1
|
Teng CP, Tan MY, Toh JPW, Lim QF, Wang X, Ponsford D, Lin EMJ, Thitsartarn W, Tee SY. Advances in Cellulose-Based Composites for Energy Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103856. [PMID: 37241483 DOI: 10.3390/ma16103856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
The various forms of cellulose-based materials possess high mechanical and thermal stabilities, as well as three-dimensional open network structures with high aspect ratios capable of incorporating other materials to produce composites for a wide range of applications. Being the most prevalent natural biopolymer on the Earth, cellulose has been used as a renewable replacement for many plastic and metal substrates, in order to diminish pollutant residues in the environment. As a result, the design and development of green technological applications of cellulose and its derivatives has become a key principle of ecological sustainability. Recently, cellulose-based mesoporous structures, flexible thin films, fibers, and three-dimensional networks have been developed for use as substrates in which conductive materials can be loaded for a wide range of energy conversion and energy conservation applications. The present article provides an overview of the recent advancements in the preparation of cellulose-based composites synthesized by combining metal/semiconductor nanoparticles, organic polymers, and metal-organic frameworks with cellulose. To begin, a brief review of cellulosic materials is given, with emphasis on their properties and processing methods. Further sections focus on the integration of cellulose-based flexible substrates or three-dimensional structures into energy conversion devices, such as photovoltaic solar cells, triboelectric generators, piezoelectric generators, thermoelectric generators, as well as sensors. The review also highlights the uses of cellulose-based composites in the separators, electrolytes, binders, and electrodes of energy conservation devices such as lithium-ion batteries. Moreover, the use of cellulose-based electrodes in water splitting for hydrogen generation is discussed. In the final section, we propose the underlying challenges and outlook for the field of cellulose-based composite materials.
Collapse
Affiliation(s)
- Choon Peng Teng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Ming Yan Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Jessica Pei Wen Toh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Qi Feng Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Xiaobai Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Daniel Ponsford
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Department of Chemistry, University College London, London WC1H 0AJ, UK
- Institute for Materials Discovery, University College London, London WC1E 7JE, UK
| | - Esther Marie JieRong Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Si Yin Tee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| |
Collapse
|
2
|
Choi J, Zabihi O, Varley RJ, Fox B, Naebe M. High Performance Carbon Fiber Structural Batteries Using Cellulose Nanocrystal Reinforced Polymer Electrolyte. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45320-45332. [PMID: 36178739 DOI: 10.1021/acsami.2c11034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, structural batteries have received great attention for future automotive application in which a load-bearing car panel is used as an energy storage. However, based on the current advances, achieving both high ionic conductivity and mechanical performance has remained a challenge. To address this challenge, this study introduces a cellulose nanocrystal (CNC) reinforced structural battery electrolyte (CSBE) consisting of CNC, triethylene glycol dimethyl ether (TriG) electrolyte containing a quasi-solid additive, e.g., cyclohexanedimethanol (CHDM), in a vinyl ester polymer. This green and renewable CSBE electrolyte system was in situ polymerized via reaction induced phase transition to form a high performance multidimensional channel electrolyte to be used in structural carbon fiber-based battery fabrication. The effect of various concentrations of CNC on the electrolyte ionic conductivity and mechanical properties was obtained in their relation to intermolecular interactions, interpreted by FTIR, Raman, Li NMR results. Compared to the neat SBE system, the optimized CSBE nanocomposite containing 2 wt % CNC shows a remarkable ionic conductivity of 1.1 × 10-3 S cm-1 at 30 °C, which reveals ∼300% improvement, alongside higher thermal stability. Based on the FTIR, Raman, Li NMR results, the content of CNC in the CSBE structure plays a crucial role not only in the formation of cellulose network skeleton but also in physical interaction with polymer matrix, providing an efficient Li+ pathway through the electrolyte matrix. The carbon fiber composite was fabricated by 2 wt % CNC reinforced SBE electrolyte to evaluate as a battery half-cell. The results demonstrated that by addition of 2 wt % CNC into SBE system, 7.6% and 33.9% improvements were achieved in specific capacity at 0.33 C and tensile strength, respectively, implying outstanding potential of ion conduction and mechanical load transfer between the carbon fibers and the electrolyte.
