1
|
Zhao T, Xiao P, Luo M, Nie S, Li F, Liu Y. Eco-Friendly Lithium Separators: A Frontier Exploration of Cellulose-Based Materials. Int J Mol Sci 2024; 25:6822. [PMID: 38999935 PMCID: PMC11241740 DOI: 10.3390/ijms25136822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Lithium-ion batteries, as an excellent energy storage solution, require continuous innovation in component design to enhance safety and performance. In this review, we delve into the field of eco-friendly lithium-ion battery separators, focusing on the potential of cellulose-based materials as sustainable alternatives to traditional polyolefin separators. Our analysis shows that cellulose materials, with their inherent degradability and renewability, can provide exceptional thermal stability, electrolyte absorption capability, and economic feasibility. We systematically classify and analyze the latest advancements in cellulose-based battery separators, highlighting the critical role of their superior hydrophilicity and mechanical strength in improving ion transport efficiency and reducing internal short circuits. The novelty of this review lies in the comprehensive evaluation of synthesis methods and cost-effectiveness of cellulose-based separators, addressing significant knowledge gaps in the existing literature. We explore production processes and their scalability in detail, and propose innovative modification strategies such as chemical functionalization and nanocomposite integration to significantly enhance separator performance metrics. Our forward-looking discussion predicts the development trajectory of cellulose-based separators, identifying key areas for future research to overcome current challenges and accelerate the commercialization of these green technologies. Looking ahead, cellulose-based separators not only have the potential to meet but also to exceed the benchmarks set by traditional materials, providing compelling solutions for the next generation of lithium-ion batteries.
Collapse
Affiliation(s)
- Tian Zhao
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Pengcheng Xiao
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Mingliang Luo
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Saiqun Nie
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Fuzhi Li
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Yuejun Liu
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
2
|
Qi X, Huang Z, Zhang Z, Wei J, Yang Z. Dendrite-free lithium metal battery enabled by mesoporous silica host layer mediated cellulose/PVDF Janus separator. J Colloid Interface Sci 2024; 663:716-724. [PMID: 38432170 DOI: 10.1016/j.jcis.2024.02.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
The commercialization of lithium metal batteries (LMBs) is encountering significant challenges due to the electrolyte incompatibility and poor mechanical properties of polyolefin separators, as well as the hazardous growth of lithium dendrites at the anode. Simultaneously, the development of safe and environmentally-friendly separators has become a central focus in rechargeable battery technology. In this study, we introduce a novel Janus separator (CP@SiO2), featuring a composite structure with cellulose paper (CP) as the base layer and electrospun polyvinylidene fluoride (PVDF) nanofibers as the top layer. The nanofibers are uniformly coated with mesoporous SiO2 nanoparticles through hydrogen bonding. The CP@SiO2 separator leverages its three-dimensional lithium-ion channels and rigid ceramic particles to enhance electrolyte retention and stabilize lithium metal anodes (LMA). Shielded by this separator, LMA exhibits an impressive cycling performance, enduring a current density of 2 mA cm-2 for 350 h without short-circuiting, effectively doubling the cycle life compared to conventional PP separators. Furthermore, the Li/LiFePO4 cell utilizing the CP@SiO2 separator demonstrates a high capacity of 101 mAh·g-1 at 5C, with 90 % capacity retention after 1000 cycles. This outstanding electrochemical performance is attributed to the compatible anode/separator interface and the effective inhibition of lithium dendrite growth. The research presented in this work capitalizes on a synergistic configuration design, offering a promising pathway towards the development of high-safety and advanced lithium-ion separators.
Collapse
Affiliation(s)
- Xingtao Qi
- College of Chemistry, Nanchang University, No.999, Xuefu Road, Nanchang 330031, China
| | - Zhuqing Huang
- College of Chemistry, Nanchang University, No.999, Xuefu Road, Nanchang 330031, China
| | - Ze Zhang
- College of Chemistry, Nanchang University, No.999, Xuefu Road, Nanchang 330031, China
| | - Junchao Wei
- College of Chemistry, Nanchang University, No.999, Xuefu Road, Nanchang 330031, China; School of Stomatology, Nanchang University, No.49, Fuzhou Road, Nanchang 330006, China.
