1
|
Liu Y, Li C, Yang X, Yang B, Fu Q. Stimuli-responsive polymer-based nanosystems for cardiovascular disease theranostics. Biomater Sci 2024; 12:3805-3825. [PMID: 38967109 DOI: 10.1039/d4bm00415a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Stimulus-responsive polymers have found widespread use in biomedicine due to their ability to alter their own structure in response to various stimuli, including internal factors such as pH, reactive oxygen species (ROS), and enzymes, as well as external factors like light. In the context of atherosclerotic cardiovascular diseases (CVDs), stimulus-response polymers have been extensively employed for the preparation of smart nanocarriers that can deliver therapeutic and diagnostic drugs specifically to inflammatory lesions. Compared with traditional drug delivery systems, stimulus-responsive nanosystems offer higher sensitivity, greater versatility, wider applicability, and enhanced biosafety. Recent research has made significant contributions towards designing stimulus-responsive polymer nanosystems for CVDs diagnosis and treatment. This review summarizes recent advances in this field by classifying stimulus-responsive polymer nanocarriers according to different responsiveness types and describing numerous stimuli relevant to these materials. Additionally, we discuss various applications of stimulus-responsive polymer nanomaterials in CVDs theranostics. We hope that this review will provide valuable insights into optimizing the design of stimulus-response polymers for accelerating their clinical application in diagnosing and treating CVDs.
Collapse
Affiliation(s)
- Yuying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Congcong Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Bin Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
2
|
Dikshit KV, Visal AM, Janssen F, Larsen A, Bruns CJ. Pressure-Sensitive Supramolecular Adhesives Based on Lipoic Acid and Biofriendly Dynamic Cyclodextrin and Polyrotaxane Cross-Linkers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17256-17267. [PMID: 36926820 DOI: 10.1021/acsami.3c00927] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Slide-ring materials are polymer networks with mobile cross-links that exhibit impressive stress dissipation and fracture resistance owing to the pulley effect. On account of their remarkable ability to dissipate the energy of deformation, these materials have found their way into advanced materials such as abrasion-resistant coatings and elastic battery electrode binders. In this work, we explore the role of mobile cross-links on the properties of a biofriendly pressure-sensitive adhesive made using composites of cyclodextrin-based macromolecules and poly(lipoic acid). We modify cyclodextrin-based hosts and polyrotaxanes with pendant groups of lipoic acid (a commonly ingested antioxidant) to incorporate them as cross-links in poly(lipoic acid) networks obtained by simple heating in open air. By systematically varying the adhesive formulations while probing their mechanical and adhesive properties, we uncover trends in structure-property relationships that enable one to tune network properties and access biofriendly, high-tack adhesives.
Collapse
Affiliation(s)
- Karan Vivek Dikshit
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Aseem Milind Visal
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Femke Janssen
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Alexander Larsen
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Carson J Bruns
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- ATLAS Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
3
|
Hu X, Ha E, Ai F, Huang X, Yan L, He S, Ruan S, Hu J. Stimulus-responsive inorganic semiconductor nanomaterials for tumor-specific theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Buffet-style Cu(II) for enhance disulfiram-based cancer therapy. J Colloid Interface Sci 2022; 624:734-746. [PMID: 35696791 DOI: 10.1016/j.jcis.2022.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/25/2022] [Accepted: 06/03/2022] [Indexed: 01/26/2023]
Abstract
Studies have shown that disulfiram (DSF) can combine with Cu2+ to form bis(N, N-diethyldithiocarbamate) copper(II) complex (CuET) as antitumor drugs. However, there is insufficient endogenous Cu2+ dose to eradicate cancer cells selectively. Inspired by the buffet, we use Cu2+ doped hollow zeolitic imidazolate framework nanoparticles (HZIFCu) as the carrier and equipped with DSF and indocyanine green (ICG) and targeted by folic acid (FA) (D&I@HZIFCu-FA) to enhance DSF-based cancer therapy. D&I@HZIFCu-FA could effectively supply Cu2+ by a buffet-style, assisting the "DSF-to-CuET" transformation in the tumor. Additionally, self-supply Cu2+ could convert H2O2 into ·OH by triggering a Fenton-like reaction for chemo-dynamic therapy, and ICG achieves photothermal therapy for tumors under laser irradiation. This work provides a buffet-style for Cu2+ to make DSF a strong candidate for cancer treatment by combining chemotherapy, chemo-dynamic therapy, and photothermal therapy and inspires more research about its applications in tumor therapy.
