1
|
Wang Y, Cui BB, Zhao Y, Lin T, Li J. Investigation of perovskite materials for solar cells using scanning tunneling microscopy. Phys Chem Chem Phys 2024; 26:26192-26208. [PMID: 39387127 DOI: 10.1039/d4cp02010c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The issue of energy scarcity has become more prominent due to the recent scientific and technological advancements. Consequently, there is an urgent need for research on sustainable and renewable resources. Solar energy, in particular, has emerged as a highly promising option because of its pollution-free and environment-friendly characteristics. Among the various solar energy technologies, perovskite solar cells have attracted much attention due to their lower cost and higher photoelectric conversion efficiency (PCE). However, the inherent instability of perovskite materials hinders the commercialization of such devices. The utilization of scanning tunneling microscopy/spectroscopy (STM/STS) can provide valuable insights into the fundamental properties of different perovskite materials at the atomic scale, which is crucial for addressing this challenge. In this review, we present the recent research progress of STM/STS analysis applied to various perovskites for solar cells, including halide perovskites, two-dimensional Ruddlesden-Popper perovskites, and oxide perovskites. This comprehensive overview aims to inspire new ideas and strategies for optimizing solar cells.
Collapse
Affiliation(s)
- Yule Wang
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China.
| | - Bin-Bin Cui
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China.
| | - Yiming Zhao
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China.
| | - Tao Lin
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China.
| | - Juan Li
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China.
- Beijing Institute of Technology (Zhuhai), Beijing Institute of Technology, Zhuhai 519088, China
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518172, China
| |
Collapse
|
2
|
Reynes J, Leon F, García F. Mechanochemistry for Organic and Inorganic Synthesis. ACS ORGANIC & INORGANIC AU 2024; 4:432-470. [PMID: 39371328 PMCID: PMC11450734 DOI: 10.1021/acsorginorgau.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 10/08/2024]
Abstract
In recent years, mechanochemistry has become an innovative and sustainable alternative to traditional solvent-based synthesis. Mechanochemistry rapidly expanded across a wide range of chemistry fields, including diverse organic compounds and active pharmaceutical ingredients, coordination compounds, organometallic complexes, main group frameworks, and technologically relevant materials. This Review aims to highlight recent advancements and accomplishments in mechanochemistry, underscoring its potential as a viable and eco-friendly alternative to conventional solution-based methods in the field of synthetic chemistry.
Collapse
Affiliation(s)
- Javier
F. Reynes
- Departamento
de Química Orgánica e Inorgánica. Facultad de
Química. Universidad de Oviedo. Ave. Julián Clavería
8, 33006 Oviedo, Asturias Spain
| | - Felix Leon
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Consejo Superior de Investigaciones, Científicas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio
49, 41092 Sevilla, Spain
| | - Felipe García
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
3
|
Aidarkhanov D, Idu IH, Zhou X, Duan D, Wang F, Hu H, Ng A. Positive Effects of Guanidinium Salt Post-Treatment on Multi-Cation Mixed Halide Perovskite Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1161. [PMID: 38998766 PMCID: PMC11242979 DOI: 10.3390/nano14131161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
As one of the most promising photovoltaic technologies, perovskite solar cells (PSCs) exhibit high absorption coefficients, tunable bandgaps, large carrier mobilities, and versatile fabrication techniques. Nevertheless, the commercialization of the technology is hindered by poor material stability, short device lifetimes and the scalability of fabrication techniques. To address these technological drawbacks, various strategies have been explored, with one particularly promising approach involving the formation of a low-dimensional layer on the surface of the three-dimensional perovskite film. In this work, we demonstrate the use of guanidinium tetrafluoroborate, CH6BF4N3, (GATFB) as a post-treatment step to enhance the performance of PSCs. Compared with the control sample, the application of GATFB improves the film surface topology, reduces surface defects, suppresses non-radiative recombination, and optimizes band alignment within the device. These positive effects reduce recombination losses and enhance charge transport in the device, resulting in PSCs with an open-circuit voltage (VOC) of 1.18 V and a power conversion efficiency (PCE) of 19.7%. The results obtained in this work exhibit the potential of integrating low-dimensional structures in PSCs as an effective approach to enhance the overall device performance, providing useful information for further advancement in this rapidly evolving field of photovoltaic technology.
Collapse
Affiliation(s)
- Damir Aidarkhanov
- Department of Electrical and Computer Engineering, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ikenna Henry Idu
- Department of Electrical and Computer Engineering, Nazarbayev University, Astana 010000, Kazakhstan
| | - Xianfang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Boulevard, Shenzhen 518055, China
| | - Dawei Duan
- Department of Electrical and Computer Engineering, Nazarbayev University, Astana 010000, Kazakhstan
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Boulevard, Shenzhen 518055, China
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Fei Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Boulevard, Shenzhen 518055, China
| | - Hanlin Hu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Boulevard, Shenzhen 518055, China
| | - Annie Ng
- Department of Electrical and Computer Engineering, Nazarbayev University, Astana 010000, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
4
|
Katayama K. Pattern-illumination time-resolved phase microscopy and its applications for photocatalytic and photovoltaic materials. Phys Chem Chem Phys 2024; 26:9783-9815. [PMID: 38497609 DOI: 10.1039/d3cp06211b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Pattern-illumination time-resolved phase microscopy (PI-PM) is a technique used to study the microscopic charge carrier dynamics in photocatalytic and photovoltaic materials. The method involves illuminating a sample with a pump light pattern, which generates charge carriers and they decay subsequently due to trapping, recombination, and transfer processes. The distribution of photo-excited charge carriers is observed through refractive index changes using phase-contrast imaging. In the PI-PM method, the sensitivity of the refractive index change is enhanced by adjusting the focus position, the method takes advantage of photo-excited charge carriers to observe non-radiative processes, such as charge diffusion, trapping in defect/surface states, and interfacial charge transfer of photocatalytic and photovoltaic reactions. The quality of the image sequence is recovered using various informatics calculations. Categorizing and mapping different types of charge carriers based on their response profiles using clustering analysis provides spatial information on charge carrier types and the identification of local sites for efficient and inefficient photo-induced reactions, providing valuable information for the design and optimization of photocatalytic materials such as the cocatalyst effect.
Collapse
Affiliation(s)
- Kenji Katayama
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan.
| |
Collapse
|
5
|
Noor NA, Tahir W, Mumtaz S, Elansary HO. Physical properties of ferromagnetic Mn-doped double perovskites (DPs) Cs 2AgInCl/Br 6 for spintronics and solar cell devices: DFT calculations. RSC Adv 2024; 14:9497-9508. [PMID: 38516157 PMCID: PMC10953807 DOI: 10.1039/d4ra00754a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
A computational framework based on density functional theory (DFT) has been effectively employed to investigate the wide-ranging physical characteristics of ferromagnetic manganese (Mn)-substituted double perovskites (DPs) with composition Cs2AgIn1-xMnxCl/Br6 (x = 0.0, 0.25). This research covers a systematic exploration of the mentioned DPs for potential applications in the domains of spintronics and energy conversion devices. The physics concerning ferromagnetic (FM) Cs2AgIn0.75Mn0.25Cl/Br6 DPs was studied computationally using the modified Becke-Johnson (mBJ-LDA) potential and the generalized gradient approximation (PBEsol GGA) method introduced by Perdew, Burke, and Ernzerhof. The structural, electronic, magnetic, and transport behavior of materials were investigated using these computations. Structural parameters for both perovskite materials were computed subsequent to their optimization in FM phase. According to evaluations of the electronic band structure and density of states (DOS), the incorporation of Mn ions into the host lattice causes exchange splitting induced by p-d hybridization, consequently stabilizing the FM state. Probing the sharing of magnetic moment, charge, and spin between the substituent cations and the host anions led to the comprehensive elaboration of this exchange splitting of bands. Important parameters such as exchange constants (N0α, N0β), and direct spin-exchange splitting Δx(d), support the stability of the FM state. Finally, we briefly explored the spin effect on other aspects of electronic transport, the Seebeck coefficient, and the power factor, using the conventional Boltzmann transport theory.
Collapse
Affiliation(s)
- N A Noor
- Department of Physics, RIPHAH International University Campus Lahore Pakistan
| | - Wasim Tahir
- Institute of Physics, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Sohail Mumtaz
- Electrical and Biological Physics, Krangwoon University Seoul 01897 South Korea
| | - Hosam O Elansary
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University P. O. Box 2460 Riyadh 11451 Saudi Arabia
| |
Collapse
|
6
|
Simenas M, Gagor A, Banys J, Maczka M. Phase Transitions and Dynamics in Mixed Three- and Low-Dimensional Lead Halide Perovskites. Chem Rev 2024; 124:2281-2326. [PMID: 38421808 PMCID: PMC10941198 DOI: 10.1021/acs.chemrev.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/15/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Lead halide perovskites are extensively investigated as efficient solution-processable materials for photovoltaic applications. The greatest stability and performance of these compounds are achieved by mixing different ions at all three sites of the APbX3 structure. Despite the extensive use of mixed lead halide perovskites in photovoltaic devices, a detailed and systematic understanding of the mixing-induced effects on the structural and dynamic aspects of these materials is still lacking. The goal of this review is to summarize the current state of knowledge on mixing effects on the structural phase transitions, crystal symmetry, cation and lattice dynamics, and phase diagrams of three- and low-dimensional lead halide perovskites. This review analyzes different mixing recipes and ingredients providing a comprehensive picture of mixing effects and their relation to the attractive properties of these materials.
Collapse
Affiliation(s)
- Mantas Simenas
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Anna Gagor
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, PL-50-422 Wroclaw, Poland
| | - Juras Banys
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Miroslaw Maczka
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, PL-50-422 Wroclaw, Poland
| |
Collapse
|
7
|
Roy M, Sykora M, Aslam M. Chemical Aspects of Halide Perovskite Nanocrystals. Top Curr Chem (Cham) 2024; 382:9. [PMID: 38430313 DOI: 10.1007/s41061-024-00453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 01/24/2024] [Indexed: 03/03/2024]
Abstract
Halide perovskite nanocrystals (HPNCs) are currently among the most intensely investigated group of materials. Structurally related to the bulk halide perovskites (HPs), HPNCs are nanostructures with distinct chemical, optical, and electronic properties and significant practical potential. One of the keys to the effective exploitation of the HPNCs in advanced technologies is the development of controllable, reproducible, and scalable methods for preparation of materials with desired compositions, phases, and shapes and low defect content. Another important condition is a quantitative understanding of factors affecting the chemical stability and the optical and electronic properties of HPNCs. Here we review important recent developments in these areas. Following a brief historical prospective, we provide an overview of known chemical methods for preparation of HPNCs and approaches used to control their composition, phase, size, and shape. We then review studies of the relationship between the chemical composition and optical properties of HPNCs, degradation mechanisms, and effects of charge injection. Finally, we provide a short summary and an outlook. The aim of this review is not to provide a comprehensive summary of all relevant literature but rather a selection of highlights, which, in the subjective view of the authors, provide the most significant recent observations and relevant analyses.