| | - Zhenyu Yang
- College of Chemistry, Nanchang University, No.999, Xuefu Road, Nanchang 330031, China; School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| |
Collapse
|
3
|
Song Y, Zhao G, Zhang S, Xie C, Yang R, Li X. Chitosan nanofiber paper used as separator for high performance and sustainable lithium-ion batteries. Carbohydr Polym 2024; 329:121530. [PMID: 38286525 DOI: 10.1016/j.carbpol.2023.121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/07/2023] [Accepted: 10/24/2023] [Indexed: 01/31/2024]
Abstract
Separators are indispensable components in lithium-ion batteries (LIBs), providing efficient pathways for lithium ions to travel and isolating the positive and negative electrodes to avoid short circuits. However, traditional polyolefin-based separators exhibit inferior electrolyte affinities, limited porosities, and low thermal stabilities. In this study, a novel method was developed to prepare chitosan micro/nanofiber membranes as LIB separators using natural materials. The pore sizes of the chitosan micro/nanofibers separators were modulated by changing the diameters of the chitosan fibers. The results demonstrated that the chitosan nanofiber separators (CSNFs) had superior electrolyte uptake (281 %), excellent thermal dimensional stability, and electrochemical performance in LiFePO4/Li half-cell, as indicated by the higher discharge capacity after 100 cycles, and higher rate capacity than commercial Celgard2325 separator. This study paves the way for the fabrication of eco-efficient and environment-friendly separators for high-performance LIBs.
Collapse
Affiliation(s)
- Yanghui Song
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Guanglei Zhao
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Sihan Zhang
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chong Xie
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Runde Yang
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiaofeng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510644, China.
| |
Collapse
|
4
|
Beg M, Alcock KM, Titus Mavelil A, O’Rourke D, Sun D, Goh K, Manjakkal L, Yu H. Paper Supercapacitor Developed Using a Manganese Dioxide/Carbon Black Composite and a Water Hyacinth Cellulose Nanofiber-Based Bilayer Separator. ACS APPLIED MATERIALS & INTERFACES 2023; 15:51100-51109. [PMID: 37897417 PMCID: PMC10636709 DOI: 10.1021/acsami.3c11005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/30/2023]
Abstract
Flexible and green energy storage devices have a wide range of applications in prospective electronics and connected devices. In this study, a new eco-friendly bilayer separator and primary and secondary paper supercapacitors based on manganese dioxide (MnO2)/carbon black (CB) are developed. The bilayer separator is prepared via a two-step fabrication process involving freeze-thawing and nonsolvent-induced phase separation. The prepared bilayer separator exhibits superior porosity of 46%, wettability of 46.5°, and electrolyte uptake of 194% when compared with a Celgard 2320 trilayer separator (39%, 55.58°, and 110%). Moreover, lower bulk resistance yields a higher ionic conductivity of 0.52 mS cm-1 in comparison to 0.22 mS cm-1 for the Celgard separator. Furthermore, the bilayer separator exhibits improved mean efficiency of 0.44% and higher specific discharge capacitance of 13.53%. The anodic and cathodic electrodes are coated on a paper substrate using MnO2/CB and zinc metal-loaded CB composites. The paper supercapacitor demonstrates a high specific capacitance of 34.1 mF cm-2 and energy and power density of 1.70 μWh cm-2 and 204.8 μW cm-2 at 500 μA, respectively. In summary, the concept of an eco-friendly bilayer cellulose separator with paper-based supercapacitors offers an environmentally friendly alternative to traditional energy storage devices.