Collapse
|
5
|
Hariharan K, Patel P, Mehta T. Surface modifications of Gold Nanoparticles: Stabilization and Recent Applications in Cancer Therapy. Pharm Dev Technol 2022; 27:665-683. [PMID: 35850605 DOI: 10.1080/10837450.2022.2103825] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Gold nanoparticles (GNP) are noble metal nanocarriers that have been recently researched upon for pharmaceutical applications, imaging, and diagnosis. These metallic nanocarriers are easy to synthesize using chemical reduction techniques as their surface can be easily modified. Also, the properties of GNP are significantly affected by its size and shape which mandates its stabilization using suitable techniques of surface modification. Over the past decade, research has focused on surface modification of GNP and its stabilization using polymers, polysaccharides, proteins, dendrimers, and phase-stabilizers like gel phase or ionic liquid phase. The use of GNP for pharmaceutical applications requires its surface modification using biocompatible and inert surface modifiers. The stabilizers used, interact with the surface of GNP to provide either electrostatic stabilization or steric stabilization. This review extensively discusses the surface modification techniques for GNP and the related molecular level interactions involved in the same. The influence of various factors like the concentration of stabilizers used their characteristics like chain length and thickness, pH of the surrounding media, etc., on the surface of GNP and resulting to stability have been discussed in detail. Further, this review highlights the recent applications of surface-modified GNP in the management of tumor microenvironment and cancer therapy.
Collapse
Affiliation(s)
- Kartik Hariharan
- Institute of Pharmacy, Nirma University, SG Highway, Gota, Ahmedabad-382481, Gujarat, India
| | - Parth Patel
- Institute of Pharmacy, Nirma University, SG Highway, Gota, Ahmedabad-382481, Gujarat, India
| | - Tejal Mehta
- Institute of Pharmacy, Nirma University, SG Highway, Gota, Ahmedabad-382481, Gujarat, India
| |
Collapse
|
6
|
He H, Rudolph K, Ostwaldt J, Voskuhl J, Hirschhäuser C, Niemeyer J. Reversible Self-Assembly of Gold Nanoparticles Based on Co-Functionalization with Zwitterionic and Cationic Binding Motifs*. Chemistry 2021; 27:13539-13543. [PMID: 34251063 PMCID: PMC8518125 DOI: 10.1002/chem.202102457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 01/05/2023]
Abstract
We report a pH- and temperature-controlled reversible self-assembly of Au-nanoparticles (AuNPs) in water, based on their surface modification with cationic guanidiniocarbonyl pyrrole (GCP) and zwitterionic guanidiniocarbonyl pyrrole carboxylate (GCPZ) binding motifs. When both binding motifs are installed in a carefully balanced ratio, the resulting functionalized AuNPs self-assemble at pH 1, pH 7 and pH 13, whereas they disassemble at pH 3 and pH 11. Further disassembly can be achieved at elevated temperatures at pH 1 and pH 13. Thus, we were able to prepare functionalized nanoparticles that can be assembled/disassembled in seven alternating regimes, simply controlled by pH and temperature.