Collapse
Affiliation(s)
- Mrinmoy Roy
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, 400076, India
- Laboratory for Advanced Materials, Faculty of Natural Sciences, Comenius University, Bratislava, 84104, Slovakia
| | - Milan Sykora
- Laboratory for Advanced Materials, Faculty of Natural Sciences, Comenius University, Bratislava, 84104, Slovakia
| | - M Aslam
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
8
|
Chen X, Pasanen HP, Khan R, Tkachenko NV, Janáky C, Samu GF. Effect of Single-Crystal TiO 2/Perovskite Band Alignment on the Kinetics of Electron Extraction. J Phys Chem Lett 2024; 15:2057-2065. [PMID: 38357864 PMCID: PMC10895670 DOI: 10.1021/acs.jpclett.3c03536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The kinetics of electron extraction at the electron transfer layer/perovskite interface strongly affects the efficiency of a perovskite solar cell. By combining transient absorption and time-resolved photoluminescence spectroscopy, the electron extraction process between FA0.83Cs0.17Pb(I0.83Br0.17)3 and TiO2 single crystals with different orientations of (100), (110), and (111) were probed from subpicosecond to several hundred nanoseconds. It was revealed that the band alignment between the constituents influenced the relative electron extraction process. TiO2(100) showed the fastest overall and hot electron transfer, owing to the largest conduction band and Fermi level offset compared to FA0.83Cs0.17Pb(I0.83Br0.17)3. It was found that an early electron accumulation in these systems can have an influence on the following electron extraction on the several nanosecond time scale. Furthermore, the existence of a potential barrier at the TiO2/perovskite interface was also revealed by performing excitation fluence-dependent measurements.
Collapse
Affiliation(s)
- Xiangtian Chen
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Aradi Square 1, Szeged H-6720, Hungary
| | - Hannu P Pasanen
- Photonic Compounds and Nanomaterials, Chemistry and Advanced Material Group, Tampere University, Tampere FI-33720, Finland
| | - Ramsha Khan
- Photonic Compounds and Nanomaterials, Chemistry and Advanced Material Group, Tampere University, Tampere FI-33720, Finland
| | - Nikolai V Tkachenko
- Photonic Compounds and Nanomaterials, Chemistry and Advanced Material Group, Tampere University, Tampere FI-33720, Finland
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Aradi Square 1, Szeged H-6720, Hungary
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner street 3., Szeged H-6728, Hungary
| | - Gergely Ferenc Samu
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner street 3., Szeged H-6728, Hungary
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm square 7-8, Szeged H-6721, Hungary
| |
Collapse
|
9
|
Rowińska M, Stefańska D, Bednarchuk TJ, Zaręba JK, Jakubas R, Gągor A. Polymorphism and Red Photoluminescence Emission from 5s 2 Electron Pairs of Sb(III) in a New One-Dimensional Organic-Inorganic Hybrid Based on Methylhydrazine: MHy 2SbI 5. Molecules 2024; 29:455. [PMID: 38257367 PMCID: PMC10821241 DOI: 10.3390/molecules29020455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
We explore the crystal structure and luminescent properties of a new 1D organic-inorganic hybrid, MHy2SbI5, based on methylhydrazine. The compound reveals the red photoluminescence (PL) originating from the 5s2 electron pairs of Sb(III) as well as complex structural behavior. MHy2SbI5 crystalizes in two polymorphic forms (I and II) with distinct thermal properties and structural characteristics. Polymorph I adopts the acentric P212121 chiral space group confirmed by SHG, and, despite a thermally activated disorder of MHy, does not show any phase transitions, while polymorph II undergoes reversible low-temperature phase transition and high-temperature reconstructive transformation to polymorph I. The crystal structures of both forms consist of 1D perovskite zig-zag chains of corner-sharing SbI6 octahedra. The intriguing phase transition behavior of II is associated with the unstable arrangement of the [SbI5]2-∞ chains in the structure. The energy band gap (Eg) values, estimated based on the UV-Vis absorption spectra, indicate that both polymorphs have band gaps, with Eg values of 2.01 eV for polymorph I and 2.12 eV for polymorph II.
Collapse
Affiliation(s)
- Magdalena Rowińska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland (T.J.B.)
| | - Dagmara Stefańska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland (T.J.B.)
| | - Tamara J. Bednarchuk
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland (T.J.B.)
| | - Jan K. Zaręba
- Advanced Materials Engineering and Modelling Group, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ryszard Jakubas
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Anna Gągor
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland (T.J.B.)
| |
Collapse
|
10
|
Rahman MM. A Comprehensive Review on Perovskite Solar Cells Integrated Photo-supercapacitors and Perovskites-Based Electrochemical Supercapacitors. CHEM REC 2024; 24:e202300183. [PMID: 37642262 DOI: 10.1002/tcr.202300183] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Perovskite solar cells (PSCs) have rapidly become a prevalent photovoltaic technology owing to their simple structure, low processing cost, and remarkable increase in solar-to-electric power conversion efficiency (PCE). However, the intermittent nature of solar radiation induces some technical and financial challenges for its practical applications as a reliable power source. To address this issue, the integration of PSCs with supercapacitors (SCs) in the form of integrated photo-supercapacitors (IPSs) has gathered significant attention. This integration can balance energy availability and demand, reduce energy wastage, and stabilize power output for portable and wearable electronics. Meanwhile, the excellent optoelectronic properties with mixed electronic and ionic conductivity of metal halide perovskites (MHPs) have expanded their application as electrode and electrolyte materials for SCs and photo-supercapacitors (PSs) applications. This review provides an all-inclusive summary of the current state-of-the-art research progress of PSCs-IPSs and MHPs-based SCs and PSs by highlighting their basics and integration approaches. It also discusses the challenges and prospects of these materials and technologies.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Department of Applied Chemistry, Konkuk University, Chungju, 27478, South Korea
| |
Collapse
|
11
|
Reynes JF, Isoni V, García F. Tinkering with Mechanochemical Tools for Scale Up. Angew Chem Int Ed Engl 2023; 62:e202300819. [PMID: 37114517 DOI: 10.1002/anie.202300819] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 04/29/2023]
Abstract
Mechanochemistry provides an environmentally benign platform to develop more sustainable chemical processes by limiting raw materials, energy use, and waste generation while using physically smaller equipment. A continuously growing research community has steadily showcased examples of beneficial mechanochemistry applications at both the laboratory and the preparative scale. In contrast to solution-based chemistry, mechanochemical processes have not yet been standardized, and thus scaling up is still a nascent discipline. The purpose of this Minireview is to highlight similarities, differences and challenges of the various approaches that have been successfully applied for a range of chemical applications at various scales. We hope to provide a discussion starting point for those interested in further developing mechanochemical processes for commercial use and/or industrialisation.
Collapse
Affiliation(s)
- Javier F Reynes
- Departamento de Química Orgánica e Inorgánica Facultad de Química, Universidad de Oviedo, Av. Julián Clavería, 8, 33006, Oviedo, Asturias, Spain
| | - Valerio Isoni
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), 1, Pesek Road, Jurong Island, Singapore
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica Facultad de Química, Universidad de Oviedo, Av. Julián Clavería, 8, 33006, Oviedo, Asturias, Spain
- School of Chemistry, Monash University Clayton, Victoria, 3800, Australia
| |
Collapse
|
12
|
Ma S, Zhu W, Han T, Zhang C, Gao P, Guo Y, Song Z, Ni Y, Qiao D. Pure-Phase, Large-Grained Wide-Band-Gap Perovskite Films for High-Efficiency, Four-Terminal Perovskite/Silicon Tandem Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40719-40726. [PMID: 37590369 DOI: 10.1021/acsami.3c05333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
High-quality, stable perovskite films with a wide band gap between 1.65 and 1.80 eV are highly suitable for efficient and cost-competitive silicon-based tandem solar cells. Herein, we demonstrate that the combined strategies of the Pb(SCN)2 additive and air annealing can enable the Cs0.22FA0.78Pb(I0.85Br0.15)3 films with a wide band gap of 1.65 eV and favored properties including pure composition, high crystallinity, micro-sized grains, and reduced defects. With these desired films, the average efficiencies of semitransparent perovskite solar cells (PSCs) are boosted from (18.13 ± 0.31) to (20.35 ± 0.28)%. Further, the semitransparent PSC is used to assemble the four-terminal perovskite/TOPCon tandem solar cell. Benefiting from its excellent performance and preferred optical properties, the obtained tandem solar cell yields a milestone efficiency of 30.32%.
Collapse
Affiliation(s)
- Shaohua Ma
- Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China
| | - Weidong Zhu
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
- Qinghai Huanghe Hydropower Development Co., Ltd., Xining Solar Power Branch, Xining 810007, China
| | - Tianjiao Han
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Chunfu Zhang
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Peng Gao
- Qinghai Huanghe Hydropower Development Co., Ltd., Xining Solar Power Branch, Xining 810007, China
| | - Yonggang Guo
- Qinghai Huanghe Hydropower Development Co., Ltd., Xining Solar Power Branch, Xining 810007, China
| | - Zhicheng Song
- Qinghai Huanghe Hydropower Development Co., Ltd., Xining Solar Power Branch, Xining 810007, China
| | - Yufeng Ni
- Qinghai Huanghe Hydropower Development Co., Ltd., Xining Solar Power Branch, Xining 810007, China
| | - Dayong Qiao
- Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
13
|
Bala A, Kumar V. Enhanced stability of triple-halide perovskites CsPbI 3-x-yBr xCl y ( x and y = 0-0.024): understanding the role of Cl doping from ab initio calculations. Phys Chem Chem Phys 2023; 25:22989-23000. [PMID: 37594447 DOI: 10.1039/d3cp02476h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Doping of chloride in mixed iodide-bromide perovskites has been shown experimentally to suppress the photo-induced halide-ion segregation and enhance the stability of triple-halide perovskites (THP). However, a fundamental understanding of the effects of Cl doping is yet to be achieved especially when the doping concentration is low. Here we report the results of a state-of-the-art ab initio study of the atomic structure of THP by considering small doping concentrations of Br and Cl in CsPbI3. We find a reduction in the Pb-I bond lengths and tilting of PbI6 octahedra with Cl doping which lead to exothermic heat of mixing and therefore higher stability of THP. Moreover, using quasi-chemical approximation, our results show that there is a very small contribution of configurational entropy to Gibbs free energy at such low doping concentrations and at the operational temperature of 50 °C. This suggests that the favorable heat of mixing value is more important for the stability at low doping concentrations of Cl while a higher concentration of Cl increases the risk of halide segregation. Further calculations on Frenkel defect formation energy of I or Br-interstitial shows that the doping of Cl in I/Br mixed binary-compounds hinders the formation of Frenkel defects. These results support experiments and help to understand the role of chloride in suppressing the halide ion mobility with only a slight increase in the band gap. Accordingly, the THPs manifest a promising pathway for developing single-phase perovskites for solar cells and light-emitting diodes with improved performance and enhanced stability.
Collapse
Affiliation(s)
- Anu Bala
- Center for Informatics, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, NH-91, Tehsil Dadri, Gautam Buddha Nagar, 201314, Uttar Pradesh, India.
| | - Vijay Kumar
- Center for Informatics, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, NH-91, Tehsil Dadri, Gautam Buddha Nagar, 201314, Uttar Pradesh, India.
