1
|
Mai BT, Fernandez-Cabada T, Conteh JS, Nucci GEP, Fiorito S, Gavilán H, Debellis D, Gjurgjaj L, Pellegrino T. Nanoplatforms for Magnetic-Photo-Heating of Thermo-Resistant Tumor Cells: Singular Synergic Therapeutic Effects at Mild Temperature. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2310522. [PMID: 39466969 DOI: 10.1002/smll.202310522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/24/2024] [Indexed: 10/30/2024]
Abstract
A self-assemble amphiphilic diblock copolymer that can incorporate iron oxide nanocubes (IONCs) in chain-like assemblies as heat mediators for magnetic hyperthermia (MHT) and tuneable amounts of IR780 dye as agent for photothermal therapy (PTT) is developed. MHT-heating performance of photobeads in viscous media have the same heat performances in water at magnetic field conditions of clinical use. Thanks to IR780, the photobeads are activated by infrared laser light within the first biological window (808 nm) with a significant enhancement of photo-stability of IR780 enabling the raise of the temperature at therapeutic values during multiple PTT cycles and showing unchanged optical features up to 8 days. Moreover, the photobeads fluorescent signal is preserved once internalized by glioblastoma multiforme (GBM) cells. Peculiarly, the photobeads are used as toxic agents to eradicate thermo-resistant GBM cells at mild heat, as low as 41 °C, with MHT and PTT both of clinical use. Indeed, a high U87 GBM cell mortality percentage is obtained only with dual MHT/PTT while each single treatment dose not provide the same cytotoxic effects. Only for the combined treatment, the cell death mechanism is assigned to clear sign of apoptosis as observed by structural/morphological cell studies and enhanced lysosome permeability.
Collapse
Affiliation(s)
- Binh T Mai
- Italian Institute of Technology, via Morego 30, Genoa, 16163, Italy
| | | | - John S Conteh
- Italian Institute of Technology, via Morego 30, Genoa, 16163, Italy
| | - Giulia E P Nucci
- Italian Institute of Technology, via Morego 30, Genoa, 16163, Italy
| | - Sergio Fiorito
- Italian Institute of Technology, via Morego 30, Genoa, 16163, Italy
| | - Helena Gavilán
- Italian Institute of Technology, via Morego 30, Genoa, 16163, Italy
| | - Doriana Debellis
- Italian Institute of Technology, via Morego 30, Genoa, 16163, Italy
| | - Lorenci Gjurgjaj
- Italian Institute of Technology, via Morego 30, Genoa, 16163, Italy
- The Open University Affiliated Research Center, Italian Institute of Technology, via Morego 30, Genoa, 16163, Italy
| | | |
Collapse
|
2
|
Osorio HM, Castillo-Solís F, Barragán SY, Rodríguez-Pólit C, Gonzalez-Pastor R. Graphene Quantum Dots from Natural Carbon Sources for Drug and Gene Delivery in Cancer Treatment. Int J Mol Sci 2024; 25:10539. [PMID: 39408866 PMCID: PMC11476599 DOI: 10.3390/ijms251910539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer therapy is constantly evolving, with a growing emphasis on targeted and efficient treatment options. In this context, graphene quantum dots (GQDs) have emerged as promising agents for precise drug and gene delivery due to their unique attributes, such as high surface area, photoluminescence, up-conversion photoluminescence, and biocompatibility. GQDs can damage cancer cells and exhibit intrinsic photothermal conversion and singlet oxygen generation efficiency under specific light irradiation, enhancing their effectiveness. They serve as direct therapeutic agents and versatile drug delivery platforms capable of being easily functionalized with various targeting molecules and therapeutic agents. However, challenges such as achieving uniform size and morphology, precise bandgap engineering, and scalability, along with minimizing cytotoxicity and the environmental impact of their production, must be addressed. Additionally, there is a need for a more comprehensive understanding of cellular mechanisms and drug release processes, as well as improved purification methods. Integrating GQDs into existing drug delivery systems enhances the efficacy of traditional treatments, offering more efficient and less invasive options for cancer patients. This review highlights the transformative potential of GQDs in cancer therapy while acknowledging the challenges that researchers must overcome for broader application.
Collapse
Affiliation(s)
- Henrry M. Osorio
- Departamento de Física, Escuela Politécnica Nacional, Av. Ladrón de Guevara E11-253, Quito 170525, Ecuador; (H.M.O.); (S.Y.B.)
| | - Fabián Castillo-Solís
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (F.C.-S.); (C.R.-P.)
| | - Selena Y. Barragán
- Departamento de Física, Escuela Politécnica Nacional, Av. Ladrón de Guevara E11-253, Quito 170525, Ecuador; (H.M.O.); (S.Y.B.)
| | - Cristina Rodríguez-Pólit
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (F.C.-S.); (C.R.-P.)
- Escuela de Salud Pública, Universidad San Francisco de Quito USFQ, Quito 170527, Ecuador
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Quito 170403, Ecuador
| | - Rebeca Gonzalez-Pastor
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (F.C.-S.); (C.R.-P.)
| |
Collapse
|
3
|
Bhattacharya T, Preetam S, Mukherjee S, Kar S, Roy DS, Singh H, Ghose A, Das T, Mohapatra G. Anticancer activity of quantum size carbon dots: opportunities and challenges. DISCOVER NANO 2024; 19:122. [PMID: 39103694 DOI: 10.1186/s11671-024-04069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Research into the anticancer activity of quantum-sized carbon dots (CDs) has emerged as a promising avenue in cancer research. This CDs delves into the opportunities and challenges associated with harnessing the potential of these nanostructures for combating cancer. Quantum-sized carbon dots, owing to their unique physicochemical properties, exhibit distinct advantages as potential therapeutic agents. Opportunities lie in their tunable size, surface functionalization capabilities, and biocompatibility, enabling targeted drug delivery and imaging in cancer cells. However, we include challenges, a comprehensive understanding of the underlying mechanisms, potential toxicity concerns, and the optimization of synthesis methods for enhanced therapeutic efficacy. A succinct summary of the state of the research in this area is given in this review, emphasizing the exciting possibilities and ongoing challenges in utilizing quantum-sized carbon dots as a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Faculty of Applied Science, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| | - Subham Preetam
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sohini Mukherjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Sanjukta Kar
- Dietetics and Applied Nutrition, Amity University Kolkata, Kadampukur, India
| | | | - Harshita Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Arak Ghose
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Tanmoy Das
- Faculty of Engineering, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| | - Gautam Mohapatra
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
4
|
Semenov KN, Shemchuk OS, Ageev SV, Andoskin PA, Iurev GO, Murin IV, Kozhukhov PK, Maystrenko DN, Molchanov OE, Kholmurodova DK, Rizaev JA, Sharoyko VV. Development of Graphene-Based Materials with the Targeted Action for Cancer Theranostics. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1362-1391. [PMID: 39245451 DOI: 10.1134/s0006297924080029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 09/10/2024]
Abstract
The review summarises the prospects in the application of graphene and graphene-based nanomaterials (GBNs) in nanomedicine, including drug delivery, photothermal and photodynamic therapy, and theranostics in cancer treatment. The application of GBNs in various areas of science and medicine is due to the unique properties of graphene allowing the development of novel ground-breaking biomedical applications. The review describes current approaches to the production of new targeting graphene-based biomedical agents for the chemotherapy, photothermal therapy, and photodynamic therapy of tumors. Analysis of publications and FDA databases showed that despite numerous clinical studies of graphene-based materials conducted worldwide, there is a lack of information on the clinical trials on the use of graphene-based conjugates for the targeted drug delivery and diagnostics. The review will be helpful for researchers working in development of carbon nanostructures, material science, medicinal chemistry, and nanobiomedicine.
Collapse
Affiliation(s)
- Konstantin N Semenov
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia.
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| | - Olga S Shemchuk
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Sergei V Ageev
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Pavel A Andoskin
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
| | - Gleb O Iurev
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
| | - Igor V Murin
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | | | - Dmitriy N Maystrenko
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| | - Oleg E Molchanov
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| | | | - Jasur A Rizaev
- Samarkand Medical University, Samarkand, 100400, Uzbekistan
| | - Vladimir V Sharoyko
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia.
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| |
Collapse
|
5
|
Guo W, Song X, Liu J, Liu W, Chu X, Lei Z. Quantum Dots as a Potential Multifunctional Material for the Enhancement of Clinical Diagnosis Strategies and Cancer Treatments. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1088. [PMID: 38998693 PMCID: PMC11243735 DOI: 10.3390/nano14131088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Quantum dots (QDs) represent a class of nanoscale wide bandgap semiconductors, and are primarily composed of metals, lipids, or polymers. Their unique electronic and optical properties, which stem from their wide bandgap characteristics, offer significant advantages for early cancer detection and treatment. Metal QDs have already demonstrated therapeutic potential in early tumor imaging and therapy. However, biological toxicity has led to the development of various non-functionalized QDs, such as carbon QDs (CQDs), graphene QDs (GQDs), black phosphorus QDs (BPQDs) and perovskite quantum dots (PQDs). To meet the diverse needs of clinical cancer treatment, functionalized QDs with an array of modifications (lipid, protein, organic, and inorganic) have been further developed. These advancements combine the unique material properties of QDs with the targeted capabilities of biological therapy to effectively kill tumors through photodynamic therapy, chemotherapy, immunotherapy, and other means. In addition to tumor-specific therapy, the fluorescence quantum yield of QDs has gradually increased with technological progress, enabling their significant application in both in vivo and in vitro imaging. This review delves into the role of QDs in the development and improvement of clinical cancer treatments, emphasizing their wide bandgap semiconductor properties.
Collapse
Affiliation(s)
- Wenqi Guo
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Xueru Song
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Jiaqi Liu
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Wanyi Liu
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Zengjie Lei
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| |
Collapse
|
6
|
Qureshi ZA, Dabash H, Ponnamma D, Abbas M. Carbon dots as versatile nanomaterials in sensing and imaging: Efficiency and beyond. Heliyon 2024; 10:e31634. [PMID: 38832274 PMCID: PMC11145243 DOI: 10.1016/j.heliyon.2024.e31634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Carbon dots (CDs) have emerged as a versatile and promising carbon-based nanomaterial with exceptional optical properties, including tunable emission wavelengths, high quantum yield, and photostability. CDs are appropriate for various applications with many benefits, such as biocompatibility, low toxicity, and simplicity of surface modification. Thanks to their tunable optical properties and great sensitivity, CDs have been used in sensing as fluorescent probes for detecting pH, heavy metal ions, and other analytes. In addition, CDs have demonstrated potential as luminescence converters for white organic light-emitting diodes and light emitters in optoelectronic devices due to their superior optical qualities and exciton-independent emission. CDs have been used for drug administration and bioimaging in the biomedical field due to their biocompatibility, low cytotoxicity, and ease of functionalization. Additionally, due to their stability, efficient charge separation, and low recombination rate, CDs have shown interesting uses in energy systems, such as photocatalysis and energy conversion. This article highlights the growing possibilities and potential of CDs as adaptable nanomaterials in a variety of interdisciplinary areas related to sensing and imaging, at the same time addressing the major challenges involved in the current research and proposing scientific solutions to apply CDs in the development of a super smart society.