Collapse
Affiliation(s)
- Mustehsan Beg
- School of Computing
and Engineering
& the Built Environment, Edinburgh Napier
University, Merchiston Campus, EH10 5DT Edinburgh, U.K
| | - Keith M. Alcock
- School of Computing
and Engineering
& the Built Environment, Edinburgh Napier
University, Merchiston Campus, EH10 5DT Edinburgh, U.K
| | - Achu Titus Mavelil
- School of Computing
and Engineering
& the Built Environment, Edinburgh Napier
University, Merchiston Campus, EH10 5DT Edinburgh, U.K
| | - Dominic O’Rourke
- School of Computing
and Engineering
& the Built Environment, Edinburgh Napier
University, Merchiston Campus, EH10 5DT Edinburgh, U.K
| | - Dongyang Sun
- School of Computing
and Engineering
& the Built Environment, Edinburgh Napier
University, Merchiston Campus, EH10 5DT Edinburgh, U.K
| | - Keng Goh
- School of Computing
and Engineering
& the Built Environment, Edinburgh Napier
University, Merchiston Campus, EH10 5DT Edinburgh, U.K
| | - Libu Manjakkal
- School of Computing
and Engineering
& the Built Environment, Edinburgh Napier
University, Merchiston Campus, EH10 5DT Edinburgh, U.K
| | - Hongnian Yu
- School of Computing
and Engineering
& the Built Environment, Edinburgh Napier
University, Merchiston Campus, EH10 5DT Edinburgh, U.K
| |
Collapse
|
5
|
Xin M, Lian X, Gao X, Xu P, Li W, Dong F, Zhang A, Xie H, Liu Y. Enabling high-capacity Li metal battery with PVDF sandwiched type polymer electrolyte. J Colloid Interface Sci 2023; 629:980-988. [PMID: 36208610 DOI: 10.1016/j.jcis.2022.09.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/24/2022] [Indexed: 11/25/2022]
Abstract
Polyvinylidene difluoride (PVDF) is one of the most attractive electrolyte materials for solid-state batteries due to its high ionic conductivity, however, the battery performance is limited by the high electrolyte-electrode interfacial resistance. Herein, PVDF polymer mixed with ceramic Li7La3Zr2O12 is coated on cellulose support membrane (PLCSM) through a simple slurry-casting method. The ionic transport of PLCSM is originated from dimethyl formamide (DMF)-Li+ solvation structure, which plays a critical role in conducting lithium ions. β-PVDF after dehydrofluorination offers a high dielectric constant and enhances the dissociation of lithium salt. As a result, PLCSM with a total thickness of 85 µm presents an oxidation voltage of 4.9 V. Li-Li symmetric cells by employing PLCSM reveal that the critical current density (CCD) is increased to 1 mA cm-2. A full cell of LiFePO4 |PLCSM |Li with high mass loading (1.2 mA h cm-2) shows a first-cycle discharge capacity of 160 mA h g-1. With LiNi0.6Mn0.2Co0.2O2 as the cathode, the initial discharge capacity is 153 mA h g-1, and the capacity retention after 80 cycles is 80 %. The sandwiched PLCSM provides an effective strategy to achieve high-performance dendrite-free Li metal batteries.
Collapse
Affiliation(s)
- Mingyang Xin
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xin Lian
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xuejie Gao
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Pingbo Xu
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wenbo Li
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Feilong Dong
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Aotian Zhang
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Haiming Xie
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Yulong Liu
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
6
|
Wang J, Shen J, Shi J, Li Y, You J, Bian F. Crystallization-templated high-performance PVDF separator used in lithium-ion batteries. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Ding L, Yan N, Zhang S, Xu R, Wu T, Yang F, Cao Y, Xiang M. Low-Cost and Large-Scale Fabricating Technology for High-Performance Lithium-Ion Battery Composite Separators with Connected Nano-Al2O3 Coating. ACS APPLIED ENERGY MATERIALS 2021. [DOI: 10.1021/acsaem.1c03137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lei Ding
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Road, Liaocheng 252000, China
| | - Ning Yan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Sihang Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ruizhang Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 1 Keyuan Road 4, Gaopeng Avenue, Chengdu 610065, China
| | - Tong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Feng Yang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ya Cao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ming Xiang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
8
|
Liu R, Yuan B, Zhong S, Liu J, Dong L, Ji Y, Dong Y, Yang C, He W. Poly(vinylidene fluoride) separators for next‐generation lithium based batteries. NANO SELECT 2021. [DOI: 10.1002/nano.202100118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Rong Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| | - Botao Yuan
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin China
| | - Shijie Zhong
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin China
| | - Jipeng Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| | - Liwei Dong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| | - Yuanpeng Ji
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
| | - Yunfa Dong