Collapse
Affiliation(s)
- Huibin He
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-Essen45141EssenGermany
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan University200438ShanghaiPeople's Republic of China
| | - Kevin Rudolph
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-Essen45141EssenGermany
| | - Jan‐Erik Ostwaldt
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-Essen45141EssenGermany
| | - Jens Voskuhl
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-Essen45141EssenGermany
| | - Christoph Hirschhäuser
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-Essen45141EssenGermany
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-Essen45141EssenGermany
| |
Collapse
|
7
|
Li X, Yu L, Zhang C, Niu X, Sun M, Yan Z, Wang W, Yuan Z. Tumor acid microenvironment-activated self-targeting & splitting gold nanoassembly for tumor chemo-radiotherapy. Bioact Mater 2021; 7:377-388. [PMID: 34466739 PMCID: PMC8379383 DOI: 10.1016/j.bioactmat.2021.05.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 12/14/2022] Open
Abstract
Low accumulation and penetration of nanomedicines in tumor severely reduce therapeutic efficacy. Herein, a pH-responsive gold nanoassembly is designed to overcome these problems. Polyethylene glycol linked raltitrexed (RTX, target ligand and chemotherapy drug) and two tertiary amine molecules (1-(2-aminoethyl) pyrrolidine and N,N-dibutylethylenediamine) are modified on the surface of the 6-nm gold nanoparticles by lipoic acid to form gold nanoassembly defined as Au-NNP(RTX). The Au-NNP (RTX) nanoassembly could remain at about 160 nm at the blood circulation (pH 7.4), while split into 6-nm gold nanoparticles due to tertiary amine protonation at tumor extracellular pH (pH 6.8). This pH-responsive disassembly behavior endows Au-NNP(RTX) better tumor tissue permeability through the better diffusion brought by the size reduction. Meanwhile, after disassembly, more RTXs on the surface of gold nanoparticles are exposed from the shielded state of assembly along with 2.25-fold augment of cellular uptake capability. Most importantly, the results show that Au-NNP(RTX) possesses of high tumor accumulation and effective tumor penetration, thereby enhancing the tumor chemo-radiotherapy efficiency. A pH-responsive self-targeting & splitting gold nanoassembly is fabricated. The nanoassembly holds better tumor tissue permeability by the size reduction. The nanoassembly enhances targeting capability by ligand shielding and exposure. Clever design endows the system synergistic effect of chemo-radiotherapy.
Collapse
Affiliation(s)
- Xiaomin Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Licheng Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Xiaoyan Niu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Mengjie Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zichao Yan
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China.,Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
8
|
Zhao L, Jiang M, Xu Z, Sun F, Wu X, Zhang M, Guan X, Ma J, Zhang W. Selective thermotherapy of tumor by self-regulating photothermal conversion system. J Colloid Interface Sci 2021; 605:752-765. [PMID: 34365311 DOI: 10.1016/j.jcis.2021.07.134] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
One major challenge of photothermal therapy (PTT) is achieving thermal ablation of the tumor without damaging the normal cells and tissues. Here, we designed a self-regulating photothermal conversion system for selective thermotherapy based on self-assembling gold nanoparticles (S-AuNPs) and investigated the selectivity effect using a novel home-made in vitro selective photothermal transformation model and an in vivo skin damaging assessment model. In the in vitro selective photothermal transformation model, laser irradiation selectively increased the temperature of the internal microenvironment (pH 5.5) and resulted in an obvious temperature difference (ΔT ≥ 5 °C) with that of the external environment (pH 7.4). More importantly, in the in vivo skin damaging assessment model, S-AuNPs achieved good tumor inhibition without damaging the normal skin tissue compared with the conventional photothermal material. This work provides not only a novel validation protocol for tumor thermotherapy to achieve the biosafety of specifically killing tumor cells and normal tissue but also an evaluation methodology for other precise therapy for cancers.
Collapse
Affiliation(s)
- Liping Zhao
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Mingxia Jiang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Zhilu Xu
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Fengshuo Sun
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xinghan Wu
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Mogen Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, Shandong, China
| | - Xiuwen Guan
- College of Pharmacy, Weifang Medical University, Weifang 261053, China; Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China; Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| | - Jinlong Ma
- College of Pharmacy, Weifang Medical University, Weifang 261053, China; Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China; Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China.