Collapse
Affiliation(s)
| | - Hanan Dabash
- Center for Advanced Materials, Qatar University, 2713, Doha, Qatar
| | - Deepalekshmi Ponnamma
- Materials Science and Technology Program, Department of Mathematics, Statistics and Physics, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - M.K.G. Abbas
- Center for Advanced Materials, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
7
|
Kong J, Wei Y, Zhou F, Shi L, Zhao S, Wan M, Zhang X. Carbon Quantum Dots: Properties, Preparation, and Applications. Molecules 2024; 29:2002. [PMID: 38731492 PMCID: PMC11085940 DOI: 10.3390/molecules29092002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Carbon quantum dots are a novel form of carbon material. They offer numerous benefits including particle size adjustability, light resistance, ease of functionalization, low toxicity, excellent biocompatibility, and high-water solubility, as well as their easy accessibility of raw materials. Carbon quantum dots have been widely used in various fields. The preparation methods employed are predominantly top-down methods such as arc discharge, laser ablation, electrochemical and chemical oxidation, as well as bottom-up methods such as templates, microwave, and hydrothermal techniques. This article provides an overview of the properties, preparation methods, raw materials for preparation, and the heteroatom doping of carbon quantum dots, and it summarizes the applications in related fields, such as optoelectronics, bioimaging, drug delivery, cancer therapy, sensors, and environmental remediation. Finally, currently encountered issues of carbon quantum dots are presented. The latest research progress in synthesis and application, as well as the challenges outlined in this review, can help and encourage future research on carbon quantum dots.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangfeng Zhang
- School of Medicine, Henan Polytechnic University, Jiaozuo 454000, China; (Y.W.); (F.Z.); (L.S.); (S.Z.); (M.W.)
| |
Collapse
|
8
|
Bai Y, Xu H, Wang H, Fan Y, Li X, Li Y, Fan L, Zhang Y, Qi L, Li Y. Highly Efficient Loading of Procaine on Water-Soluble Carbon Dots toward Long-Acting Anesthesia. J Phys Chem B 2024; 128:1700-1710. [PMID: 38334803 DOI: 10.1021/acs.jpcb.3c07411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Safe and efficient local anesthetic delivery carriers are crucial for long-term anesthesia and analgesics in clinical treatment. But currently, most of the local anesthetic carriers still have some disadvantages such as low drug-loading capacity, drug leakage, and potential side effects. Here, we report red-emissive carbon dots (Cys-CDs) synthesized by choosing cysteine and citric acid as precursors, which contain a large and intact sp2-domain with rich hydrophilic groups around the edge. The special structure of Cys-CDs is conducive to the efficient loading of procaine (PrC) via strong π-π stacking interactions. Based on the strong noncovalent interactions between them, the PrC loaded on Cys-CDs achieved slow release in vitro and had a long-lasting nerve blocking effect in vivo, which is 4-fold more than that of free PrC. More importantly, PrC/Cys-CDs do not cause any toxicity and inflammation during treatment owing to slow release of PrC and good water solubility of Cys-CDs, thus demonstrating the potential clinical application of CDs in long-lasting analgesia.
Collapse
Affiliation(s)
- Yiqi Bai
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Huimin Xu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Haoyu Wang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Yixiao Fan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Xiaohong Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Yunchao Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Louzhen Fan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Yang Zhang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Ling Qi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yong Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
9
|
Yuan T, Teng Q, Li C, Li J, Su W, Song X, Shi Y, Xu H, Han Y, Wei S, Zhang Y, Li X, Li Y, Fan L, Yuan F. The emergence and prospects of carbon dots with solid-state photoluminescence for light-emitting diodes. MATERIALS HORIZONS 2024; 11:102-112. [PMID: 37823244 DOI: 10.1039/d3mh01292a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The significant features of carbon dots (CDs), such as bright and tunable photoluminescence, high thermal stability, and low toxicity, endow them with tremendous potential for application in next generation optoelectronics. Despite great progress achieved in the design of high-performance CDs so far, the practical applications in solid-state lighting and displays have been retarded by the aggregation-caused quenching (ACQ) effect ascribed to direct π-π interactions. This review provides a comprehensive overview of the recent progress made in solid-state CD emitters, including their synthesis, optical properties and applications in light-emitting diodes (LEDs). Their triplet-excited-state-involved properties, as well as their recent advances in phosphor-converted LEDs and electroluminescent LEDs, are mainly reviewed here. Finally, the prospects and challenges of solid-state CD-based LEDs are discussed with an eye on future development. We hope that this review will provide critical insights to inspire new exciting discoveries on solid-state CDs from both fundamental and practical standpoints so that the realization of their potential in optoelectronic areas can be facilitated.
Collapse
Affiliation(s)
- Ting Yuan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Qian Teng
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Chenhao Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Jinsui Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Wen Su
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xianzhi Song
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yuxin Shi
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Huimin Xu
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yuyi Han
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Shuyan Wei
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yang Zhang
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Xiaohong Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yunchao Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Louzhen Fan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Fanglong Yuan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
10
|
Ranjbari F, Fathi F. Recent Advances in Chemistry, Mechanism, and Applications of Quantum Dots in Photodynamic and Photothermal Therapy. Anticancer Agents Med Chem 2024; 24:733-744. [PMID: 38409708 DOI: 10.2174/0118715206295598240215112910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
Semiconductor quantum dots (QD) are a kind of nanoparticle with unique optical properties that have attracted a lot of attention in recent years. In this paper, the characteristics of these nanoparticles and their applications in nanophototherapy have been reviewed. Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has gained special importance because of its high accuracy and local treatment due to the activation of the drug at the tumor site. PDT is a new way of cancer treatment that is performed by activating light-sensitive compounds named photosensitizers (PS) by light. PSs cause the destruction of diseased tissue through the production of singlet oxygen. PTT is another non-invasive method that induces cell death through the conversion of near-infrared light (NIR) into heat in the tumor situation by the photothermal agent (PA). Through using energy transfer via the FRET (Förster resonance energy transfer) process, QDs provide light absorption wavelength for both methods and cover the optical weaknesses of phototherapy agents.
Collapse
Affiliation(s)
- Faride Ranjbari
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Fathi
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
11
|
Kotelnikova PA, Shipunova VO, Deyev SM. Targeted PLGA-Chitosan Nanoparticles for NIR-Triggered Phototherapy and Imaging of HER2-Positive Tumors. Pharmaceutics 2023; 16:9. [PMID: 38276487 PMCID: PMC10819332 DOI: 10.3390/pharmaceutics16010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 01/27/2024] Open
Abstract
Targeted medicine uses the distinctive features of cancer cells to find and destroy tumors. We present human epidermal growth factor receptor 2 (HER2)-targeted PLGA-chitosan nanoparticles for cancer therapy and visualization. Loading with two near-infrared (NIR) dyes provides imaging in the NIR transparency window and phototherapy triggered by 808 nm light. Nile Blue (NB) is a biocompatible solvatochromic NIR dye that serves as an imaging agent. Laser irradiation of IR-780 dye leads to a temperature rise and the generation of reactive oxygen species (ROS). Resonance energy transfer between two dyes allows visualization of tumors in a wide range of visible and IR wavelengths. The combination of two NIR dyes enables the use of nanoparticles for diagnostics only or theranostics. Modification of poly(lactic-co-glycolic acid) (PLGA)-chitosan nanoparticles with trastuzumab provides an efficient nanoparticle uptake by tumor cells and promotes more than sixfold specificity towards HER2-positive cells, leading to a synergistic anticancer effect. We demonstrate optical imaging of the HER2-positive mouse mammary tumor and tumor-specific accumulation of PLGA-IR-780-NB nanoparticles in vivo after intravenous administration. We managed to achieve almost complete suppression of the proliferative activity of cells in vitro by irradiation with an 808 nm laser with a power of 0.27 W for 1 min at a concentration at which nanoparticles are nontoxic to cells in the dark.
Collapse
Affiliation(s)
- Polina A. Kotelnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Victoria O. Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
- Nanobiomedicine Division, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- Bionanophotonics Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
12
|
Redondo-Fernandez G, Cigales Canga J, Soldado A, Ruiz Encinar J, Costa-Fernandez JM. Functionalized heteroatom-doped carbon dots for biomedical applications: A review. Anal Chim Acta 2023; 1284:341874. [PMID: 37996151 DOI: 10.1016/j.aca.2023.341874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 11/25/2023]
Abstract
Carbon nanoparticles (CDs) have recently drawn a great attention in (bio)chemical analysis, sensing and bioimaging owing to their photostability, water stability, minimal toxicity, biocompatibility and ease of surface functionalization. While the vast majority of CDs applications rely on exploiting their fluorescent properties, doping such nanomaterials with various elements has recently received increasing attention as an effective approach to modify their optoelectronic characteristics, introducing novel improved optical features such as phosphorescence, upconversion luminescence or multimodal imaging capabilities. This review article focuses in the recent advances on the synthesis of heteroatom-doped CDs, exhibiting distinctive features of high value for sensing and imaging, as well as various functionalization schemes developed for guided analyte labeling. Relevant applications in chemical sensing, bioimaging and disease therapy are here presented. A final section intends to provide an overview towards future developments of such emerging light-emitting nanomaterials in the design of future devices and strategies for (bio)analytical chemistry.
Collapse
Affiliation(s)
- Guillermo Redondo-Fernandez
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| | - Jesus Cigales Canga
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| | - Ana Soldado
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain.
| | - Jose M Costa-Fernandez
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain.
| |
Collapse
|
13
|
Rad ME, Soylukan C, Kulabhusan PK, Günaydın BN, Yüce M. Material and Design Toolkit for Drug Delivery: State of the Art, Trends, and Challenges. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55201-55231. [PMID: 37994836 DOI: 10.1021/acsami.3c10065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The nanomaterial and related toolkit have promising applications for improving human health and well-being. Nanobased drug delivery systems use nanoscale materials as carriers to deliver therapeutic agents in a targeted and controlled manner, and they have shown potential to address issues associated with conventional drug delivery systems. They offer benefits for treating various illnesses by encapsulating or conjugating biological agents, chemotherapeutic drugs, and immunotherapeutic agents. The potential applications of this technology are vast; however, significant challenges exist to overcome such as safety issues, toxicity, efficacy, and insufficient capacity. This article discusses the latest developments in drug delivery systems, including drug release mechanisms, material toolkits, related design molecules, and parameters. The concluding section examines the limitations and provides insights into future possibilities.