- Dr. Vijay Kumar Foundation, 1969, Sector 4, Gurgaon 122001, Haryana, India
| |
Collapse
|
14
|
Ghasemi M, Li X, Tang C, Li Q, Lu J, Du A, Lee J, Appadoo D, Tizei LHG, Pham ST, Wang L, Collins SM, Hou J, Jia B, Wen X. Effective Suppressing Phase Segregation of Mixed-Halide Perovskite by Glassy Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304236. [PMID: 37616513 DOI: 10.1002/smll.202304236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/13/2023] [Indexed: 08/26/2023]
Abstract
Lead mixed-halide perovskites offer tunable bandgaps for optoelectronic applications, but illumination-induced phase segregation can quickly lead to changes in their crystal structure, bandgaps, and optoelectronic properties, especially for the Br-I mixed system because CsPbI3 tends to form a non-perovskite phase under ambient conditions. These behaviors can impact their performance in practical applications. By embedding such mixed-halide perovskites in a glassy metal-organic framework, a family of stable nanocomposites with tunable emission is created. Combining cathodoluminescence with elemental mapping under a transmission electron microscope, this research identifies a direct relationship between the halide composition and emission energy at the nanoscale. The composite effectively inhibits halide ion migration, and consequently, phase segregation even under high-energy illumination. The detailed mechanism, studied using a combination of spectroscopic characterizations and theoretical modeling, shows that the interfacial binding, instead of the nanoconfinement effect, is the main contributor to the inhibition of phase segregation. These findings pave the way to suppress the phase segregation in mixed-halide perovskites toward stable and high-performance optoelectronics.
Collapse
Affiliation(s)
- Mehri Ghasemi
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Xuemei Li
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Cheng Tang
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George St, Brisbane City, QLD, 4001, Australia
| | - Qi Li
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Junlin Lu
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Aijun Du
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George St, Brisbane City, QLD, 4001, Australia
| | - Jaeho Lee
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Dominique Appadoo
- Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC, 3168, Australia
| | - Luiz H G Tizei
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Sang T Pham
- Bragg Centre for Materials Research, School of Chemical and Process Engineering and School of Chemistry, University of Leeds, LS2 9JT, Leeds, UK
| | - Lianzhou Wang
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Sean M Collins
- Bragg Centre for Materials Research, School of Chemical and Process Engineering and School of Chemistry, University of Leeds, LS2 9JT, Leeds, UK
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Xiaoming Wen
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
15
|
Garrote-Márquez A, Lodeiro L, Suresh R, Cruz Hernández N, Grau-Crespo R, Menéndez-Proupin E. Hydrogen Bonds in Lead Halide Perovskites: Insights from Ab Initio Molecular Dynamics. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:15901-15910. [PMID: 37609385 PMCID: PMC10440809 DOI: 10.1021/acs.jpcc.3c02376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/12/2023] [Indexed: 08/24/2023]
Abstract
Hydrogen bonds (HBs) play an important role in the rotational dynamics of organic cations in hybrid organic/inorganic halide perovskites, thus affecting the structural and electronic properties of the perovskites. However, the properties and even the existence of HBs in these perovskites are not well established. In this study, we investigate HBs in perovskites MAPbBr3 (MA+ = CH3NH3+), FAPbI3 (FA+ = CH(NH2)2+), and their solid solution with composition (FAPbI3)7/8(MAPbBr3)1/8, using ab initio molecular dynamics and electronic structure calculations. We consider HBs donated by X-H fragments (X = N and C) of the organic cations and accepted by the halides (Y = Br and I) and characterize their properties based on pair distribution functions and on a combined distribution function of the hydrogen-acceptor distance with the donor-hydrogen-acceptor angle. By analyzing these functions, we establish geometrical criteria for HB existence based on the hydrogen-acceptor (H-Y) distance and donor-hydrogen-acceptor angle (X-H-Y). The distance condition is defined as d(H - Y) < 3 Å for N-H-donated HBs and d(H - Y) < 4 Å for C-H-donated HBs. The angular condition is 135° < (X - H - Y) < 180° for both types of HBs. A HB is considered to be formed when both angular and distance conditions are simultaneously satisfied. At the simulated temperature (350 K), the HBs dynamically break and form. We compute the time correlation functions of HB existence and HB lifetimes, which range between 0.1 and 0.3 ps at that temperature. The analysis of HB lifetimes indicates that N-H-Br bonds are relatively stronger than N-H-I bonds, while C-H-Y bonds are weaker, with a minimal influence from the halide and cation. To evaluate the impact of HBs on the vibrational spectra, we present the power spectrum in the region of N-H and C-H stretching modes, comparing them with the normal mode frequencies of isolated cations. We show that the peaks associated with N-H stretching modes in perovskites are redshifted and asymmetrically deformed, while the C-H peaks do not exhibit these effects.
Collapse
Affiliation(s)
- Alejandro Garrote-Márquez
- Departamento
de Física Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, Seville E-41011, Spain
| | - Lucas Lodeiro
- Departamento
de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Ñuñoa 7800003, Chile
| | - Rahul Suresh
- Departamento
de Física Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, Seville E-41011, Spain
- International
Research Center of Spectroscopy and Quantum Chemistry - IRC SQC, Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia
| | - Norge Cruz Hernández
- Departamento
de Física Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, Seville E-41011, Spain
| | - Ricardo Grau-Crespo
- Department
of Chemistry, Whiteknights, University of
Reading, Reading RG6 6DX, UK
| | - Eduardo Menéndez-Proupin
- Departamento
de Física Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, Seville E-41011, Spain
| |
Collapse
|
16
|
Fahsyar PNA, Ludin NA, Ramli NF, Zulaikha PI, Sepeai S, Md Yasir ASH. Stabilizing high-humidity perovskite solar cells with MoS 2 hybrid HTL. Sci Rep 2023; 13:11996. [PMID: 37491577 PMCID: PMC10368666 DOI: 10.1038/s41598-023-39189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023] Open
Abstract
The obstacle to the industrialization of perovskite solar cells (PSC) technology lies in their stability. This work rationalizes the PSC design with the employment of 2D-MoS2 as the hybrid hole transport layer (HTL). MoS2 was selected due to its unique optoelectronic and mechanical properties that could enhance hole extraction and thus boost the performance and stability of PSC devices. Five concentrations indicated MoS2 nanosheets were directly deposited onto the perovskite layer via the facile spin coating method. The electrochemical exfoliation and liquid exchange methods were demonstrated to obtain the lateral size of MoS2 nanosheets and further discussed their microscopic and spectroscopic characterizations. Remarkably, the optimum thickness and the excellent device increased the stability of the PSC, allowing it to maintain 45% of its degradation percentage ([Formula: see text]) for 120 h with high relative humidity (RH = 40-50%) in its vicinity. We observed that lithium-ion can intercalate into the layered MoS2 structure and reduce the interfacial resistance of perovskite and the HTL. Most importantly, the 2D-MoS2 mechanism's effect on enabling stable and efficient devices by reducing lithium-ion migration in the HTL is demonstrated in this work to validate the great potential of this hybrid structure in PSC applications.
Collapse
Affiliation(s)
- Puteri Nor Aznie Fahsyar
- Clean Technology Impact Laboratory, Taylor's University, Selangor, Malaysia.
- Solar Energy Research Institute, University Kebangsaan Malaysia, Selangor, Malaysia.
| | - Norasikin Ahmad Ludin
- Solar Energy Research Institute, University Kebangsaan Malaysia, Selangor, Malaysia.
| | - Noor Fadhilah Ramli
- Solar Energy Research Institute, University Kebangsaan Malaysia, Selangor, Malaysia
| | | | - Suhaila Sepeai
- Solar Energy Research Institute, University Kebangsaan Malaysia, Selangor, Malaysia
| | | |
Collapse
|
17
|
Hussain W, Sawar S, Sultan M. Leveraging machine learning to consolidate the diversity in experimental results of perovskite solar cells. RSC Adv 2023; 13:22529-22537. [PMID: 37497089 PMCID: PMC10367956 DOI: 10.1039/d3ra02305b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Perovskite solar cells offer great potential for smart energy applications due to their flexibility and solution processability. However, the use of solution-based techniques has resulted in significant variations in device fabrication, leading to inconsistent results on the same composition. Machine learning (ML) and data science offer a potential solution to these challenges by enabling the automated design of perovskite solar cells. In this study, we leveraged machine learning tools to predict the band gap of hybrid organic-inorganic perovskites (HOIPs) and the power conversion efficiency of their solar cell devices. By analyzing 42 000 experimental datasets, we developed ML models for perovskite device design through a two-step predicting method, enabling the automation of perovskite materials development and device optimization. Additionally, band gap dependence of device parameters from experimental data is also validated, as predicted by the Shockley-Queisser model. This work has the potential to streamline the development of perovskite solar cells (PSCs) and optimize their performance without relying on time-consuming trial-and-error approaches.
Collapse
Affiliation(s)
- Wahid Hussain
- Department of Physics, Quaid-i-Azam University 45320 Islamabad Pakistan
| | - Samina Sawar
- Department of Plant Sciences, Quaid-i-Azam University 45320 Islamabad Pakistan
| | - Muhammad Sultan
- Department of Physics, Kohsar University Murree 47150 Punjab Pakistan
| |
Collapse
|
18
|
Zhu X, Pan Z, Xu T, Shao X, Gao Z, Xie Q, Ying Y, Pei W, Lin H, Wang J, Tang X, Chen W, Liu Y. Capping Ligand Engineering Enables Stable CsPbBr 3 Perovskite Quantum Dots toward White-Light-Emitting Diodes. Inorg Chem 2023. [PMID: 37229601 DOI: 10.1021/acs.inorgchem.3c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
All-inorganic perovskite quantum dots (PeQDs) have sparked extensive research focus on white-light-emitting diodes (WLEDs), but stability and photoluminescence efficiency issues are still remain obstacles impeding their practical application. Here, we reported a facile one-step method to synthesize CsPbBr3 PeQDs at room temperature using branched didodecyldimethylammonium fluoride (DDAF) and short-chain-length octanoic acid as capping ligands. The obtained CsPbBr3 PeQDs have a near-unity photoluminescence quantum yield of 97% due to the effective passivation of DDAF. More importantly, they exhibit much improved stability against air, heat, and polar solvents, maintaining >70% of initial PL intensity. Making use of these excellent optoelectronic properties, WLEDs based on CsPbBr3 PeQDs, CsPbBr1.2I1.8 PeQDs, and blue LEDs were fabricated, which show a color gamut of 122.7% of the National Television System Committee standard, a luminous efficacy of 17.1 lm/W, with a color temperature of 5890 K, and CIE coordinates of (0.32, 0.35). These results indicate that the CsPbBr3 PeQDs have great practical potential in wide-color-gamut displays.