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China; Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China; Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
9
|
Zhang Z, Niu X, Feng X, Wang X, Yu L, Wang W, Yuan Z. Construction of a pH/TGase "Dual Key"-Responsive Gold Nano-radiosensitizer with Liver Tumor-Targeting Ability. ACS Biomater Sci Eng 2021; 7:3434-3445. [PMID: 34129333 DOI: 10.1021/acsbiomaterials.1c00428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The method of tumor microenvironment (TME)-responsive aggregation has become a promising approach to enhance treatment effect by improving the accumulation of nanoparticles in tumors. The enzymatic cross-linking strategy has widely attracted attention owing to its good aggregation stability and biocompatibility. However, the enzymes in nontumor tissue can also catalyze the cross-linking reaction and reduce accumulation of nanoparticles in tumor. In this work, a "dual key"-responsive strategy is utilized to construct a transglutaminase (TGase)/pH-responsive radiosensitizer (Au@TAcoGal) with specific aggregation behavior in hepatic tumor cells. Au@TAcoGal can retain its stability in blood circulation (pH 7.4) even in the presence of TGase in plasma. On reaching tumor sites, it can be endocytosed by hepatoma cells by the active targeting of phenylboronic acid (PBA) and aggregated under acidity and overexpression of TGase in cells. Due to its specific accumulation in hepatoma cells, radiotherapy can be operated under a lower dose of X-ray. The results show that the cellular accumulation of Au@TAcoGal increases by 30-70%, and the cell survival rate is less than 25% under X-ray irradiation. The antineoplastic results show that Au@TAcoGal exhibits a higher therapeutic effect, and the tumor inhibition rate can reach 84.21%.
Collapse
Affiliation(s)
- Zhenjie Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiaoyan Niu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiaoyue Feng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiaohui Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Licheng Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
10
|
Zhang Y, Cao J, Yuan Z. Strategies and challenges to improve the performance of tumor-associated active targeting. J Mater Chem B 2021; 8:3959-3971. [PMID: 32222756 DOI: 10.1039/d0tb00289e] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past decade, nanoparticle-based drug delivery systems have been extensively explored. However, the average tumour enrichment ratio of passive targeting systems corresponds to only 0.7% due to the nonspecific uptake by normal organs and poor selective retention in tumours. The therapeutic specificity and efficacy of nano-medicine can be enhanced by equipping it with active targeting ligands, although it is not possible to ignore the recognition and clearance of the reticuloendothelial system (RES) caused by targeting ligands. Given the complexity of the systemic circulation environment, it is necessary to carefully consider the hydrophobicity, immunogenicity, and electrical property of targeting ligands. Thus, for an active targeting system, the targeting ligands should be shielded in blood circulation and de-shielded in the tumour region for enhanced tumour accumulation. In this study, strategies for improving the performance of active targeting ligands are introduced. The strategies include irreversible shielding, reversible shielding, and methods of modulating the multivalent interactions between ligands and receptors. Furthermore, challenges and future developments in designing active ligand targeting systems are also discussed.
Collapse
Affiliation(s)
- Yahui Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Jing Cao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China. and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Fu Q, Li Z, Fu F, Chen X, Song J, Yang H. Stimuli-Responsive Plasmonic Assemblies and Their Biomedical Applications. NANO TODAY 2021; 36:101014. [PMID: 33250931 PMCID: PMC7687854 DOI: 10.1016/j.nantod.2020.101014] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Among the diverse development of stimuli-responsive assemblies, plasmonic nanoparticle (NP) assemblies functionalized with responsive molecules are of a major interest. In this review, we outline a comprehensive and up-to-date overview of recently reported studies on in vitro and in vivo assembly/disassembly and biomedical applications of plasmonic NPs, wherein stimuli such as enzymes, light, pH, redox potential, temperature, metal ions, magnetic or electric field, and/or multi-stimuli were involved. Stimuli-responsive assemblies have been applied in various biomedical fields including biosensors, surfaced-enhanced Raman scattering (SERS), photoacoustic (PA) imaging, multimodal imaging, photo-activated therapy, enhanced X-ray therapy, drug release, stimuli-responsive aggregation-induced cancer therapy, and so on. The perspectives on the use of stimuli-responsive plasmonic assemblies are discussed by addressing future scientific challenges involving assembly/disassembly strategies and applications.
