstract
Organic semiconductor materials are considered to be promising photocatalysts due to their excellent light absorption by chromophores, easy molecular structure tuning, and solution-processable properties. In particular, donor-acceptor (D-A) type organic photocatalytic materials synthesized by introducing D and A units intra- or intermolecularly, have made great progress in photocatalytic studies. More and more studies have demonstrated that the D-A type organic photocatalytic materials combine effective carrier separation, tunable bandgap, and sensitive optoelectronic response, and are considered to be an effective strategy for enhancing light absorption, improving exciton dissociation, and optimizing carrier transport. This review provides a thorough overview of D-A strategies aimed at optimizing the photocatalytic performance of organic semiconductors. Initially, essential methods for modifying organic photocatalytic materials, such as interface engineering, crystal engineering, and interaction modulation, are briefly discussed. Subsequently, the review delves into various organic photocatalytic materials based on intramolecular and intermolecular D-A interactions, encompassing small molecules, conjugated polymers, crystalline polymers, supramolecules, and organic heterojunctions. Meanwhile, the energy band structures, exciton dynamics, and redox-active sites of D-A type organic photocatalytic materials under different bonding modes are discussed. Finally, the review highlights the advanced applications of organic photocatalystsand outlines prospective challenges and opportunities.
Collapse
Affiliation(s)
- Lingsong Wang
- Key Laboratory of Organic Integrated CircuitsMinistry of EducationTianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of ChemistrySchool of ScienceTianjin UniversityTianjin300072China
| | - Weigang Zhu
- Key Laboratory of Organic Integrated CircuitsMinistry of EducationTianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of ChemistrySchool of ScienceTianjin UniversityTianjin300072China
| |
Collapse
|
8
|
Yu Y, Li W, Yang H, Wei Q, Hou L, Wu Z, Jiang Y, Lv C, Huang Y, Tang J. 4-Methyl-5-vinyl thiazole modified Ni-MOF/g-C 3N 4/CdS composites for efficient photocatalytic hydrogen evolution without precious metal cocatalysts. J Colloid Interface Sci 2023; 651:221-234. [PMID: 37542897 DOI: 10.1016/j.jcis.2023.07.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
The construction of heterojunction systems is an effective way to efficiently generate hydrogen by water photolysis. In this work, Ni-MOF (trimesic acid, (BTC)) and g-C3N4 (denoted as CN) were combined, and then Ni-MOF/CN was modified by 4-Methyl-5-vinyl thiazole (denoted as MVTh). Finally, CdS was loaded on the surface of Ni-MOF/CN/MVTh to prepare the photocatalyst Ni-MOF/g-C3N4/MVTh/CdS (denoted as Ni/CN/M/Cd) with a triangular closed-loop path heterojunction for the first time. As a photocatalyst without precious metal cocatalysts, Ni/CN/M/Cd displayed high H2 evolution (17.844 mmol·g-1·h-1) under an optimum CdS loading of 40 wt%. The H2 evolution rate was approximately 79 times that of Ni-MOF/CN and exceeded those of almost all catalysts based on MOF/CN in the literature. The triangular closed-loop heterojunction formed between Ni-MOF, g-C3N4, and CdS could realize the directional migration of photocarriers and significantly diminished the transfer resistance of carriers. The Ni2+ in Ni-MOF provided many cocatalytic sites for H2 evolution via g-C3N4 and CdS. Furthermore, charge carrier separation in Ni-MOF/CN/CdS improved after the innovative addition of MVTh. This study provides a reference for the construction of a closed-loop heterojunction system without precious metal cocatalysts.
Collapse
Affiliation(s)
- Yongzhuo Yu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics and Telecommunication Engineering, School of Electronic and Information Engineering, South China Normal University, Guangzhou 510006, PR China
| | - Wei Li
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics and Telecommunication Engineering, School of Electronic and Information Engineering, South China Normal University, Guangzhou 510006, PR China.
| | - Huixing Yang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics and Telecommunication Engineering, School of Electronic and Information Engineering, South China Normal University, Guangzhou 510006, PR China
| | - Qiuming Wei
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics and Telecommunication Engineering, School of Electronic and Information Engineering, South China Normal University, Guangzhou 510006, PR China
| | - Linlin Hou
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics and Telecommunication Engineering, School of Electronic and Information Engineering, South China Normal University, Guangzhou 510006, PR China
| | - Zhiliang Wu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics and Telecommunication Engineering, School of Electronic and Information Engineering, South China Normal University, Guangzhou 510006, PR China
| | - Yangyang Jiang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics and Telecommunication Engineering, School of Electronic and Information Engineering, South China Normal University, Guangzhou 510006, PR China
| | - Chaoyu Lv
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics and Telecommunication Engineering, School of Electronic and Information Engineering, South China Normal University, Guangzhou 510006, PR China
| | - Yuxin Huang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics and Telecommunication Engineering, School of Electronic and Information Engineering, South China Normal University, Guangzhou 510006, PR China
| | - Jiyu Tang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics and Telecommunication Engineering, School of Electronic and Information Engineering, South China Normal University, Guangzhou 510006, PR China
| |
Collapse
|
9
|
Asim M, Khan A. Fabrication of a Novel Co/CoO@Fe 2 V 4 O 13 Composite Catalyst as a Photoanode for Enhanced Photoelectrochemical Water Oxidation. Chem Asian J 2023; 18:e202300537. [PMID: 37721194 DOI: 10.1002/asia.202300537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Herein, the synthesis of a novel composite photocatalyst, Co/CoO@Fe2 V4 O13 , is reported by the deposition of CoO metal oxide nanoparticles on the surface of Fe2 V4 O13 bimetallic oxide. The synthesised photocatalyst exhibited a band gap of roughly 1.8 eV, rendering it responsive to the complete visible light spectrum of the sun, thereby enabling optimal absorption of solar radiation. The Co/CoO@Fe2 V4 O13 composites demonstrated an enhanced photoelectrochemical water oxidation capacity compared to pristine Fe2 V4 O13 when exposed to visible light. The enhanced performance is attributed primarily to the creation of a p-n junction at the interface of Fe2 V4 O13 and Co/CoO, as well as the Z-scheme charge transfer mechanism, which aids in the separation and transfer of photogenerated charge carriers. Light absorption by Co nanoparticles via plasmonic excitation and intra- and inter-band transitions in the composite structure is also likely, resulting in increased composite efficiency. Our findings indicate that Co/CoO@Fe2 V4 O13 composites show promising performance for solar water splitting applications and offer new perspectives for designing effective photocatalysts.
