1
|
Stocco TD, Zhang T, Dimitrov E, Ghosh A, da Silva AMH, Melo WCMA, Tsumura WG, Silva ADR, Sousa GF, Viana BC, Terrones M, Lobo AO. Carbon Nanomaterial-Based Hydrogels as Scaffolds in Tissue Engineering: A Comprehensive Review. Int J Nanomedicine 2023; 18:6153-6183. [PMID: 37915750 PMCID: PMC10616695 DOI: 10.2147/ijn.s436867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Carbon-based nanomaterials (CBNs) are a category of nanomaterials with various systems based on combinations of sp2 and sp3 hybridized carbon bonds, morphologies, and functional groups. CBNs can exhibit distinguished properties such as high mechanical strength, chemical stability, high electrical conductivity, and biocompatibility. These desirable physicochemical properties have triggered their uses in many fields, including biomedical applications. In this review, we specifically focus on applying CBNs as scaffolds in tissue engineering, a therapeutic approach whereby CBNs can act for the regeneration or replacement of damaged tissue. Here, an overview of the structures and properties of different CBNs will first be provided. We will then discuss state-of-the-art advancements of CBNs and hydrogels as scaffolds for regenerating various types of human tissues. Finally, a perspective of future potentials and challenges in this field will be presented. Since this is a very rapidly growing field, we expect that this review will promote interdisciplinary efforts in developing effective tissue regeneration scaffolds for clinical applications.
Collapse
Affiliation(s)
- Thiago Domingues Stocco
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - Tianyi Zhang
- Pennsylvania State University, University Park, PA, USA
| | | | - Anupama Ghosh
- Department of Chemical and Materials Engineering (DEQM), Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Wanessa C M A Melo
- FTMC, State Research institute Center for Physical Sciences and Technology, Department of Functional Materials and Electronics, Vilnius, Lithuanian
| | - Willian Gonçalves Tsumura
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - André Diniz Rosa Silva
- FATEC, Ribeirão Preto, SP, Brazil
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Gustavo F Sousa
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Bartolomeu C Viana
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | | | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| |
Collapse
|
2
|
Noh S, Lee S, Lee J, Jo H, Lee H, Kim M, Kim H, Kim YA, Yoon H. All-Gas-Phase Synthesis of Heterolayered Two-Dimensional Nanohybrids Decorated with Metallic Nanocatalysts for Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203633. [PMID: 36108130 DOI: 10.1002/smll.202203633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Herein, a sequential gas-phase process involving air jet milling followed by chemical vapor deposition (CVD), is demonstrated to be an efficient strategy for the fabrication of heterolayered 2D nanohybrids (2DNHs) decorated with nanocatalysts. Tens of grams of the nanohybrids, which is a substantial quantity at the laboratory scale, are produced in the absence of solvents and water, and without the need for an extra purification procedure. Air jet milling enables the development of binary/ternary heterolayered structures consisting of graphene, WSe2 , and/or MoS2 via the gas-phase co-exfoliation of their bulk counterparts. Based on the X-ray photoelectron and Raman spectroscopy data, the heterolayers of the 2DNHs exert chemical and electronic effects on each other, while diminishing the interactions between same-component layers. Moreover, the electrochemically active surface area increases by >190% and the charge transfer resistance decreases by >35%. CVD is performed to introduce Pt and Ru nanoparticles with diameters of a few nanometers as additional electrocatalysts into the 2DNHs. The nanocatalyst-decorated 2DNHs show excellent performance for the production of hydrogen and oxygen gases in water-splitting cells. Notably, the proposed all-gas-phase processes allow for the large-scale production of functional 2DNHs with minimal negative environmental impact, which is crucial for the commercialization of nanomaterials.
