1
|
Gopinath S, Adarsh NN, Nair PR, Mathew S. Carbon nanofiber-reinforced shape memory polyurethanes based on HTPB/PTMG blend as anticorrosive coatings. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2129386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sithara Gopinath
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, India
| | | | - P. Radhakrishnan Nair
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, India
| | - Suresh Mathew
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, India
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, India
| |
Collapse
|
2
|
Großmann L, Kieckhöfer M, Weitschies W, Krause J. 4D prints of flexible dosage forms using thermoplastic polyurethane with hybrid shape memory effect. Eur J Pharm Biopharm 2022; 181:227-238. [PMID: 36423878 DOI: 10.1016/j.ejpb.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Thermoplastic polyurethanes are versatile materials due to their flexible and elastic properties. In research, medicine, and pharmacy, they are used in dosage forms, implants or as components of medical devices. To gain a deeper understanding of the influences on unfolding or expanding dosage forms, in this publication, 3D printing was used to produce differently shaped and foldable objects from various technical thermoplastic polyurethane filaments. The shape memory behaviour of the dosage forms was exploited to fold and package them in water-soluble hard gelatin capsules. The unfolding time and dimensional recovery of the 3D printed dosage forms were investigated as a function of material properties and shape. As an example, for the use of flexible dosage forms, 3D models have been designed so that their unfolded size is suitable for possible gastric retention. Depending on the shape and material, different unfolding behaviours could be shown. Over a storage period of 60 days, a time related stress on the 4D printed objects was evaluated, which possibly affects the unfolding process. The results of this work aim to be used to evaluate the behaviour of 3D printed unfolding and expanding dosage forms and how they may be suitable for the development of innovative sustained drug delivery concepts or medicinal devices. The basic principle of a hybrid shape memory effect used here could possibly be applied to other drug delivery strategies besides gastric retention.
Collapse
Affiliation(s)
- Linus Großmann
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany.
| | - Maximilian Kieckhöfer
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany.
| | - Werner Weitschies
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany.
| | - Julius Krause
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany.
| |
Collapse
|
3
|
Du H, Yao Y, Zhou X, Zhao Y. Two‐way shape memory behavior of styrene‐based bilayer shape memory polymer plate. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Haiyang Du
- The Center for Computational Mechanics and Engineering Applications Hebei University of Engineering Handan China
- Provincial Mechanics Experimental Teaching Demonstration Center Hebei University of Engineering Handan China
| | - Yongtao Yao
- National Key Laboratory of Science and Technology on Advanced Composite in Special Environments Harbin Institute of Technology Harbin China
| | - Xiaoli Zhou
- The Center for Computational Mechanics and Engineering Applications Hebei University of Engineering Handan China
- Provincial Mechanics Experimental Teaching Demonstration Center Hebei University of Engineering Handan China
| | - Yajun Zhao
- The Center for Computational Mechanics and Engineering Applications Hebei University of Engineering Handan China
- Provincial Mechanics Experimental Teaching Demonstration Center Hebei University of Engineering Handan China
| |
Collapse
|
4
|
Cao L, Huang J, Fan J, Gong Z, Xu C, Chen Y. Nanocellulose-A Sustainable and Efficient Nanofiller for Rubber Nanocomposites: From Reinforcement to Smart Soft Materials. POLYM REV 2021. [DOI: 10.1080/15583724.2021.2001004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Liming Cao
- Lab of Advanced Elastomer, School of Mechanical and Automobile Engineering, South China University of Technology, Guangzhou, China
| | - Jiarong Huang
- Lab of Advanced Elastomer, School of Mechanical and Automobile Engineering, South China University of Technology, Guangzhou, China
| | - Jianfeng Fan
- Lab of Advanced Elastomer, School of Mechanical and Automobile Engineering, South China University of Technology, Guangzhou, China
| | - Zhou Gong
- Lab of Advanced Elastomer, School of Mechanical and Automobile Engineering, South China University of Technology, Guangzhou, China
