1
|
Jang Y, Kim H, Oh J. An Array of Carbon Nanofiber Bundle_Based 3D In Vitro Intestinal Microvilli for Mimicking Functional and Physical Activities of the Small Intestine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404842. [PMID: 39212639 DOI: 10.1002/smll.202404842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Researchers have developed in vitro small intestine models of biomimicking microvilli, such as gut-on-a-chip devices. However, fabrication methods developed to date for 2D and 3D in vitro gut still have unsolved limitations. In this study, an innovative fabrication method of a 3D in vitro gut model is introduced for effective drug screening. The villus is formed on a patterned carbon nanofiber (CNF) bundle as a flexible and biocompatible scaffold. Mechanical properties of the fabricated villi structure are investigates. A microfluidic system is applied to induce the movement of CNFs villi. F-actin and Occludin staining of Caco-2 cells on a 2D flat-chip as a control and a 3D gut-chip with or without fluidic stress is observed. A permeability test of FD20 is performed. The proposed 3D gut-chip with fluidic stress achieve the highest value of Papp. Mechano-active stimuli caused by distinct structural and movement effects of CNFs villi as well as stiffness of the suggested CNFs villi not only can help accelerate cell differentiation but also can improve permeability. The proposed 3D gut-chip system further strengthens the potential of the platform to increase the accuracy of various drug tests.
Collapse
Affiliation(s)
- Yeongseok Jang
- Department of Mechanical Design Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Hyojae Kim
- Center for Social Innovation Policy, Office of S&T Policy Planning, Korea Institute of S&T Evaluation and Planning, Eumseong, 27740, Republic of Korea
| | - Jonghyun Oh
- Department of Nano-Bio Mechanical System Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
2
|
Karakocak BB, Keshavan S, Gunasingam G, Angeloni S, Auderset A, Petri-Fink A, Rothen-Rutishauser B. Rethinking of TEER measurement reporting for epithelial cells grown on permeable inserts. Eur J Pharm Sci 2023; 188:106511. [PMID: 37385303 DOI: 10.1016/j.ejps.2023.106511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Transepithelial electrical resistance (TEER) measures electrical resistance across epithelial tissue barriers involving confluent layer(s) of cells. TEER values act as a prerequisite for determining the barrier integrity of cells, which play a key role in evaluating the transport of drugs, materials or chemicals of interest across an epithelial barrier. The measurements can be performed non-invasively by measuring ohmic resistance across a defined area. Thus, the TEER values are reported in Ω·cm2. In vitro epithelial models are typically assembled on semi-permeable inserts providing two-chamber compartments, and the majority of the studies use inserts with polyethylene terephthalate (PET) membranes. Recently, new inserts with different membrane types and properties have been introduced. However, the TEER values presented so far did not allow a direct comparison. This study presents the characterization of selected epithelial tissues, i.e., lung, retina, and intestine, grown on an ultra-thin ceramic microporous permeable insert (SiMPLI) and PET membranes with different properties, i.e., thickness, material, and pore numbers. We verified the epithelial cell growth on both inserts via phase-contrast and confocal laser scanning microscope imaging. Barrier characteristics were assessed by TEER measurements and also by evaluating the permeability of fluorescein isothiocyanate through cell layers. The findings indicated that background TEER value calculations and the available surface area for cell growth must be thoroughly assessed when new inserts are introduced, as the values cannot be directly compared without re-calculations. Finally, we proposed electrical circuit models highlighting the contributors to TEER recordings on PET and SiMPLI insert membranes. This study paves the way for making the ohmic-based evaluation of epithelial tissues' permeability independent of the material and geometry of the insert membrane used for cell growth.
