1
|
Habibi MM, Mousavi M, Shekofteh-Gohari M, Parsaei-Khomami A, Hosseini MA, Haghani E, Salahandish R, Ghasemi JB. Machine learning-enhanced drug testing for simultaneous morphine and methadone detection in urinary biofluids. Sci Rep 2024; 14:8099. [PMID: 38582770 PMCID: PMC10998919 DOI: 10.1038/s41598-024-58843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
The simultaneous identification of drugs has considerable difficulties due to the intricate interplay of analytes and the interference present in biological matrices. In this study, we introduce an innovative electrochemical sensor that overcomes these hurdles, enabling the precise and simultaneous determination of morphine (MOR), methadone (MET), and uric acid (UA) in urine samples. The sensor harnesses the strategically adapted carbon nanotubes (CNT) modified with graphitic carbon nitride (g-C3N4) nanosheets to ensure exceptional precision and sensitivity for the targeted analytes. Through systematic optimization of pivotal parameters, we attained accurate and quantitative measurements of the analytes within intricate matrices employing the fast Fourier transform (FFT) voltammetry technique. The sensor's performance was validated using 17 training and 12 test solutions, employing the widely acclaimed machine learning method, partial least squares (PLS), for predictive modeling. The root mean square error of cross-validation (RMSECV) values for morphine, methadone, and uric acid were significantly low, measuring 0.1827 µM, 0.1951 µM, and 0.1584 µM, respectively, with corresponding root mean square error of prediction (RMSEP) values of 0.1925 µM, 0.2035 µM, and 0.1659 µM. These results showcased the robust resiliency and reliability of our predictive model. Our sensor's efficacy in real urine samples was demonstrated by the narrow range of relative standard deviation (RSD) values, ranging from 3.71 to 5.26%, and recovery percentages from 96 to 106%. This performance underscores the potential of the sensor for practical and clinical applications, offering precise measurements even in complex and variable biological matrices. The successful integration of g-C3N4-CNT nanocomposites and the robust PLS method has driven the evolution of sophisticated electrochemical sensors, initiating a transformative era in drug analysis.
Collapse
Affiliation(s)
- Mohammad Mehdi Habibi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Mitra Mousavi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Maryam Shekofteh-Gohari
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Anita Parsaei-Khomami
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Monireh-Alsadat Hosseini
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Elnaz Haghani
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab-HA), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada
- Department of Electrical Engineering and Computer Science, Biomedical Engineering Program, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Razieh Salahandish
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab-HA), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada.
- Department of Electrical Engineering and Computer Science, Biomedical Engineering Program, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| | - Jahan B Ghasemi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab-HA), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
2
|
Gong T, Li ZN, Liang H, Li Y, Tang X, Chen F, Hu Q, Wang H. High-Sensitivity Wearable Sensor Based On a MXene Nanochannel Self-Adhesive Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19349-19361. [PMID: 37036936 DOI: 10.1021/acsami.3c01748] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
To address the shortcomings of traditional filler-based wearable hydrogels, a new type of nanochannel hydrogel sensor is fabricated in this work through a combination of the unique structure of electrospun fiber textile and the properties of a double network hydrogel. Unlike the traditional Ti3C2Tx MXene-based hydrogels, the continuously distributed Ti3C2Tx MXene in the nanochannels of the hydrogel forms a tightly interconnected structure similar to the neuron network. As a result, they have more free space to flip and perform micromovements, which allows one to significantly increase the electrical conductivity and sensitivity of the hydrogel. According to the findings, the Ti3C2Tx MXene nanochannel hydrogel has excellent mechanical properties as well as self-adhesion and antifreezing characteristics. The hydrogel sensor successfully detects different human motions and physiological signals (e.g., low pulse signals) with high stability and sensitivity. Therefore, the proposed Ti3C2Tx MXene-based hydrogel with a unique structure and properties is very promising in the field of flexible wearable devices.