| | - Chuanhui Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Yukun Chen
- Lab of Advanced Elastomer, School of Mechanical and Automobile Engineering, South China University of Technology, Guangzhou, China
- Zhongshan Institute of Modern Industrial Technology, South China University of Technology, Zhongshan, China
| |
Collapse
|
5
|
Gopinath S, Adarsh NN, Nair PR, Mathew S. Shape-Memory Polymer Nanocomposites of Poly(ε-caprolactone) with the Polystyrene- block-polybutadiene- block-polystyrene-tri- block Copolymer Encapsulated with Metal Oxides. ACS OMEGA 2021; 6:6261-6273. [PMID: 33718716 PMCID: PMC7948221 DOI: 10.1021/acsomega.0c05839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Shape-memory polymer composite (SMPC) blends with thermo-responsive shape memorizing capability have received increasing interest and have been a grooming research area due to their various potential applications. In this work, we report three thermo-responsive SMPCs derived from poly(ε-caprolactone) (PCL) and the polystyrene-block-polybutadiene-block-polystyrene-tri-block copolymer (SBS) encapsulated with CuO, Fe2O3, and CuFe2O4, namely, SMPC-CuO, SMPC-Fe 2 O 3 , and SMPC-CuFe 2 O 4 , respectively. We have also synthesized the neat shape-memory polymer matrix SMP in the context of the effect of the metal oxide encapsulates on the shape-memory property. Neat SBS rubber and PCL are used as the polymer-elastomer blend matrix to form SMP. The objective of this study is to understand the effect of these three metal oxide nanofillers encapsulated within the SMP matrix and their thermal, mechanical, and shape-memory properties. Morphological, thermal, mechanical, and shape-memory properties of the prepared SMPCs are completely characterized. It is revealed that the addition of nano-metallic-oxide fillers into the polymeric matrix significantly improved the overall properties of SMPCs. The tensile test confirmed that SMPC-CuFe 2 O 4 possesses a high tensile modulus and is found to be very rigid when compared to other SMPCs. The shape fixing property is found in the increasing order as follows: SMPC-CuO > SMPC-Fe 2 O 3 > SMP > SMPC-CuFe 2 O 4 . The better thermal, mechanical, and shape-memory performances were shown by the SMPC-Fe 2 O 3 composite, and thus, it can be considered as the better shape-memory polymer nanocomposite among all others. An optimum storage modulus was attained by SMPC-Fe 2 O 3 among the SMPCs. More interestingly, we have developed a microvalve actuator system using SMPC-Fe 2 O 3 , which could be useful for promising microsystem applications.
Collapse
Affiliation(s)
- Sithara Gopinath
- Advanced
Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Nayarassery N. Adarsh
- School
of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | | | - Suresh Mathew
- Advanced
Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School
of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| |
Collapse
|
6
|
Wang W, Lai H, Cheng Z, Fan Z, Zhang D, Wang J, Yu S, Xie Z, Liu Y. Superhydrophobic Shape Memory Polymer Microarrays with Switchable Directional/Antidirectional Droplet Sliding and Optical Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49219-49226. [PMID: 33050697 DOI: 10.1021/acsami.0c13627] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bioinspired smart surfaces with switchable wettability and optical performance have aroused much attention in the past few years. However, almost all reported surfaces focused on regulating single surface function. In this work, inspired by the butterfly wings, a novel superhydrophobic surface with shape memory polymer microarrays (SMPAs) was prepared through the integration of three-dimensional printing, replica-molding, and a simple surface treatment. In this superhydrophobic SMPA system, the permanent upright microarrays and temporary tilted microarrays can be reversibly switched owing to the excellent shape memory effect (SME). Accompanied by the structure variations, switchable directional/antidirectional droplet sliding and vivid color conversion as the butterfly wings can be achieved. Moreover, because of the SME, local structure regulation can also be achieved on the surface, and with the help of such an ability, the SMPA was further applied as a multifunctional platform to demonstrate controllable droplet transportation and information storage. This work reports the reversible control of directional/antidirectional droplet sliding and tunable color on a superhydrophobic SMPA, and it is believed that such a smart surface can be potentially applied in many fields, such as microfluidic devices and smart optical chips.