Collapse
Affiliation(s)
- Bedia Begum Karakocak
- BioNanomaterials Group, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Sandeep Keshavan
- BioNanomaterials Group, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Gowsinth Gunasingam
- BioNanomaterials Group, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Silvia Angeloni
- SiMPLInext SA, Rue Fritz-Oppliger 18, 2504 Biel/Bienne, Switzerland
| | - Adrian Auderset
- Switzerland Innovation Park Biel/Bienne, Aarbergstrasse 46, 2503 Biel/Bienne, Switzerland
| | - Alke Petri-Fink
- BioNanomaterials Group, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Barbara Rothen-Rutishauser
- BioNanomaterials Group, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| |
Collapse
|
3
|
Pasquariello R, Pavlovic R, Chacon MA, Camin F, Verdile N, Løkka G, Panseri S, Faustini M, Tandler A, Peggs D, Kortner TM, Bitan A, Brevini TAL, Gandolfi F. Development of a Rainbow Trout ( Oncorhynchus mykiss) Intestinal In Vitro Platform for Profiling Amino Acid Digestion and Absorption of a Complete Diet. Animals (Basel) 2023; 13:2278. [PMID: 37508055 PMCID: PMC10376269 DOI: 10.3390/ani13142278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The ever-increasing number and variation of raw materials utilized to provide alternative feed formulations continues to allow for a more sustainable and flexible approach. Testing all these options in vivo is still the most robust and reliable manner to pick the best raw material candidates, but it requires the use of large numbers of animals and is time-consuming and expensive. Therefore, we are developing an in vitro platform that can provide a reliable evaluation of new ingredients. The main aim of this work was to combine an in vitro digestion protocol of extruded, commercially relevant aquafeeds with the exposure of intestinal epithelial cells to the extracted bio-available fraction (BAF). The results show that 250,000 cells/cm2 represents the optimal seeding density and that up to 50% BAF concentration for up to 24 h had no negative effects on the epithelial barrier morphology and function. It is possible to determine amino acid digestibility and bioavailability in all the experimental conditions (with and without BSA, at 25% and 50% dilution) and at all time points (0, 6, and 24 h). However, BAF concentration, the medium used for its dilution, and the length of exposure to the different epithelial cell lines can all influence the results and, therefore, must be selected according to the final aim of the experiment.
Collapse
Affiliation(s)
- Rolando Pasquariello
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| | - Radmila Pavlovic
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marcelo A Chacon
- Israel Oceanographic and Limnological Research (IOLR), The National Center for Mariculture, Eilat 8800001, Israel
| | - Federica Camin
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| | - Nicole Verdile
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| | - Guro Løkka
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), 1433 Ås, Norway
| | - Sara Panseri
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy
| | - Massimo Faustini
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy
| | - Amos Tandler
- Israel Oceanographic and Limnological Research (IOLR), The National Center for Mariculture, Eilat 8800001, Israel
| | - David Peggs
- Skretting Aquaculture Research Centre, 4016 Stavanger, Norway
| | - Trond M Kortner
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), 1433 Ås, Norway
| | - Amir Bitan
- Israel Oceanographic and Limnological Research (IOLR), The National Center for Mariculture, Eilat 8800001, Israel
| | - Tiziana A L Brevini
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
4
|
Segner H, Rehberger K, Bailey C, Bo J. Assessing Fish Immunotoxicity by Means of In Vitro Assays: Are We There Yet? Front Immunol 2022; 13:835767. [PMID: 35296072 PMCID: PMC8918558 DOI: 10.3389/fimmu.2022.835767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 11/28/2022] Open
Abstract
There is growing awareness that a range of environmental chemicals target the immune system of fish and may compromise the resistance towards infectious pathogens. Existing concepts to assess chemical hazards to fish, however, do not consider immunotoxicity. Over recent years, the application of in vitro assays for ecotoxicological hazard assessment has gained momentum, what leads to the question whether in vitro assays using piscine immune cells might be suitable to evaluate immunotoxic potentials of environmental chemicals to fish. In vitro systems using primary immune cells or immune cells lines have been established from a wide array of fish species and basically from all immune tissues, and in principal these assays should be able to detect chemical impacts on diverse immune functions. In fact, in vitro assays were found to be a valuable tool in investigating the mechanisms and modes of action through which environmental agents interfere with immune cell functions. However, at the current state of knowledge the usefulness of these assays for immunotoxicity screening in the context of chemical hazard assessment appears questionable. This is mainly due to a lack of assay standardization, and an insufficient knowledge of assay performance with respect to false positive or false negative signals for the different toxicant groups and different immune functions. Also the predictivity of the in vitro immunotoxicity assays for the in vivo immunotoxic response of fishes is uncertain. In conclusion, the currently available database is too limited to support the routine application of piscine in vitro assays as screening tool for assessing immunotoxic potentials of environmental chemicals to fish.