Collapse
Affiliation(s)
- Seonmyeong Noh
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Seungmin Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Jisun Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hyemi Jo
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Haney Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Minjin Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hyungwoo Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Yoong Ahm Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| |
Collapse
|
3
|
Xu P, Wang Y, Wang S, Dai W, Chen N, Li Q. Preparation of polyethyleneimine-modified porous polyacrylonitrile electrospun nanofibers for efficient removal of methyl orange. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2092410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Peng Xu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yang Wang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Shasha Wang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Wei Dai
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Nannan Chen
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Qun Li
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
4
|
In-situ food spoilage monitoring using a wireless chemical receptor-conjugated graphene electronic nose. Biosens Bioelectron 2021; 200:113908. [PMID: 34972042 DOI: 10.1016/j.bios.2021.113908] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 11/20/2022]
Abstract
Monitoring food spoilage is one of the most effective methods for preventing food poisoning caused by biogenic amines or microbes. Therefore, various analytical techniques have been introduced to detect low concentrations of cadaverine (CV) and putrescine (PT), which are representative biogenic polyamines involved in food spoilage (5-8 ppm at the stage of initial decomposition after storage for 5 days at 5 °C and 17-186 ppm at the stage of advanced decomposition after storage for 7 days at 5 °C). Although previous methods showed selective CV and PT detection even at low concentrations, the use of these methods remains challenging in research areas that require in-situ, real-time, on-site monitoring. In this study, we demonstrated for the first time an in-situ high-performance chemical receptor-conjugated graphene electronic nose (CRGE-nose) whose limits of detection (LODs), 27.04 and 7.29 ppb, for CV and PT are up to 102 times more sensitive than those of conventional biogenic amine sensors. Specifically, the novel chemical receptors 2,7-bis(3-morpholinopropyl)benzo[lmn][3,8] phenanthroline-1,3,6,8(2H,7H)-tetraone (NaPhdiMor (NPM)) and 2,7-bis(2-((3-morpholinopropyl)amino)ethyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NaPhdiEtAmMor (NPEAM)) were designed on the basis of density functional theory (DFT) calculations, and their interaction mechanism was characterized by a DFT 3D simulation. Interestingly, the CRGE-nose was connected on a micro sim chip substrate via wire bonding and then integrated into wireless portable devices, resulting in a cost-effective, high-performance prototype CRGE-nose device capable of on-site detection. The portable CRGE-nose can be used for in-situ monitoring of CV and PT concentration changes as low as 27.04 and 7.29 ppb in real meats such as pork, beef, lamb and chicken.
Collapse
|
5
|
Sarwar Z, Tichonovas M, Krugly E, Masione G, Abromaitis V, Martuzevicius D. Graphene oxide loaded fibrous matrixes of polyether block amide (PEBA) elastomer as an adsorbent for removal of cationic dye from wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113466. [PMID: 34371223 DOI: 10.1016/j.jenvman.2021.113466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/22/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Novel highly porous nanoparticle materials are increasingly being applied in adsorption processes, but they need to be supported by robust matrixes to maintain their functionality. We present a study of hosting graphene oxide (GO) particles on polyether block amide (PEBA) melt electrospun fibers and applying such composite matrix to the adsorption of the cationic dye (crystal violet) from water. Various amounts of GO (from 0.5 to 2.0%) were mixed into pure PEBA and electrospun by melt electrospinning obtaining micro fibrous matrixes. These were characterized for morphology (SEM), chemical composition (FTIR), crystallinity (XRD), and wetting behavior (WCA). The increasing amount of GO adversely affected fiber diameter (reduced from 13.18 to 4.38 μm), while the hydrophilic properties (Water contact angle decrease from 109 to 76°) and overall dye adsorption was increased. Efficient adsorption has been demonstrated, reaching approximately 100 % removal efficiency using a 2% GO composite matrix at a dose of 40 mg/l and pH of 10. Further increase of GO concentration in polymer is not feasible due to instability in the electrospinning process.
Collapse
Affiliation(s)
- Zahid Sarwar
- Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19, Kaunas, Lithuania.
| | - Martynas Tichonovas
- Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19, Kaunas, Lithuania
| | - Edvinas Krugly
- Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19, Kaunas, Lithuania
| | - Goda Masione
- Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19, Kaunas, Lithuania
| | - Vytautas Abromaitis
- Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19, Kaunas, Lithuania
| | - Dainius Martuzevicius
- Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19, Kaunas, Lithuania
| |
Collapse
|
6
|
Khnifira M, El Hamidi S, Mahsoune A, Sadiq M, Serdaroğlu G, Kaya S, Qourzal S, Barka N, Abdennouri M. Adsorption of methylene blue cationic dye onto brookite and rutile phases of titanium dioxide: Quantum chemical and molecular dynamic simulation studies. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Ghosh T, Das T, Purwar R. Review of electrospun hydrogel nanofiber system: Synthesis, Properties and Applications. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25709] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tanushree Ghosh
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry Delhi Technological University Delhi India
| | - Trisha Das
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry Delhi Technological University Delhi India
| | - Roli Purwar
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry Delhi Technological University Delhi India
| |
Collapse
|
8
|
Heo E, Noh S, Lee U, Le TH, Lee H, Jo H, Lee S, Yoon H. Surfactant-in-Polymer Templating for Fabrication of Carbon Nanofibers with Controlled Interior Substructures: Designing Versatile Materials for Energy Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007775. [PMID: 33739582 DOI: 10.1002/smll.202007775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/17/2021] [Indexed: 06/12/2023]
Abstract
A simple, scalable, surfactant-in-polymer templating approach is demonstrated to create controlled long-range secondary substructures in a primary structure. A metal bis(2-ethylhexyl) sulfosuccinate (MAOT) as the surfactant is shown to be capable of serving as a sacrificial template and metal precursor in carbon nanofibers. The low interfacial tension and controllable dimensions of the MAOT are maintained in the solid-phase polymer, even during electrospinning and heat-treatment processes, allowing for the long-range uniform formation of substructures in the nanofibers. The MAOT content is found to be a critical parameter for tailoring the diameter of the nanofibers and their textural properties, such as size and volume of interior pores. The metal counterion species in the MAOT determine the introduction of metallic phases in the nanofiber interior. The incorporation of MAOT with Na as the counterion into the polymer phase leads to the formation of a built-in pore structure in the nanofibers. In contrast, MAOT with Fe as a counterion generates unique iron-in-pore substructures in the nanofibers (FeCNFs). The FeCNFs exhibit outstanding charge storage and water splitting performances. As a result, the MAOT-in-polymer templating approach can be extended to combinations of various metal precursors and thus create desirable functionalities for different target applications.