Collapse
Affiliation(s)
- Wu Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hua Lai
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhongjun Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhimin Fan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Dongjie Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jingfeng Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Songji Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhimin Xie
- The National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China
| | - Yuyan Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
7
|
Liu P, Lai H, Luo X, Xia Q, Zhang D, Cheng Z, Liu Y, Jiang L. Superlyophilic Shape Memory Porous Sponge for Smart Liquid Permeation. ACS NANO 2020; 14:14047-14056. [PMID: 32970408 DOI: 10.1021/acsnano.0c06673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, smart liquid permeation has aroused much attention. However, existing strategies to achieve such a goal are often based on reversibly controlling hydrophobicity/hydrophilicity on static porous structures, which are unsuitable for oils with low surface tension, and meanwhile they cannot realize tunable permeation flux since the pore sizes are constant. Herein, we report a superlyophilic shape memory porous sponge (SSMS) that can demonstrate tunable pore size from about 28 nm to 900 μm as the material's shape is changed. Based on the controllability in pore size, not only ON/OFF penetration but also precisely tunable permeation flux can be obtained for both water and oil. Furthermore, by using the SSMS, an application in accurate release of small-molecule rhodamine B was also demonstrated. This work reports a material with tunable pore size for controllable liquid permeation, which provides some ideas for designing smart superwetting permeation materials.
Collapse
Affiliation(s)
- Pengchang Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Hua Lai
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Xin Luo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Qixing Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Dongjie Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Zhongjun Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Yuyan Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
8
|
Ghosh T, Voit B, Karak N. Polystyrene/thermoplastic polyurethane interpenetrating network-based nanocomposite with high-speed, thermo-responsive shape memory behavior. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Liu Y, Zhong Y, Wang C. Recent advances in self-actuation and self-sensing materials: State of the art and future perspectives. Talanta 2020; 212:120808. [PMID: 32113569 DOI: 10.1016/j.talanta.2020.120808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
Abstract
The contradiction between human's strong demand of fossil fuels and their limited reserves becomes increasingly severe. Without external power input, intelligent materials responding sharply and reversibly to various external stimuli are the topic of intense research these years, especially the self-actuation and self-sensing materials. The promising family of these materials will play a significant role in energy-saving, low-cost and environment-friendly intelligent systems in the future. This review summarizes the latest advances in self-actuation and self-sensing materials. The synthetic strategies, morphologies and performance of these materials are introduced, as well as their applications in energy harvest, self-powering sensors, wearable devices, etc. Finally, tentative conclusions and assessments regarding the opportunities and challenges for the future development of these materials are presented.
Collapse
Affiliation(s)
- Yushu Liu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, 225000, China; School of Computer Science and Technology, Harbin Institute of Technology, Weihai, Shandong Province, 264209, China
| | - Yunhao Zhong
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, 225000, China
| | - Chengyin Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, 225000, China.
| |
Collapse
|
10
|
Zhang X, Yang G, Zong L, Jiang M, Song Z, Ma C, Zhang T, Duan Y, Zhang J. Tough, Ultralight, and Water-Adhesive Graphene/Natural Rubber Latex Hybrid Aerogel with Sandwichlike Cell Wall and Biomimetic Rose-Petal-Like Surface. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1378-1386. [PMID: 31818093 DOI: 10.1021/acsami.9b18948] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Graphene aerogel (GA) as a rising multifunctional material has demonstrated great potential for energy storage and conversion, environmental remediation, and high-performance sensors or actuators. However, the commercial use of GA is obstructed by its fragility and high cost. Herein, by a simple stirring-induced foaming of the mixed aqueous solutions of natural rubber latex (NRL) and graphene oxide liquid crystal (GOLC), we obtained tough, ultralight (4.6 mg cm-3), high compressibility (>90%), and water-adhesive graphene/NRL hybrid aerogel (GA/NRL). Of particular note, the NRL particles are conformally wrapped by graphene layers to form a sandwichlike cell wall with a biomimetic rose-petal-like surface. These distinct hierarchical structures endow GA/NRL not only with high toughness to bear impact, torsion (>90°), and even ultrasonication but also with strong adhesion to water. As proof of concept, the utilization of the as-prepared GA/NRL for collecting water droplets suspended in moist air and its improved solar-thermal harvest capacity have been demonstrated. This facile, green, and cost-effective strategy opens a new route for tailoring the microstructure and functionality of GA, which will facilitate its large-scale production and commercial application.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics , Qingdao University of Science & Technology , Qingdao 266042 , China