Collapse
Affiliation(s)
- Helmut Segner
- Centre for Fish and Wildlife Health, Department of Pathobiology and Infectious Diseases, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Kristina Rehberger
- Centre for Fish and Wildlife Health, Department of Pathobiology and Infectious Diseases, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Xiamen, China
| |
Collapse
|
5
|
Opršal J, Knotek P, Zickler GA, Sigg L, Schirmer K, Pouzar M, Geppert M. Cytotoxicity, Accumulation and Translocation of Silver and Silver Sulfide Nanoparticles in contact with Rainbow Trout Intestinal Cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105869. [PMID: 34082272 DOI: 10.1016/j.aquatox.2021.105869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Silver nanoparticles (Ag NPs) are widely used in consumer products especially because of their antimicrobial properties. However, this wide usage of Ag NPs is accompanied by their release into the environment where they will be rapidly transformed to other silver species - especially silver sulfide (Ag2S). In the present study, we synthesized Ag NPs and sulfidized them to obtain a core-shell system Ag@Ag2S NPs. Both types of particles form stable dispersions with hydrodynamic diameters of less than 100 nm when diluted in water, but tend to form micrometer-sized agglomerates in biological exposure media. Application of Ag and Ag@Ag2S NPs to rainbow trout intestinal cells (RTgutGC) resulted in a concentration-dependent cytotoxicity for both types of particles, as assessed by a three-endpoint assay for metabolic activity, membrane integrity and lysosomal integrity. The Ag NPs were shown to be slightly more toxic than the Ag@Ag2S NPs. Adding Ag or Ag@Ag2S NPs to RTgutGC cells, grown on a permeable membrane to mimic the intestinal barrier, revealed considerable accumulation of silver for both types of particles. Indeed, the cells significantly attenuated the NP translocation, allowing only a fraction of the metal to translocate across the intestinal epithelium. These findings support the notion that the intestine constitutes an important sink for Ag NPs and that, despite the reduced cytotoxicity of a sulfidized NP form, the particles can enter fish where they may constitute a long-term source for silver ion release and cytotoxicity.
Collapse
Affiliation(s)
- Jakub Opršal
- University of Pardubice, Faculty of Chemical Technology, Institute of Environmental and Chemical Engineering, 53210 Pardubice, Czech Republic; Eawag - Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Petr Knotek
- University of Pardubice, Faculty of Chemical Technology, Department of General and Inorganic Chemistry, 53210 Pardubice, Czech Republic
| | - Gregor A Zickler
- University of Salzburg, Department of Chemistry and Physics of Materials, 5020 Salzburg, Austria
| | - Laura Sigg
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland
| | - Kristin Schirmer
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Miloslav Pouzar
- University of Pardubice, Faculty of Chemical Technology, Institute of Environmental and Chemical Engineering, 53210 Pardubice, Czech Republic; Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, 53002 Pardubice, Czech Republic
| | - Mark Geppert
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; University of Salzburg, Department of Biosciences, 5020 Salzburg, Austria.
| |
Collapse
|
6
|
New Stable Cell Lines Derived from the Proximal and Distal Intestine of Rainbow Trout ( Oncorhynchus mykiss) Retain Several Properties Observed In Vivo. Cells 2021; 10:cells10061555. [PMID: 34205481 PMCID: PMC8235179 DOI: 10.3390/cells10061555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/22/2022] Open
Abstract
We derived two novel cell lines from rainbow trout (RT) proximal (RTpi-MI) and distal intestine (RTdi-MI) and compared them with the previously established continuous cell line RTgutGC. Intestinal stem cells, differentiating and differentiated epithelial cells, and connective cells were found in all cell lines. The cell lines formed a polarized barrier, which was not permeable to large molecules and absorbed proline and glucose. High seeding density induced their differentiation into more mature phenotypes, as indicated by the downregulation of intestinal stem cell-related genes (i.e., sox9, hopx and lgr5), whereas alkaline phosphatase activity was upregulated. Other enterocyte markers (i.e., sglt1 and pept1), however, were not regulated as expected. In all cell lines, the presence of a mixed population of epithelial and stromal cells was characterized for the first time. The expression by the stromal component of lgr5, a stem cell niche regulatory molecule, may explain why these lines proliferate stably in vitro. Although most parameters were conserved among the three cell lines, some significant differences were observed, suggesting that characteristics typical of each tract are partly conserved in vitro as well.