Collapse
Affiliation(s)
- Tao Gong
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Zo Ngyang Li
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Huanyi Liang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Youming Li
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xia Tang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Fengyue Chen
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Qinghua Hu
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - HongQing Wang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
3
|
Zhang J, Chen M, Peng Y, Li S, Han D, Ren S, Qin K, Li S, Han T, Wang Y, Gao Z. Wearable biosensors for human fatigue diagnosis: A review. Bioeng Transl Med 2023; 8:e10318. [PMID: 36684114 PMCID: PMC9842037 DOI: 10.1002/btm2.10318] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 02/01/2023] Open
Abstract
Fatigue causes deleterious effects to physical and mental health of human being and may cause loss of lives. Therefore, the adverse effects of fatigue on individuals and the society are massive. With the ever-increasing frequency of overtraining among modern military and sports personnel, timely, portable and accurate fatigue diagnosis is essential to avoid fatigue-induced accidents. However, traditional detection methods require complex sample preparation and blood sampling processes, which cannot meet the timeliness and portability of fatigue diagnosis. With the development of flexible materials and biosensing technology, wearable biosensors have attracted increased attention to the researchers. Wearable biosensors collect biomarkers from noninvasive biofluids, such as sweat, saliva, and tears, followed by biosensing with the help of biosensing modules continuously and quantitatively. The detection signal can then be transmitted through wireless communication modules that constitute a method for real-time understanding of abnormality. Recent developments of wearable biosensors are focused on miniaturized wearable electrochemistry and optical biosensors for metabolites detection, of which, few have exhibited satisfactory results in medical diagnosis. However, detection performance limits the wide-range applicability of wearable fatigue diagnosis. In this article, the application of wearable biosensors in fatigue diagnosis has been discussed. In fact, exploration of the composition of different biofluids and their potential toward fatigue diagnosis have been discussed here for the very first time. Moreover, discussions regarding the current bottlenecks in wearable fatigue biosensors and the latest advancements in biochemical reaction and data communication modules have been incorporated herein. Finally, the main challenges and opportunities were discussed for wearable fatigue diagnosis in the future.
Collapse
Affiliation(s)
- Jingyang Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Mengmeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Kang Qin
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Sen Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Tie Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| |
Collapse
|
4
|
Wang Y, Zhao Y, Han Y, Li X, Dai C, Zhang X, Jin X, Shao C, Lu B, Wang C, Cheng H, Liu F, Qu L. Fixture-free omnidirectional prestretching fabrication and integration of crumpled in-plane micro-supercapacitors. SCIENCE ADVANCES 2022; 8:eabn8338. [PMID: 35622921 PMCID: PMC9140961 DOI: 10.1126/sciadv.abn8338] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Multidimensional folded structures with elasticity could provide spatial charge storage capability and shape adaptability for micro-supercapacitors (MSCs). Here, highly crumpled in-plane MSCs with superior conformality are fabricated in situ and integrated by a fixture-free omnidirectional elastic contraction strategy. Using carbon nanotube microelectrodes, a single crumpled MSC holds an ultrahigh volumetric capacitance of 9.3 F cm-3, and its total areal capacitance is 45 times greater than the initial state. Experimental and theoretical simulation methods indicate that strain-induced improvements of adsorption energy and conductance for crumpled microelectrodes are responsible for the prominent enhancement of electrochemical performance. With outstanding morphological randomicity, the integrated devices can serve as smart coatings in moving robots, withstanding extreme mechanical deformations. Notably, integration on a spherical surface is possible by using a spherical mask, in which a small area of the microdevice array (3.9 cm2) can produce a high output voltage of 100 V.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yang Zhao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuyang Han
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiangyang Li