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin China
| | - Chunhui Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin China
- State Key Laboratory of Urban Water Resource and Environment Harbin Institute of Technology Harbin China
| | - Weidong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin China
| |
Collapse
|
9
|
Poothanari MA, Michaud V, Damjanovic D, Leterrier Y. Surface modified microfibrillated cellulose‐poly(vinylidene fluoride) composites: β‐phase formation, viscoelastic and dielectric performance. POLYM INT 2021. [DOI: 10.1002/pi.6202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mohammed Arif Poothanari
- Laboratory for Processing of Advanced Composites (LPAC) Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Véronique Michaud
- Laboratory for Processing of Advanced Composites (LPAC) Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Dragan Damjanovic
- Group for Ferroelectrics and Functional Oxides Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Yves Leterrier
- Laboratory for Processing of Advanced Composites (LPAC) Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| |
Collapse
|
10
|
Xu P, Zhang D, Shao Z, Chen D. Cellulose acetate‐based separators prepared by a reversible acetylation process for high‐performance lithium‐ion batteries. J Appl Polym Sci 2021. [DOI: 10.1002/app.50738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pengcheng Xu
- Beijing Engineering Research Center of Cellulose and Its Derivatives, School of Materials Science and Engineering Beijing Institute of Technology Beijing P.R. China
| | - Dalun Zhang
- Beijing Engineering Research Center of Cellulose and Its Derivatives, School of Materials Science and Engineering Beijing Institute of Technology Beijing P.R. China
| | - Ziqiang Shao
- Beijing Engineering Research Center of Cellulose and Its Derivatives, School of Materials Science and Engineering Beijing Institute of Technology Beijing P.R. China
| | - Dejia Chen
- Beijing Engineering Research Center of Cellulose and Its Derivatives, School of Materials Science and Engineering Beijing Institute of Technology Beijing P.R. China
| |
Collapse
|
11
|
Cellulose and its derivatives for lithium ion battery separators: A review on the processing methods and properties. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2020. [DOI: 10.1016/j.carpta.2020.100001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
12
|
A Novel Lightweight Polyurethane Composite for Application on Ultra-High-Voltage Insulator Core Filler. Polymers (Basel) 2020; 12:polym12112737. [PMID: 33218164 PMCID: PMC7698962 DOI: 10.3390/polym12112737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 11/24/2022] Open
Abstract
This study aimed to prepare a new lightweight ultra-high-voltage insulator core filler composite, which can solve the problem of bulkiness. In this study, rigid polyurethane foam pellets with different densities are used as lightweight fillers and polyurethane resins to compound lightweight composite materials. On accounting for working conditions, the density, insulation, heat resistance, water absorption and mechanical properties are tested. The compressive properties of composites are determined by a foam skeleton and a process. Among three kinds of composites, in which the composites with the best comprehensive performance are materials filled with pellets to a density of 0.15g·cm−3. The density, surface resistance, volume resistance, leakage current, initial decomposition temperature, water absorption, force, rupture displacement and limiting oxygen index (LOI) of composites are 0.665 g·cm−3, 1.17 × 1014 Ω, 9.68 × 1014 Ω·cm, 0.079 mA, 208 °C, 0.047%, 2262 N, 2.54 mm, and 23.3%, respectively. The ultra-high-voltage insulator core filler in this study can reduce the weight of the solid core insulator crossarm for Ultra-High Voltage (UHV) by 50–75%.
Collapse
|
13
|
Liu J, Chen P, Qin D, Jia S, Jia C, Li L, Bian H, Wei J, Shao Z. Nanocomposites membranes from cellulose nanofibers, SiO 2 and carboxymethyl cellulose with improved properties. Carbohydr Polym 2020; 233:115818. [PMID: 32059879 DOI: 10.1016/j.carbpol.2019.115818] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 01/13/2023]
Abstract
The binary nanocomposites blended by carboxymethyl cellulose (CMC) and SiO2 nanoparticles were constructed to prepare the films with superior thermal stability and flame retardant properties. The incorporation of cellulose nanofibers(CNFs) and SiO2 nanoparticles were followed to prepare ternary nanocomposite films exhibiting excellent mechanical properties. The mechanism and chemical reaction of the thermal decomposition for the CMC/SiO2 composite membrane were proposed, which showed that the mass residuals were Na2CO3, SiO2 and Na2SiO3, Na2CO3 when the content of the SiO2 nanoparticles was lowered and higher than 9.6 %, respectively. Compared with the pure CMC, micro combustion calorimeter (MCC) showed that the total heat release (THR) and the peak heat release rate (PHRR) both decreased from 6.4 kJ/g to 5.8 kJ/g, 134 w/g to 27 w/g, respectively. Moreover, mechanical properties of CMC/CNFs/SiO2 membrane showed that the toughness and rigidity of the nanocomposites increased by 56.0 % and 63.0 % on the basis of CMC, respectively.