Collapse
Affiliation(s)
- Eunseo Heo
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Seonmyeong Noh
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Unhan Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Thanh-Hai Le
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Haney Lee
- Alan G. MacDiarmid Energy Research Institute, School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hyemi Jo
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Sanghyuck Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
- Alan G. MacDiarmid Energy Research Institute, School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| |
Collapse
|
9
|
Kim Y, Lee S, Yoon H. Fire-Safe Polymer Composites: Flame-Retardant Effect of Nanofillers. Polymers (Basel) 2021; 13:540. [PMID: 33673106 PMCID: PMC7918670 DOI: 10.3390/polym13040540] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Currently, polymers are competing with metals and ceramics to realize various material characteristics, including mechanical and electrical properties. However, most polymers consist of organic matter, making them vulnerable to flames and high-temperature conditions. In addition, the combustion of polymers consisting of different types of organic matter results in various gaseous hazards. Therefore, to minimize the fire damage, there has been a significant demand for developing polymers that are fire resistant or flame retardant. From this viewpoint, it is crucial to design and synthesize thermally stable polymers that are less likely to decompose into combustible gaseous species under high-temperature conditions. Flame retardants can also be introduced to further reinforce the fire performance of polymers. In this review, the combustion process of organic matter, types of flame retardants, and common flammability testing methods are reviewed. Furthermore, the latest research trends in the use of versatile nanofillers to enhance the fire performance of polymeric materials are discussed with an emphasis on their underlying action, advantages, and disadvantages.
Collapse
Affiliation(s)
- Yukyung Kim
- R&D Laboratory: Korea Fire Institute, 331 Jisam-ro, Giheung-gu, Yongin-si, Gyeonggi-do 17088, Korea;
| | - Sanghyuck Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
10
|
Kim D, Chang JY. Photocatalytic Microporous Polymer-Hydrogel Composites for the Removal of a Dye in Water. Macromol Res 2021. [DOI: 10.1007/s13233-020-8171-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Fang J, Zhao W, Zhang M, Fang Q. A Novel Amide-functionalized Covalent Organic Framework for Selective Dye Adsorption. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20100471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Gao M, Gao Y, Chen G, Huang X, Xu X, Lv J, Wang J, Xu D, Liu G. Recent Advances and Future Trends in the Detection of Contaminants by Molecularly Imprinted Polymers in Food Samples. Front Chem 2020; 8:616326. [PMID: 33335893 PMCID: PMC7736048 DOI: 10.3389/fchem.2020.616326] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022] Open
Abstract
Drug residues, organic dyes, heavy metals, and other chemical pollutants not only cause environmental pollution, but also have a serious impact on food safety. Timely and systematic summary of the latest scientific advances is of great importance for the development of new detection technologies. In particular, molecularly imprinted polymers (MIPs) can mimic antibodies, enzymes and other biological molecules to recognize, enrich, and separate contaminants, with specific recognition, selective adsorption, high affinity, and strong resistance characteristics. Therefore, MIPs have been widely used in chemical analysis, sensing, and material adsorption. In this review, we first describe the basic principles and production processes of molecularly imprinted polymers. Secondly, an overview of recent applications of molecularly imprinted polymers in sample pre-treatment, sensors, chromatographic separation, and mimetic enzymes is highlighted. Finally, a brief assessment of current technical issues and future trends in molecularly imprinted polymers is also presented.