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chunlong Dai
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xinqun Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xuting Jin
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Changxiang Shao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bing Lu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chengzhi Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Feng Liu
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
5
|
Fitria G, Yoon J. Mechanically tough
dry‐free
ionic hydrogel microfibers swollen in aqueous electrolyte prepared by microfluidic devices. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gea Fitria
- Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center Pusan National University Busan Republic of Korea
| | - Jinhwan Yoon
- Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center Pusan National University Busan Republic of Korea
| |
Collapse
|
6
|
Chen L, Li B, Zhu L, Deng X, Sun X, Liu Y, Zhang C, Zhao W, Chen X. A PVA/LiCl/PEO interpenetrating composite electrolyte with a three-dimensional dual-network for all-solid-state flexible aluminum-air batteries. RSC Adv 2021; 11:39476-39483. [PMID: 35492453 PMCID: PMC9044495 DOI: 10.1039/d1ra07180g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/15/2021] [Indexed: 11/26/2022] Open
Abstract
Aluminum–air batteries are promising electronic power sources because of their low cost and high energy density. However, traditional aluminum–air batteries are greatly restricted from being used in the field of flexible electronics due to the rigid battery structure, and the irreversible corrosion of the anode by the alkaline electrolyte, which greatly reduces the battery life. To address these issues, a three-dimensional dual-network interpenetrating structure PVA/LiCl/PEO composite gel polymer electrolyte (GPE) is proposed. The gel polymer electrolyte exhibits good flexibility and high ionic conductivity (σ = 6.51 × 10−3 S cm−1) at room temperature. Meanwhile, benefiting from the high-performance GPE, an assembled aluminum–air coin cell shows a highest discharge voltage of 0.73 V and a peak power density (Pmax) of 3.31 mW cm−2. The Al specific capacity is as high as 735.2 mA h g−1. A flexible aluminum–air battery assembled using the GPE also performed stably in flat, bent, and folded states. This paper provides a cost-effective and feasible way to fabricate a composite gel polymer electrolyte with high performance for use in flexible aluminum–air batteries, suitable for a variety of energy-related devices. Problems relating to the leakage of alkaline liquid electrolyte, the evaporation of water, and flexibility in traditional aluminum–air batteries are solved in this study.![]()
Collapse
Affiliation(s)
- Li Chen
- School of Chemical Engineering, Northwest University Xi'an 710069 China
| | - Boqiao Li
- School of Aerospace, Xi'an Jiaotong University Xi'an 710049 China
| | - Liangliang Zhu
- School of Chemical Engineering, Northwest University Xi'an 710069 China.,Shaanxi Institute of Energy and Chemical Engineering Xi'an 710069 China
| | - Xiaobin Deng
- Shaanxi Institute of Energy and Chemical Engineering Xi'an 710069 China
| | - Xueyan Sun
- School of Chemical Engineering, Northwest University Xi'an 710069 China
| | - Yilun Liu
- School of Aerospace, Xi'an Jiaotong University Xi'an 710049 China
| | - Chen Zhang
- First Aircraft Institute of Aviation Industry Corporation Xi'an 710089 China
| | - Wei Zhao
- School of Chemical Engineering, Northwest University Xi'an 710069 China.,Shaanxi Institute of Energy and Chemical Engineering Xi'an 710069 China
| | - Xi Chen
- Earth Engineering Center, Center for Advanced Materials for Energy and Environment, Department of Earth and Environmental Engineering, Columbia University New York NY 10027 USA
| |
Collapse
|
7
|
Pang J, Bachmatiuk A, Yang F, Liu H, Zhou W, Rümmeli MH, Cuniberti G. Applications of Carbon Nanotubes in the Internet of Things Era. NANO-MICRO LETTERS 2021; 13:191. [PMID: 34510300 PMCID: PMC8435483 DOI: 10.1007/s40820-021-00721-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/11/2021] [Indexed: 05/07/2023]
Abstract
The post-Moore's era has boosted the progress in carbon nanotube-based transistors. Indeed, the 5G communication and cloud computing stimulate the research in applications of carbon nanotubes in electronic devices. In this perspective, we deliver the readers with the latest trends in carbon nanotube research, including high-frequency transistors, biomedical sensors and actuators, brain-machine interfaces, and flexible logic devices and energy storages. Future opportunities are given for calling on scientists and engineers into the emerging topics.