Collapse
Affiliation(s)
- Jaehoon Choi
- Carbon Nexus, Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Victoria3216, Australia
| | - Omid Zabihi
- Carbon Nexus, Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Victoria3216, Australia
| | - Russell J Varley
- Carbon Nexus, Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Victoria3216, Australia
| | - Bronwyn Fox
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria3122, Australia
| | - Minoo Naebe
- Carbon Nexus, Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Victoria3216, Australia
| |
Collapse
|
3
|
Huang Y, Wang Y, Fu Y. All-cellulose gel electrolyte with black phosphorus based lithium ion conductors toward advanced lithium-sulfurized polyacrylonitrile batteries. Carbohydr Polym 2022; 296:119950. [DOI: 10.1016/j.carbpol.2022.119950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
|
4
|
Wang J, Bian J, Pu B, Wang Y, Deng M. Facile fabrication of high performance zwitterionic P(
NVP
‐co
‐SPE
)/polyvinyl alcohol hydrogel polyelectrolyte for capacitor. J Appl Polym Sci 2022. [DOI: 10.1002/app.52905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jin Wang
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology Hefei China
| | - Jingjing Bian
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology Hefei China
| | - Bin Pu
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology Hefei China
| | - Yuanlu Wang
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology Hefei China
| | - Mengde Deng
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology Hefei China
| |
Collapse
|
5
|
Zunita M, Hastuti R, Alamsyah A, Kadja GT, Khoiruddin K, Kurnia KA, Yuliarto B, Wenten I. Polyionic liquid membrane: Recent development and perspective. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Zhou L, Zhao H, Liang K, Chen J, Li J, Huang X, Qi Y, Ren Y. Novel PETEA-based grafted gel polymer electrolyte with excellent high-rate cycling performance for LiNi0.5Co0.2Ni0.2Mn0.3O2 lithium-ion batteries. J Colloid Interface Sci 2022; 613:606-615. [DOI: 10.1016/j.jcis.2021.12.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
|
7
|
Chen Y, Zhang L, Lin L, You H. A Composite Porous Membrane Based on Derived Cellulose for Transient Gel Electrolyte in Transient Lithium-Ion Batteries. MATERIALS 2022; 15:ma15041584. [PMID: 35208124 PMCID: PMC8877982 DOI: 10.3390/ma15041584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/10/2022]
Abstract
The transient lithium-ion battery is a potential candidate as an integrated energy storage unit in transient electronics. In this study, a mechanically robust, transient, and high-performance composite porous membrane for a transient gel electrolyte in transient lithium-ion batteries is studied and reported. By introducing a unique and controllable circular skeleton of methylcellulose to the carboxymethyl cellulose-based membrane, the elastic modulus and tensile strength of the composite porous membrane (CPM) are greatly improved, while maintaining its micropores structure and fast transiency. Results show that CPM with 5% methylcellulose has the best overall performance. The elastic modulus, tensile strength, porosity, and contact angle of the optimized CPM are 335.18 MPa, 9.73 MPa, 62.26%, and 21.22°, respectively. The water-triggered transient time for CPM is less than 20 min. The ionic conductivity and bulk resistance of the CPM gel electrolyte are 0.54 mS cm−1 and 4.45 Ω, respectively. The obtained results suggest that this transient high-performance CPM has great potential applications as a transient power source in transient electronics.
Collapse
Affiliation(s)
| | | | - Lin Lin
- Correspondence: (L.L.); (H.Y.)
| | - Hui You
- Correspondence: (L.L.); (H.Y.)