Collapse
Affiliation(s)
- Mingkun Gao
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhang Gao
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ge Chen
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaodong Huang
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaomin Xu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Lv
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Agro-Product Quality and Safety, Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture Beijing, Beijing, China
| | - Donghui Xu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangyang Liu
- Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Farhadi S, Mahmoudi F, Kucerakova M, Rohlicek J, Dusek M. New hybrid nanostructures based on keggin-type 12-tungstophosphate and some metal-semicarbazone complexes: Synthesis, x-ray crystal structures and spectroscopic studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Kim KH, Park SJ, Park CS, Seo SE, Lee J, Kim J, Lee SH, Lee S, Kim JS, Ryu CM, Yong D, Yoon H, Song HS, Lee SH, Kwon OS. High-performance portable graphene field-effect transistor device for detecting Gram-positive and -negative bacteria. Biosens Bioelectron 2020; 167:112514. [PMID: 32866713 DOI: 10.1016/j.bios.2020.112514] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 12/28/2022]
Abstract
Current techniques for Gram-typing and for diagnosing a pathogen at the early infection stage rely on Gram stains, cultures, Enzyme linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and gene microarrays, which are labor-intensive and time-consuming approaches. In addition, a delayed or imprecise diagnosis of clinical pathogenic bacteria leads to a life-threatening emergency or overuse of antibiotics and a high-rate occurrence of antimicrobial-resistance microbes. Herein, we report high-performance antibiotics (as bioprobes) conjugated graphene micropattern field-effect transistors (ABX-GMFETs) to facilitate on-site Gram-typing and help in the detection of the presence or absence of Gram-negative and -positive bacteria in the samples. The ABX-GMFET platform, which consists of recognition probes and GM transistors conjugated with novel interfacing chemical compounds, was integrated into the microfluidics to minimize the required human intervention and facilitate automation. The mechanism of binding of ABX-GMFET was based on a charge or chemical moiety interaction between the bioprobes and target bacteria. Subsequently, ABX-GMFETs exhibited unprecedented high sensitivity with a limit of detection (LOD) of 100 CFU/mL (1-9 CFU/mL), real-time target specificity.
Collapse
Affiliation(s)
- Kyung Ho Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Seon Joo Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Chul Soon Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sung Eun Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jiyeon Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jinyeong Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Seung Hwan Lee
- Department of Bionano Engineering, Hanyang University, Ansan, Republic of Korea
| | - Soohyun Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jun-Seob Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Choong-Min Ryu
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeonseok Yoon
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
| | - Hyun Seok Song
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sang Hun Lee
- Department of Bioengineering, University of California Berkeley, CA, 94720, USA.
| | - Oh Seok Kwon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, Korea University of Science and Technology (UST), Republic of Korea.
| |
Collapse
|
15
|
Fraga TJM, Ghislandi MG, Carvalho MN, da Motta Sobrinho MA. One step forward: How can functionalization enhance the adsorptive properties of graphene towards metallic ions and dyes? ENVIRONMENTAL RESEARCH 2020; 184:109362. [PMID: 32199322 DOI: 10.1016/j.envres.2020.109362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/23/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
Functionalized graphene and its derivatives have been subject of many recent studies investigating their use as scavenger of various industrial pollutants. Adsorption is a feasible treatment, which can employ a wide variety of materials as adsorbents. Additionally, graphene has been distinguished for its remarkable properties, such as mechanical resistance, flexibility and electric conductivity. A relevant aspect of functionalized graphene is related to its selectivity, resulting in increased removal rates of specific pollutants. Hence, the functionalization process of graphene nanosheets is the cutting edge of the materials and environmental sciences, promoting the development of innovative and highly capable sorbents. The purpose of this review is to assemble the available information about functionalized graphene nanomaterials used for the removal of water pollutants and to explore its wide potential. In addition, various optimal experimental conditions (solution pH, equilibrium time, adsorbent dosage) are discussed. In each topic, aspects of environmental protection of adsorption process were evaluated, as well as the most recent works, available from high impact journals in the field, have been explored. Additionally, the employment of natural compounds to functionalize, reduce and support graphene, was evaluated as green alternatives to chemicals.
Collapse
Affiliation(s)
- Tiago José Marques Fraga
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, 50670-901, Recife, PE, Brazil.
| | - Marcos Gomes Ghislandi
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, 50670-901, Recife, PE, Brazil; Engineering Campus - UACSA, Federal Rural University of Pernambuco (UFRPE), 300 Cento e sessenta e Três Av., Cabo de Santo Agostinho, PE, Brazil.
| | - Marilda Nascimento Carvalho
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, 50670-901, Recife, PE, Brazil.
| | - Maurício Alves da Motta Sobrinho
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, 50670-901, Recife, PE, Brazil.