Collapse
Affiliation(s)
- Mohd Asim
- Department of Chemistry, Faculty of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Abuzar Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
10
|
Basyach P, Deb J, Sk S, Pal U, Gogoi M, Sastry GN, Saikia L. Controlled Ni doping on a g-C 3N 4/CuWO 4 photocatalyst for improved hydrogen evolution. Phys Chem Chem Phys 2023; 25:23033-23046. [PMID: 37599612 DOI: 10.1039/d3cp03194b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The development of a low-cost, environment-friendly and suitable semiconductor-based heterogeneous photocatalyst poses a great challenge towards extremely competent and substantial hydrogen evolution. A series of environment-friendly and proficient S-scheme Ni-doped CuWO4 nanocrystals supported on g-C3N4 nanocomposites (Ni-CuWO4/g-C3N4) were constructed to ameliorate the photocatalytic efficacy of pure g-C3N4 and Ni-CuWO4 and their activity in H2 generation through photocatalytic water splitting was evaluated. The Ni-CuWO4 nanoparticles were synthesized through doping of Ni2+ on wolframite CuWO4 crystals via the chemical precipitation method. An elevated hydrogen generation rate of 1980 μmol h-1 g-1 was accomplished over the 0.2Ni-CuWO4/g-C3N4 (0.2NCWCN) nanocomposite with an apparent quantum yield (AQY) of 6.49% upon visible light illumination (λ ≥ 420 nm), which is evidently 7.1 and 17.2 fold higher than those produced from pristine g-C3N4 and Ni-CuWO4. The substantial enhancement in the photocatalytic behaviour is primarily because of the large surface area, limited band gap energy of the semiconductor composite and magnified light harvesting capability towards visible light through the inclusion of g-C3N4, thus diminishing the reassembly rate of photoinduced excitons. Further, density functional theory (DFT) calculations were performed to investigate the structural, electronic and optical properties of the composite. Theoretical results confirmed that the Ni-CuWO4/g-C3N4 composite is a potential candidate for visible-light-driven photocatalysts and corroborated with the experimental findings. This research provides a meaningful and appealing perspective on developing cost-effective and very proficient two-dimensional (2D) g-C3N4-based materials for photocatalytic H2 production to accelerate the separation and transmission process of radiative charge carriers.
Collapse
Affiliation(s)
- Purashri Basyach
- Advanced Materials Group, Materials Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India.
- Academy of Scientific and Innovative Research, Ghaziabad, UP, India
| | - Jyotirmoy Deb
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
| | - Saddam Sk
- Academy of Scientific and Innovative Research, Ghaziabad, UP, India
- Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Ujjwal Pal
- Academy of Scientific and Innovative Research, Ghaziabad, UP, India
- Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Madhulekha Gogoi
- Advanced Materials Group, Materials Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India.
| | - G Narahari Sastry
- Academy of Scientific and Innovative Research, Ghaziabad, UP, India
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
| | - Lakshi Saikia
- Advanced Materials Group, Materials Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India.
- Academy of Scientific and Innovative Research, Ghaziabad, UP, India
| |
Collapse
|
11
|
Xia Y, Li G, Zhu Y, He Q, Hu C. Facile preparation of metal-free graphitic-like carbon nitride/graphene oxide composite for simultaneous determination of uric acid and dopamine. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
12
|
Lu C, Cao D, Zhang H, Gao L, Shi W, Guo F, Zhou Y, Liu J. Boosted Tetracycline and Cr(VI) Simultaneous Cleanup over Z-Scheme WO 3/CoO p-n Heterojunction with 0D/3D Structure under Visible Light. Molecules 2023; 28:4727. [PMID: 37375282 DOI: 10.3390/molecules28124727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, a Z-Scheme WO3/CoO p-n heterojunction with a 0D/3D structure was designed and prepared via a simple solvothermal approach to remove the combined pollution of tetracycline and heavy metal Cr(VI) in water. The 0D WO3 nanoparticles adhered to the surface of the 3D octahedral CoO to facilitate the construction of Z-scheme p-n heterojunctions, which could avoid the deactivation of the monomeric material due to agglomeration, extend the optical response range, and separate the photogenerated electronhole pairs. The degradation efficiency of mixed pollutants after a 70 min reaction was significantly higher than that of monomeric TC and Cr(VI). Among them, a 70% WO3/CoO heterojunction had the best photocatalytic degradation effect on the mixture of TC and Cr(VI) pollutants, and the removing rate was 95.35% and 70.2%, respectively. Meanwhile, after five cycles, the removal rate of the mixed pollutants by the 70% WO3/CoO remained almost unchanged, indicating that the Z-scheme WO3/CoO p-n heterojunction has good stability. In addition, for an active component capture experiment, ESR and LC-MS were employed to reveal the possible Z-scheme pathway under the built-in electric field of the p-n heterojunction and photocatalytic removing mechanism of TC and Cr(VI). These results offer a promising idea for the treatment of the combined pollution of antibiotics and heavy metals by a Z-scheme WO3/CoO p-n heterojunction photocatalyst, and have broad application prospects: boosted tetracycline and Cr(VI) simultaneous cleanup over a Z-scheme WO3/CoO p-n heterojunction with a 0D/3D structure under visible light.
Collapse
Affiliation(s)
- Changyu Lu
- Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, School of Water Resource and Environment, Hebei Geo University, Shijiazhuang 050031, China
| | - Delu Cao
- Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, School of Water Resource and Environment, Hebei Geo University, Shijiazhuang 050031, China
| | - Hefan Zhang
- Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, School of Water Resource and Environment, Hebei Geo University, Shijiazhuang 050031, China
| | - Luning Gao
- Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, School of Water Resource and Environment, Hebei Geo University, Shijiazhuang 050031, China
| | - Weilong Shi
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Feng Guo
- Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, School of Water Resource and Environment, Hebei Geo University, Shijiazhuang 050031, China
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Yahong Zhou
- Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, School of Water Resource and Environment, Hebei Geo University, Shijiazhuang 050031, China
| | - Jiahao Liu
- Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, School of Water Resource and Environment, Hebei Geo University, Shijiazhuang 050031, China
| |
Collapse
|
13
|
Liu X, Ren A, Liu A, Jiang X, Zhang L. Simultaneous photocatalytic tetracycline oxidation and Cr(VI) reduction by a 0D/3D hierarchical Bi 2WO 6@CoO Z-scheme heterostructure: In situ interfacial engineering and charge regulation mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118134. [PMID: 37196619 DOI: 10.1016/j.jenvman.2023.118134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Constructing visible-light driven semiconductor heterojunction with high redox bifunctional characteristics is a promising approach to deal with the increasingly serious environmental pollution problems, especially the coexistence of organic/heavy metal pollutants. Herein, a simple in-situ interfacial engineering strategy for the fabrication of 0D/3D hierarchical Bi2WO6@CoO (BWO) heterojunction with an intimate contact interface was successfully developed. The superior photocatalytic property was reflected not only in individual tetracycline hydrochloride (TCH) oxidation or Cr(VI) reduction, but also in their simultaneous redox reaction, which could be predominantly attributed to the outstanding light-harvesting, high carrier separation efficiency and enough redox potentials. In the simultaneous redox system, TCH acted as a hole-scavenger for Cr(VI) reduction, replacing the additional reagent. Interestingly, superoxide radical (·O2-) played the role as oxidants in TCH oxidation but as electron transfer media in Cr(VI) reduction. On account of the interlaced energy band and tight interfacial contact, a direct Z-scheme charge transfer model was established, which was verified by the active species trapping experiments, spectroscopy, and electrochemical tests. This work provided a promising strategy for the design/fabrication of highly efficient direct Z-scheme photocatalysts in environmental remediation.