Collapse
|
7
|
Gholizadeh S, Allahyari Z, Carter R, Delgadillo LF, Blaquiere M, Nouguier-Morin F, Marchi N, Gaborski TR. Robust and Gradient Thickness Porous Membranes for In Vitro Modeling of Physiological Barriers. ADVANCED MATERIALS TECHNOLOGIES 2020; 5:2000474. [PMID: 33709013 PMCID: PMC7942760 DOI: 10.1002/admt.202000474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 05/06/2023]
Abstract
Porous membranes are fundamental elements for tissue-chip barrier and co-culture models. However, the exaggerated thickness of commonly available membranes may represent a stumbling block impeding a more accurate in vitro modeling. Existing techniques to fabricate membranes such as solvent cast, spin-coating, sputtering and PE-CVD result in uniform thickness films. Here, we developed a robust method to generate ultrathin porous parylene C (UPP) membranes not just with precise thicknesses down to 300 nm, but with variable gradients in thicknesses, while at the same time having porosities up to 25%. We also show surface etching and increased roughness lead to improved cell attachment. Next, we examined the mechanical properties of UPP membranes with varying porosity and thickness and fit our data to previously published models, which can help determine practical upper limits of porosity and lower limits of thickness. Lastly, we validate a straightforward approach allowing the successful integration of the UPP membranes into a prototyped 3D-printed scaffold, demonstrating mechanical robustness and allowing cell adhesion under varying flow conditions. Collectively, our results support the integration and the use of UPP membranes to examine cell-cell interaction in vitro.
Collapse
Affiliation(s)
- Shayan Gholizadeh
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Zahra Allahyari
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Robert Carter
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Luis F Delgadillo
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14620, USA
| | - Marine Blaquiere
- Cerebrovascular and Glia Research, Institute of Functional Genomics (CNRS UMR5203, INSERM U1191, and University of Montpellier), Montpellier, 34094, France
| | - Frederic Nouguier-Morin
- Cerebrovascular and Glia Research, Institute of Functional Genomics (CNRS UMR5203, INSERM U1191, and University of Montpellier), Montpellier, 34094, France
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Institute of Functional Genomics (CNRS UMR5203, INSERM U1191, and University of Montpellier), Montpellier, 34094, France
| | - Thomas R Gaborski
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| |
Collapse
|
8
|
Drieschner C, Könemann S, Renaud P, Schirmer K. Fish-gut-on-chip: development of a microfluidic bioreactor to study the role of the fish intestine in vitro. LAB ON A CHIP 2019; 19:3268-3276. [PMID: 31482163 DOI: 10.1039/c9lc00415g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this study we present the first fish-gut-on-chip model. This model is based on the reconstruction of the intestinal barrier by culturing two intestinal cell lines from rainbow trout, namely epithelial RTgutGC and fibroblastic RTgutF, in an artificial microenvironment. For a realistic mimicry of the interface between the intestinal lumen and the interior of the organism we i) developed ultrathin and highly porous silicon nitride membranes that serve as basement membrane analogues and provide a culture interface for the fish cells; ii) constructed a unique micro-well plate-based microfluidic bioreactor that enables parallelization of experiments and creates realistic fluid flow exposure scenarios for the cells; iii) integrated electrodes in the reactor for non-invasive impedance sensing of cellular well-being. In a first approach, we used this reactor to investigate the response of epithelial fish cells to in vivo-like shear stress rates of 0.002-0.06 dyne per cm2, resulting from fluid flow within the intestinal lumen. Moreover, we investigated the interplay of epithelial and fibroblast cells under optimal flow conditions to carefully evaluate the benefits and drawbacks of the more complex reconstruction of the intestinal architecture. With our fish-gut-on-chip model we open up new strategies for a better understanding of basic fish physiology, for the refinement of fish feed in aquaculture and for predicting chemical uptake and bioaccumulation in fish for environmental risk assessment. The basic principles of our reactor prototype, including the use of ultrathin membranes, an open microfluidic circuit for perfusion and the micro-well plate-based format for simplified handling and avoidance of air-bubbles, will as well be of great value for other barrier-on-chip models.