Collapse
Affiliation(s)
- Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy, Institute for Advanced Interdisciplinary Research (iAIR), Universities of Shandong, University of Jinan, Shandong, Jinan, 250022, People's Republic of China.
| | - Alicja Bachmatiuk
- PORT Polish Center for Technology Development, Łukasiewicz Research Network, Ul. Stabłowicka 147, 54-066, Wrocław, Poland
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819, Zabrze, Poland
| | - Feng Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy, Institute for Advanced Interdisciplinary Research (iAIR), Universities of Shandong, University of Jinan, Shandong, Jinan, 250022, People's Republic of China
- State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan, 250100, People's Republic of China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy, Institute for Advanced Interdisciplinary Research (iAIR), Universities of Shandong, University of Jinan, Shandong, Jinan, 250022, People's Republic of China
| | - Mark H Rümmeli
- College of Energy, Institute for Energy and Materials Innovations, Soochow University, Suzhou, Soochow, 215006, People's Republic of China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, People's Republic of China
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie Sklodowskiej 34, 41-819, Zabrze, Poland
- Institute for Complex Materials, Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), 20 Helmholtz Strasse, 01069, Dresden, Germany
- Institute of Environmental Technology, VŠB-Technical University of Ostrava, 17. Listopadu 15, Ostrava, 708 33, Czech Republic
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069, Dresden, Germany.
- Dresden Center for Computational Materials Science, Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, 01062, Dresden, Germany.
| |
Collapse
|
8
|
Performance-tuning of PVA-based gel electrolytes by acid/PVA ratio and PVA molecular weight. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04182-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AbstractThe significant breakthroughs of flexible gel electrolytes have attracted extensive attention in modern wearable electronic gadgets. The lack of all-around high-performing gels limits the advantages of such devices for practical applications. To this end, developing a multi-functional gel architecture with superior ionic conductivity while enjoying good mechanical flexibility is a bottleneck to overcome. Herein, an architecturally engineered gel, based on PVA and H3PO4 with different molecular weights of PVA for various PVA/H3PO4 ratios, was developed. The results show the dependence of ionic conductivity on molecular weight and also charge carrier concentration. Consequently, fine-tuning of PVA-based gels through a simple yet systematic and well-regulated strategy to achieve highly ion-conducting gels, with the highest ionic conductivity of 14.75 ± 1.39 mS cm-1 have been made to fulfill the requirement of flexible devices. More importantly, gel electrolytes possess good mechanical robustness while exhibiting high-elasticity (%766.66 ± 59.73), making it an appropriate candidate for flexible devices.
Collapse
|
9
|
Joule Heating-Induced Carbon Fibers for Flexible Fiber Supercapacitor Electrodes. MATERIALS 2020; 13:ma13225255. [PMID: 33233822 PMCID: PMC7699924 DOI: 10.3390/ma13225255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022]
Abstract
Microscale fiber-based supercapacitors have become increasingly important for the needs of flexible, wearable, and lightweight portable electronics. Fiber electrodes without pre-existing cores enable a wider selection of materials and geometries than is possible through core-containing electrodes. The carbonization of fibrous precursors using an electrically driven route, different from a conventional high-temperature process, is particularly promising for achieving this structure. Here, we present a facile and low-cost process for producing high-performance microfiber supercapacitor electrodes based on carbonaceous materials without cores. Fibrous carbon nanotubes-agarose composite hydrogels, formed by an extrusion process, are converted to a composite fiber consisting of carbon nanotubes (CNTs) surrounded by an amorphous carbon (aC) matrix via Joule heating. When assembled into symmetrical two-electrode cells, the composite fiber (aC-CNTs) supercapacitor electrodes deliver a volumetric capacitance of 5.1 F cm−3 even at a high current density of 118 mA cm−3. Based on electrochemical impedance spectroscopy analysis, it is revealed that high electrochemical properties are attributed to fast response kinetics with a characteristic time constant of 2.5 s. The aC-CNTs fiber electrodes exhibit a 94% capacitance retention at 14 mA cm−3 for at least 10,000 charge-discharge cycles even when deformed (90° bend), which is essentially the same as that (96%) when not deformed. The aC-CNTs fiber electrodes also demonstrate excellent storage performance under mechanical deformation—for example, 1000 bending-straightening cycles.