Collapse
Affiliation(s)
- Xiaolin Zhu
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Zhangcheng Pan
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Tianyue Xu
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Xiuwen Shao
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Zhaoju Gao
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Qingyu Xie
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yupeng Ying
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Wei Pei
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Hao Lin
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, P. R. China
| | - Jia Wang
- Department of Physics, Umeå University, Umeå SE-90187, Sweden
| | - Xiaosheng Tang
- College of Optoelectronic Engineering, Chongqing University of Post and Telecommunications, Chongqing 400065, People's Republic of China
| | - Weiwei Chen
- College of Optoelectronic Engineering, Chongqing University of Post and Telecommunications, Chongqing 400065, People's Republic of China
| | - Yongfeng Liu
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
19
|
Li Y, Lohr PJ, Segapeli A, Baltram J, Werner D, Allred A, Muralidharan K, Printz AD. Influence of Halides on the Interactions of Ammonium Acids with Metal Halide Perovskites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24387-24398. [PMID: 37162743 DOI: 10.1021/acsami.3c01432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Additive engineering is a common strategy to improve the performance and stability of metal halide perovskite through the modulation of crystallization kinetics and passivation of surface defects. However, much of this work has lacked a systematic approach necessary to understand how the functionality and molecular structure of the additives influence perovskite performance and stability. This paper describes the inclusion of low concentrations of 5-aminovaleric acid (5-AVA) and its ammonium acid derivatives, 5-ammoniumvaleric acid iodide (5-AVAI) and 5-ammoniumvaleric acid chloride (5-AVACl), into the precursor inks for methylammonium lead triiodide (MAPbI3) perovskite and highlights the important role of halides in affecting the interactions of additives with perovskite and film properties. The film quality, as determined by X-ray diffraction (XRD) and photoluminescence (PL) spectrophotometry, is shown to improve with the inclusion of all additives, but an increase in annealing time from 5 to 30 min is necessary. We observe an increase in grain size and a decrease in film roughness with the incorporation of 5-AVAI and 5-AVACl with scanning electron microscopy (SEM) and atomic force microscopy (AFM). Critically, X-ray photoelectron spectroscopy (XPS) measurements and density functional theory (DFT) calculations show that 5-AVAI and 5-AVACl preferentially interact with MAPbI3 surfaces via the ammonium functional group, while 5-AVA will interact with either amino or carboxylic acid functional groups. Charge localization analysis shows the surprising result that HCl dissociates from 5-AVACl in vacuum, resulting in the decomposition of the ammonium acid to 5-AVA. We show that device repeatability is improved with the inclusion of all additives and that 5-AVACl increases the power conversion efficiency of devices from 17.61 ± 1.07 to 18.07 ± 0.42%. Finally, we show stability improvements for unencapsulated devices exposed to 50% relative humidity, with devices incorporating 5-AVAI and 5-AVACl exhibiting the greatest improvements.
Collapse
Affiliation(s)
- Yanan Li
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Patrick J Lohr
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Allison Segapeli
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Juliana Baltram
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Dorian Werner
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Alex Allred
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Krishna Muralidharan
- Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Adam D Printz
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States
- Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
20
|
Chuang TH, Chen YH, Sakalley S, Cheng WC, Chan CK, Chen CP, Chen SC. Highly Stable and Enhanced Performance of p-i-n Perovskite Solar Cells via Cuprous Oxide Hole-Transport Layers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1363. [PMID: 37110948 PMCID: PMC10143474 DOI: 10.3390/nano13081363] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Solar light is a renewable source of energy that can be used and transformed into electricity using clean energy technology. In this study, we used direct current magnetron sputtering (DCMS) to sputter p-type cuprous oxide (Cu2O) films with different oxygen flow rates (fO2) as hole-transport layers (HTLs) for perovskite solar cells (PSCs). The PSC device with the structure of ITO/Cu2O/perovskite/[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM)/bathocuproine (BCP)/Ag showed a power conversion efficiency (PCE) of 7.91%. Subsequently, a high-power impulse magnetron sputtering (HiPIMS) Cu2O film was embedded and promoted the device performance to 10.29%. As HiPIMS has a high ionization rate, it can create higher density films with low surface roughness, which passivates surface/interface defects and reduces the leakage current of PSCs. We further applied the superimposed high-power impulse magnetron sputtering (superimposed HiPIMS) derived Cu2O as the HTL, and we observed PCEs of 15.20% under one sun (AM1.5G, 1000 Wm-2) and 25.09% under indoor illumination (TL-84, 1000 lux). In addition, this PSC device outperformed by demonstrating remarkable long-term stability via retaining 97.6% (dark, Ar) of its performance for over 2000 h.
Collapse
Affiliation(s)
- Tung-Han Chuang
- Institute of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Yin-Hung Chen
- Institute of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Shikha Sakalley
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Department of Materials Engineering and Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Wei-Chun Cheng
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Choon Kit Chan
- Mechanical Engineering Department, Faculty of Engineering and Quantity Surveying, INTI International University, Nilai 71800, Negeri Sembilan, Malaysia
| | - Chih-Ping Chen
- Department of Materials Engineering and Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Sheng-Chi Chen
- Department of Materials Engineering and Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City 243, Taiwan
- College of Engineering and Center for Green Technology, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
21
|
Patil P, Sangale SS, Kwon SN, Na SI. Innovative Approaches to Semi-Transparent Perovskite Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1084. [PMID: 36985978 PMCID: PMC10057987 DOI: 10.3390/nano13061084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Perovskite solar cells (PSCs) are advancing rapidly and have reached a performance comparable to that of silicon solar cells. Recently, they have been expanding into a variety of applications based on the excellent photoelectric properties of perovskite. Semi-transparent PSCs (ST-PSCs) are one promising application that utilizes the tunable transmittance of perovskite photoactive layers, which can be used in tandem solar cells (TSC) and building-integrated photovoltaics (BIPV). However, the inverse relationship between light transmittance and efficiency is a challenge in the development of ST-PSCs. To overcome these challenges, numerous studies are underway, including those on band-gap tuning, high-performance charge transport layers and electrodes, and creating island-shaped microstructures. This review provides a general and concise summary of the innovative approaches in ST-PSCs, including advances in the perovskite photoactive layer, transparent electrodes, device structures and their applications in TSC and BIPV. Furthermore, the essential requirements and challenges to be addressed to realize ST-PSCs are discussed, and the prospects of ST-PSCs are presented.
Collapse
Affiliation(s)
| | | | - Sung-Nam Kwon
- Correspondence: (S.-N.K.); (S.-I.N.); Tel.: +82-63-270-4465 (S.-I.N.); Fax: +82-63-270-2341 (S.-I.N.)
| | - Seok-In Na
- Correspondence: (S.-N.K.); (S.-I.N.); Tel.: +82-63-270-4465 (S.-I.N.); Fax: +82-63-270-2341 (S.-I.N.)
| |
Collapse
|
22
|
Sumukam RR, Kumar GS, Savu RN, Murali B. Strategic Compositional Engineering in Quasi-2D Ruddlesden-Popper Perovskites to Decipher Deep Blue Emission. J Phys Chem Lett 2023; 14:395-402. [PMID: 36622306 DOI: 10.1021/acs.jpclett.2c03359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Perovskites have achieved immense progression in optoelectronic device applications owing to their fascinating intrinsic properties. However, the integration of perovskites in lighting applications has been retarded due to the challenges involved in achieving their deep blue light-emitting diodes (LEDs). Unlike other color counterparts, obtaining a stable, defect-tolerant, and high-band gap perovskite material for deep blue emission is an arduous task. Moreover, the ambient stability and efficient charge injection in the device are bottlenecks for the established perovskite emissive materials. Among all the dimensional perovskite counterparts, quasi-two-dimensional perovskites (Q2DPes) with hydrophobic ligands can exhibit better stability, and also, facile tunability of the properties can overcome the associated challenges. In this paper, for the first time, we demonstrate Ruddlesden-Popper-based Q2DPes that are pure deep blue emissive in the 450 nm region, stable, and can facilitate decent charge injection in LEDs. We have also demonstrated systematic modulations in the properties of the material, concerning the organic cation concentration.
Collapse
Affiliation(s)
- Ranadeep Raj Sumukam
- Solar Cells and Photonics Research Laboratory, School of Chemistry, University of Hyderabad, Prof. C R Rao Road, Hyderabad500046, Telangana State, India
| | - Gundam Sandeep Kumar
- Solar Cells and Photonics Research Laboratory, School of Chemistry, University of Hyderabad, Prof. C R Rao Road, Hyderabad500046, Telangana State, India
| | - Ramu Naidu Savu
- Solar Cells and Photonics Research Laboratory, School of Chemistry, University of Hyderabad, Prof. C R Rao Road, Hyderabad500046, Telangana State, India
| | - Banavoth Murali
- Solar Cells and Photonics Research Laboratory, School of Chemistry, University of Hyderabad, Prof. C R Rao Road, Hyderabad500046, Telangana State, India
| |
Collapse
|
23
|
Masawa SM, Bakari R, Xu J, Yao J. Progress and challenges in the fabrication of lead-free all-inorganic perovskites solar cells using solvent and compositional engineering Techniques-A review. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Udalova NN, Moskalenko AK, Belich NA, Ivlev PA, Tutantsev AS, Goodilin EA, Tarasov AB. Butanediammonium Salt Additives for Increasing Functional and Operando Stability of Light-Harvesting Materials in Perovskite Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4357. [PMID: 36558209 PMCID: PMC9784390 DOI: 10.3390/nano12244357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Organic diammonium cations are a promising component of both layered (2D) and conventional (3D) hybrid halide perovskites in terms of increasing the stability of perovskite solar cells (PSCs). We investigated the crystallization ability of phase-pure 2D perovskites based on 1,4-butanediammonium iodide (BDAI2) with the layer thicknesses n = 1, 2, 3 and, for the first time, revealed the presence of a persistent barrier to obtain BDA-based layered compounds with n > 1. Secondly, we introduced BDAI2 salt into 3D lead−iodide perovskites with different cation compositions and discovered a threshold-like nonmonotonic dependence of the perovskite microstructure, optoelectronic properties, and device performance on the amount of diammonium additive. The value of the threshold amount of BDAI2 was found to be ≤1%, below which bulk passivation plays the positive effect on charge carrier lifetimes, fraction of radiative recombination, and PSCs power conversion efficiencies (PCE). In contrast, the presence of any amount of diammonium salt leads to the sufficient enhancement of the photothermal stability of perovskite materials and devices, compared to the reference samples. The performance of all the passivated devices remained within the range of 50 to 80% of the initial PCE after 400 h of continuous 1 sun irradiation with a stabilized temperature of 65 °C, while the performance of the control devices deteriorated after 170 h of the experiment.