Collapse
Affiliation(s)
- Xueyan Liu
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Aina Ren
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Anqi Liu
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Xiaoqing Jiang
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Lei Zhang
- College of Chemistry, Liaoning University, Shenyang, 110036, China.
| |
Collapse
|
14
|
Xu J, Liao H, Zhang C. ZnSnO 3 based gas sensors for pyridine volatile marker detection in rice aging during storage. Food Chem 2023; 408:135204. [PMID: 36527920 DOI: 10.1016/j.foodchem.2022.135204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
This study reports the development of ZnSnO3 based gas sensors for pyridine detection in rice aging. Pyridine is one of heterocyclic markers formed via Maillard reaction and lipid oxidation. Herein, graphitic carbon nitride (g-C3N4) decorated ZnSnO3 microstructures were obtained through a template-free approach. And the sensing results reveal that 5 wt%g-C3N4 decorated ZnSnO3 exhibited a high sensitivity (47.9), a short response/recovery time (14/120 s) and a low detection limit (0.45 ppm), which is due to the catalysis of g-C3N4 nanosheets, the decorated microstructure and the formation of heterojunctions. Meanwhile, the practical experiment demonstrates that the sensitivity towards volatiles generated from Japonica rice aging is 48.7, which is around 4 and 2.5 times higher than those of Indica rice and Polished Glutinous rice, indicating that the sensor has anticipated application in the development of a high-performance E-nose for the quality inspection of rice and other products.
Collapse
Affiliation(s)
- Jinyong Xu
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, Jiangsu Province PR China
| | - Hanlin Liao
- ICB UMR 6303, CNRS, Univ. Bourgogne Franche-Comté, UTBM, 90010 Belfort, France
| | - Chao Zhang
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, Jiangsu Province PR China.
| |
Collapse
|
15
|
Cao D, Wang X, Zhang H, Yang D, Yin Z, Liu Z, Lu C, Guo F. Rational Design of Monolithic g-C 3N 4 with Floating Network Porous-like Sponge Monolithic Structure for Boosting Photocatalytic Degradation of Tetracycline under Simulated and Natural Sunlight Illumination. Molecules 2023; 28:molecules28103989. [PMID: 37241732 DOI: 10.3390/molecules28103989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
In order to solve the problems of powder g-C3N4 catalysts being difficult to recycle and prone to secondary pollution, floating network porous-like sponge monolithic structure g-C3N4 (FSCN) was prepared with a one-step thermal condensation method using melamine sponge, urea, and melamine as raw materials. The phase composition, morphology, size, and chemical elements of the FSCN were studied using XRD, SEM, XPS, and UV-visible spectrophotometry. Under simulated sunlight, the removal rate for 40 mg·L-1 tetracycline (TC) by FSCN reached 76%, which was 1.2 times that of powder g-C3N4. Under natural sunlight illumination, the TC removal rate of FSCN was 70.4%, which was only 5.6% lower than that of a xenon lamp. In addition, after three repeated uses, the removal rates of the FSCN and powder g-C3N4 samples decreased by 1.7% and 2.9%, respectively, indicating that FSCN had better stability and reusability. The excellent photocatalytic activity of FSCN benefits from its three-dimensional-network sponge-like structure and outstanding light absorption properties. Finally, a possible degradation mechanism for the FSCN photocatalyst was proposed. This photocatalyst can be used as a floating catalyst for the treatment of antibiotics and other types of water pollution, providing ideas for the photocatalytic degradation of pollutants in practical applications.
Collapse
Affiliation(s)
- Delu Cao
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Geo University, Shijiazhuang 050031, China
| | - Xueying Wang
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Geo University, Shijiazhuang 050031, China
| | - Hefan Zhang
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Geo University, Shijiazhuang 050031, China
| | - Daiqiong Yang
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Geo University, Shijiazhuang 050031, China
| | - Ze Yin
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Geo University, Shijiazhuang 050031, China
| | - Zhuo Liu
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Geo University, Shijiazhuang 050031, China
| | - Changyu Lu
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Geo University, Shijiazhuang 050031, China
| | - Feng Guo
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| |
Collapse
|
16
|
Hu C, Yu B, Zhu Z, Zheng J, Wang W, Liu B. Construction of novel S-scheme LaFeO3/g-C3N4 composite with efficient photocatalytic capacity for dye degradation and Cr(VI) reduction. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
17
|
Cheng H, Wang N, Yang Y, Jiao X, Han P, Duan W, Huang D, An M, Chen W, Yao X, Zhang X. The enhanced visible light driven photocatalytic activity of zinc porphyrin/g-C3N4 nanosheet for efficient bacterial infected wound healing. J Colloid Interface Sci 2023; 643:183-195. [PMID: 37058893 DOI: 10.1016/j.jcis.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
Graphitic carbon nitride (g-C3N4) has received much attention as a metal-free polymeric two-dimensional photocatalyst for antibiotic-free antibacterial application. However, the weak photocatalytic antibacterial activity of pure g-C3N4 stimulated by visible light limits its applications. Herein, g-C3N4 is modified with Zinc (II) meso-tetrakis (4-carboxyphenyl) porphyrin (ZnTCPP) by amidation reaction to enhance the utilization of visible light and reduce the recombination of electron-hole pairs. The composite (ZP/CN) is used to treat bacterial infection under visible light irradiation with a high efficacy of 99.99% within 10 min due to the enhanced photocatalytic activity. Ultraviolet photoelectron spectroscopy and density flooding theory calculations indicate the excellent electrical conductivity between the interface of ZnTCPP and g-C3N4. The formed built-in electric field is responsible for the high visible photocatalytic performance of ZP/CN. In vitro and in vivo tests have demonstrated that ZP/CN not only possesses excellent antibacterial activity upon visible light irradiation, but also facilitates the angiogenesis. In addition, ZP/CN also suppresses the inflammatory response. Therefore, this inorganic-organic material can serve as a promising platform for effective healing of bacteria-infected wounds.