Collapse
Affiliation(s)
- Carolin Drieschner
- Department of Environmental Toxicology, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Dübendorf, Switzerland.
| | | | | | | |
Collapse
|
9
|
Drieschner C, Vo NTK, Schug H, Burkard M, Bols NC, Renaud P, Schirmer K. Improving a fish intestinal barrier model by combining two rainbow trout cell lines: epithelial RTgutGC and fibroblastic RTgutF. Cytotechnology 2019; 71:835-848. [PMID: 31256301 PMCID: PMC6663964 DOI: 10.1007/s10616-019-00327-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 06/22/2019] [Indexed: 12/16/2022] Open
Abstract
An in vitro model of the fish intestine is of interest for research and application in diverse fields such as fish physiology, aquaculture and chemical risk assessment. The recently developed epithelial barrier model of the fish intestine relies on the RTgutGC cell line from rainbow trout (Oncorhynchus mykiss), cultured in inserts on permeable membranes. Our aim was to extend the current system by introducing intestinal fibroblasts as supportive layer in order to reconstruct the epithelial-mesenchymal interface as found in vivo. We therefore initiated and characterized the first fibroblast cell line from the intestine of rainbow trout, which has been termed RTgutF. Co-culture studies of RTgutGC and RTgutF were performed on commercially available electric cell substrate for impedance sensing (ECIS) and on newly developed ultrathin, highly porous alumina membranes to imitate the cellular interaction with the basement membrane. Cellular events were examined with non-invasive impedance spectroscopy to distinguish between barrier tightness and cell density in the ECIS system and to determine transepithelial electrical resistance for cells cultured on the alumina membranes. We highlight the relevance of the piscine intestinal fibroblasts for an advanced intestinal barrier model, particularly on ultrathin alumina membranes. These membranes enable rapid crosstalk of cells cultured on opposite sides, which led to increased barrier tightening in the fish cell line-based epithelial-mesenchymal model.
Collapse
Affiliation(s)
- Carolin Drieschner
- Department of Environmental Toxicology, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Dübendorf, Switzerland
- Microsystems Laboratory 4, School of Engineering, EPFL (École Polytechnique Fédérale de Lausanne), Lausanne, Switzerland
| | - Nguyen T K Vo
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Hannah Schug
- Department of Environmental Toxicology, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Dübendorf, Switzerland
| | - Michael Burkard
- Department of Environmental Toxicology, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Dübendorf, Switzerland
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Philippe Renaud
- Microsystems Laboratory 4, School of Engineering, EPFL (École Polytechnique Fédérale de Lausanne), Lausanne, Switzerland
| | - Kristin Schirmer
- Department of Environmental Toxicology, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Dübendorf, Switzerland.
- Laboratory of Environmental Toxicology, School of Architecture, Civil and Environmental Engineering, EPFL (École Polytechnique Fédérale de Lausanne), Lausanne, Switzerland.
- Department of Environmental Systems Science, ETHZ (Swiss Federal Institute of Technology in Zurich), Zurich, Switzerland.