Collapse
Affiliation(s)
- Natalia N. Udalova
- Laboratory of New Materials for Solar Energetics, Department of Materials Science, Lomonosov Moscow State University, Lenin Hills, 119991 Moscow, Russia
| | - Aleksandra K. Moskalenko
- Laboratory of New Materials for Solar Energetics, Department of Materials Science, Lomonosov Moscow State University, Lenin Hills, 119991 Moscow, Russia
| | - Nikolai A. Belich
- Laboratory of New Materials for Solar Energetics, Department of Materials Science, Lomonosov Moscow State University, Lenin Hills, 119991 Moscow, Russia
| | - Pavel A. Ivlev
- Laboratory of New Materials for Solar Energetics, Department of Materials Science, Lomonosov Moscow State University, Lenin Hills, 119991 Moscow, Russia
| | - Andrey S. Tutantsev
- Laboratory of New Materials for Solar Energetics, Department of Materials Science, Lomonosov Moscow State University, Lenin Hills, 119991 Moscow, Russia
| | - Eugene A. Goodilin
- Laboratory of New Materials for Solar Energetics, Department of Materials Science, Lomonosov Moscow State University, Lenin Hills, 119991 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Lenin Hills, 119991 Moscow, Russia
| | - Alexey B. Tarasov
- Laboratory of New Materials for Solar Energetics, Department of Materials Science, Lomonosov Moscow State University, Lenin Hills, 119991 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Lenin Hills, 119991 Moscow, Russia
| |
Collapse
|
25
|
Nazir G, Lee SY, Lee JH, Rehman A, Lee JK, Seok SI, Park SJ. Stabilization of Perovskite Solar Cells: Recent Developments and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204380. [PMID: 36103603 DOI: 10.1002/adma.202204380] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Exceptional power conversion efficiency (PCE) of 25.7% in perovskite solar cells (PSCs) has been achieved, which is comparable with their traditional rivals (Si-based solar cells). However, commercialization-worthy efficiency and long-term stability remain a challenge. In this regard, there are increasing studies focusing on the interface engineering in PSC devices to overcome their poor technical readiness. Herein, the roles of electrode materials and interfaces in PSCs are discussed in terms of their PCEs and perovskite stability. All the current knowledge on the factors responsible for the rapid intrinsic and external degradation of PSCs is presented. Then, the roles of carbonaceous materials as substitutes for noble metals are focused on, along with the recent research progress in carbon-based PSCs. Furthermore, a sub-category of PSCs, that is, flexible PSCs, is considered as a type of exceptional power source due to their high power-to-weight ratios and figures of merit for next-generation wearable electronics. Last, the future perspectives and directions for research in PSCs are discussed, with an emphasis on their commercialization.
Collapse
Affiliation(s)
- Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea
- Department of Mechanical Engineering and Institute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jong-Hoon Lee
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea
| | - Adeela Rehman
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea
| | - Jung-Kun Lee
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Sang Il Seok
- Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon, 22212, Republic of Korea
| |
Collapse
|
26
|
Pan K, Hou H, Hu J, Yang J, Xiang J, Li C, Xu C, Chen S, Liang S, Yang J. Ca and Cu doped LaFeO 3 to promote coupling of photon carriers and redox cycling for facile photo-Fenton degradation of bisphenol A. CHEMOSPHERE 2022; 308:136325. [PMID: 36084826 DOI: 10.1016/j.chemosphere.2022.136325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Enhancements in the light response and hydrogen peroxide utilization are critical to the catalytic performance of heterogeneous Fenton-like perovskites. Here, in this research, oxygen vacancy-enriched La0.9Ca0.1Cu0.5Fe0.5O3-δ was prepared by a co-precipitation method with Cu substitution and Ca doping and demonstrated excellent performance for the degradation of bisphenol A. Both total organic carbon (TOC) removal and hydrogen peroxide utilization were close to 90% within 120 min at pH 3-7, where the TOC removal and hydrogen peroxide utilization were 2.5 times and 5.5 times of LaFeO3 in the absence of Ca and Cu doping. It demonstrated excellent stability to light irradiation and oxidation with respect to cycling and metal ion leaching. This revealed that oxygen vacancies were enriched in the catalyst with the substitution of Ca and Cu and contributed to the recombination of photogenerated electrons, thereby increasing the reduction efficiency of copper ions and accelerating the redox cycling of iron ions.
Collapse
Affiliation(s)
- Keliang Pan
- Hubei Institute of Geosciences, Wuhan, Hubei 430034, PR China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Key Laboratory of Resource and Ecological Environment Geology, Wuhan, Hubei, 430034, PR China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China.
| | - Jun Yang
- Hubei Institute of Geosciences, Wuhan, Hubei 430034, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jianqiao Xiang
- Hubei Institute of Geosciences, Wuhan, Hubei 430034, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Chuncheng Li
- Hubei Institute of Geosciences, Wuhan, Hubei 430034, PR China
| | - Chunyan Xu
- Hubei Institute of Geosciences, Wuhan, Hubei 430034, PR China
| | - Sijing Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| |
Collapse
|
27
|
Šimėnas M, Balčiu̅nas S, Ga̧gor A, Pienia̧żek A, Tolborg K, Kinka M, Klimavicius V, Svirskas Š, Kalendra V, Ptak M, Szewczyk D, Herman AP, Kudrawiec R, Sieradzki A, Grigalaitis R, Walsh A, Ma̧czka M, Banys J. Mixology of MA 1-x EA x PbI 3 Hybrid Perovskites: Phase Transitions, Cation Dynamics, and Photoluminescence. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:10104-10112. [PMID: 36439319 PMCID: PMC9686138 DOI: 10.1021/acs.chemmater.2c02807] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Mixing molecular cations in hybrid lead halide perovskites is a highly effective approach to enhance the stability and performance of optoelectronic devices based on these compounds. In this work, we prepare and study novel mixed 3D methylammonium (MA)-ethylammonium (EA) MA1-x EA x PbI3 (x < 0.4) hybrid perovskites. We use a suite of different techniques to determine the structural phase diagram, cation dynamics, and photoluminescence properties of these compounds. Upon introduction of EA, we observe a gradual lowering of the phase-transition temperatures, indicating stabilization of the cubic phase. For mixing levels higher than 30%, we obtain a complete suppression of the low-temperature phase transition and formation of a new tetragonal phase with a different symmetry. We use broad-band dielectric spectroscopy to study the dielectric response of the mixed compounds in an extensive frequency range, which allows us to distinguish and characterize three distinct dipolar relaxation processes related to the molecular cation dynamics. We observe that mixing increases the rotation barrier of the MA cations and tunes the dielectric permittivity values. For the highest mixing levels, we observe the signatures of the dipolar glass phase formation. Our findings are supported by density functional theory calculations. Our photoluminescence measurements reveal a small change of the band gap upon mixing, indicating the suitability of these compounds for optoelectronic applications.
Collapse
Affiliation(s)
- Mantas Šimėnas
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257Vilnius, Lithuania
| | - Sergejus Balčiu̅nas
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257Vilnius, Lithuania
| | - Anna Ga̧gor
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422, PL-50-422Wroclaw, Poland
| | - Agnieszka Pienia̧żek
- Department
of Semiconductor Materials Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, PL-50-370Wroclaw, Poland
| | - Kasper Tolborg
- Thomas
Young Centre and Department of Materials, Imperial College London, SW7 2AZLondon, U.K.
| | - Martynas Kinka
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257Vilnius, Lithuania
| | - Vytautas Klimavicius
- Institute
of Chemical Physics, Vilnius University, Sauletekio 3, LT-10257Vilnius, Lithuania
| | - Šaru̅nas Svirskas
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257Vilnius, Lithuania
| | - Vidmantas Kalendra
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257Vilnius, Lithuania
| | - Maciej Ptak
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422, PL-50-422Wroclaw, Poland
| | - Daria Szewczyk
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422, PL-50-422Wroclaw, Poland
| | - Artur P. Herman
- Department
of Semiconductor Materials Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, PL-50-370Wroclaw, Poland
| | - Robert Kudrawiec
- Department
of Semiconductor Materials Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, PL-50-370Wroclaw, Poland
| | - Adam Sieradzki
- Department
of Experimental Physics, Wroclaw University
of Science and Technology, Wybrzeze Wyspianskiego 27, PL-50-370Wroclaw, Poland
| | - Robertas Grigalaitis
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257Vilnius, Lithuania
| | - Aron Walsh
- Thomas
Young Centre and Department of Materials, Imperial College London, SW7 2AZLondon, U.K.
| | - Mirosław Ma̧czka
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422, PL-50-422Wroclaw, Poland
| | - Ju̅ras Banys
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257Vilnius, Lithuania
| |
Collapse
|
28
|
Ntouga Abena A, Teyou Ngoupo A, Ndjaka J. Computational analysis of mixed cation mixed halide-based perovskite solar cell using SCAPS-1D software. Heliyon 2022; 8:e11428. [DOI: 10.1016/j.heliyon.2022.e11428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/09/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
|
29
|
Tang YL, Bai GF, Tang J, Xu L. First principles study on the stability and photoelectric properties of Cs2SeI6 under hydrostatic pressure. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Strong absorption and ultrafast localisation in NaBiS 2 nanocrystals with slow charge-carrier recombination. Nat Commun 2022; 13:4960. [PMID: 36002464 PMCID: PMC9402705 DOI: 10.1038/s41467-022-32669-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
I-V-VI2 ternary chalcogenides are gaining attention as earth-abundant, nontoxic, and air-stable absorbers for photovoltaic applications. However, the semiconductors explored thus far have slowly-rising absorption onsets, and their charge-carrier transport is not well understood yet. Herein, we investigate cation-disordered NaBiS2 nanocrystals, which have a steep absorption onset, with absorption coefficients reaching >105 cm-1 just above its pseudo-direct bandgap of 1.4 eV. Surprisingly, we also observe an ultrafast (picosecond-time scale) photoconductivity decay and long-lived charge-carrier population persisting for over one microsecond in NaBiS2 nanocrystals. These unusual features arise because of the localised, non-bonding S p character of the upper valence band, which leads to a high density of electronic states at the band edges, ultrafast localisation of spatially-separated electrons and holes, as well as the slow decay of trapped holes. This work reveals the critical role of cation disorder in these systems on both absorption characteristics and charge-carrier kinetics.
Collapse
|
31
|
Otero‐Martínez C, Imran M, Schrenker NJ, Ye J, Ji K, Rao A, Stranks SD, Hoye RLZ, Bals S, Manna L, Pérez‐Juste J, Polavarapu L. Fast A‐Site Cation Cross‐Exchange at Room Temperature: Single‐to Double‐ and Triple‐Cation Halide Perovskite Nanocrystals. Angew Chem Int Ed Engl 2022; 61:e202205617. [PMID: 35748492 PMCID: PMC9540746 DOI: 10.1002/anie.202205617] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Indexed: 11/20/2022]
Abstract
We report here fast A‐site cation cross‐exchange between APbX3 perovskite nanocrystals (NCs) made of different A‐cations (Cs (cesium), FA (formamidinium), and MA (methylammonium)) at room temperature. Surprisingly, the A‐cation cross‐exchange proceeds as fast as the halide (X=Cl, Br, or I) exchange with the help of free A‐oleate complexes present in the freshly prepared colloidal perovskite NC solutions. This enabled the preparation of double (MACs, MAFA, CsFA)‐ and triple (MACsFA)‐cation perovskite NCs with an optical band gap that is finely tunable by their A‐site composition. The optical spectroscopy together with structural analysis using XRD and atomically resolved high‐angle annular dark‐field scanning transmission electron microscopy (HAADF‐STEM) and integrated differential phase contrast (iDPC) STEM indicates the homogeneous distribution of different cations in the mixed perovskite NC lattice. Unlike halide ions, the A‐cations do not phase‐segregate under light illumination.