Collapse
|
10
|
Supercapacitive performance of nitrogen doped porous carbon based material for supercapacitor application. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Agarose-based biomaterials for advanced drug delivery. J Control Release 2020; 326:523-543. [PMID: 32702391 DOI: 10.1016/j.jconrel.2020.07.028] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 02/03/2023]
Abstract
Agarose is a prominent marine polysaccharide representing reversible thermogelling behavior, outstanding mechanical properties, high bioactivity, and switchable chemical reactivity for functionalization. As a result, agarose has received particular attention in the fabrication of advanced delivery systems as sophisticated carriers for therapeutic agents. The ever-growing use of agarose-based biomaterials for drug delivery systems resulted in rapid growth in the number of related publications, however still, a long way should be paved to achieve FDA approval for most of the proposed products. This review aims at a classification of agarose-based biomaterials and their derivatives applicable for controlled/targeted drug delivery purposes. Moreover, it attempts to deal with opportunities and challenges associated with the future developments ahead of agarose-based biomaterials in the realm of advanced drug delivery. Undoubtedly, this class of biomaterials needs further advancement, and a lot of critical questions have yet to be answered.
Collapse
|
12
|
Pradhan S, Brooks A, Yadavalli V. Nature-derived materials for the fabrication of functional biodevices. Mater Today Bio 2020; 7:100065. [PMID: 32613186 PMCID: PMC7317235 DOI: 10.1016/j.mtbio.2020.100065] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Nature provides an incredible source of inspiration, structural concepts, and materials toward applications to improve the lives of people around the world, while preserving ecosystems, and addressing environmental sustainability. In particular, materials derived from animal and plant sources can provide low-cost, renewable building blocks for such applications. Nature-derived materials are of interest for their properties of biodegradability, bioconformability, biorecognition, self-repair, and stimuli response. While long used in tissue engineering and regenerative medicine, their use in functional devices such as (bio)electronics, sensors, and optical systems for healthcare and biomonitoring is finding increasing attention. The objective of this review is to cover the varied nature derived and sourced materials currently used in active biodevices and components that possess electrical or electronic behavior. We discuss materials ranging from proteins and polypeptides such as silk and collagen, polysaccharides including chitin and cellulose, to seaweed derived biomaterials, and DNA. These materials may be used as passive substrates or support architectures and often, as the functional elements either by themselves or as biocomposites. We further discuss natural pigments such as melanin and indigo that serve as active elements in devices. Increasingly, combinations of different biomaterials are being used to address the challenges of fabrication and performance in human monitoring or medicine. Finally, this review gives perspectives on the sourcing, processing, degradation, and biocompatibility of these materials. This rapidly growing multidisciplinary area of research will be advanced by a systematic understanding of nature-inspired materials and design concepts in (bio)electronic devices.
Collapse
Affiliation(s)
- S. Pradhan
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - A.K. Brooks
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - V.K. Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
13
|
Wang G, Kim SK, Wang MC, Zhai T, Munukutla S, Girolami GS, Sempsrott PJ, Nam S, Braun PV, Lyding JW. Enhanced Electrical and Mechanical Properties of Chemically Cross-Linked Carbon-Nanotube-Based Fibers and Their Application in High-Performance Supercapacitors. ACS NANO 2020; 14:632-639. [PMID: 31877019 DOI: 10.1021/acsnano.9b07244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The electrical conductivity and mechanical strength of fibers constructed from single-walled carbon nanotubes (CNTs) are usually limited by the weak interactions between individual CNTs. In this work, we report a significant enhancement of both of these properties through chemical cross-linking of individual CNTs. The CNT fibers are made by wet-spinning a CNT solution that contains 1,3,5-tris(2'-bromophenyl)benzene (2TBB) molecules as the cross-linking agent, and the cross-linking is subsequently driven by Joule heating. Cross-linking with 2TBB increases the conductivity of the CNT fibers by a factor of ∼100 and increases the tensile strength on average by 47%; in contrast, the tensile strength of CNT fibers fabricated without 2TBB decreases after the same Joule heating process. Symmetrical supercapacitors made from the 2TBB-treated CNT fibers exhibit a remarkably high volumetric energy density of ∼4.5 mWh cm-3 and a power density of ∼1.3 W cm-3.