| |
Collapse
|
8
|
Crosslinked polyimide asymmetric membranes as thermally-stable separators with self-protective layers and inhibition of lithium dendrite growth for lithium metal battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119816] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Wei J, Yue H, Shi Z, Li Z, Li X, Yin Y, Yang S. In Situ Gel Polymer Electrolyte with Inhibited Lithium Dendrite Growth and Enhanced Interfacial Stability for Lithium-Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32486-32494. [PMID: 34227378 DOI: 10.1021/acsami.1c07032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The practical application of lithium-metal anodes in high-energy-density rechargeable lithium batteries is hindered by the uncontrolled growth of lithium dendrites and limited cycle life. An ether-based gel polymer electrolyte (GPE-H) is developed through in situ polymerization method, which has close contact with the electrode interface. Based on DFT calculations, it was confirmed that the cationic groups produced by polar solvent tris(1,1,1,3,3,3-hexafluoroisopropyl) (HFiP) initiate the ring-opening polymerization of DOL in the battery. As a result, GPE-H achieves considerable ionic conductivity (1.6 × 10-3 S cm-1) at ambient temperature, high lithium-ion transference number (tLi+ > 0.6) and an electrochemical stability window as high as 4.5 V. GPE-H can achieve up to 800 h uniform lithium plating/stripping at a current density of 1.65 mA cm-2 in Li symmetrical batteries. Li-S and LiFePO4 batteries using this GPE-H have long cycle performances at ambient temperature and high Coulomb efficiency (CE > 99.2%). From the above, in situ polymerized GPE-H electrolytes are promising candidates for high-energy-density rechargeable lithium batteries.
Collapse
Affiliation(s)
- Junqiang Wei
- National & Local Engineering Laboratory for Motive Power and Key Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hongyun Yue
- National & Local Engineering Laboratory for Motive Power and Key Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhenpu Shi
- National & Local Engineering Laboratory for Motive Power and Key Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhaoyang Li
- National & Local Engineering Laboratory for Motive Power and Key Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiangnan Li
- National & Local Engineering Laboratory for Motive Power and Key Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yanhong Yin
- National & Local Engineering Laboratory for Motive Power and Key Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shuting Yang
- National & Local Engineering Laboratory for Motive Power and Key Materials, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
10
|
Yu F, Zhao L, Zhang H, Sun Z, Li Y, Hu Q, Chen Y. Cathode/gel polymer electrolyte integration design based on continuous composition and preparation technique for high performance lithium ion batteries. RSC Adv 2021; 11:3854-3862. [PMID: 35424375 PMCID: PMC8694142 DOI: 10.1039/d0ra10743c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 11/21/2022] Open
Abstract
Gel polymer electrolytes (GPEs) combine the high ionic conductivity of liquid electrolytes and good safety assurance of solid electrolytes. However, the poor interfacial contact between electrode materials and electrolyte is still a big obstacle to the high performance of solid-state batteries. Herein, an integrated cathode/GPE based on continuous composition and preparation technic is obtained by simple UV curing. The improved interfacial contact between cathode and GPE helps to facilitate the fast ions transfer at the interface. Compared with cells assembled with separated cathode and GPE, the cells with integrated cathode-GPE showed much lower interfacial impedance, lower potential polarization and more stable cycling property. This work provided a low-cost natural material gelatin and a simple UV irradiation method to prepare an integrated cathode and gel polymer electrolyte for solid-state lithium batteries. The capacity retention of the cells assembled from integrated structure was 91.4% which was much higher than that of the non-integrated cells (80.9%) after 200 cycles.