| |
Collapse
|
16
|
Le TH, Oh Y, Kim H, Yoon H. Exfoliation of 2D Materials for Energy and Environmental Applications. Chemistry 2020; 26:6360-6401. [PMID: 32162404 DOI: 10.1002/chem.202000223] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 12/20/2022]
Abstract
The fascinating properties of single-layer graphene isolated by mechanical exfoliation have inspired extensive research efforts toward two-dimensional (2D) materials. Layered compounds serve as precursors for atomically thin 2D materials (briefly, 2D nanomaterials) owing to their strong intraplane chemical bonding but weak interplane van der Waals interactions. There are newly emerging 2D materials beyond graphene, and it is becoming increasingly important to develop cost-effective, scalable methods for producing 2D nanomaterials with controlled microstructures and properties. The variety of developed synthetic techniques can be categorized into two classes: bottom-up and top-down approaches. Of top-down approaches, the exfoliation of bulk 2D materials into single or few layers is the most common. This review highlights chemical and physical exfoliation methods that allow for the production of 2D nanomaterials in large quantities. In addition, remarkable examples of utilizing exfoliated 2D nanomaterials in energy and environmental applications are introduced.
Collapse
Affiliation(s)
- Thanh-Hai Le
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Yuree Oh
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hyungwoo Kim
- Alan G. MacDiarmid Energy Research &, School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.,Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hyeonseok Yoon
- Alan G. MacDiarmid Energy Research &, School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.,Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| |
Collapse
|
17
|
Graphene-based adsorbents for water remediation by removal of organic pollutants: Theoretical and experimental insights. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2019.10.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Qiu J, Fan P, Feng Y, Liu F, Ling C, Li A. Comparison of the adsorption behaviors for methylene blue on two renewable gels with different physical state. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113117. [PMID: 31476673 DOI: 10.1016/j.envpol.2019.113117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/09/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
High removal efficiency and excellent recyclability are the fundamental qualities that an outstanding adsorbent used for organic dye removal should possess. In this study, two recyclable gels (sodium alginate/Ca/fiber: SCFA hydrogels; cellulose nanofiber/chitosan: CNFCS aerogels) were successfully fabricated using the facile method. Additionally, the as-prepared adsorbents were investigated using a series of characterizations. The adsorption behavior and anti-interference performance of the synthesized gels were compared by choosing methylene blue (MB) as the model pollutant. The kinetic behavior of the gels towards MB was consistent with the pseudo first-order model, and the SCFA hydrogels reached adsorption equilibrium faster than the CNFCS aerogels. The maximum adsorption capacity of MB on the SCFA hydrogels and CNFCS aerogels was 1335.0 and 164.5 mg g-1 (pH = 7.0, dosage: 0.5 g/L; initial concentration from 15 to 180 mg L-1), respectively. More specifically, we found that the co-existing anions had different effects on MB adsorption over the gels used for MB removal. Furthermore, for the SCFA hydrogels, co-existing natural organic matter (NOM) at low concentrations enhanced MB adsorption, and then stabilized as the concentration of NOM increased. However, this increasing trend was not observed for MB adsorption on CNFCS aerogels; these gels exhibited a slight decrease at first, and then showed no change. Nevertheless, both the gels exhibited superior regeneration and recycling abilities.
Collapse
Affiliation(s)
- Jinli Qiu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Pei Fan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yuefeng Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Fuqiang Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China.
| | - Chen Ling
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China
| |
Collapse
|
19
|
Cheng D, Li Y, Yang L, Luo S, Yang L, Luo X, Luo Y, Li T, Gao J, Dionysiou DD. One-step reductive synthesis of Ti 3+ self-doped elongated anatase TiO 2 nanowires combined with reduced graphene oxide for adsorbing and degrading waste engine oil. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120752. [PMID: 31229881 DOI: 10.1016/j.jhazmat.2019.120752] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/13/2019] [Accepted: 06/07/2019] [Indexed: 05/27/2023]
Abstract
A sustainable photocatalyst of Ti3+ self-doped elongated anatase nanowires combined with reduced graphene oxide (TiO2 NWs@rGO) was prepared via a facile one-step reductive synthesis process using NaBH4 as reductant for the first time. The obtained optimal TiO2 NWs@rGO composite has a large surface area,182 m2 g-1, which demonstrates strong adsorption capacity due to the multilayered structure built by highly crystallized nanowires of TiO2 and ultrathin rGO layers. When the photocatalyst was applied in removing waste engine oil (100 mL, 50 mg L-1), it exhibited outstanding performance with up to COD 98.6% removal extent (from 145 initial to 2 mg L-1 final COD) after 5 h, which is 34.1% higher than that of TiO2 NWs (64.5% COD removal extent). Gas chromatography-mass spectrometry analyses of residual waste engine oil after photocatalysis shows significant reductions of C6-C19 chemicals as well as total disappear of C15,C16, C17, C18 chemicals. The outstanding photocatalytic activity of TiO2 NWs@rGO benefits from sensitive response to visible light, improved surface reactivity and high electron flux enabled by rGO and Ti3+ in TiO2. In addition, this composite catalyst can be self-cleaned, and recycled for reuse, which suggests promising potential for waste engine oil treatment.