| | - Guohui Yang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics , Qingdao University of Science & Technology , Qingdao 266042 , China
| | - Lu Zong
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics , Qingdao University of Science & Technology , Qingdao 266042 , China
| | - Min Jiang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics , Qingdao University of Science & Technology , Qingdao 266042 , China
| | - Zhongqian Song
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , China
| | - Cheng Ma
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics , Qingdao University of Science & Technology , Qingdao 266042 , China
| | - Tongping Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics , Qingdao University of Science & Technology , Qingdao 266042 , China
| | - Yongxin Duan
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics , Qingdao University of Science & Technology , Qingdao 266042 , China
| | - Jianming Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics , Qingdao University of Science & Technology , Qingdao 266042 , China
| |
Collapse
|
11
|
Mallakpour S, Behranvand V. Modification of polyurethane sponge with waste compact disc-derived activated carbon and its application in organic solvents/oil sorption. NEW J CHEM 2020. [DOI: 10.1039/d0nj02839h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyurethane@activated carbon derived from waste compact disc sponge demonstrated comparable or even better sorption capacity contrasted with other polyurethane-based composites.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | - Vajiheh Behranvand
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| |
Collapse
|
12
|
Guo F, Zheng X, Liang C, Jiang Y, Xu Z, Jiao Z, Liu Y, Wang HT, Sun H, Ma L, Gao W, Greiner A, Agarwal S, Gao C. Millisecond Response of Shape Memory Polymer Nanocomposite Aerogel Powered by Stretchable Graphene Framework. ACS NANO 2019; 13:5549-5558. [PMID: 31013425 DOI: 10.1021/acsnano.9b00428] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Shape memory polymers (SMPs) change shapes as-designed through altering the chain segment movement by external stimuli, promising wide uses in actuators, sensors, drug delivery, and deployable devices. However, the recovery speed of SMPs is still far slower than the benchmark shape memory alloys (SMAs), originating from their intrinsic poor heat transport and retarded viscoelasticity of polymer chains. In this work, monolithic nanocomposite aerogels composed of bicontinuous graphene and SMP networks are designed to promote the recovery time of SMP composites to a record value of 50 ms, comparable to the SMA case. The integration of a stretchable graphene framework as a fast energy transformation grid with ultrathin polycaprolactone nanofilms (tunable at 2.5-60 nm) enables the rapid phase transition of SMPs under electrical stimulation. The graphene-SMP nanocomposite aerogels, with a density of ∼10 mg cm-3, exhibit a fast response (175 ± 40 mm s-1), large deformation (∼100%), and a wide response bandwidth (0.1-20 Hz). The ultrafast response of SMP nanocomposite aerogels confers extensive uses in sensitive fuses, micro-oscillators, artificial muscles, actuators, and soft robotics. The design of bicontinuous ultralight aerogels can be extended to fabricate multifunctional and multiresponsive hybrid materials and devices.
Collapse
Affiliation(s)
| | | | | | | | - Zhen Xu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments , Harbin Institute of Technology , Harbin 150080 , China
| | | | | | | | - Haiyan Sun
- Hangzhou Gaoxi Technology Co., Ltd. , Hangzhou 310027 , China
| | | | | | - Andreas Greiner
- Faculty of Biology, Chemistry and Earth Sciences, Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces , University of Bayreuth , Universitätsstraße 30 , Bayreuth 95440 , Germany
| | - Seema Agarwal
- Faculty of Biology, Chemistry and Earth Sciences, Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces , University of Bayreuth , Universitätsstraße 30 , Bayreuth 95440 , Germany
| | | |
Collapse
|
13
|
Cohn D, Sloutski A, Elyashiv A, Varma VB, Ramanujan R. In Situ Generated Medical Devices. Adv Healthc Mater 2019; 8:e1801066. [PMID: 30828989 DOI: 10.1002/adhm.201801066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/25/2018] [Indexed: 12/19/2022]
Abstract
Medical devices play a major role in all areas of modern medicine, largely contributing to the success of clinical procedures and to the health of patients worldwide. They span from simple commodity products such as gauzes and catheters, to highly advanced implants, e.g., heart valves and vascular grafts. In situ generated devices are an important family of devices that are formed at their site of clinical function that have distinct advantages. Among them, since they are formed within the body, they only require minimally invasive procedures, avoiding the pain and risks associated with open surgery. These devices also display enhanced conformability to local tissues and can reach sites that otherwise are inaccessible. This review aims at shedding light on the unique features of in situ generated devices and to underscore leading trends in the field, as they are reflected by key developments recently in the field over the last several years. Since the uniqueness of these devices stems from their in situ generation, the way they are formed is crucial. It is because of this fact that in this review, the medical devices are classified depending on whether their in situ generation entails chemical or physical phenomena.