Collapse
Affiliation(s)
- Qinrui Fu
- MOE key laboratory for analytical science of food safety and biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhi Li
- MOE key laboratory for analytical science of food safety and biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Fengfu Fu
- MOE key laboratory for analytical science of food safety and biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Jibin Song
- MOE key laboratory for analytical science of food safety and biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Huanghao Yang
- MOE key laboratory for analytical science of food safety and biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
12
|
Shreffler JW, Pullan JE, Dailey KM, Mallik S, Brooks AE. Overcoming Hurdles in Nanoparticle Clinical Translation: The Influence of Experimental Design and Surface Modification. Int J Mol Sci 2019; 20:E6056. [PMID: 31801303 PMCID: PMC6928924 DOI: 10.3390/ijms20236056] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/11/2019] [Accepted: 11/23/2019] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles are becoming an increasingly popular tool for biomedical imaging and drug delivery. While the prevalence of nanoparticle drug-delivery systems reported in the literature increases yearly, relatively little translation from the bench to the bedside has occurred. It is crucial for the scientific community to recognize this shortcoming and re-evaluate standard practices in the field, to increase clinical translatability. Currently, nanoparticle drug-delivery systems are designed to increase circulation, target disease states, enhance retention in diseased tissues, and provide targeted payload release. To manage these demands, the surface of the particle is often modified with a variety of chemical and biological moieties, including PEG, tumor targeting peptides, and environmentally responsive linkers. Regardless of the surface modifications, the nano-bio interface, which is mediated by opsonization and the protein corona, often remains problematic. While fabrication and assessment techniques for nanoparticles have seen continued advances, a thorough evaluation of the particle's interaction with the immune system has lagged behind, seemingly taking a backseat to particle characterization. This review explores current limitations in the evaluation of surface-modified nanoparticle biocompatibility and in vivo model selection, suggesting a promising standardized pathway to clinical translation.
Collapse
Affiliation(s)
| | | | | | | | - Amanda E. Brooks
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA; (J.W.S.); (J.E.P.); (K.M.D.); (S.M.)
| |
Collapse
|
13
|
Li W, Cao Z, Liu R, Liu L, Li H, Li X, Chen Y, Lu C, Liu Y. AuNPs as an important inorganic nanoparticle applied in drug carrier systems. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:4222-4233. [DOI: 10.1080/21691401.2019.1687501] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linlin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Zhang Y, Cheng M, Cao J, Zhang Y, Yuan Z, Wu Q, Wang W. Multivalent nanoparticles for personalized theranostics based on tumor receptor distribution behavior. NANOSCALE 2019; 11:5005-5013. [PMID: 30839969 DOI: 10.1039/c8nr09347d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
It is acknowledged that the targeting ability of multivalent ligand-modified nanoparticles (MLNs) strongly depends on the ligand spatial presentation determined by ligand valency. However, the receptor overexpression level varies between different types or stages of tumors. Thus, it is essential to explore the influence of ligand valency on the targeting ability of MLNs to tumors with different levels of receptor overexpression. In this study, a dual-acting agent raltitrexed was used as a ligand to target the folate receptor (FR). Different copies of the raltitrexed-modified multivalent dendritic polyethyleneimine ligand cluster PRn (n = 2, 4, and 8) were conjugated onto magnetic nanoparticles to form multivalent magnetic NPs (MMNs) with different valences. The in vitro studies demonstrated that Fe-PR4 was the most effective valency in the treatment of high FR overexpressing KB cells with a decentralized receptor distribution, owing to the fact that Fe-PR2 was negative in statistical rebinding and Fe-PR8 could induce steric hindrance in the limited binding area. Instead, in moderate FR overexpressing HeLa cells with clustered receptor display, the extra ligands on Fe-PR8 would facilitate statistical rebinding more beneficially. Furthermore, in in vivo tumor inhibition and targeted magnetic resonance imaging (MRI) of KB tumors and another moderate FR expressing H22 tumor, similar results were obtained with the cell experiments. Overall, the optimizable treatment effect of Fe-PRn by modulating the ligand valency based on the overexpressing tumor receptor distribution behavior supports the potential of Fe-PRn as a nanomedicine for personalized theranostics.