Collapse
Affiliation(s)
- Monireh Esmaeili Rad
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Caner Soylukan
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | | | - Beyza Nur Günaydın
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | - Meral Yüce
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
14
|
Wang C, Chen L, Tan R, Li Y, Zhao Y, Liao L, Ge Z, Ding C, Xing Z, Zhou P. Carbon dots and composite materials with excellent performances in cancer-targeted bioimaging and killing: a review. Nanomedicine (Lond) 2023. [PMID: 37965983 DOI: 10.2217/nnm-2023-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Carbon dots (CDs) are nanomaterials with excellent properties, including good biocompatibility, small size, ideal photoluminescence and surface modification, and are becoming one of the most attractive nanomaterials for the imaging, detection and treatment of tumors. Based on these advantages, CDs can be combined other materials to obtain composite particles with improved, even new, performance, mainly in photothermal and photodynamic therapies. This paper reviews the research progress of CDs and their composites in targeted tumor imaging, detection, diagnosis, drug delivery and tumor killing. It also discusses and proposes the challenges and perspectives of their future applications in these fields. This review provides ideas for future applications of novel CD-based materials in the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Chenggang Wang
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
- Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, PR China
| | - Lixin Chen
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Rongshuang Tan
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yuchen Li
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yiqing Zhao
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Lingzi Liao
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhangjie Ge
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Chuanyang Ding
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhankui Xing
- The Second Hospital of Lanzhou University, Lanzhou, 730030, PR China
| | - Ping Zhou
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
- Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
15
|
Zhou SH, Wang RD, Wu TT, Deng SH, Guo JC, Zhou SM, Zhou X, Du J, Zhao QH, Ren X, Xie MJ. Long rod-shaped gallium composite material: Self-separating material aggregation induced enhancement of ROS for photothermal/photodynamic therapy of HCT116 cells. Eur J Med Chem 2023; 262:115892. [PMID: 39491428 DOI: 10.1016/j.ejmech.2023.115892] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
As many of the disadvantages of traditional single therapy can be avoided with combination therapy, combination therapy has become a new treatment method. Herein, a long rod-shaped gallium composite multifunctional material (CP-Au-PEG-FA@BSA@IR780) based on chemotherapy therapy (CT), photothermal therapy (PTT) and photodynamic therapy (PDT) is constructed to increase reactive oxygen species (ROS) levels and Au NP release. CP-Au-PEG-FA@BSA@IR780 has fluorescence localization characteristics and can combine with CT-DNA to cause cancer cell apoptosis. The in vitro cytotoxicity experiments showed the excellent biocompatibility and great therapeutic efficacy of the designed nanoplatform compared to those of the IR780 group, which had weak red fluorescence. The in vivo experiments also showed that the designed micro/nano platform can effectively eliminate HCT116 tumors by allowing the temperature of the tumor site to exceed 55 °C (thermal ablation) under light irradiation. The main mechanism of chemotherapy indicated that the presence of Fe2+/Fe3+ can disrupt the rod-shaped structure of the original material and increase the content of Ga3+. Overall, CP-Au-PEG-FA@BSA@IR780 is a promising cancer therapy strategy that combines CT, PTT, and PDT and provides new insights into the synthesis method of enhancing composite materials with photothermal properties.
Collapse
Affiliation(s)
- Si-Han Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China; International Institute of Rivers and Ecological Security, Yunnan University, Kunming, 650091, Yunnan, China
| | - Rui-Dong Wang
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Tian-Tian Wu
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Shi-Hui Deng
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Ji-Chao Guo
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Shu-Min Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Xuan Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Jiajia Du
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Qi-Hua Zhao
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Xiaoxia Ren
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
| | - Ming-Jin Xie
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China.
| |
Collapse
|
16
|
Zhang J, Zou L, Li Q, Wu H, Sun Z, Xu X, Shi L, Sun Z, Ma G. Carbon Dots Derived from Traditional Chinese Medicines with Bioactivities: A Rising Star in Clinical Treatment. ACS APPLIED BIO MATERIALS 2023; 6:3984-4001. [PMID: 37707491 DOI: 10.1021/acsabm.3c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
In the field of carbon nanomaterials, carbon dots (CDs) have become a preferable choice in biomedical applications. Based on the concept of green chemistry, CDs derived from traditional Chinese medicines (TCMs) have attracted extensive attention, including TCM charcoal drugs, TCM extracts, and TCM small molecules. The design and preparation of CDs from TCMs (TCMs-CDs) can improve the inherent characteristics of TCMs, such as solubility, particle size distribution, and so on. Compared with other precursor materials, TCMs-CDs have outstanding intrinsic bioactivities and potential pharmacological effects. However, the research of TCMs-CDs in biomedicine is not comprehensive, and their mechanisms have not been understood deeply either. In this review, we will provide concise insights into the recent development of TCMs-CDs, with a major focus on their preparation, formation, precursors, and bioactivities. Then we will discuss the perfect transformation from TCMs to TCMs-CDs. Finally, we discuss the opportunities and challenges for the application of TCMs-CDs in clinical treatment.
Collapse
Affiliation(s)
- Jiawen Zhang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Linjun Zou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Qinglong Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Haifeng Wu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Zhonghao Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Leiling Shi
- Xinjiang Institute of Chinese and Ethnic Medicine, Urumqi 830002, China
| | - Zhaocui Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
17
|
Yang Z, Xu T, Li H, She M, Chen J, Wang Z, Zhang S, Li J. Zero-Dimensional Carbon Nanomaterials for Fluorescent Sensing and Imaging. Chem Rev 2023; 123:11047-11136. [PMID: 37677071 DOI: 10.1021/acs.chemrev.3c00186] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Advances in nanotechnology and nanomaterials have attracted considerable interest and play key roles in scientific innovations in diverse fields. In particular, increased attention has been focused on carbon-based nanomaterials exhibiting diverse extended structures and unique properties. Among these materials, zero-dimensional structures, including fullerenes, carbon nano-onions, carbon nanodiamonds, and carbon dots, possess excellent bioaffinities and superior fluorescence properties that make these structures suitable for application to environmental and biological sensing, imaging, and therapeutics. This review provides a systematic overview of the classification and structural properties, design principles and preparation methods, and optical properties and sensing applications of zero-dimensional carbon nanomaterials. Recent interesting breakthroughs in the sensitive and selective sensing and imaging of heavy metal pollutants, hazardous substances, and bioactive molecules as well as applications in information encryption, super-resolution and photoacoustic imaging, and phototherapy and nanomedicine delivery are the main focus of this review. Finally, future challenges and prospects of these materials are highlighted and envisaged. This review presents a comprehensive basis and directions for designing, developing, and applying fascinating fluorescent sensors fabricated based on zero-dimensional carbon nanomaterials for specific requirements in numerous research fields.
Collapse
Affiliation(s)
- Zheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Hui Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
18
|
Kumar Shukla M, Parihar A, Karthikeyan C, Kumar D, Khan R. Multifunctional GQDs for receptor targeting, drug delivery, and bioimaging in pancreatic cancer. NANOSCALE 2023; 15:14698-14716. [PMID: 37655476 DOI: 10.1039/d3nr03161f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Pancreatic cancer is a devastating disease with a low survival rate and limited treatment options. Graphene quantum dots (GQDs) have recently become popular as a promising platform for cancer diagnosis and treatment due to their exceptional physicochemical properties, such as biocompatibility, stability, and fluorescence. This review discusses the potential of multifunctional GQDs as a platform for receptor targeting, drug delivery, and bioimaging in pancreatic cancer. The current studies emphasized the ability of GQDs to selectively target pancreatic cancer cells by overexpressing binding receptors on the cell surface. Additionally, this review discussed the uses of GQDs as drug delivery vehicles for the controlled and targeted release of therapeutics for pancreatic cancer cells. Finally, the potential of GQDs as imaging agents for pancreatic cancer detection and monitoring has been discussed. Overall, multifunctional GQDs showed great promise as a versatile platform for the diagnosis and treatment of pancreatic cancer. Further investigation of multifunctional GQDs in terms of their potential and optimization in the context of pancreatic cancer therapy is needed.
Collapse
Affiliation(s)
- Monu Kumar Shukla
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| | - Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, Madhya Pradesh, India.
| | | | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, Madhya Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
19
|
Dar MS, Tabish TA, Thorat ND, Swati G, Sahu NK. Photothermal therapy using graphene quantum dots. APL Bioeng 2023; 7:031502. [PMID: 37614868 PMCID: PMC10444203 DOI: 10.1063/5.0160324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
The rapid development of powerful anti-oncology medicines have been possible because of advances in nanomedicine. Photothermal therapy (PTT) is a type of treatment wherein nanomaterials absorb the laser energy and convert it into localized heat, thereby causing apoptosis and tumor eradication. PTT is more precise, less hazardous, and easy-to-control in comparison to other interventions such as chemotherapy, photodynamic therapy, and radiation therapy. Over the past decade, various nanomaterials for PTT applications have been reviewed; however, a comprehensive study of graphene quantum dots (GQDs) has been scantly reported. GQDs have received huge attention in healthcare technologies owing to their various excellent properties, such as high water solubility, chemical stability, good biocompatibility, and low toxicity. Motivated by the fascinating scientific discoveries and promising contributions of GQDs to the field of biomedicine, we present a comprehensive overview of recent progress in GQDs for PTT. This review summarizes the properties and synthesis strategies of GQDs including top-down and bottom-up approaches followed by their applications in PTT (alone and in combination with other treatment modalities such as chemotherapy, photodynamic therapy, immunotherapy, and radiotherapy). Furthermore, we also focus on the systematic study of in vitro and in vivo toxicities of GQDs triggered by PTT. Moreover, an overview of PTT along with the synergetic application used with GQDs for tumor eradication are discussed in detail. Finally, directions, possibilities, and limitations are described to encourage more research, which will lead to new treatments and better health care and bring people closer to the peak of human well-being.