Collapse
Affiliation(s)
| | - Sung-Kon Kim
- School of Chemical Engineering and School of Semiconductor and Chemical Engineering , Chonbuk National University , 567 Baekje-Daero , Deokjin-gu , Jeonju 54896 , Republic of Korea
| | - Michael Cai Wang
- Department of Mechanical Engineering , University of South Florida , Tampa , Florida 33620 , United States
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Guo Y, Belgodere JA, Ma Y, Jung JP, Bharti B. Directed Printing and Reconfiguration of Thermoresponsive Silica‐pNIPAM Nanocomposites. Macromol Rapid Commun 2019; 40:e1900191. [DOI: 10.1002/marc.201900191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/25/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Yusheng Guo
- Cain Department of Chemical Engineering Louisiana State University Baton Rouge LA 70803 USA
| | - Jorge A. Belgodere
- Department of Biological Engineering Louisiana State University Baton Rouge LA 70803 USA
| | - Yingzhen Ma
- Cain Department of Chemical Engineering Louisiana State University Baton Rouge LA 70803 USA
| | - Jangwook P. Jung
- Department of Biological Engineering Louisiana State University Baton Rouge LA 70803 USA
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering Louisiana State University Baton Rouge LA 70803 USA
| |
Collapse
|
15
|
Kim JS, Kim JH, Cho Y, Shim TS. Agarose/Spherical Activated Carbon Composite Gels for Recyclable and Shape-Configurable Electrodes. Polymers (Basel) 2019; 11:polym11050875. [PMID: 31091674 PMCID: PMC6572220 DOI: 10.3390/polym11050875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 11/23/2022] Open
Abstract
Soft electrodes have been known as a key component in the engineering of flexible, wearable, and implantable energy-saving or powering devices. As environmental issues are emerging, the increase of electronic wastes due to the short replacement cycle of electronic products has become problematic. To address this issue, development of eco-friendly and recyclable materials is important, but has not yet been fully investigated. In this study, we demonstrated hydrogel-based electrode materials composed of agarose and spherical activated carbon (agar/SAC) that are easy to shape and recycle. Versatile engineering processes were applied thanks to the reversible gelation of the agarose matrix which enables the design of soft electrodes into various shapes such as thin films with structural hierarchy, microfibers, and even three-dimensional structures. The reversible sol–gel transition characteristics of the agar matrix enables the retrieval of materials and subsequent re-configuration into different shapes and structures. The electrical properties of the agar/SAC composite gels were controlled by gel compositions and ionic strength in the gel matrix. Finally, the composite gel was cut and re-contacted, forming conformal contact to show immediate restoration of the conductivity.
Collapse
Affiliation(s)
- Jong Sik Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
| | - Ju-Hyung Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
- Department of Chemical Engineering, Ajou University, Suwon 16499, Korea.
| | - Younghyun Cho
- Department of Energy Systems, Soonchunhyang University, Asan 31583, Korea.