Collapse
|
18
|
Ma X, Cheng H. ReS 2 with unique trion behavior as a co-catalyst for enhanced sunlight hydrogen production. J Colloid Interface Sci 2023; 634:32-43. [PMID: 36528969 DOI: 10.1016/j.jcis.2022.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
The interfacial catalytic reaction plays a crucial role in determining hydrogen production efficiency of a photocatalyst. In this work, hollow spherical nano-shell composite (g-C3N4/CdS/ReS2) formed by graphitic carbon nitride (g-C3N4), cadmium sulfide (CdS), and rhenium disulfide (ReS2) was prepared for photocatalytic hydrogen production, with ReS2 introduced as a relatively inexpensive co-catalyst with excellent performance. It was found that two-electron catalytic reaction took place in this photocatalytic system due to the unique trion behavior of ReS2 co-catalyst, which greatly enhances the rate of photocatalytic hydrogen production. The tightly bound excitons in the ReS2 co-catalyst could easily capture the photogenerated electrons in the photocatalytic system to form trions, while g-C3N4 in the inner shell and CdS in the middle shell provided sufficient electrons for the formation of trions. The active edge sites of ReS2 also facilitated the generation and desorption of hydrogen, which creates conditions favoring two-electron catalytic reaction. In addition, oxidation and reduction reactions occurred inside and outside of the hollow spherical nano-shell, respectively, which effectively inhibits the recombination of photogenerated carriers. The unique trion behavior of ReS2 alters the interfacial catalytic reaction compared to the widely used platinum (Pt) co-catalyst in photocatalytic hydrogen production, which provides a new approach for enhancing the activity of photocatalytic systems.
Collapse
Affiliation(s)
- Xue Ma
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
19
|
Li YW, Zhang ZF, Li SZ, Liu LY, Ma WL. Solar-induced efficient propylparaben photodegradation by nitrogen vacancy engineered reticulate g-C 3N 4: Morphology, activity and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159247. [PMID: 36208767 DOI: 10.1016/j.scitotenv.2022.159247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/01/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Propylparaben (PrP) has attracted extensive concerns due to its wide occurrence in wastewater and potential health risk. Herein, nitrogen vacancy engineered reticulate g-C3N4 (Nv-RCN) was successfully synthesized for the photodegradation of PrP. Nv-RCN exhibited larger specific surface area, greater light absorption ability, higher transfer and separation efficiency of charge carriers in comparison with bulk g-C3N4 (CN). According to the characterization results and DFT calculation, nitrogen vacancy could capture electrons and facilitate oxygen adsorption. The Nv-RCN exhibited an outstanding PrP removal efficiency of 94.3 %, and the corresponding apparent rate constant of Nv-RCN was 3.37 times higher than that of CN. High O2 concentration (8 mg/L) and low pH value (pH = 3) promoted PrP photodegradation based on Box-Behnken Design. The O2- was the major radical during PCOP of Nv-RCN, and could oxidize PrP by decarbonylation and dealkylation. This study provided new insights to the improvement of photodegradation performance of g-C3N4 for parabens removal and related environmental remediation.
Collapse
Affiliation(s)
- Yu-Wei Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Shu-Zhi Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China.
| |
Collapse
|
20
|
Song M, Shao H, Chen Y, Deng X, Chen Y, Yao Y, Lu S, Liao X. Visible light-driven H 2O 2 synthesis over Au/C 3N 4: medium-sized Au nanoparticles exhibiting suitable built-in electric fields and inhibiting reverse H 2O 2 decomposition. Phys Chem Chem Phys 2022; 24:29557-29569. [PMID: 36448564 DOI: 10.1039/d2cp04202a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Visible light-driven H2O2 production presents the unique merits of sustainability and environmental friendliness. The size of noble metal nanoparticles (NPs) determines their dispersion and electronic structure and greatly affects their photocatalytic activity. In this work, a series of sized Au NPs over C3N4 were modulated for H2O2 production. The results show that there is a volcanic trend in H2O2 with the decrease of Au particle size, and the highest H2O2 production rate of 1052 μmol g-1 h-1 is obtained from medium-sized Au particles (∼8.7 nm). The relationship between structure and catalytic performance is supported by experimental and theoretical methods. (1) First, medium-sized Au NPs promote photon absorption, and have a suitable built-in electric field at the heterojunction, which can be successfully tuned to achieve a more efficient h+-e- spatial separation. (2) Second, medium-sized Au NPs enhance O2 adsorption, and create selective 2e- O2 reduction reaction sites. (3) Particularly, medium-sized Au NPs promote the desorption of produced H2O2 and inhibit H2O2 decomposition, finally leading to the highest H2O2 selectivity. Excellent catalytic performance will be obtained by finely optimizing the particle size in a certain range. This work provides a new idea for preparing high efficiently photocatalysts for H2O2 production.
Collapse
Affiliation(s)
- Mengzhen Song
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China.
| | - Huijuan Shao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China.
| | - Yi Chen
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China.
| | - Xiangyang Deng
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China.
| | - Yanyan Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P. O. Box 165, Taiyuan, Shanxi, China
| | - Yue Yao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China.
| | - Shuxiang Lu
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China.
| | - Xiaoyuan Liao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China.
| |
Collapse
|
21
|
Highly Selective Electrochemical CO 2 Reduction to C 2 Products on a g-C 3N 4-Supported Copper-Based Catalyst. Int J Mol Sci 2022; 23:ijms232214381. [PMID: 36430857 PMCID: PMC9696822 DOI: 10.3390/ijms232214381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Herein, a novel approach used to enhance the conversion of electrochemical CO2 reduction (CO2R), as well as the capacity to produce C2 products, is reported. A copper oxide catalyst supported by graphite phase carbon nitride (CuO/g-C3N4) was prepared using a one-step hydrothermal method and exhibited a better performance than pure copper oxide nanosheets (CuO NSs) and spherical copper oxide particles (CuO SPs). The Faradaic efficiency reached 64.7% for all the C2 products, specifically 37.0% for C2H4, with a good durability at -1.0 V vs. RHE. The results suggest that the interaction between CuO and the two-dimensional g-C3N4 planes promoted CO2 adsorption, its activation and C-C coupling. This work offers a practical method that can be used to enhance the activity of electrochemical CO2R and the selectivity of C2 products through synergistic effects.