Collapse
Affiliation(s)
- Jianxin Liu
- Beijing Engineering Research Centre of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Pan Chen
- Beijing Engineering Research Centre of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Dujian Qin
- Beijing Engineering Research Centre of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Shuai Jia
- Beijing Engineering Research Centre of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chao Jia
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Lei Li
- Beijing Engineering Research Centre of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Hongli Bian
- Beijing Engineering Research Centre of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jie Wei
- Beijing Engineering Research Centre of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Ziqiang Shao
- Beijing Engineering Research Centre of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
14
|
Chen Y, Qiu L, Ma X, Dong L, Jin Z, Xia G, Du P, Xiong J. Electrospun cellulose polymer nanofiber membrane with flame resistance properties for lithium-ion batteries. Carbohydr Polym 2020; 234:115907. [DOI: 10.1016/j.carbpol.2020.115907] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 01/20/2023]
|
15
|
Lizundia E, Reizabal A, Costa CM, Maceiras A, Lanceros-Méndez S. Electroactive γ-Phase, Enhanced Thermal and Mechanical Properties and High Ionic Conductivity Response of Poly (Vinylidene Fluoride)/Cellulose Nanocrystal Hybrid Nanocomposites. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E743. [PMID: 32041217 PMCID: PMC7040804 DOI: 10.3390/ma13030743] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 01/30/2023]
Abstract
Cellulose nanocrystals (CNCs) were incorporated into poly (vinylidene fluoride) (PVDF) to tailor the mechanical and dielectric properties of this electroactive polymer. PVDF/CNC nanocomposites with concentrations up to 15 wt.% were prepared by solvent-casting followed by quick vacuum drying in order to ensure the formation of the electroactive γ-phase. The changes induced by the presence of CNCs on the morphology of PVDF and its crystalline structure, thermal properties, mechanical performance and dielectric behavior are explored. The results suggest a relevant role of the CNC surface -OH groups, which interact with PVDF fluorine atoms. The real dielectric constant ε' of nanocomposites at 200 Hz was found to increase by 3.6 times up to 47 for the 15 wt.% CNC nanocomposite due to an enhanced ionic conductivity provided by CNCs. The approach reported here in order to boost the formation of the γ-phase of PVDF upon the incorporation of CNCs serves to further develop cellulose-based multifunctional materials.
Collapse
Affiliation(s)
- Erlantz Lizundia
- Department of Graphic Design and Engineering Projects, Bilbao Faculty of Engineering, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain
- BC Materials, Basque Center Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (A.R.); (A.M.); (S.L.-M.)
| | - Ander Reizabal
- BC Materials, Basque Center Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (A.R.); (A.M.); (S.L.-M.)
| | - Carlos M. Costa
- Centro de Física, Universidade do Minho, 4710-057 Braga, Portugal
- Centro de Química, Universidade do Minho, 4710-057 Braga, Portugal
| | - Alberto Maceiras
- BC Materials, Basque Center Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (A.R.); (A.M.); (S.L.-M.)
| | - Senentxu Lanceros-Méndez
- BC Materials, Basque Center Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (A.R.); (A.M.); (S.L.-M.)
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
16
|
Wang S, Zhang D, Shao Z, Liu S. Cellulosic materials-enhanced sandwich structure-like separator via electrospinning towards safer lithium-ion battery. Carbohydr Polym 2019; 214:328-336. [PMID: 30926004 DOI: 10.1016/j.carbpol.2019.03.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/19/2019] [Accepted: 03/14/2019] [Indexed: 12/18/2022]
Abstract
The latent security issue has become the foremost anxiety for lithium-ion batteries (LIBs) wide-ranging of commercialized applications. Hence, the performance of a separator such as chemical durability, electrical insulator, and thermal stability must be superior. Herein, we exhibit a sandwich-structured composite membrane with enhanced thermal resistance and electrolyte affinity, which was prepared by layer-by-layer electrospinning deposition. After 50 cycles, the battery with a 3 wt.% halloysite nanotube electrospinning separator retained 91.80% of its initial discharge capacity, that was a drastic improvement over the commercial polypropylene separator with the numeric of 79.98%. This predominant composite membrane was prepared via an eco-friendly technics and can be thought of an assuring, expectant separator towards high performance lithium-ion batteries.