Collapse
Affiliation(s)
- Clara Otero‐Martínez
- Department of Physical Chemistry, CINBIO Universidade de Vigo, Materials Chemistry and Physics Group Campus Universitario As Lagoas, Marcosende 36310 Vigo Spain
- Department of Physical Chemistry, CINBIO Universidade de Vigo Campus Universitario As Lagoas, Marcosende 36310 Vigo Spain
| | - Muhammad Imran
- Nanochemistry Istituto Italiano di Tecnologia Via Morego 30 16163 Genova Italy
| | - Nadine J. Schrenker
- EMAT and Nanolab Center of Excellence University of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Junzhi Ye
- Cavendish Laboratory University of Cambridge 19 JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Kangyu Ji
- Cavendish Laboratory University of Cambridge 19 JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Akshay Rao
- Cavendish Laboratory University of Cambridge 19 JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Samuel D. Stranks
- Cavendish Laboratory University of Cambridge 19 JJ Thomson Avenue Cambridge CB3 0HE UK
- Department of Chemical Engineering and Biotechnology University of Cambridge Cambridge CB3 0AS UK
| | - Robert L. Z. Hoye
- Department of Materials Imperial College London Exhibition Road London SW7 2AZ UK
| | - Sara Bals
- EMAT and Nanolab Center of Excellence University of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Liberato Manna
- Nanochemistry Istituto Italiano di Tecnologia Via Morego 30 16163 Genova Italy
| | - Jorge Pérez‐Juste
- Department of Physical Chemistry, CINBIO Universidade de Vigo Campus Universitario As Lagoas, Marcosende 36310 Vigo Spain
| | - Lakshminarayana Polavarapu
- Department of Physical Chemistry, CINBIO Universidade de Vigo, Materials Chemistry and Physics Group Campus Universitario As Lagoas, Marcosende 36310 Vigo Spain
| |
Collapse
|
32
|
Gebremichael ZT, Alam S, Stumpf S, Diegel M, Schubert US, Hoppe H. Single‐step post‐production treatment of lead acetate precursor‐based perovskite using alkylamine salts for reduced grain‐boundary related film defects. NANO SELECT 2022. [DOI: 10.1002/nano.202200006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Zekarias Teklu Gebremichael
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Jena 07743 Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich Schiller University Jena Jena 07743 Germany
- College of Natural and Computational Science Aksum University Aksum City Tigray 1010 Ethiopia
| | - Shahidul Alam
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Jena 07743 Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich Schiller University Jena Jena 07743 Germany
- King Abdullah University of Science and Technology (KAUST) KAUST Solar Center (KSC) Physical Sciences and Engineering Division (PSE) Material Science and Engineering Program (MSE) Thuwal Kingdom of Saudi Arabia
| | - Steffi Stumpf
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Jena 07743 Germany
- Jena Center for Soft Matter (JCSM) Friedrich Schiller University Jena Jena Germany
| | - Marco Diegel
- Leibniz Institute of Photonics Technology Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Jena 07743 Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich Schiller University Jena Jena 07743 Germany
- Jena Center for Soft Matter (JCSM) Friedrich Schiller University Jena Jena Germany
| | - Harald Hoppe
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Jena 07743 Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich Schiller University Jena Jena 07743 Germany
| |
Collapse
|
33
|
Abstract
Perovskite solar cells (PSCs) have captured the attention of the global energy research community in recent years by showing an exponential augmentation in their performance and stability. The supremacy of the light-harvesting efficiency and wider band gap of perovskite sensitizers have led to these devices being compared with the most outstanding rival silicon-based solar cells. Nevertheless, there are some issues such as their poor lifetime stability, considerable J–V hysteresis, and the toxicity of the conventional constituent materials which restrict their prevalence in the marketplace. The poor stability of PSCs with regard to humidity, UV radiation, oxygen and heat especially limits their industrial application. This review focuses on the in-depth studies of different direct and indirect parameters of PSC device instability. The mechanism for device degradation for several parameters and the complementary materials showing promising results are systematically analyzed. The main objective of this work is to review the effectual strategies of enhancing the stability of PSCs. Several important factors such as material engineering, novel device structure design, hole-transporting materials (HTMs), electron-transporting materials (ETMs), electrode materials preparation, and encapsulation methods that need to be taken care of in order to improve the stability of PSCs are discussed extensively. Conclusively, this review discusses some opportunities for the commercialization of PSCs with high efficiency and stability.
Collapse
|
34
|
Otero-Martínez C, Imran M, Schrenker NJ, Ye J, Ji K, Rao A, Stranks SD, Hoye RLZ, Bals S, Manna L, Pérez-Juste J, Polavarapu L. Fast A‐Site Cation Cross‐exchange at Room Temperature: Single‐to Double‐ and Triple‐Cation Halide Perovskite Nanocrystals. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Clara Otero-Martínez
- University of Vigo - Lagoas Marcosende Campus: Universidade de Vigo Physical Chemistry SPAIN
| | - Muhammad Imran
- IIT: Istituto Italiano di Tecnologia Nanochemistry ITALY
| | | | - Junzhi Ye
- University of Cambridge Cavendish Laboratory UNITED KINGDOM
| | - Kangyu Ji
- University of Cambridge Cavendish Laboratory UNITED KINGDOM
| | - Akshay Rao
- University of Cambridge Cavendish Laboratory UNITED KINGDOM
| | | | | | - Sara Bals
- University of Antwerp - City campus: Universiteit Antwerpen EMAT BELGIUM
| | - Liberato Manna
- IIT: Istituto Italiano di Tecnologia Nanochemistry ITALY
| | - Jorge Pérez-Juste
- University of Vigo - Lagoas Marcosende Campus: Universidade de Vigo Physical Chemistry SPAIN
| | - Lakshminarayana Polavarapu
- University of Vigo - Lagoas Marcosende Campus: Universidade de Vigo Department of Physics Lagoas-Marcosende 36310 Vigo SPAIN
| |
Collapse
|
35
|
Chen Y, Ding X, Yang L, Wang Y, Gurti JI, Wang M, Li W, Wang X, Yang W. Small practical cluster models for perovskites based on the similarity criterion of central location environment and their applications. Phys Chem Chem Phys 2022; 24:14375-14389. [PMID: 35642957 DOI: 10.1039/d2cp00562j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing universal theoretical models for perovskites (often denoted as ABX3) can contribute to the rational design of novel perovskite photovoltaic materials. However, few models can be successfully applied to study the intrinsic electronic structure due to the poor accuracy and unaffordable computational cost. Herein, we report the innovative construction of small practical cluster models through the similarity criterion of the central location environment, which retains only the central A-site as the original cation while the others are substituted by Cs to keep the clusters electrically neutral. The central cation has a chemical environment similar to that of the bulk perovskite. The binding energy between A and the BX framework, geometric structures (B-X distances and B-X-B angles), and the electronic structures (the gap and the spatial distribution of HOMO and LUMO, electron distribution) of these clusters have been investigated and compared with the corresponding properties of bulk materials. The results suggest that the cluster model with twelve B-atoms suitably describes these properties. The geometric structures and gaps are closer to the bulk situations than the quasi-one-dimensional and quasi-two-dimensional cluster models with all-primitive cations, respectively. Other organic cations, such as NH3(CH2)nCH3 (n = 1, 2, and 3 for EA, PA, and BA, respectively), and (NH2)2CH (FA) can, therefore, mimic perovskite materials. Clusters with different sizes of A indicate that PA and BA will distort the quasi-cubic structures, which is consistent with the judgment of the tolerance factor of bulk materials. The reliable cluster model provides the research foundation for some basic issues of perovskites, such as vibrational spectroscopy and hydrogen bonding strength, to gain detailed insight into the interactions between A and the BX framework.
Collapse
Affiliation(s)
- Yan Chen
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, P. R. China. .,School of New Energy, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, P. R. China
| | - Xunlei Ding
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, P. R. China
| | - Luona Yang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, P. R. China
| | - Yaya Wang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, P. R. China. .,School of New Energy, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, P. R. China
| | - Joseph Israel Gurti
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, P. R. China
| | - Mengmeng Wang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, P. R. China. .,School of New Energy, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, P. R. China
| | - Wei Li
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, P. R. China
| | - Xin Wang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, P. R. China
| | - Weijie Yang
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China.
| |
Collapse
|
36
|
Progress and Recent Strategies in the Synthesis and Catalytic Applications of Perovskites Based on Lanthanum and Aluminum. MATERIALS 2022; 15:ma15093288. [PMID: 35591622 PMCID: PMC9100353 DOI: 10.3390/ma15093288] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022]
Abstract
Lanthanum aluminate-based perovskite (LaAlO3) has excellent stability at high temperatures, low toxicity, and high chemical resistance and also offers wide versatility to the substitution of La3+ and Al3+, thus, allowing it to be applied as a catalyst, nano-adsorbent, sensor, and microwave dielectric resonator, amongst other equally important uses. As such, LaAlO3 perovskites have gained importance in recent years. This review considers the extensive literature of the past 10 years on the synthesis and catalytic applications of perovskites based on lanthanum and aluminum (LaAlO3). The aim is, first, to provide an overview of the structure, properties, and classification of perovskites. Secondly, the most recent advances in synthetic methods, such as solid-state methods, solution-mediated methods (co-precipitation, sol–gel, and Pechini synthesis), thermal treatments (combustion, microwave, and freeze drying), and hydrothermal and solvothermal methods, are also discussed. The most recent energetic catalytic applications (the dry and steam reforming of methane; steam reforming of toluene, glycerol, and ethanol; and oxidative coupling of methane, amongst others) using these functional materials are also addressed. Finally, the synthetic challenges, advantages, and limitations associated with the preparation methods and catalytic applications are discussed.
Collapse
|
37
|
Wang P, Chen X, Liu T, Hou CH, Tian Y, Xu X, Chen Z, Ran P, Jiang T, Kuan CH, Yan B, Yao J, Shyue JJ, Qiu J, Yang YM. Seed-Assisted Growth of Methylammonium-Free Perovskite for Efficient Inverted Perovskite Solar Cells. SMALL METHODS 2022; 6:e2200048. [PMID: 35266331 DOI: 10.1002/smtd.202200048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The traditional way to stabilize α-phase formamidinium lead triiodide (FAPbI3 ) perovskite often involves considerable additions of methylammonium (MA) and bromide into the perovskite lattice, leading to an enlarged bandgap and reduced thermal stability. This work shows a seed-assisted growth strategy to induce a bottom-up crystallization of MA-free perovskite, by introducing a small amount of α-CsPbBr3 /DMSO (5%) as seeds into the pristine FAPbI3 system. During the initial crystalization period, the typical hexagonal α-FAPbI3 crystals (containing α-CsPbBr3 seeds) are directly formed even at ambient temperature, as observed by laser scanning confocal microscopy. It indicates that these seeds can promote the formation and stabilization of α-FAPbI3 below the thermodynamic phase-transition temperature. After annealing not beyond 100 °C, CsPbBr3 seeds homogeneously diffused into the entire perovskite layer via an ions exchange process. This work demonstrates an efficiency of 22% with hysteresis-free inverted perovskite solar cells (PSCs), one of the highest performances for MA-free inverted PSCs. Despite absented passivation processes, open-circuit voltage is improved by 100 millivolts compared to the control devices with the same stoichiometry, and long-term operational stability retained 92% under continuous full sun illumination. Going MA-free and low-temperature processes are a new insight for compatibility with tandems or flexible PSCs.