Collapse
|
22
|
Probing the separation efficiency of sulfur-doped graphitic carbon nitride (g-C3N4)/polysulfone low-pressure ultrafiltration mixed matrix membranes. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04465-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Gong D, Li X, Zhang X, Zhang W, Chen T, Zhang X. Green fabrication of citrus pectin-Ag@AgCl/g-C3N4 nanocomposites with enhanced photocatalytic activity for the degradation of new coccine. Food Chem 2022; 387:132928. [DOI: 10.1016/j.foodchem.2022.132928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 11/04/2022]
|
24
|
Kumar Singh A, Das C, Indra A. Scope and prospect of transition metal-based cocatalysts for visible light-driven photocatalytic hydrogen evolution with graphitic carbon nitride. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
25
|
Wang M, Chen D, Li N, Xu Q, Li H, He J, Lu J. Ni-Co Bimetallic Hydroxide Nanosheet Arrays Anchored on Graphene for Adsorption-Induced Enhanced Photocatalytic CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202960. [PMID: 35534233 DOI: 10.1002/adma.202202960] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Photocatalytic CO2 reduction can be implemented to use CO2 , a greenhouse gas, as a resource in an energy-saving and environmentally friendly way, in which suitable catalytic materials are required to achieve high-efficiency catalysis. Insufficient accessible active sites on the catalyst surface and inhibited electron transfer severely limit the photocatalytic performance. Therefore, porous aerogels are constructed from composites comprising different ratios of Ni-Co bimetallic hydroxide (Nix Coy ) grown on reduced graphene oxide (GR) into a hierarchical nanosheet-array structure using a facile in situ growth method. Detailed characterization shows that this structure exposes numerous active sites for enhanced adsorption-induced photocatalytic CO2 reduction. Moreover, under the synergistic effect of Ni-Co bimetallic hydroxide, the CO2 adsorption capacity as well as charge-carrier separation and transfer are excellent. As a result, the Ni7 Co3 -GR catalyst exhibits highly improved catalytic performance when compared with recently reported values, with a high CO release rate of 941.5 µmol h-1 g-1 and a selectivity of 96.3% during the photocatalytic reduction of CO2 . This work demonstrates a new strategy for designing nanocomposites with abundant active sites structures.
Collapse
Affiliation(s)
- Mengmeng Wang
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, P.R. China
| | - Dongyun Chen
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, P.R. China
| | - Najun Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, P.R. China
| | - Qingfeng Xu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, P.R. China
| | - Hua Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, P.R. China
| | - Jinghui He
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, P.R. China
| | - Jianmei Lu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, P.R. China
| |
Collapse
|
26
|
Sohail M, Anwar U, Taha T, I. A. Qazi H, Al-Sehemi AG, Ullah S, Gharni H, Ahmed I, Amin MA, Palamanit A, Iqbal W, Alharthi S, Nawawi W, Ajmal Z, Ali H, Hayat A. Nanostructured Materials Based on g-C3N4 for Enhanced Photocatalytic Activity and Potentials Application: A Review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
27
|
Chen X, Sun B, Chu J, Han Z, Wang Y, Du Y, Han X, Xu P. Oxygen Vacancy-Induced Construction of CoO/h-TiO 2 Z-Scheme Heterostructures for Enhanced Photocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28945-28955. [PMID: 35723439 DOI: 10.1021/acsami.2c06622] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Environmentally friendly catalysts with excellent performance and low cost are critical for photocatalysis. Herein, using hydrogenated TiO2 (h-TiO2) nanosheets with enriched oxygen vacancies as the support, two-dimensional CoO/h-TiO2 Z-scheme heterostructures are fabricated for hydrogen production through photocatalytic water splitting. It is revealed that the oxygen vacancies in h-TiO2 can inhibit the oxidation of Co2+ into high-valence Co3+ during the hydrothermal reaction and thermal treatment processes. A CoO/h-TiO2 Z-scheme heterostructure possesses a space charge region and a built-in electric field at the interface, and oxygen vacancies in h-TiO2 can provide more reactive sites, which synergistically improve the separation and transportation of photogenerated carriers. As a result, the photocatalytic hydrogen evolution rate achieves 129.75 μmol·h-1 (with 50 mg of photocatalysts) on the optimized CoO/h-TiO2 heterostructures. This work provides a new design idea for the preparation of excellent TiO2-based photocatalysts.
Collapse
Affiliation(s)
- Xiaoyu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Bojing Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiayu Chu
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Zhi Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yu Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xijiang Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
28
|
Huang Y, Wang Q, Zhang J, Yu Y, Dan Y, Jiang L. Better Choice for a Polyimide Photocatalyst: Planar or Stereo Crosslinked Structures? Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yun Huang
- Polymer Research Institute of Sichuan University, State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Chengdu 610065, China
| | - Qin Wang
- Polymer Research Institute of Sichuan University, State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Chengdu 610065, China
| | - Jianling Zhang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology & Business University, Chongqing 400067, China
| | - Yuyan Yu
- Polymer Research Institute of Sichuan University, State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Chengdu 610065, China
| | - Yi Dan
- Polymer Research Institute of Sichuan University, State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Chengdu 610065, China
| | - Long Jiang
- Polymer Research Institute of Sichuan University, State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Chengdu 610065, China
| |
Collapse
|
29
|
Lei L, Wang D, Kang Y, de Rancourt de Mimérand Y, Jin X, Guo J. Phosphor-Enhanced, Visible-Light-Storing g-C 3N 4/Ag 3PO 4/SrAl 2O 4:Eu 2+,Dy 3+ Photocatalyst Immobilized on Fractal 3D-Printed Supports. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11820-11833. [PMID: 35195390 DOI: 10.1021/acsami.1c23650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The combination of a phosphor with semiconductor photocatalysts can provide photoactivity in the dark. Indeed, the phosphor acts as a "light battery", harvesting photons during irradiation and later re-emitting light that can be used by the catalytic phase when in conditions of total darkness. This allows for continued activity of the composite catalyst, even in conditions of unstable light stimulation. In this study, we assess the use of a heterojunction, namely graphitic-C3N4/Ag3PO4, that enables efficient photoactivity specifically under visible light stimulation, in combination with a phosphor that exhibits green-blue phosphorescence (510 nm), that is SrAl2O4:Eu2+,Dy3+. Our findings showed that this combination was particularly interesting, noticeably displaying significant photoactivity in darkness, after short periods of activation by visible light. After finding the right combination and optimal ratios for maximum efficiency, the resulting catalyst composite was immobilized on resin supports with a fractal surface, printed by LCD-SLA 3D printing. The immobilization was effectuated via an aqueous-phase plasma-aided grafting (APPAG) process, using cold plasma discharge (CPD) and using vinylphosphonic acid (VPA) as a coupling agent. Whereas the colloidal photocatalyst displayed a serious problem of partial physical separation between the catalytic phase, g-C3N4/Ag3PO4, and the phosphor, the immobilization of the composite catalyst on polymer supports allowed solving this issue. Photodegradation assessments confirmed that the hybrid supported phosphor-enhanced catalyst was active, notably in dark conditions, as well as fairly photostable. This study offers new prospects for the fabrication of polymer-based panels for water purification, with round-the-clock activity and that are, in addition, extremely easy to recover and reuse, by comparison with colloidal catalysts.