Collapse
Affiliation(s)
- Dandan Cheng
- High Level Laboratory of Jiangxi Province for Persistent Pollutants Control, Recycle and Reuse, Nanchang Hangkong University, Nanchang, 330063, PR China; College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Yaobang Li
- High Level Laboratory of Jiangxi Province for Persistent Pollutants Control, Recycle and Reuse, Nanchang Hangkong University, Nanchang, 330063, PR China; College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Lixia Yang
- High Level Laboratory of Jiangxi Province for Persistent Pollutants Control, Recycle and Reuse, Nanchang Hangkong University, Nanchang, 330063, PR China; College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Shenglian Luo
- High Level Laboratory of Jiangxi Province for Persistent Pollutants Control, Recycle and Reuse, Nanchang Hangkong University, Nanchang, 330063, PR China; College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Liming Yang
- High Level Laboratory of Jiangxi Province for Persistent Pollutants Control, Recycle and Reuse, Nanchang Hangkong University, Nanchang, 330063, PR China; College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xubiao Luo
- High Level Laboratory of Jiangxi Province for Persistent Pollutants Control, Recycle and Reuse, Nanchang Hangkong University, Nanchang, 330063, PR China; College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Yan Luo
- High Level Laboratory of Jiangxi Province for Persistent Pollutants Control, Recycle and Reuse, Nanchang Hangkong University, Nanchang, 330063, PR China; College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Tingting Li
- High Level Laboratory of Jiangxi Province for Persistent Pollutants Control, Recycle and Reuse, Nanchang Hangkong University, Nanchang, 330063, PR China; College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Jiong Gao
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (DChEE), 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH, USA
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (DChEE), 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
20
|
Zhen D, Jiang N, Geng H, Qiao Y, Liu Y, Zhu X, Gao C, Grimes CA, Cai Q. Cobalt-doped nanoporous carbon as SALDI-TOF-MS adsorbent and matrix for quantification of cetyltrimethylammonium bromide, Rhodamine B and Malachite Green at sub-ppt levels. Mikrochim Acta 2019; 186:691. [DOI: 10.1007/s00604-019-3816-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/12/2019] [Indexed: 02/03/2023]
|
21
|
|
22
|
Samaddar P, Kumar S, Kim KH. Polymer Hydrogels and Their Applications Toward Sorptive Removal of Potential Aqueous Pollutants. POLYM REV 2019. [DOI: 10.1080/15583724.2018.1548477] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Pallabi Samaddar
- Department of Civil & Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Fraga TJM, Carvalho MN, Ghislandi MG, Motta Sobrinho MAD. FUNCTIONALIZED GRAPHENE-BASED MATERIALS AS INNOVATIVE ADSORBENTS OF ORGANIC POLLUTANTS: A CONCISE OVERVIEW. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190361s20180283] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Park G, Kim S, Chae S, Han H, Le TH, Yang KS, Chang M, Kim H, Yoon H. Combining SWNT and Graphene in Polymer Nanofibers: A Route to Unique Carbon Precursors for Electrochemical Capacitor Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3077-3086. [PMID: 30703325 DOI: 10.1021/acs.langmuir.8b03766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
It is important to fabricate nanostructured architectures comprised of functional components for a wide variety of applications because precise structural control in the nanometer regime can yield unprecedented, fascinating properties. Owing to their well-defined microstructural characteristics, it has been popular to use carbon nanospecies, such as nanotubes and graphene, in fabricating nanocomposites and nanohybrids. Nevertheless, it still remains hard to control and manipulate nanospecies for specific applications, thus preventing their commercialization. Herein, first, we report unique one-dimensional nanoarchitectures with meso-/macropores, consisting of single-walled nanotubes (SWNTs), graphene, and polyacrylonitrile, in which poly(vinyl alcohol) was employed as a dispersing agent and sacrificial porogen. One-dimensional SWNTs and two-dimensional graphene pieces were combined in the confined interior space of electrospun nanofibers, which led to unique microstructural characteristics such as enhanced ordering of SWNTs, graphene pieces, and polymer chains in the nanofiber interior. Next, the SWNT/graphene-in-polymer nanofiber (SGPNF) structures were converted into carbonized products (SGCNFs) with effective porosity and tunable electrochemical properties. Similar to SGPNFs, the microstructural and electrical properties of the SGCNFs depended on the incorporated amount of SWNT and graphene. At higher SWNT content, the mesopore volume proportion and specific discharge capacitance of the SGCNFs increased by max. 63 and 598%, respectively. The SGCNFs showed strong potential as a high-performance electrode material for electrochemical capacitors (max. capacitance: nonactivated ∼390 F g-1 and activated ∼750 F g-1). Flexible, all solid-state capacitor cells based on SGCNFs were also successfully demonstrated as a model application. The SGCNFs can be further functionalized by various methods, which will impart attractive properties for extended applications.