Collapse
Affiliation(s)
- Daniel Cohn
- Casali Center of Applied ChemistryInstitute of ChemistryHebrew University of Jerusalem Jerusalem 91904 Israel
| | - Aaron Sloutski
- Casali Center of Applied ChemistryInstitute of ChemistryHebrew University of Jerusalem Jerusalem 91904 Israel
| | - Ariel Elyashiv
- Casali Center of Applied ChemistryInstitute of ChemistryHebrew University of Jerusalem Jerusalem 91904 Israel
| | - Vijaykumar B. Varma
- School of Materials Science and EngineeringNanyang Technological University 639798 Singapore Singapore
| | - Raju Ramanujan
- School of Materials Science and EngineeringNanyang Technological University 639798 Singapore Singapore
| |
Collapse
|
14
|
Lin H, Zhang S, Xiao Y, Zhang C, Zhu J, Dunlop JWC, Yuan J. Organic Molecule-Driven Polymeric Actuators. Macromol Rapid Commun 2019; 40:e1800896. [PMID: 30811751 DOI: 10.1002/marc.201800896] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/23/2019] [Indexed: 12/11/2022]
Abstract
Inspired by the motions of plant tissues in response to external stimuli, significant attention has been devoted to the development of actuating polymeric materials. In particular, polymeric actuators driven by organic molecules have been designed due to their combined superiorities of tunable functional monomers, designable chemical structures, and variable structural anisotropy. Here, the recent progress is summarized in terms of material synthesis, structure design, polymer-solvent interaction, and actuating performance. In addition, various possibilities for practical applications, including the ability to sense chemical vapors and solvent isomers, and future directions to satisfy the requirement of sensing and smart systems are also highlighted.
Collapse
Affiliation(s)
- Huijuan Lin
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 210009, China
| | - Suyun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yan Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chenjun Zhang
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 210009, China
| | - Jixin Zhu
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 210009, China
| | - John W C Dunlop
- Morphophysics Group, Department of the Chemistry and Physics of Materials, Paris Lodron University of Salzburg, Salzburg, 5020, Austria
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, 10691, Sweden
| |
Collapse
|
15
|
Cao J, Zhang X, Lu C, Luo Y, Zhang X. Self-Healing Sensors Based on Dual Noncovalent Network Elastomer for Human Motion Monitoring. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700406] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/31/2017] [Indexed: 01/26/2023]
Affiliation(s)
- Jie Cao
- State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| | - Xu Zhang
- State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| | - Yongyue Luo
- Agricultural Products Processing Research Institute; Chinese Academy of Tropical Agricultural Sciences (CATAS); Zhanjiang 524001 China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| |
Collapse
|
16
|
Wang Y, Xia L, Xin Z. Triple shape memory effect of foamed natural Eucommia ulmoides
gum/high-density polyethylene composites. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4102] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Lin Xia
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering; Qingdao University of Science and Technology; Qingdao China
| | - Zhenxiang Xin
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering; Qingdao University of Science and Technology; Qingdao China
| |
Collapse
|
17
|
Wu X, Han Y, Zhang X, Lu C. Hierarchically structured composites for ultrafast liquid sensing and smart leak-plugging. Phys Chem Chem Phys 2017; 19:16198-16205. [DOI: 10.1039/c7cp02293j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hierarchically structured conductive polymer composites with an ultrafast response to solvent stimuli for real-time liquid sensing and smart leak-plugging.
Collapse
Affiliation(s)
- Xiaodong Wu
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Yangyang Han
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| |
Collapse
|