Collapse
Affiliation(s)
| | - Tanveer A. Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Nanasaheb D. Thorat
- Nuffield Department of Women's and Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - G. Swati
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore 632014, India
| | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
20
|
Alshammari BH, Lashin MMA, Mahmood MA, Al-Mubaddel FS, Ilyas N, Rahman N, Sohail M, Khan A, Abdullaev SS, Khan R. Organic and inorganic nanomaterials: fabrication, properties and applications. RSC Adv 2023; 13:13735-13785. [PMID: 37152571 PMCID: PMC10162010 DOI: 10.1039/d3ra01421e] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 05/09/2023] Open
Abstract
Nanomaterials and nanoparticles are a burgeoning field of research and a rapidly expanding technology sector in a wide variety of application domains. Nanomaterials have made exponential progress due to their numerous uses in a variety of fields, particularly the advancement of engineering technology. Nanoparticles are divided into various groups based on the size, shape, and structural morphology of their bodies. The 21st century's defining feature of nanoparticles is their application in the design and production of semiconductor devices made of metals, metal oxides, carbon allotropes, and chalcogenides. For the researchers, these materials then opened a new door to a variety of applications, including energy storage, catalysis, and biosensors, as well as devices for conversion and medicinal uses. For chemical and thermal applications, ZnO is one of the most stable n-type semiconducting materials available. It is utilised in a wide range of products, from luminous materials to batteries, supercapacitors, solar cells to biomedical photocatalysis sensors, and it may be found in a number of forms, including pellets, nanoparticles, bulk crystals, and thin films. The distinctive physiochemical characteristics of semiconducting metal oxides are particularly responsible for this. ZnO nanostructures differ depending on the synthesis conditions, growth method, growth process, and substrate type. A number of distinct growth strategies for ZnO nanostructures, including chemical, physical, and biological methods, have been recorded. These nanostructures may be synthesized very simply at very low temperatures. This review focuses on and summarizes recent achievements in fabricating semiconductor devices based on nanostructured materials as 2D materials as well as rapidly developing hybrid structures. Apart from this, challenges and promising prospects in this research field are also discussed.
Collapse
Affiliation(s)
- Basmah H Alshammari
- Department of Chemistry, College of Science, University of Hail Hail 81451 Saudi Arabia
| | - Maha M A Lashin
- Department of Electrical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | | | - Fahad S Al-Mubaddel
- Department of Chemical Engineering, College of Engineering, King Saud University Riyadh 11421 Saudi Arabia
- King Abdullah City for Renewable and Atomic Energy: Energy Research and Innovation Center, (ERIC) Riyadh 11451 Saudi Arabia
| | - Nasir Ilyas
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technologyof China Chengdu 611731 P.R. China
| | - Nasir Rahman
- Department of Physics, University of Lakki Marwat Lakki Marwat 28420 KP Pakistan
| | - Mohammad Sohail
- Department of Physics, University of Lakki Marwat Lakki Marwat 28420 KP Pakistan
| | - Aurangzeb Khan
- Department of Physics, Abdul Wali Khan University Mardan 23200 KP Pakistan
| | - Sherzod Shukhratovich Abdullaev
- Researcher, Faculty of Chemical Engineering, New Uzbekistan University Tashkent Uzbekistan
- Researcher of Scientific Department, Tashkent State Pedagogical University Named After Nizami Tashkent Uzbekistan
| | - Rajwali Khan
- Department of Physics, University of Lakki Marwat Lakki Marwat 28420 KP Pakistan
- School of Physics and Optoelectronic Engineering, Shenzhen University Nanshan 518000 Shenzhen Guangdong China
| |
Collapse
|
21
|
Yan H, Wang Q, Wang J, Shang W, Xiong Z, Zhao L, Sun X, Tian J, Kang F, Yun SH. Planted Graphene Quantum Dots for Targeted, Enhanced Tumor Imaging and Long-Term Visualization of Local Pharmacokinetics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210809. [PMID: 36740642 PMCID: PMC10374285 DOI: 10.1002/adma.202210809] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/07/2022] [Indexed: 06/18/2023]
Abstract
While photoluminescent graphene quantum dots (GQDs) have long been considered very suitable for bioimaging owing to their protein-like size, superhigh photostability and in vivo long-term biosafety, their unique and crucial bioimaging applications in vivo remain unreachable. Herein, planted GQDs are presented as an excellent tool for in vivo fluorescent, sustainable and multimodality tumor bioimaging in various scenarios. The GQDs are in situ planted in the poly(ethylene glycol) (PEG) layer of PEGylated nanoparticles via a bottom-up molecular approach to obtain the NPs-GQDs-PEG nanocomposite. The planted GQDs show more than four times prolonged blood circulation and 7-8 times increased tumor accumulation than typical GQDs in vivo. After accessible specificity modification, the multifunctional NPs-GQDs-PEG provides targeted, multimodal molecular imaging for various tumor models in vitro or in vivo. Moreover, the highly photostable GQDs enable long-term, real-time visualization of the local pharmacokinetics of NPs in vivo. Planting GQDs in PEGylated nanomedicine offers a new strategy for broad in vivo biomedical applications of GQDs.
Collapse
Affiliation(s)
- Hao Yan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston 02139, USA
| | - Qian Wang
- Department of Diagnostic Imaging, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jingyun Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Wenting Shang
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing 100190, China
| | - Zhiyuan Xiong
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lingyun Zhao
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaodan Sun
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing 100190, China
| | - Feiyu Kang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Seok-Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston 02139, USA
| |
Collapse
|
22
|
Su Y, Andrabi SM, Shahriar SMS, Wong SL, Wang G, Xie J. Triggered release of antimicrobial peptide from microneedle patches for treatment of wound biofilms. J Control Release 2023; 356:131-141. [PMID: 36858263 PMCID: PMC10073311 DOI: 10.1016/j.jconrel.2023.02.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/01/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Biofilms pose a great challenge for wound management. Herein, this study describes a near-infrared (NIR) light-responsive microneedle patch for on-demand release of antimicrobial peptide for treatment of wound biofilms. IR780 iodide as a photothermal conversion agent and molecularly engineered peptide W379 as an antimicrobial agent are loaded in dissolvable poly(vinylpyrrolidone) (PVP) microneedle patches followed by coating with a phase change material 1-tetradecanol (TD). After placing in an aqueous solution or biofilm containing wounds ex vivo and in vivo, upon exposure to NIR light, the incorporated IR780 induces light-to-heat conversion, causing the melting of TD. This leads to the dissolution of PVP microneedles, enabling the release of loaded W379 peptide from the microneedles into surrounding regions (e.g., solution, biofilm, wound bed). Compared with traditional microneedle patches, NIR light responsive microneedle patches can program the release of antimicrobial peptide and show high antibacterial efficacy in vitro. Meanwhile, this work indicates that NIR light responsive TD-coated, W379-loaded PVP microneedle patches show excellent antibiofilm activities ex vivo and in vivo. Additionally, this microneedle system could be a promising platform for delivering other antimicrobial agents.
Collapse
Affiliation(s)
- Yajuan Su
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Syed Muntazir Andrabi
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - S M Shatil Shahriar
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Shannon L Wong
- Department of Surgery-Plastic Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States; Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska Lincoln, Lincoln, NE 68588, United States.
| |
Collapse
|
23
|
Zhang X, Yi C, Zhang L, Zhu X, He Y, Lu H, Li Y, Tang Y, Zhao W, Chen G, Wang C, Huang S, Ouyang G, Yu D. Size-optimized nuclear-targeting phototherapy enhances the type I interferon response for "cold" tumor immunotherapy. Acta Biomater 2023; 159:338-352. [PMID: 36669551 DOI: 10.1016/j.actbio.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
There is growing interest in the effect of innate immune silencing in "cold" tumors, which always fail in the immune checkpoint blockade monotherapy using PD-L1 monoclonal antibodies (aPD-L1). Combination of aPD-L1 with photodynamic therapy, i.e., photoimmunotherapy, is a promising strategy to improve the mono immunotherapy. Nuclear-targeting nanoparticles could elicit a type I interferon (IFN)-mediated innate immune response and reverse the immunosuppressive microenvironment for long-term immunotherapy of "cold" tumors. Photosensitizers such as zinc phthalocyanine (ZnPc) have limited ability to target the nucleus and activate innate sensing pathways to minimize tumor recurrence. Additionally, the relationship between nanoparticle size and nuclear entry capacity remains unclear. Herein, graphene quantum dots (GQDs) were employed as aPD-L1 and ZnPc carriers. Three particle sizes (200 nm, 32 nm and 5 nm) of aPD-L1/ZnPc/GQD-PEG (PZGE) were synthesized and tested. The 5 nm nanoparticles achieved the best nuclear enrichment capacity contributing to their ultrasmall size. Notably, 5 nm PZGE-based photodynamic therapy enabled an amplification of the type I IFN-mediated innate immune response and could convert "immune-cold" tumors into "immune-hot" ones. Utilizing their size advantage to target the nucleus, 5 nm nanoparticles induced DNA damage and activated the type I IFN-mediated innate immune response, subsequently promoting cytotoxic T-lymphocyte infiltration and reversing negative PD-L1 expression. Furthermore, the nanoplatform we designed is promising for the effective suppression of distant oral squamous cell carcinoma. Thus, for the first time, this study presents a size design strategy for nuclear-targeted photo-controlled immune adjuvants and the nuclear-targeted phototherapy-mediated immunomodulatory functions of type I IFN innate immune signalling for "immune-cold" tumors. STATEMENT OF SIGNIFICANCE: The potential of commonly used photosensitizers to activate innate sensing pathways for producing type I IFNs is limited due to the lack of nuclear targeting. Facilitating the nuclear-targeting of photosensitizers to enhance innate immune response and execute long-term tumor killing effect would be a promising strategy for "cold" tumor photoimmunotherapy. Herein, we report an optimal size of PZGE nanoparticles that enable the nuclear-targeting of ZnPc, which reinforces the type I IFN-mediated innate immune response, synergistically reversing "cold tumors" to "hot tumors" for effective primary and distant tumor photoimmunotherapy. This work highlights the marked efficacy of ultrasmall nuclear-located nanocarriers and offers new insight into "immune-cold tumors" via prominent innate immune activation mediated by nuclear-targeting photoimmunotherapy.
Collapse
Affiliation(s)
- Xiliu Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, 510055, China
| | - Chen Yi
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, 510055, China
| | - Lejia Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, 510055, China
| | - Xinyu Zhu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, 510055, China
| | - Yi He
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, 510055, China
| | - Huanzi Lu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, 510055, China
| | - Yiming Li
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, 510055, China
| | - Yuquan Tang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, 510055, China
| | - Wei Zhao
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, 510055, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Cheng Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, 510055, China.
| | - Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Dongsheng Yu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Guangzhou, 510055, China.
| |
Collapse
|
24
|
Sheikh Mohd Ghazali SAI, Fatimah I, Zamil ZN, Zulkifli NN, Adam N. Graphene quantum dots: A comprehensive overview. OPEN CHEM 2023. [DOI: 10.1515/chem-2022-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Abstract
Because of their prospective applications and exceptional features, graphene quantum dots (GQDs) have gotten a lot of recognition as a new class of fluorescent carbon materials. One of the carbon family’s newest superstars is the GQD. Due to its exceptional optoelectrical qualities, it has sparked a lot of curiosity since its debut in 2008. Two of the most important traits are a band gap that is not zero, biocompatibility, and highly changeable characteristics. GQDs have several important characteristics. GQDs have shown potential in a variety of fields, for instance, catalysis, sensing, energy devices, drug delivery, bioimaging, photothermal, and photodynamic therapy. Because this area constantly evolves, it is vital to recognize emerging GQD concerns in the current breakthroughs, primarily since some specific uses and developments in the case of GQDs synthesis have not been thoroughly investigated through previous studies. The current results in the properties, synthesis, as well as benefits of GQDs are discussed in this review study. As per the findings of this research, the GQD’s future investigation is boundless, mainly if the approaching investigation focuses on purifying simplicity and environmentally friendly synthesis, as well as boosting photoluminescence quantum output and manufacturing output of GQDs.