Collapse
Affiliation(s)
- Yahui Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Cao J, Gao X, Cheng M, Niu X, Li X, Zhang Y, Liu Y, Wang W, Yuan Z. Reversible Shielding between Dual Ligands for Enhanced Tumor Accumulation of ZnPc-Loaded Micelles. NANO LETTERS 2019; 19:1665-1674. [PMID: 30801190 DOI: 10.1021/acs.nanolett.8b04645] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Herein, we report a ligand-reversible-shielding strategy based on the mutual shielding of dual ligands tethered to the surface of nanoparticles. To exemplify this concept, phenylboronic acid-functionalized poly(ethylene glycol)- b-poly(ε-caprolactone) (PBA-PEG-PCL) and galactose-functionalized diblock polymer (Gal-PEG-PCL) were mixed to form dual-ligand micelles (PBA/Gal). PBA and Gal residues could form a complex at pH 7.4 and mutually shield their targeting function. At pH 6.8, the binding affinity between PBA and Gal weakened, and PBA preferred to bind with the sialic acid residues on the tumor cell surface rather than to Gal on the micellar surface; furthermore, the unbound Gal recovered its targeting ability toward the asialoglycoprotein receptor. When the pH decreased from 7.4 to 6.8, enzyme-linked immunosorbent assays exhibited that the percentage of exposed Gal on the micellar surface increased 1.9-fold, and flow cytometry showed that HepG2 cellular uptake increased 4.3-fold. More importantly, this process was reversible, confirming the reversible shielding and deshielding of dual ligands. With the encapsulation of a photosensitizer, zinc phthalocyanine (ZnPc), the reversible-shielding micelles showed a 48% improvement in the half-life ( t1/2) in blood circulation, a 54% decrease in liver capture, a 40% increase in tumor accumulation, and a 10.3% improvement in the tumor inhibition rate compared to the Gal-coated irreversible micelles. This dual-ligand mutual-shielding strategy provides a new perspective on reversible tumor targeting.
Collapse
Affiliation(s)
- Jing Cao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Xuefeng Gao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Mingbo Cheng
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Xiaoyan Niu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Xiaomin Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Yapei Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071 , China
| |
Collapse
|
16
|
Cheng M, Zhang Y, Zhang X, Wang W, Yuan Z. One-pot synthesis of acid-induced in situ aggregating theranostic gold nanoparticles with enhanced retention in tumor cells. Biomater Sci 2019; 7:2009-2022. [DOI: 10.1039/c9bm00014c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we took advantage of a one-pot reaction to prepare tumor-targeting nanoparticles (Au@T), which could respond to the intracellular acidic environment and form aggregates to enhance the retention effect of nanoparticles in tumor cells, for tumor dual-mode diagnose and photothermal therapy.
Collapse
Affiliation(s)
- Mingbo Cheng
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yahui Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xiaolei Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
17
|
Hu Z, Li X, Yuan M, Wang X, Zhang Y, Wang W, Yuan Z. Study on the effectiveness of ligand reversible shielding strategy in targeted delivery and tumor therapy. Acta Biomater 2019; 83:349-358. [PMID: 30448436 DOI: 10.1016/j.actbio.2018.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/04/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022]
Abstract
We previously proved the superiority of the ligand reversible shielding strategy based on the pH-responsive self-assembly/disassembly of gold nanoparticles through computed tomography imaging in vivo. Herein, the practicality of this strategy in tumor therapy was investigated by a ligand reversible shielding system based on a temperature-responsive polymer. The ligand biotin, cisplatin-loaded chain poly(acrylic acid)-Pt, and the shielding segment thermo-sensitive poly(N-isopropylacrylamide-co-acrylamide) (P(NIPAAm-co-AAm)) were co-modified onto the surface of gold nanostars. In the blood circulation (37 °C), the ligand was shielded by the extension of P(NIPAAm-co-AAm), whose lower critical solution temperature (LCST) is approximately 39 °C. After the nanoparticles accumulate at the tumor site by the enhanced permeability and retention (EPR) effect, the heat generated from gold nanostars upon near-infrared light irradiation would trigger the contraction