Collapse
Affiliation(s)
- Lei Lei
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Deyu Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yongfu Kang
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yoann de Rancourt de Mimérand
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiaoyun Jin
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jia Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
30
|
Li X, Li N, Gao Y, Ge L. Design and applications of hollow-structured nanomaterials for photocatalytic H2 evolution and CO2 reduction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63863-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Qureshi WA, Hong X, He X, Liu Q, Xu D, Maouche C, Sun Z, Yang J. Dual plasmonic Au and TiN cocatalysts to boost photocatalytic hydrogen evolution. CHEMOSPHERE 2022; 291:132987. [PMID: 34838831 DOI: 10.1016/j.chemosphere.2021.132987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Employing a suitable cocatalyst is very important to improve photocatalytic H2 evolution activity. Herein, two plasmonic cocatalysts, Au nanoparticles and TiN nanoparticles were in-situ coupled over the g-C3N4 nanotube to form a ternary 0D/0D/1D Au/TiN/g-C3N4 composite via a successive thermal polycondensation and chemical reduction method. The g-C3N4 nanotube acted as a support for the growth of Au and TiN nanoparticles, leading to intimate contact between g-C3N4 nanotube with Au nanoparticles and TiN nanoparticles. As a result, multiple interfaces and dual-junctions of Au/g-C3N4 Schottky-junction and TiN/g-C3N4 ohmic-junction were constructed, which helped to promote the charged carriers' separation and enhanced the photocatalytic performance. Furthermore, loading plasmonic cocatalysts of Au nanoparticles and TiN nanoparticles can enhance the light absorption capacity. Consequently, the Au/TiN/g-C3N4 composite exhibited significantly enhanced photocatalytic H2 evolution activity (596 μmol g-1 h-1) compared to g-C3N4 or binary composites of Au/g-C3N4 and TiN/g-C3N4. This work highlights the significant role of cocatalysts in photocatalysis.
Collapse
Affiliation(s)
- Waqar Ahmad Qureshi
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Xiaoyang Hong
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Xudong He
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Qinqin Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha, Hunan, 410022, PR China.
| | - Difa Xu
- Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha, Hunan, 410022, PR China
| | - Chanez Maouche
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Zhongti Sun
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Juan Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China.
| |
Collapse
|
32
|
He P, Deng D, Ren T, Dang Y, Li M, Chen J, Xiao Y. Constructing Ternary Photocatalyst Ag/Ni(OH)
2
/g‐C
3
N
4
for Efficient Photocatalytic Hydrogen Production. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ping He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province College of Chemistry and Chemical Engineering China West Normal University Nanchong 637002 PR China
| | - Dashuang Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province College of Chemistry and Chemical Engineering China West Normal University Nanchong 637002 PR China
| | - Tongyan Ren
- School of Basic Medical Sciences North Sichuan Medical College Nanchong 637100 PR China
| | - Yinping Dang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province College of Chemistry and Chemical Engineering China West Normal University Nanchong 637002 PR China
| | - Ming Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province College of Chemistry and Chemical Engineering China West Normal University Nanchong 637002 PR China
| | - Jiufu Chen
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan College of Chemistry and Environmental Engineering Sichuan University of Science and Engineering Zigong 643000 PR China
| | - Yao Xiao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province College of Chemistry and Chemical Engineering China West Normal University Nanchong 637002 PR China
| |
Collapse
|
33
|
Alaghmandfard A, Ghandi K. A Comprehensive Review of Graphitic Carbon Nitride (g-C 3N 4)-Metal Oxide-Based Nanocomposites: Potential for Photocatalysis and Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:294. [PMID: 35055311 PMCID: PMC8779993 DOI: 10.3390/nano12020294] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
g-C3N4 has drawn lots of attention due to its photocatalytic activity, low-cost and facile synthesis, and interesting layered structure. However, to improve some of the properties of g-C3N4, such as photochemical stability, electrical band structure, and to decrease charge recombination rate, and towards effective light-harvesting, g-C3N4-metal oxide-based heterojunctions have been introduced. In this review, we initially discussed the preparation, modification, and physical properties of the g-C3N4 and then, we discussed the combination of g-C3N4 with various metal oxides such as TiO2, ZnO, FeO, Fe2O3, Fe3O4, WO3, SnO, SnO2, etc. We summarized some of their characteristic properties of these heterojunctions, their optical features, photocatalytic performance, and electrical band edge positions. This review covers recent advances, including applications in water splitting, CO2 reduction, and photodegradation of organic pollutants, sensors, bacterial disinfection, and supercapacitors. We show that metal oxides can improve the efficiency of the bare g-C3N4 to make the composites suitable for a wide range of applications. Finally, this review provides some perspectives, limitations, and challenges in investigation of g-C3N4-metal-oxide-based heterojunctions.
Collapse
Affiliation(s)
| | - Khashayar Ghandi
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
34
|
Wang L, Geng X, Zhang L, Liu Z, Wang H, Bian Z. Effects of various alcohol sacrificial agents on hydrogen evolution based on CoS 2@SCN nanomaterials and its mechanism. CHEMOSPHERE 2022; 286:131558. [PMID: 34293564 DOI: 10.1016/j.chemosphere.2021.131558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Visible light induced photocatalysis converted solar energy to chemical energy in the form of hydrogen. g-C3N4 modified by thermal oxidation etching, doped S, and nonprecious metal cocatalyst CoS2 (CoS2@SCN) were used for photocatalytic hydrogen production. And then the charge transfer behavior and mechanism of various alcohol sacrificial agents on hydrogen evolution was analyzed by optical characterization, impedance analysis, Mott-Schottky, and photocurrent tests. The relationship between the structure and catalytic performance was also explored using characterization methods. The results showed that CoS2 significantly improved the light absorption of g-C3N4, and carrier migration and separation. And when the sacrificial agent was triethanolamine, the nanocomposite CoS2@SCN exhibited best catalytic performance with the highest hydrogen activity of 223.6 μmol g-1 h-1, the minimum volume in-phase charge transfer resistance with 55.19 Ω and the maximum photocurrent and photocurrent density with 5.5 μA cm-2 and 0.63 mA cm-2. The more negatively charged surface of organic alcohols were, the easier they were to react with holes, thus enhanced charge transfer and hydrogen production efficiency. This report provides guidance for the selection of hydrogen producing sacrificial agents and preparation of highly charge-efficient catalysts. And it also provides a theoretical basis for hydrogen production from wastewater and environmental remediation.
Collapse
Affiliation(s)
- Li Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Xinle Geng
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Lu Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Zehong Liu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Hui Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China.