Collapse
Affiliation(s)
- Feng Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Materials Science and Engineering, Hainan University Haikou 570228 PR China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University Tianjin 300071 PR China
| | - Lingzhu Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Materials Science and Engineering, Hainan University Haikou 570228 PR China
| | - Hongbing Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Materials Science and Engineering, Hainan University Haikou 570228 PR China
| | - Zhipeng Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Materials Science and Engineering, Hainan University Haikou 570228 PR China
| | - Yuli Li
- Institution of Plastic Surgery, Weifang Medical University Weifang 261042 P. R. China
| | - Qing Hu
- School of Material Science and Engineering, Jingdezhen Ceramic Institute Jingdezhen 333001 P. R. China
| | - Yong Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Materials Science and Engineering, Hainan University Haikou 570228 PR China
| |
Collapse
|
11
|
Liu M, Wang Y, Li M, Li G, Li B, Zhang S, Ming H, Qiu J, Chen J, Zhao P. A new composite gel polymer electrolyte based on matrix of PEGDA with high ionic conductivity for lithium-ion batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136622] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Liedel C. Sustainable Battery Materials from Biomass. CHEMSUSCHEM 2020; 13:2110-2141. [PMID: 32212246 PMCID: PMC7318311 DOI: 10.1002/cssc.201903577] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/17/2020] [Indexed: 05/22/2023]
Abstract
Sustainable sources of energy have been identified as a possible way out of today's oil dependency and are being rapidly developed. In contrast, storage of energy to a large extent still relies on heavy metals in batteries. Especially when built from biomass-derived organics, organic batteries are promising alternatives and pave the way towards truly sustainable energy storage. First described in 2008, research on biomass-derived electrodes has been taken up by a multitude of researchers worldwide. Nowadays, in principle, electrodes in batteries could be composed of all kinds of carbonized and noncarbonized biomass: On one hand, all kinds of (waste) biomass may be carbonized and used in anodes of lithium- or sodium-ion batteries, cathodes in metal-sulfur or metal-oxygen batteries, or as conductive additives. On the other hand, a plethora of biomolecules, such as quinones, flavins, or carboxylates, contain redox-active groups that can be used as redox-active components in electrodes with very little chemical modification. Biomass-based binders can replace toxic halogenated commercial binders to enable a truly sustainable future of energy storage devices. Besides the electrodes, electrolytes and separators may also be synthesized from biomass. In this Review, recent research progress in this rapidly emerging field is summarized with a focus on potentially fully biowaste-derived batteries.
Collapse
Affiliation(s)
- Clemens Liedel
- Department Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
13
|
Oh S, Nguyen VH, Bui VT, Nam S, Mahato M, Oh IK. Intertwined Nanosponge Solid-State Polymer Electrolyte for Rollable and Foldable Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11657-11668. [PMID: 32109039 DOI: 10.1021/acsami.9b22127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Herein, we report a straigthforward procedure to prepare an excellent intertwined nanosponge solid-state polymer electrolyte (INSPE) for highly bendable, rollable, and foldable lithium-ion batteries (LIBs). The mechanically reliable and electrochemically superior INSPE is conjugated with intertwined nanosponge (IN) poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) and ion-conducting polymer electrolyte (PE) containing poly(ethylene glycol) diacrylate (PEGDA), succinonitrile (SCN) plasticizer, and lithium bis(trifluoromethanesilfonyl)imide (LiTFSI). The conjugated INSPE has both high strength with great flexibility (tensile strength of 2.1 MPa, elongation of 36.7%), and excellent ionic conductivity (1.04 × 10-3 S·cm-1, similar to the values of liquid electrolytes). As a result of such special combination, the as-prepared INSPE retains almost 100% of its ionic conductivity when subjected to many types of severe mechanical deformations. Therefore, the INSPE is successfully applied to bendable, rollable, and foldable LIBs that show excellent energy storage performance despite the intense mechanical deformations.
Collapse
Affiliation(s)
- Saewoong Oh
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Van Hiep Nguyen
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Van-Tien Bui
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sanghee Nam
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Manmatha Mahato
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Kwon Oh
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
14
|
Zhao L, Fu J, Du Z, Jia X, Qu Y, Yu F, Du J, Chen Y. High-strength and flexible cellulose/PEG based gel polymer electrolyte with high performance for lithium ion batteries. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117428] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Internal in situ gel polymer electrolytes for high-performance quasi-solid-state lithium ion batteries. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04382-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Lv P, Li Y, Wu Y, Liu G, Liu H, Li S, Tang C, Mei J, Li Y. Robust Succinonitrile-Based Gel Polymer Electrolyte for Lithium-Ion Batteries Withstanding Mechanical Folding and High Temperature. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25384-25392. [PMID: 29984993 DOI: 10.1021/acsami.8b06800] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fabrication of a gel polymer electrolyte containing succinonitrile (GPE-SN) with high mechanical strength is quite challenging because the SN electrolyte always suppresses the formation of polymer networks during in situ polymerization. In this work, a mechanically robust GPE-SN was successfully prepared by using a solution immersion method. During fabrication, the paste-like SN electrolyte was transformed into a liquid SN electrolyte with low viscosity by heating at 50 °C and then infiltrated into the UV-cured highly cross-linked polyurethane acrylate (PUA) skeleton. The resulted GPE-SN film exhibits superior tensile strength (6.5 MPa) compared to the one (0.5 MPa) prepared by in situ polymerization (GPE-SN-IN). The high mechanical strength of the GPE-SN-IM film enables the LiCoO2/Li4Ti5O12 film battery to withstand 100-cycle folding without electrolyte damage and capacity loss. Besides, the GPE-SN presents a high ionic conductivity (1.63 × 10-3 S·cm-1 at 25 °C), which is comparable to GPE with a commercial liquid electrolyte (GPE-LE). Because of good thermal stability of the GPE-SN, the LiCoO2/Li cell with this electrolyte shows better charge-discharge cycling stability than that with GPE-LE at high temperature (55 °C). Thus, the GPE-SN prepared by our method could be a promising polymer electrolyte offering better safety and reliability for lithium-ion batteries.