Collapse
|
25
|
Rathinam K, Singh SP, Arnusch CJ, Kasher R. An environmentally-friendly chitosan-lysozyme biocomposite for the effective removal of dyes and heavy metals from aqueous solutions. Carbohydr Polym 2018; 199:506-515. [DOI: 10.1016/j.carbpol.2018.07.055] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
|
26
|
Chu KB, Xie JL, Chen WJ, Lu WX, Song JL, Zhang C. A novel bismuth-based hybrid material with highly activity for fast removal of rhodamine B under dark conditions. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Progress in graphene-based materials as superior media for sensing, sorption, and separation of gaseous pollutants. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
28
|
Samadi-Maybodi A, Sadeghi-Maleki MR. Preparation of Mesoporous SBA-15 Supported CdS Quantum Dots and Its Application for Photocatalytic Degradation of Organic Pollutants in Aqueous Media. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0918-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Qi Y, Cao Y, Meng X, Yu K, Si W, Lei W, Hao Q, Li J, Wang F. Microwave‐Assisted Synthesis of a Polypyrrole/Graphene Composite Using a Pyrrole‐Induced Graphene Oxide Hydrogel for the Selective Determination of Dihydroxybenzenes. ChemistrySelect 2018. [DOI: 10.1002/slct.201801306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yunlong Qi
- School of Materials Science and EngineeringShandong University of Technology 266th Xincunxi Road, Zibo Shandong Province
| | - Yue Cao
- School of Materials Science and EngineeringShandong University of Technology 266th Xincunxi Road, Zibo Shandong Province
| | - Xiaotong Meng
- School of Materials Science and EngineeringShandong University of Technology 266th Xincunxi Road, Zibo Shandong Province
| | - Kecheng Yu
- School of Materials Science and EngineeringShandong University of Technology 266th Xincunxi Road, Zibo Shandong Province
| | - Weimeng Si
- School of Materials Science and EngineeringShandong University of Technology 266th Xincunxi Road, Zibo Shandong Province
| | - Wu Lei
- School of Chemical EngineeringNanjing University of Science and Technology, 200th Xiaolingwei, Nanjing Jiangsu Province
| | - Qingli Hao
- School of Chemical EngineeringNanjing University of Science and Technology, 200th Xiaolingwei, Nanjing Jiangsu Province
| | - Jiao Li
- School of Materials Science and EngineeringShandong University of Technology 266th Xincunxi Road, Zibo Shandong Province
| | - Fagang Wang
- School of Materials Science and EngineeringShandong University of Technology 266th Xincunxi Road, Zibo Shandong Province
| |
Collapse
|
30
|
Chailek N, Daranarong D, Punyodom W, Molloy R, Worajittiphon P. Crosslinking assisted fabrication of ultrafine poly(vinyl alcohol)/functionalized graphene electrospun nanofibers for crystal violet adsorption. J Appl Polym Sci 2018. [DOI: 10.1002/app.46318] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nirumon Chailek
- Department of Chemistry, Faculty of Science; Chiang Mai University; Chiang Mai 50200 Thailand
- Graduate School; Chiang Mai University; Chiang Mai 50200 Thailand
| | - Donraporn Daranarong
- Research Administration Center, Office of the University, Chiang Mai University; Chiang Mai 50200 Thailand
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science; Chiang Mai University; Chiang Mai 50200 Thailand
| | - Robert Molloy
- Materials Science Research Center, Faculty of Science; Chiang Mai University; Chiang Mai 50200 Thailand
| | - Patnarin Worajittiphon
- Department of Chemistry, Faculty of Science; Chiang Mai University; Chiang Mai 50200 Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science; Chiang Mai University; Chiang Mai 50200 Thailand
| |
Collapse
|
31
|
Noh S, Le TH, Park CS, Kim S, Kim Y, Park JJ, Yoon H. Physical exfoliation of graphene and molybdenum disulfide sheets using conductive polyaniline: an efficient route for synthesizing unique, random-layered 3D ternary electrode materials. NEW J CHEM 2018. [DOI: 10.1039/c8nj03762k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Unique ternary graphene/MoS2/PANI nanoarchitectures with beneficial properties are synthesized via a simple, physical exfoliation approach.