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
35
|
Choudhury S, Sahoo U, Pattnayak S, Padhiari S, Tripathy M, Hota G. Hematite nanoparticles decorated nitrogen-doped reduced graphene oxide/graphitic carbon nitride multifunctional heterostructure photocatalyst towards environmental applications. NEW J CHEM 2022. [DOI: 10.1039/d2nj01301k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The carcinogenic heavy metals and aromatic organic compounds linger as wastewater pollutants implying great menace to the ecological balance. To solve these environmental pollution problems, the photocatalytic process is an...
Collapse
|
36
|
A critical review on graphitic carbon nitride (g-C3N4)-based composites for environmental remediation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119769] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Constructing carbon microspheres/MnFe2O4/g-C3N4 composite photocatalysts for enhanced photocatalytic activity under visible light irradiation. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Wang K, Wang T, Islam QA, Wu Y. Layered double hydroxide photocatalysts for solar fuel production. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63861-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Ding M, Ao W, Xu H, Chen W, Tao L, Shen Z, Liu H, Lu C, Xie Z. Facile construction of dual heterojunction CoO@TiO 2/MXene hybrid with efficient and stable catalytic activity for phenol degradation with peroxymonosulfate under visible light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126686. [PMID: 34329104 DOI: 10.1016/j.jhazmat.2021.126686] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/26/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Photocatalysis and peroxymonosulfate (PMS) based advanced oxidation processes (AOP) are emerging technology for the degradation of refractory organic pollutant in the field of water treatment. Here we report a novel CoO@TiO2/MXene (CTM) hybrid through a facile sonication-hydrothermal method for efficient degradation of phenol via an integrated PMS activation-photocatalysis process. Benefiting from the proper position and superior suitability of the band structure, a dual interfacial charge transport channel was constructed, boosting the separation of photo-generated charge carriers and generating sufficient potential difference for redox reaction. Accordingly, the CTM hybrid not only possessed the outstanding photocatalytic activity but also dramatically accelerated PMS activation to generate considerable reactive radicals. As a result, over 96% phenol degradation was achieved in the 10% CTM/PMS/Vis system within 15 min. The radical quenching test and EPR analysis reveal that SO4•-, O2•- and 1O2 were predominant reactive species involved in the catalytic process. Moreover, the damaged chemical structure of CoO during PMS activation could be healed by the photo-actuated Co(II) regeneration to allow for continuous and stable catalytic process. This study offers a promising perspective for the rational design of competent and stable hybrid heterojunction catalyst to construct PMS activation-photocatalysis processes for the efficient degradation of organic contaminants.
Collapse
Affiliation(s)
- Mingmei Ding
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; CSIRO Manufacturing, Private Bag 10, Clayton South, VIC 3169, Australia; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wang Ao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hang Xu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Lin Tao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zhen Shen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Huihong Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Chunhui Lu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, PR China
| | - Zongli Xie
- CSIRO Manufacturing, Private Bag 10, Clayton South, VIC 3169, Australia.
| |
Collapse
|
40
|
Zhu Q, Xu Z, Qiu B, Xing M, Zhang J. Emerging Cocatalysts on g-C 3 N 4 for Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101070. [PMID: 34318978 DOI: 10.1002/smll.202101070] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/03/2021] [Indexed: 05/15/2023]
Abstract
Over the past few decades, graphitic carbon nitride (g-C3 N4 ) has arisen much attention as a promising candidate for photocatalytic hydrogen evolution reaction (HER) owing to its low cost and visible light response ability. However, the unsatisfied HER performance originated from the strong charge recombination of g-C3 N4 severely inhibits the further large-scale application of g-C3 N4 . In this case, the utilization of cocatalysts is a novel frontline in the g-C3 N4 -based photocatalytic systems due to the positive effects of cocatalysts on supressing charge carrier recombination, reducing the HER overpotential, and improving photocatalytic activity. This review summarizes some recent advances about the high-performance cocatalysts based on g-C3 N4 toward HER. Specifically, the functions, design principle, classification, modification strategies of cocatalysts, as well as their intrinsic mechanism for the enhanced photocatalytic HER activity are discussed here. Finally, the pivotal challenges and future developments of cocatalysts in the field of HER are further proposed.
Collapse
Affiliation(s)
- Qiaohong Zhu
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Zehong Xu
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Bocheng Qiu
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Mingyang Xing
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Jinlong Zhang
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| |
Collapse
|
41
|
Liang Z, Meng X, Xue Y, Chen X, Zhou Y, Zhang X, Cui H, Tian J. Facile preparation of metallic 1T phase molybdenum selenide as cocatalyst coupled with graphitic carbon nitride for enhanced photocatalytic H 2 production. J Colloid Interface Sci 2021; 598:172-180. [PMID: 33901844 DOI: 10.1016/j.jcis.2021.04.066] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/26/2022]
Abstract
Low-cost, highly active and efficient alternative co-catalysts that can replace precious metals such as Au and Pt are urgently needed for photocatalytic hydrogen evolution reaction (HER). Herein, we show that 1T phase MoSe2 can act as the co-catalyst in the 1T-MoSe2/g-C3N4 composites and we synthesize this composite by a one-step hydrothermal method to promote photocatalytic H2 generation. Our prepared 1T-MoSe2/g-C3N4 composite exhibits highly enhanced photocatalytic H2 production compared to that of g-C3N4 nanosheets (NSs) only. The 7 wt%-1T-MoSe2/g-C3N4 composite presents a considerably improved photocatalytic HER rate (6.95 mmol·h-1·g-1), approximately 90 times greater than that of pure g-C3N4 (0.07 mmol·h-1 g-1). Moreover, under illumination at λ = 370 nm, the apparent quantum efficiency (AQE) of the 7 wt%-1T-MoSe2/g-C3N4 composite reaches 14.0%. Furthermore, the 1T-MoSe2/g-C3N4 composites still maintain outstanding photocatalytic HER stability.
Collapse
Affiliation(s)
- Zhangqian Liang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiangfa Meng
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanjun Xue
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaoyue Chen
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanli Zhou
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China.