Collapse
Affiliation(s)
| | - Is Fatimah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia , Kampus Terpadu UII, Jl. Kaliurang Km 14 , Sleman, Yogyakarta 55584 , Indonesia
| | - Zaireen Natasya Zamil
- Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Negeri Sembilan, Kampus Kuala Pilah , Kuala Pilah 72000, Negeri Sembilan , Malaysia
| | - Nur Nadia Zulkifli
- Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Negeri Sembilan, Kampus Kuala Pilah , Kuala Pilah 72000, Negeri Sembilan , Malaysia
| | - Nurain Adam
- Kontra Pharma (M) SdnBhd(90082-V) Kontra Technology Centre (Block B) 1, 2 & 3, Industrial Estate , 75250, Jalan Ttc12 , Malacca , Malaysia
| |
Collapse
|
25
|
Xu H, Chang J, Wu H, Wang H, Xie W, Li Y, Li X, Zhang Y, Fan L. Carbon Dots with Guanidinium and Amino Acid Functional Groups for Targeted Small Interfering RNA Delivery toward Tumor Gene Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207204. [PMID: 36840641 DOI: 10.1002/smll.202207204] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/07/2023] [Indexed: 06/18/2023]
Abstract
Small interfering RNA (siRNA)-based gene therapy represents a promising strategy for tumor treatment. Novel gene vectors that can achieve targeted delivery of siRNA to the tumor cells without causing any side effects are urgently needed. To this end, the large amino acid mimicking carbon dots with guanidinium functionalization (LAAM GUA-CDs) are designed and synthesized by choosing arginine and dopamine hydrochloride as precursors. LAAM GUA-CDs can load siRNA through the multiple hydrogen bonds between their guanidinium groups and phosphate groups in siRNA. Meanwhile, the amino acid groups at the edges of LAAM GUA-CDs endow them the capacity to target tumors. After loading siBcl-2 as a therapeutic agent, LAAM GUA-CDs/siBcl-2 has a high tumor inhibition rate of up to 68%, which is twice more than that of commercial Lipofectamine 2000. Furthermore, LAAM GUA-CDs do not cause side effect during antitumor treatment owing to their high tumor-targeting ability, thus providing a versatile strategy for tumor-targeted siRNA delivery and cancer therapy.
Collapse
Affiliation(s)
- Huimin Xu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jianqiao Chang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Hao Wu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong, 273155, P. R. China
| | - Haoyu Wang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Wenjing Xie
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yunchao Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaohong Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yang Zhang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Louzhen Fan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
26
|
Barati F, Avatefi M, Moghadam NB, Asghari S, Ekrami E, Mahmoudifard M. A review of graphene quantum dots and their potential biomedical applications. J Biomater Appl 2023; 37:1137-1158. [PMID: 36066191 DOI: 10.1177/08853282221125311] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Today, nanobiotechnology is a pioneering technology in biomedicine. Every day, new nanomaterials are synthesized with elevated physiochemical properties for better diagnosis and treatment of diseases. One advancing class of materials is the Graphene family. Among different kinds of graphene derivatives, graphene quantum dots (GQDs) show fantastic optical, electrical, and electrochemical features originating from their unique quantum confinement effect. Due to the distinct properties of GQD, including large surface-to-volume ratio, low cytotoxicity, and easy functionalization, this nanomaterial has gone popular in biomedical field. Herein, a short overview of different strategies developed for GQD synthesis and functionalization is discussed. In the following, the most recent progress of GQD based nanomaterials in different biomedical fields, including bio-imaging, drug/gene delivery, antimicrobial, tissue engineering, and biosensors, are reviewed.
Collapse
Affiliation(s)
- Fatemeh Barati
- Department of Industrial and Environmental Biotechnology, 48482National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Manizheh Avatefi
- Department of Industrial and Environmental Biotechnology, 48482National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Negin Borzooee Moghadam
- Department of Industrial and Environmental Biotechnology, 48482National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Sahar Asghari
- Department of Industrial and Environmental Biotechnology, 48482National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Elena Ekrami
- Department of Industrial and Environmental Biotechnology, 48482National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Matin Mahmoudifard
- Department of Industrial and Environmental Biotechnology, 48482National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
27
|
Liu Y, Yi Y, Zhong C, Ma Z, Wang H, Dong X, Yu F, Li J, Chen Q, Lin C, Li X. Advanced bioactive nanomaterials for diagnosis and treatment of major chronic diseases. Front Mol Biosci 2023; 10:1121429. [PMID: 36776741 PMCID: PMC9909026 DOI: 10.3389/fmolb.2023.1121429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
With the rapid innovation of nanoscience and technology, nanomaterials have also been deeply applied in the medical and health industry and become one of the innovative methods to treat many diseases. In recent years, bioactive nanomaterials have attracted extensive attention and have made some progress in the treatment of some major chronic diseases, such as nervous system diseases and various malignant tumors. Bioactive nanomaterials depend on their physical and chemical properties (crystal structure, surface charge, surface functional groups, morphology, and size, etc.) and direct produce biological activity and play to the role of the treatment of diseases, compared with the traditional nanometer pharmaceutical preparations, biological active nano materials don't exert effects through drug release, way more directly, also is expected to be more effective for the treatment of diseases. However, further studies are needed in the evaluation of biological effects, fate in vivo, structure-activity relationship and clinical transformation of bionanomaterials. Based on the latest research reports, this paper reviews the application of bioactive nanomaterials in the diagnosis and treatment of major chronic diseases and analyzes the technical challenges and key scientific issues faced by bioactive nanomaterials in the diagnosis and treatment of diseases, to provide suggestions for the future development of this field.
Collapse
Affiliation(s)
- Yongfei Liu
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Yi Yi
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China,*Correspondence: Yi Yi,
| | - Chengqian Zhong
- Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Zecong Ma
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Haifeng Wang
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Xingmo Dong
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Feng Yu
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Jing Li
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Qinqi Chen
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Chaolu Lin
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Xiaohong Li
- Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| |
Collapse
|
28
|
Chen L, Hong W, Duan S, Li Y, Wang J, Zhu J. Graphene quantum dots mediated magnetic chitosan drug delivery nanosystems for targeting synergistic photothermal-chemotherapy of hepatocellular carcinoma. Cancer Biol Ther 2022; 23:281-293. [PMID: 35323086 PMCID: PMC8959518 DOI: 10.1080/15384047.2022.2054249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Conventional clinical monotherapies for advanced hepatocellular carcinoma (HCC) have numerous limitations. Integrated oncology approaches can improve cancer treatment efficacy, and photothermal-chemotherapy drug delivery nanosystems (DDS) based on nanotechnology and biotechnology have piqued the interest of researchers. This study developed an aptamer-modified graphene quantum dots (GQDs)/magnetic chitosan DDS for photothermal-chemotherapy of HCC. The HCC aptamer and the EPR effect of nanoparticles, in particular, enable active and passive targeting of DDS to HCC. GQDs functioned as photosensitizers, effectively moderating photothermal therapy and inhibiting drug release during blood circulation. Magnetic chitosan demonstrated excellent drug encapsulation, acid sensitivity, and tumor imaging capabilities. Proper assembly of the units mentioned above enables precise combined therapy of HCC. This study indicates that DDS can significantly inhibit tumor growth while also extending the survival duration of tumor-bearing mice. The DDS (DOX-Fe3O4@CGA) shows strong synergistic tumor treatment potential, allowing for the exploration and development of novel HCC therapies.
Collapse
Affiliation(s)
- Lili Chen
- Department of Orthopedics, Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou Medical College Affiliated Chun'an Hospital, Hangzhou, P.R. China
| | - Wenzhong Hong
- Clinical laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou Medical College Affiliated Chun'an Hospital, Hangzhou, P.R. China
| | - Siliang Duan
- The department of Immunology, Medical College, Guangxi University of Science and Technology, Liuzhou, P.R. China
| | - Yiping Li
- Clinical laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou Medical College Affiliated Chun'an Hospital, Hangzhou, P.R. China
| | - Jian Wang
- Clinical laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou Medical College Affiliated Chun'an Hospital, Hangzhou, P.R. China
| | - Jianmeng Zhu
- Clinical laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou Medical College Affiliated Chun'an Hospital, Hangzhou, P.R. China
| |
Collapse
|
29
|
Valimukhametova AR, Zub OS, Lee BH, Fannon O, Nguyen S, Gonzalez-Rodriguez R, Akkaraju GR, Naumov AV. Dual-Mode Fluorescence/Ultrasound Imaging with Biocompatible Metal-Doped Graphene Quantum Dots. ACS Biomater Sci Eng 2022; 8:4965-4975. [PMID: 36179254 PMCID: PMC11338274 DOI: 10.1021/acsbiomaterials.2c00794] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sonography offers many advantages over standard methods of diagnostic imaging due to its non-invasiveness, substantial tissue penetration depth, and low cost. The benefits of ultrasound imaging call for the development of ultrasound-trackable drug delivery vehicles that can address a variety of therapeutic targets. One disadvantage of the technique is the lack of high-precision imaging, which can be circumvented by complementing ultrasound contrast agents with visible and, especially, near-infrared (NIR) fluorophores. In this work, we, for the first time, develop a variety of lightly metal-doped (iron oxide, silver, thulium, neodymium, cerium oxide, cerium chloride, and molybdenum disulfide) nitrogen-containing graphene quantum dots (NGQDs) that demonstrate high-contrast properties in the ultrasound brightness mode and exhibit visible and/or near-infrared fluorescence imaging capabilities. NGQDs synthesized from glucosamine precursors with only a few percent metal doping do not introduce additional toxicity in vitro, yielding over 80% cell viability up to 2 mg/mL doses. Their small (<50 nm) sizes warrant effective cell internalization, while oxygen-containing surface functional groups decorating their surfaces render NGQDs water soluble and allow for the attachment of therapeutics and targeting agents. Utilizing visible and/or NIR fluorescence, we demonstrate that metal-doped NGQDs experience maximum accumulation within the HEK-293 cells 6-12 h after treatment. The successful 10-fold ultrasound signal enhancement is observed at 0.5-1.6 mg/mL for most metal-doped NGQDs in the vascular phantom, agarose gel, and animal tissue. A combination of non-invasive ultrasound imaging with capabilities of high-precision fluorescence tracking makes these metal-doped NGQDs a viable agent for a variety of theragnostic applications.