| |
Collapse
|
10
|
Wang J, Lei P, Gamil AAA, Lagos L, Yue Y, Schirmer K, Mydland LT, Øverland M, Krogdahl Å, Kortner TM. Rainbow Trout ( Oncorhynchus Mykiss) Intestinal Epithelial Cells as a Model for Studying Gut Immune Function and Effects of Functional Feed Ingredients. Front Immunol 2019; 10:152. [PMID: 30792715 PMCID: PMC6374633 DOI: 10.3389/fimmu.2019.00152] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/17/2019] [Indexed: 12/04/2022] Open
Abstract
The objective of this study was to evaluate the suitability of the rainbow trout intestinal epithelial cell line (RTgutGC) as an in vitro model for studies of gut immune function and effects of functional feed ingredients. Effects of lipopolysaccharide (LPS) and three functional feed ingredients [nucleotides, mannanoligosaccharides (MOS), and beta-glucans] were evaluated in RTgutGC cells grown on conventional culture plates and transwell membranes. Permeation of fluorescently-labeled albumin, transepithelial electrical resistance (TEER), and tight junction protein expression confirmed the barrier function of the cells. Brush border membrane enzyme activities [leucine aminopeptidase (LAP) and maltase] were detected in the RTgutGC cells but activity levels were not modulated by any of the exposures. Immune related genes were expressed at comparable relative basal levels as these in rainbow trout distal intestine. LPS produced markedly elevated gene expression levels of the pro-inflammatory cytokines il1b, il6, il8, and tnfa but had no effect on ROS production. Immunostaining demonstrated increased F-actin contents after LPS exposure. Among the functional feed ingredients, MOS seemed to be the most potent modulator of RTgutGC immune and barrier function. MOS significantly increased albumin permeation and il1b, il6, il8, tnfa, and tgfb expression, but suppressed ROS production, cell proliferation and myd88 expression. Induced levels of il1b and il8 were also observed after treatment with nucleotides and beta-glucans. For barrier function related genes, all treatments up-regulated the expression of cldn3 and suppressed cdh1 levels. Beta-glucans increased TEER levels and F-actin content. Collectively, the present study has provided new information on how functional ingredients commonly applied in aquafeeds can affect intestinal epithelial function in fish. Our findings suggest that RTgutGC cells possess characteristic features of functional intestinal epithelial cells indicating a potential for use as an efficient in vitro model to evaluate effects of bioactive feed ingredients on gut immune and barrier functions and their underlying cellular mechanisms.
Collapse
Affiliation(s)
- Jie Wang
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Peng Lei
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Amr Ahmed Abdelrahim Gamil
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Leidy Lagos
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Yang Yue
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,EPF Lausanne, School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland.,ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, Zurich, Switzerland
| | - Liv Torunn Mydland
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Margareth Øverland
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Åshild Krogdahl
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Trond M Kortner
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| |
Collapse
|
11
|
Park SM, Kim H, Song KH, Eom S, Park H, Doh J, Kim DS. Ultra-thin, aligned, free-standing nanofiber membranes to recapitulate multi-layered blood vessel/tissue interface for leukocyte infiltration study. Biomaterials 2018; 169:22-34. [DOI: 10.1016/j.biomaterials.2018.03.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/13/2023]
|
12
|
Langan LM, Owen SF, Jha AN. Establishment and long-term maintenance of primary intestinal epithelial cells cultured from the rainbow trout, Oncorhynchus mykiss. Biol Open 2018. [PMID: 29514825 PMCID: PMC5898270 DOI: 10.1242/bio.032870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A novel method for the establishment and long-term maintenance of ex vivo cultures from intestinal regions of the rainbow trout, Oncorhynchus mykiss (Walbaum), is reported. Adherence of cells was observed within hours, epithelial island formation recorded at 48 h and rapid proliferation with confluence achieved between 9-14 days. In addition to metabolic characterisation, basic morphology of growing cells was characterised using histology, immunofluorescence, transmission electron microscopy (TEM) and transepithelial electrical resistance (TEER). Regional differences in intestinal ethoxyresorufin-O-deethylase (EROD) and 7-ethoxycoumarin-O-deethylation (ECOD) activities in these primary grown enterocytes were compared following exposure to model inducers [i.e. α-NF, β-NF, B(a)P] which demonstrated significant differences. Regional differences in dietary uptake and metabolism of contaminants can therefore be studied in this in vitro system to increase our understanding of fundamental processes, while concurrently providing a means to reduce the number of fish required for biological studies in line with the principles of the 3Rs (Reduce, Refine and Replace). This article has an associated First Person interview with the first author of the paper. Summary: Understanding chemical uptake from the diet is difficult in live fish: we developed long-term intestinal cell cultures that enables the science and provides an alternative method.
Collapse
Affiliation(s)
- Laura M Langan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Stewart F Owen
- Global Sustainability, AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TF, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| |
Collapse
|