Collapse
Affiliation(s)
- Pengfei Lv
- College of Material Science and Engineering , Southwest Petroleum University , Chengdu 610500 , China
- Chengdu Green Energy and Green Manufacturing Technology R&D Center , China Academy of Engineering Physics , Chengdu 610200 , China
| | - Yongsheng Li
- Chengdu Green Energy and Green Manufacturing Technology R&D Center , China Academy of Engineering Physics , Chengdu 610200 , China
| | - Yuhan Wu
- Chengdu Green Energy and Green Manufacturing Technology R&D Center , China Academy of Engineering Physics , Chengdu 610200 , China
| | - Guobiao Liu
- Chengdu Green Energy and Green Manufacturing Technology R&D Center , China Academy of Engineering Physics , Chengdu 610200 , China
| | - Hao Liu
- Chengdu Green Energy and Green Manufacturing Technology R&D Center , China Academy of Engineering Physics , Chengdu 610200 , China
| | - Shaomin Li
- Chengdu Green Energy and Green Manufacturing Technology R&D Center , China Academy of Engineering Physics , Chengdu 610200 , China
| | - Changyu Tang
- Chengdu Green Energy and Green Manufacturing Technology R&D Center , China Academy of Engineering Physics , Chengdu 610200 , China
| | - Jun Mei
- Chengdu Green Energy and Green Manufacturing Technology R&D Center , China Academy of Engineering Physics , Chengdu 610200 , China
| | - Yuntao Li
- College of Material Science and Engineering , Southwest Petroleum University , Chengdu 610500 , China
| |
Collapse
|
17
|
Nirmale T, Khupse N, Gore R, Ambekar J, Kulkarni M, Varma A, Kale B. Ethoxy-Ester Functionalized Imidazolium based Ionic Liquids for Lithium Ion Batteries. ChemistrySelect 2018. [DOI: 10.1002/slct.201800513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Trupti Nirmale
- Centre for Materials for Electronics Technology (C-MET); Ministry of Electronics and Information Technology (MeitY); Government of India; Panchawati Off Pashan Road Pune - 411008 India
| | - Nageshwar Khupse
- Centre for Materials for Electronics Technology (C-MET); Ministry of Electronics and Information Technology (MeitY); Government of India; Panchawati Off Pashan Road Pune - 411008 India
| | - Rohitkumar Gore
- Department of Chemistry; Fergusson College; Savitribai Phule Pune University; Pune 411004 India
| | - Jalindar Ambekar
- Centre for Materials for Electronics Technology (C-MET); Ministry of Electronics and Information Technology (MeitY); Government of India; Panchawati Off Pashan Road Pune - 411008 India
| | - Milind Kulkarni
- Centre for Materials for Electronics Technology (C-MET); Ministry of Electronics and Information Technology (MeitY); Government of India; Panchawati Off Pashan Road Pune - 411008 India
| | - Anjanikumar Varma
- CSIR-National Chemical Laboratory; Homi Bhabha Road Pune 411008 India
- School of Chemical Sciences; Central University of Haryana, Mahendragarh; Haryana 123031 India
| | - Bharat Kale
- Centre for Materials for Electronics Technology (C-MET); Ministry of Electronics and Information Technology (MeitY); Government of India; Panchawati Off Pashan Road Pune - 411008 India
| |
Collapse
|
18
|
Chen W, Yu H, Lee SY, Wei T, Li J, Fan Z. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 2018; 47:2837-2872. [PMID: 29561005 DOI: 10.1039/c7cs00790f] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanocellulose has emerged as a sustainable and promising nanomaterial owing to its unique structures, superb properties, and natural abundance. Here, we present a comprehensive review of the current research activities that center on the development of nanocellulose for advanced electrochemical energy storage. We begin with a brief introduction of the structural features of cellulose nanofibers within the cell walls of cellulose resources. We then focus on a variety of processes that have been explored to fabricate nanocellulose with various structures and surface chemical properties. Next, we highlight a number of energy storage systems that utilize nanocellulose-derived materials, including supercapacitors, lithium-ion batteries, lithium-sulfur batteries, and sodium-ion batteries. In this section, the main focus is on the integration of nanocellulose with other active materials, developing films/aerogel as flexible substrates, and the pyrolyzation of nanocellulose to carbon materials and their functionalization by activation, heteroatom-doping, and hybridization with other active materials. Finally, we present our perspectives on several issues that need further exploration in this active research field in the future.
Collapse
Affiliation(s)
- Wenshuai Chen
- Key laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Haipeng Yu
- Key laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Sang-Young Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, South Korea
| | - Tong Wei
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150040, P. R. China.
| | - Jian Li
- Key laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, P. R. China
| | - Zhuangjun Fan
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150040, P. R. China.
| |
Collapse
|
19
|
Suzuki S, Shibata Y, Hirose D, Endo T, Ninomiya K, Kakuchi R, Takahashi K. Cellulose triacetate synthesis via one-pot organocatalytic transesterification and delignification of pretreated bagasse. RSC Adv 2018; 8:21768-21776. [PMID: 35541740 PMCID: PMC9080981 DOI: 10.1039/c8ra03859g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/06/2018] [Indexed: 02/02/2023] Open
Abstract
Cellulose triacetate was synthesised by the transesterification reaction of mild acid-pretreated lignocellulosic biomass with a stable acetylating reagent (isopropenyl acetate, IPA) in an ionic liquid (1-ethyl-3-methylimidazolium acetate, EmimOAc) which enabled the dissolution of lignocellulose as well as the organocatalytic reaction. The homogeneous acetylation of pretreated sugar-cane bagasse was carried out under mild conditions (80 °C, 30 min), and the subsequent reprecipitation processes led to enriched cellulose triacetate with a high degree of substitution (DS; 2.98) and glucose purity (∼90%) along with production of lignin acetate. Cellulose triacetate was synthesised by the transesterification reaction of mild acid-pretreated lignocellulosic biomass with a stable acetylating reagent in an ionic liquid, EmimOAc, which enabled the dissolution of lignocellulose as well as the organocatalytic reaction.![]()
Collapse
Affiliation(s)
- Shiori Suzuki
- Faculty of Natural System
- Institute of Science and Engineering
- Kanazawa University
- Kanazawa 920-1192
- Japan
| | - Yoshiki Shibata
- Faculty of Natural System
- Institute of Science and Engineering
- Kanazawa University
- Kanazawa 920-1192
- Japan
| | - Daisuke Hirose
- Faculty of Natural System
- Institute of Science and Engineering
- Kanazawa University
- Kanazawa 920-1192
- Japan
| | - Takatsugu Endo
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- Kyoutanabe 610-0394
- Japan
| | - Kazuaki Ninomiya
- Institute for Frontier Science Initiative
- Kanazawa University
- Kanazawa 920-1192
- Japan
| | - Ryohei Kakuchi
- Division of Molecular Science
- Graduate School of Science and Technology
- Gunma University
- Kiryu 376-8515
- Japan
| | - Kenji Takahashi
- Faculty of Natural System
- Institute of Science and Engineering
- Kanazawa University
- Kanazawa 920-1192
- Japan
| |
Collapse
|