Collapse
Affiliation(s)
- Alina R Valimukhametova
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Olga S Zub
- Alfa Radiology Management, Inc, Plano, Texas 75023, United States
| | - Bong Han Lee
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Olivia Fannon
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Steven Nguyen
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Roberto Gonzalez-Rodriguez
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Giridhar R Akkaraju
- Department of Biology, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Anton V Naumov
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| |
Collapse
|
30
|
Gaurav A, Jain A, Tripathi SK. Review on Fluorescent Carbon/Graphene Quantum Dots: Promising Material for Energy Storage and Next-Generation Light-Emitting Diodes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7888. [PMID: 36431372 PMCID: PMC9695987 DOI: 10.3390/ma15227888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 05/10/2023]
Abstract
Carbon/graphene quantum dots are 0D fluorescent carbon materials with sizes ranging from 2 nm to around 50 nm, with some attractive properties and diverse applications. Different synthesis routes, bandgap variation, higher stability, low toxicity with tunable emission, and the variation of physical and chemical properties with change in size have drawn immense attention to its potential application in different optoelectronics-based materials, especially advanced light-emitting diodes and energy storage devices. WLEDs are a strong candidate for the future of solid-state lighting due to their higher luminance and luminous efficiency. High-performance batteries play an important part in terms of energy saving and storage. In this review article, the authors provide a comparative analysis of recent and ongoing advances in synthesis (top-down and bottom-up), properties, and wide applications in different kinds of next-generation light-emitting diodes such as WLEDs, and energy storage devices such as batteries (Li-B, Na-B) and supercapacitors. Furthermore, they discuss the potential applications and progress of carbon dots in battery applications such as electrode materials. The authors also summarise the developmental stages and challenges in the existing field, the state-of-the-art of carbon/graphene quantum dots, and the potential and possible solutions for the same.
Collapse
Affiliation(s)
- Ashish Gaurav
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Amrita Jain
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Santosh Kumar Tripathi
- Department of Physics, School of Physical Sciences, Mahatma Gandhi Central University, Motihari 845401, Bihar, India
| |
Collapse
|
31
|
Construction of MPDA@IR780 nano drug carriers and photothermal therapy of tumor cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Marin D, Marchesan S. Carbon Graphitization: Towards Greener Alternatives to Develop Nanomaterials for Targeted Drug Delivery. Biomedicines 2022; 10:1320. [PMID: 35740342 PMCID: PMC9220131 DOI: 10.3390/biomedicines10061320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Carbon nanomaterials have attracted great interest for their unique physico-chemical properties for various applications, including medicine and, in particular, drug delivery, to solve the most challenging unmet clinical needs. Graphitization is a process that has become very popular for their production or modification. However, traditional conditions are energy-demanding; thus, recent efforts have been devoted to the development of greener routes that require lower temperatures or that use waste or byproducts as a carbon source in order to be more sustainable. In this concise review, we analyze the progress made in the last five years in this area, as well as in their development as drug delivery agents, focusing on active targeting, and conclude with a perspective on the future of the field.
Collapse
Affiliation(s)
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
33
|
Kansara V, Tiwari S, Patel M. Graphene quantum dots: A review on the effect of synthesis parameters and theranostic applications. Colloids Surf B Biointerfaces 2022; 217:112605. [PMID: 35688109 DOI: 10.1016/j.colsurfb.2022.112605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
The rising demand for early-stage diagnosis of diseases such as cancer, diabetes, neurodegenerative can be met with the development of materials offering high sensitivity and specificity. Graphene quantum dots (GQDs) have been investigated extensively for theranostic applications owing to their superior photostability and high aqueous dispersibility. These are attractive for a range of biomedical applications as their physicochemical and optoelectronic properties can be tuned precisely. However, many aspects of these properties remain to be explored. In the present review, we have discussed the effect of synthetic parameters upon their physicochemical characteristics relevant to bioimaging. We have highlighted the effect of particle properties upon sensing of biological molecules through 'turn-on' and 'turn-off' fluorescence and generation of electrochemical signals. After describing the effect of surface chemistry and solution pH on optical properties, an inclusive view on application of GQDs in drug delivery and radiation therapy has been given. Finally, a brief overview on their application in gene therapy has also been included.
Collapse
Affiliation(s)
- Vrushti Kansara
- Maliba Pharmacy College, Uka Tarsadia University, Gujarat, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, India
| | - Mitali Patel
- Maliba Pharmacy College, Uka Tarsadia University, Gujarat, India.
| |
Collapse
|
34
|
Dash BS, Lu YJ, Pejrprim P, Lan YH, Chen JP. Hyaluronic acid-modified, IR780-conjugated and doxorubicin-loaded reduced graphene oxide for targeted cancer chemo/photothermal/photodynamic therapy. BIOMATERIALS ADVANCES 2022; 136:212764. [PMID: 35929292 DOI: 10.1016/j.bioadv.2022.212764] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/04/2022] [Accepted: 03/13/2022] [Indexed: 10/18/2022]
Abstract
We used reduced graphene oxide (rGO), which has two times higher photothermal conversion efficiency than graphene oxide (GO), as a photothermal agent for cancer photothermal therapy (PTT). By conjugating a photosensitizer IR780 to rGO, the IR780-rGO could be endowed with reactive oxygen species (ROSs) generation ability for concurrent photodynamic therapy (PDT). The IR780-rGO was coated with hyaluronic acid (HA) by electrostatic interaction to facilitate its intracellular uptake by U87 glioblastoma cells. The IR780-rGO/HA was loaded with doxorubicin (DOX) for chemotherapy (CT), to develop a pH-responsive drug delivery nano-platform for targeted multimodal cancer CT/PTT/PDT. We fully characterized the properties of all nanocomposites during the synthesis steps. The high loading efficiency of DOX on IR780-rGO-HA provides 3 mg/mg drug loading, while IR780-rGO-HA/DOX shows 3 times higher drug release at endosomal pH value (pH 5) than at pH 7.4. The mechanism for PTT/PDT was confirmed from the ability of IR780-rGO-HA to induce time-dependent temperature rise, synthesis of heat shock protein 70 (HSP70) and generation of intracellular ROSs, after exposure to 808 nm near infrared (NIR) laser light. The nano-vehicle IR780-rGO-HA shows high biocompatibility toward 3T3 fibroblast and U87 cancer cell lines, as well as enhanced intracellular uptake by U87 through active targeting. This translates into increased cytotoxicity of IR780-rGO-HA/DOX, by lowering the drug half-maximal inhibitory concentration (IC50) from 0.7 to 0.46 μg/mL. This IC50 is further decreased to 0.1 μg/mL by irradiation with NIR laser for 3 min at 1.5 W/cm2. The elevated cancer cell killing mechanism was supported from flow cytometry analysis, where the highest cell apoptosis/necrosis rate was observed in combination CT/PTT/PDT. Using xenograft tumor model created by subcutaneous implantation of U87 cells in nude mice, IR780-rGO-HA/DOX delivered through intravenous (IV) injection and followed with 808 nm laser treatment for 5 min at 1.5 W/cm2 results in the lowest tumor growth rate, with negligible change of tumor volume from its original value at the end 20-day observation period. The therapeutic efficacy was supported from inhibited cell proliferation rate, increased cell apoptosis rate, and increased production of HSP70 from immunohistochemical staining of tumor tissue slices. The safety of the NIR-assisted multimodal cancer treatment could be confirmed from non-significant change of body weight and hematological parameters of blood sample. Taken together, we conclude that IV delivery of IR780-rGO-HA/DOX plus NIR laser treatment is an effective nanomedicine approach for combination cancer therapy.
Collapse
Affiliation(s)
- Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; School of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Pidsarintun Pejrprim
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Yu-Hsiang Lan
- School of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
35
|
González-Domínguez JM, Grasa L, Frontiñán-Rubio J, Abás E, Domínguez-Alfaro A, Mesonero JE, Criado A, Ansón-Casaos A. Intrinsic and selective activity of functionalized carbon nanotube/nanocellulose platforms against colon cancer cells. Colloids Surf B Biointerfaces 2022; 212:112363. [PMID: 35123194 DOI: 10.1016/j.colsurfb.2022.112363] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/28/2021] [Accepted: 01/23/2022] [Indexed: 02/08/2023]
Abstract
Given their large surface area and versatile chemical reactivity, single-walled carbon nanotubes (SWCNTs) are regarded as the basis of new pharmacological complexes. In this study, SWCNTs are chemically functionalized with fluorescein, folic acid, and capecitabine, a drug that is commonly used against colorectal cancer. These functionalized SWCNTs are dispersed in water by taking advantage of their synergistic interaction with type-II nanocrystalline cellulose (II-NCC), and the resulting colloidal system is tested in vitro on both normal (differentiated) and cancerous (proliferative) human colon cells (Caco-2). The functionalized SWCNT/II-NCC hybrids show a higher activity than the reference (capecitabine) against the Caco-2 cancer cell line. However, this effect appears to be intrinsically associated with the SWCNT/II-NCC complex, particularly boosted by fluorescein, as the presence of capecitabine is not required. In addition, confocal microscopy fluorescence imaging using cell cultures highlights the enormous potential of this nanohybrid platform for colon cancer theranostics.
Collapse
Affiliation(s)
| | - L Grasa
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, Zaragoza 50013, Spain; Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2 -, Universidad de Zaragoza - CITA, Zaragoza, Spain.
| | - J Frontiñán-Rubio
- Department of Medical Sciences, Ciudad Real Medical School, University of Castilla-La Mancha, Ciudad Real, Spain
| | - E Abás
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, Zaragoza 50013, Spain
| | - A Domínguez-Alfaro
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
| | - J E Mesonero
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, Zaragoza 50013, Spain; Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2 -, Universidad de Zaragoza - CITA, Zaragoza, Spain
| | - A Criado
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain; Centro de Investigacións Científcas Avanzadas (CICA), Universidade da Coruña, A Coruña, Spain
| | - A Ansón-Casaos
- Instituto de Carboquímica, ICB-CSIC, Miguel Luesma Castán 4, 50018 Zaragoza, Spain
| |
Collapse
|
36
|
A hybrid optical strategy based on graphene quantum dots and gold nanoparticles for selective determination of gentamicin in the milk and egg samples. Food Chem 2022; 370:131312. [PMID: 34788957 DOI: 10.1016/j.foodchem.2021.131312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 11/21/2022]
Abstract
A rapid and sensitive hybrid nanosensor was reported with a colorimetric and fluorometric readout system using graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of gentamicin (GENTA) in milk and egg samples. In the presence of AuNPs, the fluorescence (FL) intensity of GQDs gradually decreased due to the inner filter effect (IFE) of AuNPs on the FL intensity of GQDs. In addition of GENTA into AuNPs, AuNPs get aggregated and changed their color from red to blue, due to which the IFE of AuNPs reduced and hence, enhanced FL intensity of GQDs with varying concentration of GENTA from 1.03 to 16.55 μM with a lower detection limit of 0.422 μM and 0.493 μM in colorimetric and fluorimetric systems, respectively. The practical application of the developed nanosensor is tested against the real spiked sample. The excellent and straightforward recovery efficiency of the developed nanosensor for the determination of GENTA and can be used as a promising and adaptable tool for speedy monitoring of food quantity.