of P(NIPAAm-co-AAm), thus deshielding the ligand for enhanced tumor cellular uptake. Owing to the reversible extension-contraction transformation change of P(NIPAAm-co-AAm), the reversible shielding effect on the ligand could be accomplished even if the nanoparticles return to the blood circulation. The results indicated that the system could extend blood circulation (1.6-fold at 24 h), reduce immune system clearance (28% lower), and enhance tumor accumulation (37% higher) effectively compared with the irreversible ligand shielding system by analysis of platinum. This strategy showed significantly superior tumor inhibition (11% higher) than the irreversible system. All these results make clear that the ligand reversible shielding strategy is effective and offers important references for the design of nanomaterials for improving tumor accumulation. STATEMENT OF SIGNIFICANCE: Herein, the practicality of the ligand reversible shielding strategy in tumor therapy was investigated. The ligand biotin, cisplatin loaded chain poly(acrylic acid)-Pt and the shielding segment thermo-sensitive poly(N-isopropylacrylamide-co-acrylamide) (P(NIPAAm-co-AAm) which LCST is about 39 °C) were co-modified onto the surface of gold nanostars. This well-designed NPs could shield target ligand in blood circulation (37 °C) and deshield it at tumor site (40-41 °C) reversibly. The results indicated that the system could extend blood circulation (1.6-fold at 24 h), reduce immune system clearance (28% lower) and enhance tumor accumulation (37% higher) effectively compared with the irreversible ligand shielding system by analysis of platinum. Significantly, the strategy showed superior tumor inhibition than the irreversible system (11% higher).
Collapse
|
18
|
pH-Sensitive assembly/disassembly gold nanoparticles with the potential of tumor diagnosis and treatment. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9354-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
19
|
Wang X, Chang Z, Nie X, Li Y, Hu Z, Ma J, Wang W, Song T, Zhou P, Wang H, Yuan Z. A conveniently synthesized Pt (IV) conjugated alginate nanoparticle with ligand self-shielded property for targeting treatment of hepatic carcinoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 15:153-163. [PMID: 30308299 DOI: 10.1016/j.nano.2018.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/06/2018] [Accepted: 09/16/2018] [Indexed: 01/31/2023]
Abstract
The clinical translation remains a major challenge for platinum drug loaded nanoparticle due to the complexity of composition and preparation. Here we employed only three ingredients to prepare Pt (IV) prodrug-loaded ligand-induced self-assembled nanoparticles (GA-ALG@Pt NPs) via facile one-pot route for liver tumor treatment. GA-ALG@Pt NPs were found equipped with intelligently ligand self-shielded property in which the internal GA could be induced to expose by initial cellular recognition, resulting in strengthened cellular uptake (20%-30%) and prolonged blood circulation time (3.43 times). Appreciable tumor targeting ability (2 times) and especially tumor selectivity (2.5 times) were obtained. Glutathione-triggered release of therapeutic agent generated satisfactory antitumor effect. Bio-safety is also a distinguishing feature of GA-ALG@Pt NPs that greatly relief the nephrotoxicity and systematic toxicity of cisplatin. This conveniently synthesized nanoparticle processes superior targeting capacity and biosecurity, supplying an effective approach to translational cancer therapy in the future.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, PR China
| | - Zhi Chang
- Department of Medical Oncology, Tianjin Union Medical Center (Tianjin People's Hospital), Tianjin, PR China
| | - Xin Nie
- Beijing Prosperous Biopharm Co., Ltd., Beijing, PR China
| | - Yingying Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, PR China
| | - ZhenPeng Hu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, PR China
| | - Jinlong Ma
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, PR China
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, PR China
| | - Teng Song
- Department of Medical Oncology, Tianjin Union Medical Center (Tianjin People's Hospital), Tianjin, PR China
| | - Pei Zhou
- Department of Medical Oncology, Tianjin Union Medical Center (Tianjin People's Hospital), Tianjin, PR China
| | - Huaqing Wang
- Department of Medical Oncology, Tianjin Union Medical Center (Tianjin People's Hospital), Tianjin, PR China.