Collapse
Affiliation(s)
- Pengjiu Wang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xu Chen
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tianyu Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Cheng-Hung Hou
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yue Tian
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xuehui Xu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zeng Chen
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zheda Road, Hangzhou, 310027, China
| | - Peng Ran
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tingming Jiang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chun-Hsiao Kuan
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Buyi Yan
- Hangzhou Microquanta Semiconductor Inc., Hangzhou, 311121, China
| | - Jizhong Yao
- Hangzhou Microquanta Semiconductor Inc., Hangzhou, 311121, China
| | - Jing-Jong Shyue
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Jianbei Qiu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650000, China
| | - Yang Michael Yang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Intelligent Optics & Photonics Research Center, Jiaxing Institute of Zhejiang University, Jiaxing, 314000, China
| |
Collapse
|
38
|
Jayanthi K, Spanopoulos I, Zibouche N, Voskanyan AA, Vasileiadou ES, Islam MS, Navrotsky A, Kanatzidis MG. Entropy Stabilization Effects and Ion Migration in 3D "Hollow" Halide Perovskites. J Am Chem Soc 2022; 144:8223-8230. [PMID: 35482958 DOI: 10.1021/jacs.2c01383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A recently discovered new family of 3D halide perovskites with the general formula (A)1-x(en)x(Pb)1-0.7x(X)3-0.4x (A = MA, FA; X = Br, I; MA = methylammonium, FA = formamidinium, en = ethylenediammonium) is referred to as "hollow" perovskites owing to extensive Pb and X vacancies created on incorporation of en cations in the 3D network. The "hollow" motif allows fine tuning of optical, electronic, and transport properties and bestowing good environmental stability proportional to en loading. To shed light on the origin of the apparent stability of these materials, we performed detailed thermochemical studies, using room temperature solution calorimetry combined with density functional theory simulations on three different families of "hollow" perovskites namely en/FAPbI3, en/MAPbI3, and en/FAPbBr3. We found that the bromide perovskites are more energetically stable compared to iodide perovskites in the FA-based hollow compounds, as shown by the measured enthalpies of formation and the calculated formation energies. The least stable FAPbI3 gains stability on incorporation of the en cation, whereas FAPbBr3 becomes less stable with en loading. This behavior is attributed to the difference in the 3D cage size in the bromide and iodide perovskites. Configurational entropy, which arises from randomly distributed cation and anion vacancies, plays a significant role in stabilizing these "hollow" perovskite structures despite small differences in their formation enthalpies. With the increased vacancy defect population, we have also examined halide ion migration in the FA-based "hollow" perovskites and found that the migration energy barriers become smaller with the increasing en content.
Collapse
Affiliation(s)
- K Jayanthi
- School of Molecular Sciences and Navrotsky Eyring Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
| | - Ioannis Spanopoulos
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | | | - Albert A Voskanyan
- School of Molecular Sciences and Navrotsky Eyring Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - M Saiful Islam
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K..,Department of Materials, University of Oxford, Oxford OX1 3PH, U.K
| | - Alexandra Navrotsky
- School of Molecular Sciences and Navrotsky Eyring Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
39
|
Ma Y, Zhang L, Xu Y, Hu R, Liu W, Du M, Chu L, Zhang J, Li X, Xia R, Huang W. Internal Interactions between Mixed Bulky Organic Cations on Passivating Defects in Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11200-11210. [PMID: 35192342 DOI: 10.1021/acsami.1c18520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In perovskite solar cells (PSCs), bulky organic cation halide salt additions play a significant role in suppressing nonradiative recombination by passivating intrinsic defects in perovskites. Herein, a passivation treatment is developed by applying mixed bulky cations [guanidinium cation (GA+) and phenylethylammonium cations (PEA+)] as the additive for perovskite thin films. The internal interactions between the two bulky cations could result in lower carrier trap-state densities, a sharper Urbach tail, and better carrier transport in perovskite films in comparison with a control film. As a result, in comparison to the control device, which has a power conversion efficiency (PCE) of 18.92%, the mixed-cation-based device exhibits a dramatic enhancement of PCE of 20.64%. Importantly, after 720 h of storage in an ambient atmosphere with a relative humidity (RH) of 60-80% at room temperature, the mixed-cation-based device retains 62.7% of its original performance, whereas the control devices decay to less than 40% of their original performance.
Collapse
Affiliation(s)
- Yuhui Ma
- School of Materials Science and Engineering, Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Ling Zhang
- School of Materials Science and Engineering, Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yao Xu
- School of Materials Science and Engineering, Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Ruiyuan Hu
- School of Science, New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Wei Liu
- School of Science, New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Ming Du
- School of Materials Science and Engineering, Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Liang Chu
- School of Science, New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jian Zhang
- School of Science, New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xing'ao Li
- School of Materials Science and Engineering, Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- School of Science, New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Ruidong Xia
- School of Materials Science and Engineering, Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Wei Huang
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, Shaanxi, China
| |
Collapse
|
40
|
Sun Q, Zong B, Meng X, Shen B, Li X, Kang B, Silva SRP. Interface Regulation by an Ultrathin Wide-Bandgap Halide for Stable and Efficient Inverted Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6702-6713. [PMID: 35077142 DOI: 10.1021/acsami.1c22020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The nonradiative recombination between hole transport layers (HTLs) and perovskites generally leads to obvious energy losses. The trap states at the HTL/perovskite interface directly influence the improvement of the power conversion efficiency (PCE) and stability. Interface regulation is a simple and commonly used method to decrease nonradiative recombination in inverted perovskite solar cells (PSCs). Here, a wide-bandgap halide was used to regulate the PTAA/MAPbI3 interface, in which n-hexyltrimethylammonium bromide (HTAB) was used to modify the upper surface of poly[bis(4-phenyl)-(2,4,6-trimethylphenyl)amine] (PTAA). Upon introduction of the HTAB layer, the contact between PTAA and MAPbI3 is strengthened, the defect state density in PSCs is reduced, the MAPbI3 crystallinity is improved, and the nonradiative recombination loss is suppressed. The device with HTAB delivers the highest PCE of 21.01% with negligible hysteresis, which is significantly higher than that of the control device (17.71%), and it maintains approximately 87% of its initial PCE for 1000 h without encapsulation in air with a relative humidity of 25 ± 5%. This work reveals an effective way of using a wide-bandgap halide to regulate the PTAA/MAPbI3 interface to simultaneously promote the PCE and stability of PSCs.
Collapse
Affiliation(s)
- Qing Sun
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Beibei Zong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xiangxin Meng
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Bo Shen
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xu Li
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Bonan Kang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - S Ravi P Silva
- Nanoelectronics Centre, Advanced Technology Institute, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| |
Collapse
|
41
|
Zarabinia N, Lucarelli G, Rasuli R, De Rossi F, Taheri B, Javanbakht H, Brunetti F, Brown TM. Simple and effective deposition method for solar cell perovskite films using a sheet of paper. iScience 2022; 25:103712. [PMID: 35098098 PMCID: PMC8783128 DOI: 10.1016/j.isci.2021.103712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 12/03/2021] [Accepted: 12/28/2021] [Indexed: 11/28/2022] Open
Abstract
Most laboratories employ spin coating with application of antisolvent to achieve high efficiency in perovskite solar cells. However, this method wastes a lot of material and is not industrially usable. Conversely, large area coating techniques such as blade and slot-die require high precision engineering both for deposition of ink and for gas or for electromagnetic drying procedures that replace, out of necessity, anti-solvent engineering. Here we present a simple and effective method to deposit uniform high-quality perovskite films with a piece of paper as an applicator at low temperatures. We fabricated solar cells on flexible PET substrates manually with 11% power conversion efficiency. Deposition after soaking the sheet of paper in a green antisolvent improved the efficiency by 82% compared to when using dry paper as applicator. This new technique enables manual film deposition without any expensive equipment and has the potential to be fully automated for future optimization and exploitation. New method for depositing perovskite films with a piece of paper is demonstrated Soaking paper applicator in antisolvent boosts efficiency of solar cells by 82% Paper possesses right porosity and smoothness for deposition of high quality films Flexible perovskite solar cell efficiency made manually via paper applicator is 11%
Collapse
Affiliation(s)
- Nazila Zarabinia
- Department of Physics, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Giulia Lucarelli
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Reza Rasuli
- Department of Physics, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Francesca De Rossi
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Babak Taheri
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Hamed Javanbakht
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Brunetti
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Thomas M. Brown
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
- Corresponding author
| |
Collapse
|
42
|
Zhang W, Ono LK, Xue J, Qi Y. Atomic Level Insights into Metal Halide Perovskite Materials by Scanning Tunneling Microscopy and Spectroscopy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wei Zhang
- Energy Materials and Surface Sciences Unit (EMSSU) Okinawa Institute of Science and Technology Graduate University (OIST) 1919-1 Tancha, Onna-son Kunigami-gun Okinawa 904-0495 Japan
| | - Luis K. Ono
- Energy Materials and Surface Sciences Unit (EMSSU) Okinawa Institute of Science and Technology Graduate University (OIST) 1919-1 Tancha, Onna-son Kunigami-gun Okinawa 904-0495 Japan
| | - Jiamin Xue
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Yabing Qi
- Energy Materials and Surface Sciences Unit (EMSSU) Okinawa Institute of Science and Technology Graduate University (OIST) 1919-1 Tancha, Onna-son Kunigami-gun Okinawa 904-0495 Japan
| |
Collapse
|
43
|
Ai B, Fan Z, Wong ZJ. Plasmonic-perovskite solar cells, light emitters, and sensors. MICROSYSTEMS & NANOENGINEERING 2022; 8:5. [PMID: 35070349 PMCID: PMC8752666 DOI: 10.1038/s41378-021-00334-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
The field of plasmonics explores the interaction between light and metallic micro/nanostructures and films. The collective oscillation of free electrons on metallic surfaces enables subwavelength optical confinement and enhanced light-matter interactions. In optoelectronics, perovskite materials are particularly attractive due to their excellent absorption, emission, and carrier transport properties, which lead to the improved performance of solar cells, light-emitting diodes (LEDs), lasers, photodetectors, and sensors. When perovskite materials are coupled with plasmonic structures, the device performance significantly improves owing to strong near-field and far-field optical enhancements, as well as the plasmoelectric effect. Here, we review recent theoretical and experimental works on plasmonic perovskite solar cells, light emitters, and sensors. The underlying physical mechanisms, design routes, device performances, and optimization strategies are summarized. This review also lays out challenges and future directions for the plasmonic perovskite research field toward next-generation optoelectronic technologies.