Collapse
|
37
|
Dong Y, Yu R, Zhao B, Gong Y, Jia H, Ma Z, Gao H, Tan Z. Revival of Insulating Polyethylenimine by Creatively Carbonizing with Perylene into Highly Crystallized Carbon Dots as the Cathode Interlayer for High-Performance Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1280-1289. [PMID: 34978428 DOI: 10.1021/acsami.1c23494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of new electron transporting layer (ETL) materials to improve the charge carrier extraction and collection ability between cathode and the active layer has been demonstrated to be an effective approach to enhance the photovoltaic performance of organic solar cells (OSCs). Herein, water-soluble carbon dots (CDs) as ETL material have been creatively synthesized by a vigorous chemical reaction between polyethylenimine (PEI) and 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) via a simple one-step hydrothermal method. Taking full advantage of the high electron transfer property of PTCDA and the work function (WF) reduction ability of PEI, CD gained high electron mobility due to its large π-conjugated area and reduced the WF of indium tin oxide (ITO) by 0.75 eV. As for the photovoltaic performance of devices, inverted OSCs based on CDs have achieved a high power conversion efficiency (PCE) of 17.35%, exhibiting no burn-in effect with no reduction in PCE after more than 4000 h of storage. The successful application of CDs in OPV has developed a new avenue for designing efficient ETL materials that benefits the photovoltaic performance of OSCs.
Collapse
Affiliation(s)
- Yiman Dong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Runnan Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Biao Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongshuai Gong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haoran Jia
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zongwen Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huaizhi Gao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhan'ao Tan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
38
|
Mu X, Wang D, Lu S, Zhou L, Wei S. Improved Photodynamic Activity of Phthalocyanine by Adjusting the Chirality of Modified Amino Acids. Mol Pharm 2022; 19:115-123. [PMID: 34927440 DOI: 10.1021/acs.molpharmaceut.1c00672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein, four zinc phthalocyanines (ZnPcs) with chiral lysine modification were synthesized. We found that the chirality of lysine and the chiral structure position strongly influence the properties of ZnPcs. Among the four ZnPcs, d-lysine-modified ZnPc through -NH2 on Cε [denoted N(ε)-d-lys-ZnPc] showed superior properties, including tumor enrichment, cancer cell uptake, and tumor retention capability, compared to the other three ZnPcs. Thus, chiral molecule modification is a simple and effective strategy to regulate the abovementioned properties to achieve a satisfactory antitumor outcome of drugs.
Collapse
Affiliation(s)
- Xingchen Mu
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Dongxin Wang
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Shan Lu
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Lin Zhou
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Shaohua Wei
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.,School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| |
Collapse
|
39
|
Sangam S, Jindal S, Agarwal A, Banerjee BD, Prasad P, Mukherjee M. Graphene quantum dots-porphyrins/phthalocyanines multifunctional hybrid systems: from interfacial dialogue to applications. Biomater Sci 2022; 10:1647-1679. [DOI: 10.1039/d2bm00016d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Engineered well-ordered hybrid nanomaterials are at a symbolically pivotal point, just ahead of a long-anticipated human race transformation. Incorporating newer carbon nanomaterials like graphene quantum dots (GQDs) with tetrapyrrolic porphyrins...
Collapse
|
40
|
Ghaffarkhah A, Hosseini E, Kamkar M, Sehat AA, Dordanihaghighi S, Allahbakhsh A, van der Kuur C, Arjmand M. Synthesis, Applications, and Prospects of Graphene Quantum Dots: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2102683. [PMID: 34549513 DOI: 10.1002/smll.202102683] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/12/2021] [Indexed: 05/24/2023]
Abstract
Graphene quantum dot (GQD) is one of the youngest superstars of the carbon family. Since its emergence in 2008, GQD has attracted a great deal of attention due to its unique optoelectrical properties. Non-zero bandgap, the ability to accommodate functional groups and dopants, excellent dispersibility, highly tunable properties, and biocompatibility are among the most important characteristics of GQDs. To date, GQDs have displayed significant momentum in numerous fields such as energy devices, catalysis, sensing, photodynamic and photothermal therapy, drug delivery, and bioimaging. As this field is rapidly evolving, there is a strong need to identify the emerging challenges of GQDs in recent advances, mainly because some novel applications and numerous innovations on the ease of synthesis of GQDs are not systematically reviewed in earlier studies. This feature article provides a comparative and balanced discussion of recent advances in synthesis, properties, and applications of GQDs. Besides, current challenges and future prospects of these emerging carbon-based nanomaterials are also highlighted. The outlook provided in this review points out that the future of GQD research is boundless, particularly if upcoming studies focus on the ease of purification and eco-friendly synthesis along with improving the photoluminescence quantum yield and production yield of GQDs.
Collapse
Affiliation(s)
- Ahmadreza Ghaffarkhah
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ehsan Hosseini
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Milad Kamkar
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ali Akbari Sehat
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Sara Dordanihaghighi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ahmad Allahbakhsh
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Colin van der Kuur
- ZEN Graphene Solutions, 210-1205 Amber Dr., Thunder Bay, ON, P7B 6M4, Canada
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
41
|
Ma Y, Xu H, Sun B, Du S, Cui S, Zhang L, Ding N, Yang D. pH-Responsive Oxygen and Hydrogen Peroxide Self-Supplying Nanosystem for Photodynamic and Chemodynamic Therapy of Wound Infection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59720-59730. [PMID: 34889592 DOI: 10.1021/acsami.1c19681] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The combination of photodynamic therapy (PDT) and chemodynamic therapy (CDT) has been continuously explored in the antibacterial aspect and has achieved more effective antibacterial effect than a single therapy. We design a pH-responsive O2 and H2O2 self-supplying zeolitic imidazolate framework-67 (ZIF-67) nanosystem for PDT/CDT of wound infection. Under the acidic inflammatory conditions, ZIF-67 can degrade to produce Co2+ and release CaO2 and graphene quantum dots (GQDs). The exposed CaO2 reacted with water to generate H2O2 and O2. The self-supplied O2 alleviates hypoxia at the site of inflammation and enhances external light-initiated GQD-mediated PDT, while H2O2 was catalyzed by endogenous Co2+ to produce hydroxyl radicals for Co2+-triggered CDT. In vitro and in vivo experiments confirm that CaO2/GQDs@ZIF-67 has a combined PDT/CDT effect. The antibacterial mechanism indicates that bacteria post-treated with CaO2/GQDs@ZIF-67 may be sterilized by reactive oxygen species-mediated oxidative stress and the leakage of bacterial contents. The experiments also find that CaO2/GQDs@ZIF-67 may activate the immune response and enhance the therapeutic effect by activating the cyclic GMP-AMP synthase-stimulator of interferon genes signaling pathway.
Collapse
Affiliation(s)
- Yunsu Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Huanghuang Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Suqian Center for Disease Control and Prevention, Suqian, Jiangsu 223800, China
| | - Bo Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Silin Du
- Kangda College of Nanjing Medical University, Nanjing, Jiangsu 222000, China
| | - Shuai Cui
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Li Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ning Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
42
|
Lagos KJ, Buzzá HH, Bagnato VS, Romero MP. Carbon-Based Materials in Photodynamic and Photothermal Therapies Applied to Tumor Destruction. Int J Mol Sci 2021; 23:22. [PMID: 35008458 PMCID: PMC8744821 DOI: 10.3390/ijms23010022] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/16/2022] Open
Abstract
Within phototherapy, a grand challenge in clinical cancer treatments is to develop a simple, cost-effective, and biocompatible approach to treat this disease using ultra-low doses of light. Carbon-based materials (CBM), such as graphene oxide (GO), reduced GO (r-GO), graphene quantum dots (GQDs), and carbon dots (C-DOTs), are rapidly emerging as a new class of therapeutic materials against cancer. This review summarizes the progress made in recent years regarding the applications of CBM in photodynamic (PDT) and photothermal (PTT) therapies for tumor destruction. The current understanding of the performance of modified CBM, hybrids and composites, is also addressed. This approach seeks to achieve an enhanced antitumor action by improving and modulating the properties of CBM to treat various types of cancer. Metal oxides, organic molecules, biopolymers, therapeutic drugs, among others, have been combined with CBM to treat cancer by PDT, PTT, or synergistic therapies.
Collapse
Affiliation(s)
- Karina J. Lagos
- Department of Materials, Escuela Politécnica Nacional (EPN), Quito 170525, Ecuador;
| | - Hilde H. Buzzá
- Institute of Physics, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos 13566-590, Brazil;
| | - Vanderlei S. Bagnato
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos 13566-590, Brazil;
| | - María Paulina Romero
- Department of Materials, Escuela Politécnica Nacional (EPN), Quito 170525, Ecuador;
| |
Collapse
|
43
|
Asefa T, Tang C, Ramírez-Hernández M. Nanostructured Carbon Electrocatalysts for Energy Conversions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007136. [PMID: 33856111 DOI: 10.1002/smll.202007136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The growing energy demand worldwide has led to increased use of fossil fuels. This, in turn, is making fossil fuels dwindle faster and cause more negative environmental impacts. Thus, alternative, environmentally friendly energy sources such as fuel cells and electrolyzers are being developed. While significant progress has already been made in this area, such energy systems are still hard to scale up because of their noble metal catalysts. In this concept paper, first, various scalable nanocarbon-based electrocatalysts that are being synthesized for energy conversions in these energy systems are introduced. Next, notable heteroatom-doping and nanostructuring strategies that are applied to produce different nanostructured carbon materials with high electrocatalytic activities for energy conversions are discussed. The concepts used to develop such materials with different structures and large density of dopant-based catalytic functional groups in a sustainable way, and the challenges therein, are emphasized in the discussions. The discussions also include the importance of various analytical, theoretical, and computational methods to probe the relationships between the compositions, structures, dopants, and active catalytic sites in such materials. These studies, coupled with experimental studies, can further guide innovative synthetic routes to efficient nanostructured carbon electrocatalysts for practical, large-scale energy conversion applications.