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, PR China.
| |
Collapse
|
20
|
Alinejad Z, Khakzad F, Mahdavian AR. Efficient approach to in-situ preparation of anisotropic and assemblable gold nanoparticles mediated by stimuli-responsive PDMAEMA. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
21
|
Hu Z, Ma J, Fu F, Cui C, Li X, Wang X, Wang W, Wan Y, Yuan Z. An intelligent re-shieldable targeting system for enhanced tumor accumulation. J Control Release 2017; 268:1-9. [DOI: 10.1016/j.jconrel.2017.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 01/09/2023]
|
22
|
Cao J, Zhang Y, Wu Y, Wu J, Wang W, Wu Q, Yuan Z. The effects of ligand valency and density on the targeting ability of multivalent nanoparticles based on negatively charged chitosan nanoparticles. Colloids Surf B Biointerfaces 2017; 161:508-518. [PMID: 29128837 DOI: 10.1016/j.colsurfb.2017.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 02/09/2023]
Abstract
It has been shown that multivalent ligands could significantly enhance the binding avidity compared with the monovalent ones; therefore, once incorporated into nanoparticles, they promote superior targeting ability without increasing the ligand density. Although ligand valency and density play a key role on the targeting ability of corresponding nanoparticles, these facotrs remain largely unexplored and detailed studies are lacking. Herein, a series of multivalent ligands with certain valencies (FAn, n indicates the valency of ligand: n=3, 5, 7) has been conveniently synthesized by conjugating different copies of folate ligands with poly(acrylic acid) (PAA). Negatively charged chitosan nanoparticles (CTS-SA NPs) have been utilized as proper multivalent platforms because they can strongly suppress non-specific protein adsorption and cellular uptake without interfering with the targeting ability of multivalent ligands. Subsequently, the structure of CTS-SA NPs has been modified using different amounts of FAn to form multivalent nanoparticles (FAn-CTS-SA NPs) with various valencies and densities. A series of specific investigations of them suggested that the cellular uptake of multivalent nanoparticles has largely varied with the ligand valency variation even at similar ligand densities; and also largely varied with ligand density variation even at the same ligand valencies. The intermediate valency and density values determined in the current study (ie., 5 and 2.4wt%, respectively) have provided the best cellular uptake, facilitating superior targeting ability at relatively low ligand valency and density. Unexpectedly, no conspicuous difference has been observed during endocytotic inhibition assays with single inhibitors, which may be attributed to the synergetic endocytotic mechanism with multiple pathways of multivalent nanoparticles. The optimal multivalent nanoparticles have also exhibited excellent biocompatibility, long-term stability in vitro and enhanced circulation time in vivo, thus demonstrating their potential for targeted drug delivery.
Collapse
Affiliation(s)
- Jing Cao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yahui Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yukun Wu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jing Wu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qiang Wu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China.
| |
Collapse
|
23
|
Nima ZA, Davletshin YR, Watanabe F, Alghazali KM, Kumaradas JC, Biris AS. Bimetallic gold core–silver shell nanorod performance for surface enhanced Raman spectroscopy. RSC Adv 2017. [DOI: 10.1039/c7ra06573f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Plasmonic gold nanorods (AuNRs) coated with four different thickness silver shells (AuNR\Ags) were synthesized and tested for their efficiency in Surface Enhanced Raman Scattering (SERS) signal enhancement for biomedical applications.
Collapse
Affiliation(s)
- Zeid A. Nima
- Center for Integrative Nanotechnology Sciences
- University of Arkansas at Little Rock
- Little Rock
- USA
| | | | - Fumyia Watanabe
- Center for Integrative Nanotechnology Sciences
- University of Arkansas at Little Rock
- Little Rock
- USA
| | - Karrar M. Alghazali
- Center for Integrative Nanotechnology Sciences
- University of Arkansas at Little Rock
- Little Rock
- USA
| | | | - Alexandru S. Biris
- Center for Integrative Nanotechnology Sciences
- University of Arkansas at Little Rock
- Little Rock
- USA
| |
Collapse
|