| | - Tae Soup Shim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
- Department of Chemical Engineering, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
16
|
Trung TQ, Le HS, Dang TML, Ju S, Park SY, Lee NE. Freestanding, Fiber-Based, Wearable Temperature Sensor with Tunable Thermal Index for Healthcare Monitoring. Adv Healthc Mater 2018; 7:e1800074. [PMID: 29749708 DOI: 10.1002/adhm.201800074] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/07/2018] [Indexed: 01/17/2023]
Abstract
Fiber-based sensors integrated on textiles or clothing systems are required for the next generation of wearable electronic platforms. Fiber-based physical sensors are developed, but the development of fiber-based temperature sensors is still limited. Herein, a new approach to develop wearable temperature sensors that use freestanding single reduction graphene oxide (rGO) fiber is proposed. A freestanding and wearable temperature-responsive rGO fiber with tunable thermal index is obtained using simple wet spinning and a controlled graphene oxide reduction time. The freestanding fiber-based temperature sensor shows high responsivity, fast response time (7 s), and good recovery time (20 s) to temperature. It also maintains its response under an applied mechanical deformation. The fiber device fabricated by means of a simple process is easily integrated into fabric such as socks or undershirts and can be worn by a person to monitor the temperature of the environment and skin temperature without interference during movement and various activities. These results demonstrate that the freestanding fiber-based temperature sensor has great potential for fiber-based wearable electronic platforms. It is also promising for applications in healthcare and biomedical monitoring.
Collapse
Affiliation(s)
- Tran Quang Trung
- School of Advanced Materials Science and Engineering; Sungkyunkwan University; Suwon Kyunggi 440-746 South Korea
| | - Hoang Sinh Le
- Center for Advanced Chemistry; Institute of Research and Development; Duy Tan University; 03 Quang Trung Da Nang 550000 Vietnam
- Advanced Institutes of Convergence Technology; Seoul National University; Suwon 443-270 South Korea
| | - Thi My Linh Dang
- Advanced Institutes of Convergence Technology; Seoul National University; Suwon 443-270 South Korea
| | - Sanghyun Ju
- Department of Physics; Kyonggi University; Suwon Gyeonggi-Do 443-270 South Korea
| | - Sang Yoon Park
- Advanced Institutes of Convergence Technology; Seoul National University; Suwon 443-270 South Korea
| | - Nae-Eung Lee
- School of Advanced Materials Science and Engineering; SKKU Advanced Institute of Nanotechnology; Samsung Advanced Institute for Health Sciences and Technology; Sungkyunkwan University; Suwon Kyunggi 440-746 South Korea
| |
Collapse
|
17
|
Hong H, Kim JU, Kim TI. Effective Assembly of Nano-Ceramic Materials for High and Anisotropic Thermal Conductivity in a Polymer Composite. Polymers (Basel) 2017; 9:polym9090413. [PMID: 30965716 PMCID: PMC6418702 DOI: 10.3390/polym9090413] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 11/16/2022] Open
Abstract
Recently, anisotropic heat dissipation and its management have drawn attention as a promising technique for highly integrated electrical devices. Among many potentially challenging materials such as carbon nanotube, graphene, metal particles, and inorganic ceramics commonly used for high thermally conductive fillers in a composite form, nanoscale ceramic fillers are considered ideal candidates due to their thermal conductivity, electrical insulation, and low thermal expansion coefficient. However, enhancing the thermal conductivity of a randomly dispersed ceramic-polymer composite is limited by its discontinuous filler contact and thermal expansion coefficient mismatch. Thus, recent research has focused on how to assemble and generate highly networked filler contacts to make effective pathways for heat flow, with minimized concentration of the filler in the composite. In this review, we will introduce several essential strategies to assemble fillers with a two- or three-dimensional networked composite for highly enhanced anisotropic heat dissipation. Moreover, this review elucidates filler alignment effects compared to randomly dispersed ceramic composites.
Collapse
Affiliation(s)
- Haeleen Hong
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro Jangan-gu, Suwon 16419, Korea.
| | - Jong Uk Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro Jangan-gu, Suwon 16419, Korea.
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro Jangan-gu, Suwon 16419, Korea.
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Scienece (IBS), 2066 Seobu-ro Jangan-gu, Suwon 16419, Korea.
| |
Collapse
|