Collapse
Affiliation(s)
- Bin Ai
- Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843 USA
- School of Microelectronics and Communication Engineering, Chongqing University, 400044 Chongqing, P.R. China
- Chongqing Key Laboratory of Bioperception & Intelligent Information Processing, 400044 Chongqing, P.R. China
| | - Ziwei Fan
- Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Zi Jing Wong
- Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843 USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
44
|
Liu Y, Ono LK, Tong G, Bu T, Zhang H, Ding C, Zhang W, Qi Y. Spectral Stable Blue-Light-Emitting Diodes via Asymmetric Organic Diamine Based Dion-Jacobson Perovskites. J Am Chem Soc 2021; 143:19711-19718. [PMID: 34792336 PMCID: PMC8961879 DOI: 10.1021/jacs.1c07757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The spectral instability issue is
a challenge in blue perovskite
light-emitting diodes (PeLEDs). Dion–Jacobson (DJ) phase perovskites
are promising alternatives to achieve high-quality blue PeLEDs. However,
the current exploration of DJ phase perovskites is focused on symmetric
divalent cations, and the corresponding efficiency of blue PeLEDs
is still inferior to that of green and red ones. In this work, we
report a new type of DJ phase CsPb(Br/Cl)3 perovskite via
introduction of an asymmetric molecular configuration as the organic
spacer cation in perovskites. The primary and tertiary ammonium groups
on the asymmetric cations bridge with the lead halide octahedra forming
the DJ phase structures. Stable photoluminescence spectra were demonstrated
in perovskite films owing to the suppressed halide segregation. Meanwhile,
the radiative recombination efficiency of charges is improved significantly
as a result of the confinement effects and passivation of charge traps.
Finally, we achieved an external quantum efficiency of 2.65% in blue
PeLEDs with stable spectra emission under applied bias voltages. To
our best knowledge, this is the first report of asymmetric cations
used in PeLEDs, which provides a facile solution to the halide segregation
issue in PeLEDs.
Collapse
Affiliation(s)
- Yuqiang Liu
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan.,College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Luis K Ono
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Guoqing Tong
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Tongle Bu
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Hui Zhang
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Chenfeng Ding
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Wei Zhang
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Yabing Qi
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| |
Collapse
|
45
|
Investigation of Cation Exchange Behaviors of FA xMA 1-xPbI 3 Films Using Dynamic Spin-Coating. MATERIALS 2021; 14:ma14216422. [PMID: 34771948 PMCID: PMC8585367 DOI: 10.3390/ma14216422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022]
Abstract
In this study, we fabricated and characterized uniform multi-cation perovskite FAxMA1−xPbI3 films. We used the dynamic spin-coating method to control the cation ratio of the film by gradually increasing the FA+, which replaced the MA+ in the films. When the FA+ concentration was lower than xFA ~0.415 in the films, the stability of the multi-cation perovskite improved. Above this concentration, the film exhibited δ-phase FAPbI3 in the FAxMA1−xPbI3 films. The formation of δ-phase FAPbI3 disturbed the homogeneity of the photoluminescence spatial distribution and suppressed the absorption spectral bandwidth with the increasing bandgap. The precise control of the cation ratio of multi-cation perovskite films is necessary to optimize the energy-harvesting performance.
Collapse
|
46
|
Zhang W, Ono LK, Xue J, Qi Y. Atomic Level Insights into Metal Halide Perovskite Materials by Scanning Tunneling Microscopy and Spectroscopy. Angew Chem Int Ed Engl 2021; 61:e202112352. [PMID: 34647403 DOI: 10.1002/anie.202112352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 11/07/2022]
Abstract
Metal halide perovskite materials (MHPMs) have attracted significant attention because of their superior optoelectronic properties and versatile applications. The power conversion efficiency of MHPM solar cells (PSCs) has skyrocketed to 25.5 %. Although the performance of PSCs is already competitive, several important challenges still need to be solved to realize commercial applications. A thorough understanding of surface atomic structures and structure-property relationships is at the heart of these remaining issues. Scanning tunneling microscopy (STM) and spectroscopy (STS) can be used to characterize the surface properties of MHPMs, which can offer crucial insights into MHPMs at the atomic scale. This Review summarizes recent progress in STM and STS studies on MHPMs, with a focus on the surface properties. We provide understanding from the comparative perspective of several different MHPMs. We also highlight a series of novel phenomena observed by STM and STS. Finally, we outline a few research topics of primary importance for future studies.
Collapse
Affiliation(s)
- Wei Zhang
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Luis K Ono
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Jiamin Xue
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yabing Qi
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| |
Collapse
|
47
|
Design Principles of Large Cation Incorporation in Halide Perovskites. Molecules 2021; 26:molecules26206184. [PMID: 34684765 PMCID: PMC8539499 DOI: 10.3390/molecules26206184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/02/2022] Open
Abstract
Perovskites have stood out as excellent photoactive materials with high efficiencies and stabilities, achieved via cation mixing techniques. Overcoming challenges to the stabilization of Perovskite solar cells calls for the development of design principles of large cation incorporation in halide perovskite to accelerate the discovery of optimal stable compositions. Large fluorinated organic cations incorporation is an attractive method for enhancing the intrinsic stability of halide perovskites due to their high dipole moment and moisture-resistant nature. However, a fluorinated cation has a larger ionic size than its non-fluorinated counterpart, falling within the upper boundary of the mixed-cation incorporation. Here, we report on the intrinsic stability of mixed Methylammonium (MA) lead halides at different concentrations of large cation incorporation, namely, ehtylammonium (EA; [CH3CH2NH3]+) and 2-fluoroethylammonium (FEA; [CH2FCH2NH3]+). Density functional theory (DFT) calculations of the enthalpy of the mixing and analysis of the perovskite structural features enable us to narrow down the compositional search domain for EA and FEA cations around concentrations that preserve the perovskite structure while pointing towards the maximal stability. This work paves the way to developing design principles of a large cation mixture guided by data analysis of DFT data. Finally, we present the automated search of the minimum enthalpy of mixing by implementing Bayesian optimization over the compositional search domain. We introduce and validate an automated workflow designed to accelerate the compositional search, enabling researchers to cut down the computational expense and bias to search for optimal compositions.
Collapse
|
48
|
Liu Y, Li Y, Xu W, Chen X, Wang J, Yan S, Bao J, Qin T. Preparation of Micron-sized Methylamine-PbCl 3 perovskite grains by controlling phase transition engineering for selective Ultraviolet-harvesting transparent photovoltaics. J Colloid Interface Sci 2021; 607:1083-1090. [PMID: 34583030 DOI: 10.1016/j.jcis.2021.09.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022]
Abstract
Selective ultraviolet-harvesting transparent perovskite solar cells (T-PSCs) have attracted great interest because of their high transmittance and unique photovoltaic properties, especially in the fields of smart windows for power generation and building glass. However, owing to the unsatisfactory solubility of PbCl2 in most conventional solvents, preparing transparent methylammonium lead chloride (MAPbCl3) films with high quality and sufficient thickness by conventional methods poses a substantial challenge for their application deployment in T-PSCs. In this work, two novel strategies based on an ion-exchange procedure for controlling phase transition engineering (CPTE) are proposed. For CPTE-2, an optimized cubic phase MAPbCl3 film with a large grain size and high full coverage is prepared by transforming the tetragonal phase MAPbI3 precursor into the cubic phase MAPbCl3. Establishing relevant models based on crystal parameters investigates the formation mechanism of this high-quality MAPbCl3 film. Accordingly, the resultant T-PSCs exhibit remarkable film quality and micron-sized grains and reach an optimum efficiency of 0.33% (JSC = 0.66 mA cm-2, VOC = 1.14 V, and FF = 43.72%).
Collapse
Affiliation(s)
- You Liu
- Institute of Advanced Materials (IAM), Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, China
| | - Yufan Li
- Institute of Advanced Materials (IAM), Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, China
| | - Wenxin Xu
- Institute of Advanced Materials (IAM), Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, China
| | - Xianglin Chen
- Institute of Advanced Materials (IAM), Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, China
| | - Jungan Wang
- Institute of Advanced Materials (IAM), Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, China
| | - Suhao Yan
- Institute of Advanced Materials (IAM), Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, China
| | - Jusheng Bao
- Institute of Advanced Materials (IAM), Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, China
| | - Tianshi Qin
- Institute of Advanced Materials (IAM), Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, China.
| |
Collapse
|
49
|
Zhang C, Kong W, Wu T, Lin X, Wu Y, Nakazaki J, Segawa H, Yang X, Zhang Y, Wang Y, Han L. Reduction of Nonradiative Loss in Inverted Perovskite Solar Cells by Donor-π-Acceptor Dipoles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44321-44328. [PMID: 34494825 DOI: 10.1021/acsami.1c11683] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inverted perovskite solar cells (IPSCs) attract growing interest because of their simple configuration, reliable stability, and compatibility with tandem applications. However, the power conversion efficiency (PCE) of IPSCs still lags behind their regular counterparts, mainly due to the more serious nonradiative loss. Here, we design three donor-π-acceptor (D-π-A) dipoles with various dipole moments to introduce extra electric fields at the interface of perovskites and electron transport materials via the binding between the carboxylate end group and under-coordinated divalent Pb. The chemical binding reduces the recombination centers, while the superposition of the built-in electric field facilitates the electron collection and the hole blocking. As a result, the nonradiative loss is diminished as the dipole moments of D-π-A dipoles increase, which contributes to a PCE of 21.4% with enhancement in both the open-circuit voltage and fill factor. The stability for an unencapsulated device is also improved due to the hydrophobic property of D-π-A dipoles.
Collapse
Affiliation(s)
- Caiyi Zhang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Weiyu Kong
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Tianhao Wu
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Xuesong Lin
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Yongzhen Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jotaro Nakazaki
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | - Hiroshi Segawa
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | - Xudong Yang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Yiqiang Zhang
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yanbo Wang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Liyuan Han
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
- Special Division of Environmental and Energy Science, Komaba Organization for Educational Excellence (KOMEX), College of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
50
|
Thampy S, Xu W, Hsu JWP. Metal Oxide-Induced Instability and Its Mitigation in Halide Perovskite Solar Cells. J Phys Chem Lett 2021; 12:8495-8506. [PMID: 34450020 DOI: 10.1021/acs.jpclett.1c02371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Halide perovskite solar cells (PSCs) have emerged as a promising photovoltaic technology for sustainable energy solutions because of their impressive power conversion efficiency and a path to be manufactured by low-cost, high-throughput methods. To reach PSCs' full potential for practical implementation, it is crucial to solve the issues related to long-term operational stability. Given that PSCs consist of many layers of dissimilar materials which form multiple internal interfaces, it is prudent to examine whether there exist interfacial interactions, most importantly between transport layers and perovskite absorbers, that can trigger instability and affect device performance. In this Perspective, we bring to the attention of the PSC research community the lesser-known interfacial degradation of halide perovskites promoted by contact with metal oxide transport layers and highlight the deleterious effects on the PSCs' performance and stability. We also discuss various mitigation strategies that have shown promise for achieving high-performing and stable PSCs.
Collapse
Affiliation(s)
- Sampreetha Thampy
- Department of Materials Science & Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Weijie Xu
- Department of Materials Science & Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Julia W P Hsu
- Department of Materials Science & Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|