Collapse
Affiliation(s)
- Seonmyeong Noh
- Alan G. MacDiarmid Energy Research Institute
- School of Polymer Science and Engineering
- Chonnam National University
- Gwangju 61186
- South Korea
| | - Thanh-Hai Le
- Department of Polymer Engineering
- Graduate School
- Chonnam National University
- Gwangju 61186
- South Korea
| | - Chul Soon Park
- Department of Polymer Engineering
- Graduate School
- Chonnam National University
- Gwangju 61186
- South Korea
| | - Saerona Kim
- Department of Polymer Engineering
- Graduate School
- Chonnam National University
- Gwangju 61186
- South Korea
| | - Yukyung Kim
- Department of Polymer Engineering
- Graduate School
- Chonnam National University
- Gwangju 61186
- South Korea
| | - Jong-Jin Park
- Alan G. MacDiarmid Energy Research Institute
- School of Polymer Science and Engineering
- Chonnam National University
- Gwangju 61186
- South Korea
| | - Hyeonseok Yoon
- Alan G. MacDiarmid Energy Research Institute
- School of Polymer Science and Engineering
- Chonnam National University
- Gwangju 61186
- South Korea
| |
Collapse
|
32
|
Kim S, Le TH, Park CS, Park G, Kim KH, Kim S, Kwon OS, Lim GT, Yoon H. A Solution-Processable, Nanostructured, and Conductive Graphene/Polyaniline Hybrid Coating for Metal-Corrosion Protection and Monitoring. Sci Rep 2017; 7:15184. [PMID: 29123206 PMCID: PMC5680262 DOI: 10.1038/s41598-017-15552-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/23/2017] [Indexed: 11/19/2022] Open
Abstract
A smart and effective anticorrosive coating consisting of alternating graphene and polyaniline (PANI) layers was developed using top-down solution processing. Graphite was exfoliated using sonication assisted by polyaniline to produce a nanostructured, conductive graphene/polyaniline hybrid (GPn) in large quantities (>0.5 L of 6 wt% solution in a single laboratory-scale process). The GPn was coated on copper and exhibited excellent anticorrosion protection efficiencies of 46.6% and 68.4% under electrochemical polarization in 1 M sulfuric acid and 3.5 wt% sodium chloride solutions, chosen as chemical and seawater models, respectively. Impedance measurements were performed in the two corrosive solutions, with the variation in charge transfer resistance (R ct) over time indicating that the GPn acted as an efficient physical and chemical barrier preventing corrosive species from reaching the copper surface. The GPn-coated copper was composed of many PANI-coated graphene planes stacked parallel to the copper surface. PANI exhibits redox-based conductivity, which was facilitated by the high conductivity of graphene. Additionally, the GPn surface was found to be hydrophobic. These properties combined effectively to protect the copper metal against corrosion. We expect that the GPn can be further applied for developing smart anticorrosive coating layers capable of monitoring the status of metals.
Collapse
Affiliation(s)
- Saerona Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Thanh-Hai Le
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Chul Soon Park
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Geunsu Park
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Kyung Ho Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Semin Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Oh Seok Kwon
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Gyun Taek Lim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.
| | - Hyeonseok Yoon
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.
| |
Collapse
|
33
|
Park SJ, Park CS, Yoon H. Chemo-Electrical Gas Sensors Based on Conducting Polymer Hybrids. Polymers (Basel) 2017; 9:E155. [PMID: 30970834 PMCID: PMC6432045 DOI: 10.3390/polym9050155] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 01/06/2023] Open
Abstract
Conducting polymer (CP) hybrids, which combine CPs with heterogeneous species, have shown strong potential as electrical transducers in chemosensors. The charge transport properties of CPs are based on chemical redox reactions and provide various chemo-electrical signal transduction mechanisms. Combining CPs with other functional materials has provided opportunities to tailor their major morphological and physicochemical properties, often resulting in enhanced sensing performance. The hybrids can provide an enlarged effective surface area for enhanced interaction and chemical specificity to target analytes via a new signal transduction mechanism. Here, we review a selection of important CPs, including polyaniline, polypyrrole, polythiophene and their derivatives, to fabricate versatile organic and inorganic hybrid materials and their chemo-electrical sensing performance. We focus on what benefits can be achieved through material hybridization in the sensing application. Moreover, state-of-the-art trends in technologies of CP hybrid sensors are discussed, as are limitations and challenges.
Collapse
Affiliation(s)
- Seon Joo Park
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, 34141 Daejeon, Korea.
| | - Chul Soon Park
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, 34141 Daejeon, Korea.
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186 Gwangju, Korea.
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186 Gwangju, Korea.
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186 Gwangju, Korea.
| |
Collapse
|