Collapse
Affiliation(s)
- Shuo Wang
- Engineering Research Center of Cellulose and Its Derivatives, Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Dalun Zhang
- Engineering Research Center of Cellulose and Its Derivatives, Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Ziqiang Shao
- Engineering Research Center of Cellulose and Its Derivatives, Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Siyuan Liu
- Engineering Research Center of Cellulose and Its Derivatives, Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
17
|
Li L, Wang F, Shao Z, Liu J, Zhang Q, Jiao W. Chitosan and carboxymethyl cellulose-multilayered magnetic fluorescent systems for reversible protein immobilization. Carbohydr Polym 2018; 201:357-366. [DOI: 10.1016/j.carbpol.2018.08.088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
|
18
|
Zhang W, Tu Z, Qian J, Choudhury S, Archer LA, Lu Y. Design Principles of Functional Polymer Separators for High-Energy, Metal-Based Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703001. [PMID: 29280289 DOI: 10.1002/smll.201703001] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/27/2017] [Indexed: 05/28/2023]
Abstract
Next-generation rechargeable batteries that offer high energy density, efficiency, and reversibility rely on cell configurations that enable synergistic operations of individual components. They must also address multiple emerging challenges,which include electrochemical stability, transport efficiency, safety, and active material loss. The perspective of this Review is that rational design of the polymeric separator, which is used widely in rechargeable batteries, provides a rich set of opportunities for new innovations that should enable batteries to meet many of these needs. This perspective is different from the conventional view of the polymer separator as an inert/passive unit in a battery, which has the sole function to prevent direct contact between electrically conductivecomponents that form the battery anode and cathode. Polymer separators, which serve as the core component in a battery, bridge the electrodes and the electrolyte with a large surface contact that can be utilized to apply desirable functions. This Review focuses specifically on recent advances in polymer separator systems, with a detailed analysis of several embedded functional agents that are incorporated to improve mechanical robustness, regulate ion and mass transport, and retard flammability. The discussion is also extended to new composite separator concepts that are designated traditionally as polymer/gel electrolytes.
Collapse
Affiliation(s)
- Weidong Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhengyuan Tu
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Jiawei Qian
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Snehashis Choudhury
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lynden A Archer
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Yingying Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
19
|
Li L, Wang F, Shao Z. Biomass-based magnetic fluorescent nanoparticles: One-step scalable synthesis, application as drug carriers and mechanism study. Carbohydr Polym 2018; 184:277-287. [DOI: 10.1016/j.carbpol.2017.12.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/15/2017] [Accepted: 12/29/2017] [Indexed: 12/22/2022]
|
20
|
Jia C, Bian H, Gao T, Jiang F, Kierzewski IM, Wang Y, Yao Y, Chen L, Shao Z, Zhu JY, Hu L. Thermally Stable Cellulose Nanocrystals toward High-Performance 2D and 3D Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28922-28929. [PMID: 28766931 DOI: 10.1021/acsami.7b08760] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Cellulose nanomaterials have attracted much attention in a broad range of fields such as flexible electronics, tissue engineering, and 3D printing for their excellent mechanical strength and intriguing optical properties. Economic, sustainable, and eco-friendly production of cellulose nanomaterials with high thermal stability, however, remains a tremendous challenge. Here versatile cellulose nanocrystals (DM-OA-CNCs) are prepared through fully recyclable oxalic acid (OA) hydrolysis along with disk-milling (DM) pretreatment of bleached kraft eucalyptus pulp. Compared with the commonly used cellulose nanocrystals from sulfuric acid hydrolysis, DM-OA-CNCs show several advantages including large aspect ratio, carboxylated surface, and excellent thermal stability along with high yield. We also successfully demonstrate the fabrication of high-performance films and 3D-printed patterns using DM-OA-CNCs. The high-performance films with high transparency, ultralow haze, and excellent thermal stability have the great potential for applications in flexible electronic devices. The 3D-printed patterns with porous structures can be potentially applied in the field of tissue engineering as scaffolds.
Collapse
Affiliation(s)
- Chao Jia
- Department of Materials Science and Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
- School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
- Forest Products Laboratory, USDA Forest Service , Madison, Wisconsin 53726, United States
| | - Huiyang Bian
- Forest Products Laboratory, USDA Forest Service , Madison, Wisconsin 53726, United States
| | - Tingting Gao
- Department of Materials Science and Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Feng Jiang
- Department of Materials Science and Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Iain Michael Kierzewski
- Department of Materials Science and Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Yilin Wang
- Department of Materials Science and Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Yonggang Yao
- Department of Materials Science and Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Liheng Chen
- Forest Products Laboratory, USDA Forest Service , Madison, Wisconsin 53726, United States
| | - Ziqiang Shao
- School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
| | - J Y Zhu
- Forest Products Laboratory, USDA Forest Service , Madison, Wisconsin 53726, United States
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland College Park , College Park, Maryland 20742, United States
| |
Collapse
|