| | - Xiaoli Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hongzhi Cui
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Jian Tian
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
42
|
Ali Ahmad SO, Ikram M, Imran M, Naz S, Ul-Hamid A, Haider A, Shahzadi A, Haider J. Novel prism shaped C 3N 4-doped Fe@Co 3O 4 nanocomposites and their dye degradation and bactericidal potential with molecular docking study. RSC Adv 2021; 11:23330-23344. [PMID: 35479824 PMCID: PMC9036615 DOI: 10.1039/d1ra03949k] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/26/2021] [Indexed: 01/16/2023] Open
Abstract
Novel prism shaped C3N4-doped Fe@Co3O4 nanocomposites were fabricated via a co-precipitation route for effective removal of organic pollutants from water and for bactericidal applications. Doping of C3N4 in the heterojunction significantly enhanced the photocatalytic and sonocatalytic activity against methylene blue ciprofloxacin (MBCF) dye. The main purpose of doping Fe atoms in the cobalt lattice was to generate crystal and surface defects. Moreover, the optimum doping amount of C3N4 for maximum degradation performance was evaluated. A detailed examination of the prepared nanocomposites was carried out systematically using various characterization tools for better understanding. HR-TEM images revealed the formation of novel prism shaped structures that exhibited outstanding degradation of the organic dye in water. Significant bactericidal potential was also observed for the synthesized nanocomposites against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria. In silico, molecular docking studies against β-lactamase, DHFR and FabI enzymes served to elucidate the mechanism governing the bactericidal activity of the as-synthesized nanoparticles (NPs). Furthermore, a scavenging study by DPPH (2,2-diphenyl-1-picrylhydrazyl) assay and COD (chemical oxygen demand) analysis was performed in order to evaluate active species and the anti-oxidant potential of prepared composites. This study provides new insights into the use of cobalt-based heterojunction photocatalysts for dye degradation and antibacterial applications (a) synthesis mechanism of C3N4 (b) schematic of synthesis route adopted for fabrication of nanocomposites.![]()
Collapse
Affiliation(s)
- Syed Ossama Ali Ahmad
- Solar Cell Application Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| | - Muhammad Ikram
- Solar Cell Application Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| | - Muhammad Imran
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology Beijing 100029 China
| | - Sadia Naz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Ali Haider
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences Lahore 54000 Punjab Pakistan
| | - Anum Shahzadi
- Punjab University College of Pharmacy, University of the Punjab Lahore 54000 Pakistan
| | - Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
| |
Collapse
|
43
|
Pandi K, Lakhera SK, Bernaurdshaw N. Efficient promotion and transfer of excited charge carriers in phosphorus doped and Ni complex modified g-C3N4. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Ying H, Huang Z, Dong G, Zhang Y. The charge transfer pathway of CoO QDs/g-C3N4 composites for highly efficient photocatalytic hydrogen evolution. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
A Novel CoO/PT-C3N4 Composite Catalyst for Photocatalytic Degradation of Diesel Oil. CATALYSIS SURVEYS FROM ASIA 2021. [DOI: 10.1007/s10563-021-09326-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Liu X, Yang Z, Zhang L. In-situ fabrication of 3D hierarchical flower-like β-Bi 2O 3@CoO Z-scheme heterojunction for visible-driven simultaneous degradation of multi-pollutants. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123566. [PMID: 32781277 DOI: 10.1016/j.jhazmat.2020.123566] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Development of an efficient heterojunction catalyst with a superior visible-light driven activity is regarded as a promising strategy to decontaminate organic wastewater. Herein, a novel direct Z-scheme β-Bi2O3@CoO heterojunction was well designed and successfully fabricated by in situ incorporating the two energy band-matched semiconductors. The obtained β-Bi2O3@CoO hybrid presented a unique 3D hierarchical structure with a mass of open channels and mesoporous, which afforded not only rapid mass transfer of targets but also good light-harvesting in view of the multiple reflections. Compared to the pristine β-Bi2O3 and CoO, the β-Bi2O3@CoO hybrid exhibited remarkably improved photocatalytic activity towards the simultaneous degradation of chlorotetracycline (CTC), tetracycline hydrochloride (TCH), oxytetracycline (OTC) and nitrobenzene (NB) under visible-light irradiation. The possible intermediates and degradation pathways were also tracked by mass spectra (MS) analysis. Moreover, a direct Z-scheme charge transfer mechanism in the intimate contact interface between β-Bi2O3 and CoO was verified for the improved catalytic activity, endowing the effective separation/transportation of the photo-excited charge carriers and maintenance of the strong redox ability in β-Bi2O3@CoO heterojunction. The present work affords a simple approach to design and construct 3D hierarchical direct Z-scheme photocatalysts with promising applications in water environment remediation.
Collapse
Affiliation(s)
- Xueyan Liu
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Zhen Yang
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Lei Zhang
- College of Chemistry, Liaoning University, Shenyang, 110036, China.
| |
Collapse
|
47
|
Raja JS. Construction of High Efficient g-C3N4 Nanosheets Combined with Bi2MoO6 Photoanodes for Dye Sensitized Solar Cells. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-01987-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
48
|
Lian J, He Y, Li N, Liu P, Liu Z, Liu Q. Magnetic Flower-like Fe-Doped CoO Nanocomposites with Dual Enzyme-like Activities for Facile and Sensitive Determination of H2O2 and Dopamine. Inorg Chem 2021; 60:1893-1901. [DOI: 10.1021/acs.inorgchem.0c03355] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jiajia Lian
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanlei He
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Ning Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Pei Liu
- College of Chemistry and Chemical Engineering, Analysis and Testing Center, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhenxue Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
49
|
Shadmehri MA, Housaindokht MR, Nakhaei Pour A. Oxidative desulfurization of dibenzothiophene via layered graphitic carbon nitride-coordinated transition metal as a catalyst. NEW J CHEM 2021. [DOI: 10.1039/d1nj01912k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, graphitic carbon nitride (g-C3N4) has been synthesized. The cobalt-doped (CoO/g-C3N4) samples prepared by the impregnation method and their catalytic property were investigated on the ODS process.
Collapse
Affiliation(s)
- Mehdi A. Shadmehri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Ali Nakhaei Pour
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
50
|
Jiang G, Zheng C, Yan T, Jin Z. Cd 0.8Mn 0.2S/MoO 3 composites with an S-scheme heterojunction for efficient photocatalytic hydrogen evolution. Dalton Trans 2021; 50:5360-5369. [PMID: 33881092 DOI: 10.1039/d1dt00799h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-performance and noble metal-free MoO3/Cd0.8Mn0.2S nanocomposites were synthesized via a simple direct physical mixing process. Consequently, from the many characterization methods, the obtained MoO3/Cd0.8Mn0.2S composites exhibited excellent photocatalytic hydrogen production performance and stability. The enhanced photocatalytic activity of the MoO3/Cd0.8Mn0.2S catalyst could be ascribed to the close contact interfaces and well-matched band structure of MoO3 and Mn0.8Cd0.2S, which is beneficial to the transport and separation of photonic excitons. Besides, the hydrogen production performance of the MoO3/Cd0.8Mn0.2S composite catalyst was 1.7 times higher than that of the pure MoO3. Based on the results of time-resolved fluorescence (TRPL) and electrochemical measurements, the possible S-scheme heterojunction mechanism of the photocatalytic hydrogen evolution of MoO3/Cd0.8Mn0.2S was proposed. This work has contributed to the transformation of solar energy into chemical energy.
Collapse
Affiliation(s)
- Guoping Jiang
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R.China.
| | - Chaoyue Zheng
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R.China.
| | - Teng Yan
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R.China.
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R.China.
| |
Collapse
|