Collapse
Affiliation(s)
- Tewodros Asefa
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ, 08854, USA
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA
| | - Chaoyun Tang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ, 08854, USA
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen, 518060, P. R. China
| | - Maricely Ramírez-Hernández
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
44
|
Shu Q, Liu J, Chang Q, Liu C, Wang H, Xie Y, Deng X. Enhanced Photothermal Performance by Carbon Dot-Chelated Polydopamine Nanoparticles. ACS Biomater Sci Eng 2021; 7:5497-5505. [PMID: 34739201 DOI: 10.1021/acsbiomaterials.1c01045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Polydopamine (PDA) has been widely used in biomedical applications including imaging contrast agents, antioxidants, UV protection, and photothermal therapy due to its biocompatibility, metal-ion chelation, free-radical scavenging, and wideband absorption, but its low photothermal efficiency still needs to be improved. In this study, we chelated near-infrared (NIR) sensitive carbon quantum dots on the surface of polydopamine (PDA-PEI@N,S-CQDs) to increase its near-infrared absorption. Surprisingly, although only 4% (w/w) of carbon quantum dots was conjugated on the PDA surface, it still increased the photothermal efficiency by 30%. Moreover, PDA-PEI@N,S-CQDs could also be used as the drug carrier for loading 60% (w/w) of the DOX and achieved stimuli-responsive drug release under lysosomal pH (pH 5.0) and 808 nm laser illumination. For in vitro therapeutic experiment, PDA-PEI@N,S-CQDs showed the remarkable therapeutic performance under 808 nm laser irradiation for killing 90% of cancer cells compared with 50% by pure PDA nanoparticles, and the efficacy was even higher after loading DOX owing to the synergistic effect by photothermal therapy and chemotherapy. This intelligent and effective therapeutic nanosystem based on PDA-PEI@N,S-CQDs showed enhanced photothermal behavior after chelating carbon dots and promoted the future development of a nanoplatform for stimuli-responsive photothermal/chemo therapy.
Collapse
Affiliation(s)
- Qingfeng Shu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jie Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chenghao Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
45
|
Long L, Tan X, Liu Z, Liu Y, Cao X, Shi C. Effects of Human Serum Albumin on the Fluorescence Intensity and Tumor Imaging Properties of IR-780 Dye. Photochem Photobiol 2021; 98:935-944. [PMID: 34687567 DOI: 10.1111/php.13547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/23/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
IR-780 is a lipophilic dye with excellent optical and tumor imaging properties for early tumor diagnostics. Although the mechanism of tumor targeting has not been fully identified, the view that serum albumin plays an important role in tumor accumulation has been recognized. Here, the mechanism of the interaction between IR-780 and HSA was studied to explore the effect of albumin on its tumor targeting properties. Data demonstrate that IR-780 can be tightly adsorbed by HSA at a ratio of 1:1 to form a noncovalent complex, which exhibits significant improvement in the near-infrared fluorescence imaging and tumor diagnosis capacity. During this process, the endogenous fluorescence and esterase activity of HSA are both partially inhibited by IR-780, and the α-helical content of HSA slightly increases. Molecular docking simulation displays that the binding site of IR-780 on HSA is between subdomains IIA and IIB. These results indicate that HSA is an important factor to mediate the optical performance of IR-780, giving it higher tumor diagnosis capability.
Collapse
Affiliation(s)
- Lei Long
- Laboratory of Trauma, Burns and Combined Injury, Department of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Xu Tan
- Laboratory of Trauma, Burns and Combined Injury, Department of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zujuan Liu
- Laboratory of Trauma, Burns and Combined Injury, Department of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yunsheng Liu
- Laboratory of Trauma, Burns and Combined Injury, Department of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Xiaohui Cao
- Laboratory of Trauma, Burns and Combined Injury, Department of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Chunmeng Shi
- Laboratory of Trauma, Burns and Combined Injury, Department of Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
46
|
Cheng R, Xiang Y, Guo R, Li L, Zou G, Fu C, Hou H, Ji X. Structure and Interface Modification of Carbon Dots for Electrochemical Energy Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102091. [PMID: 34318998 DOI: 10.1002/smll.202102091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 05/15/2023]
Abstract
Carbon dots (CDs) as new nanomaterials have attracted much attention in recent years due to their unique characteristics. Notably, structure and interface modification (carbon core, edge, defects, and functional groups) of CDs have been considered as valid methods to regulate their properties, which contain electron transfer effect, electrochemical activity, fluorescence luminescent, and so on. Additionally, CDs with ultrasmall size, excellent dispersibility, high specific surface area, and abundant functional groups can guarantee positive and extraordinary effects in electrical energy storage and conversion. Therefore, CDs are used to couple with other materials by constructing a special interface structure to enhance their properties. Here, diverse structural and interfacial modifications of CDs with various heteroatoms and synergy effects are systematically analyzed. And not only several main syntheses of CDs-based composites (CDs/X) are summarized but also the merit and demerit of CDs/X in electrical energy storage are discussed. Finally, the applications of CDs/X in energy storage devices (supercapacitors, batteries) and electrocatalysts for practical applications are discussed. This review mainly provides a comprehensive summary and future prospect for synthesis, modification, and electrochemical applications of CDs.
Collapse
Affiliation(s)
- Ruiqi Cheng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yinger Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Ruiting Guo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lin Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Chaopeng Fu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
47
|
Paściak A, Pilch-Wróbel A, Marciniak Ł, Schuck PJ, Bednarkiewicz A. Standardization of Methodology of Light-to-Heat Conversion Efficiency Determination for Colloidal Nanoheaters. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44556-44567. [PMID: 34498862 PMCID: PMC8461604 DOI: 10.1021/acsami.1c12409] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/25/2021] [Indexed: 05/17/2023]
Abstract
Localized photothermal therapy (PTT) has been demonstrated to be a promising method of combating cancer, that additionally synergistically enhances other treatment modalities such as photodynamic therapy or chemotherapy. PTT exploits nanoparticles (called nanoheaters), that upon proper biofunctionalization may target cancerous tissues, and under light stimulation may convert the energy of photons to heat, leading to local overheating and treatment of cancerous cells. Despite extensive work, there is, however, no agreement on how to accurately and quantitatively compare light-to-heat conversion efficiency (ηQ) and rank the nanoheating performances of various groups of nanomaterials. This disagreement is highly problematic because the obtained ηQ values, measured with various methods, differ significantly for similar nanomaterials. In this work, we experimentally review existing optical setups, methods, and physical models used to evaluate ηQ. In order to draw a binding conclusion, we cross-check and critically evaluate the same Au@SiO2 sample in various experimental conditions. This critical study let us additionally compare and understand the influence of the other experimental factors, such as stirring, data recording and analysis, and assumptions on the effective mass of the system, in order to determine ηQ in a most straightforward and reproducible way. Our goal is therefore to contribute to the understanding, standardization, and reliable evaluation of ηQ measurements, aiming to accurately rank various nanoheater platforms.
Collapse
Affiliation(s)
- Agnieszka Paściak
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
| | - Aleksandra Pilch-Wróbel
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
| | - Łukasz Marciniak
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
| | - P. James Schuck
- Department
of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Artur Bednarkiewicz
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
| |
Collapse
|
48
|
Bayda S, Amadio E, Cailotto S, Frión-Herrera Y, Perosa A, Rizzolio F. Carbon dots for cancer nanomedicine: a bright future. NANOSCALE ADVANCES 2021; 3:5183-5221. [PMID: 36132627 PMCID: PMC9419712 DOI: 10.1039/d1na00036e] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/14/2021] [Indexed: 05/25/2023]
Abstract
Cancer remains one of the main causes of death in the world. Early diagnosis and effective cancer therapies are required to treat this pathology. Traditional therapeutic approaches are limited by lack of specificity and systemic toxicity. In this scenario, nanomaterials could overcome many limitations of conventional approaches by reducing side effects, increasing tumor accumulation and improving the efficacy of drugs. In the past few decades, carbon nanomaterials (i.e., fullerenes, carbon nanotubes, and carbon dots) have attracted significant attention of researchers in various scientific fields including biomedicine due to their unique physical/chemical properties and biological compatibility and are among the most promising materials that have already changed and will keep changing human life. Recently, because of their functionalization and stability, carbon nanomaterials have been explored as a novel tool for the delivery of therapeutic cancer drugs. In this review, we present an overview of the development of carbon dot nanomaterials in the nanomedicine field by focusing on their synthesis, and structural and optical properties as well as their imaging, therapy and cargo delivery applications.
Collapse
Affiliation(s)
- Samer Bayda
- Faculty of Sciences, Jinan University Tripoli Lebanon
| | - Emanuele Amadio
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Simone Cailotto
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Yahima Frión-Herrera
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Alvise Perosa
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Flavio Rizzolio
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
- Department of Pathology, IRCCS CRO Aviano National Cancer Institute 33081 Aviano Italy
| |
Collapse
|
49
|
Zheng Q, Liu X, Zheng Y, Yeung KWK, Cui Z, Liang Y, Li Z, Zhu S, Wang X, Wu S. The recent progress on metal-organic frameworks for phototherapy. Chem Soc Rev 2021; 50:5086-5125. [PMID: 33634817 DOI: 10.1039/d1cs00056j] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Some infectious or malignant diseases such as cancers are seriously threatening the health of human beings all over the world. The commonly used antibiotic therapy cannot effectively treat these diseases within a short time, and also bring about adverse effects such as drug resistance and immune system damage during long-term systemic treatment. Phototherapy is an emerging antibiotic-free strategy to treat these diseases. Upon light irradiation, phototherapeutic agents can generate cytotoxic reactive oxygen species (ROS) or induce a temperature increase, which leads to the death of targeted cells. These two kinds of killing strategies are referred to as photodynamic therapy (PDT) and photothermal therapy (PTT), respectively. So far, many photo-responsive agents have been developed. Among them, the metal-organic framework (MOF) is becoming one of the most promising photo-responsive materials because its structure and chemical compositions can be easily modulated to achieve specific functions. MOFs can have intrinsic photodynamic or photothermal ability under the rational design of MOF construction, or serve as the carrier of therapeutic agents, owing to its tunable porosity. MOFs also provide feasibility for various combined therapies and targeting methods, which improves the efficiency of phototherapy. In this review, we firstly investigated the principles of phototherapy, and comprehensively summarized recent advances of MOF in PDT, PTT and synergistic therapy, from construction to modification. We expect that our demonstration will shed light on the future development of this field, and bring it one step closer to clinical trials.
Collapse
Affiliation(s)
- Qiyao Zheng
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| | - Xiangmei Liu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Kelvin W K Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| | - Yanqin Liang
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| | - Zhaoyang Li
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| | - Shengli Zhu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| | - Xianbao Wang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.
| | - Shuilin Wu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
50
|
Liposomal IR-780 as a Highly Stable Nanotheranostic Agent for Improved Photothermal/Photodynamic Therapy of Brain Tumors by Convection-Enhanced Delivery. Cancers (Basel) 2021; 13:cancers13153690. [PMID: 34359590 PMCID: PMC8345063 DOI: 10.3390/cancers13153690] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary To improve the use of hydrophobic photosensitizer IR-780 in photothermal/photodynamic therapy (PTT/PDT), we entrap IR-780 within the lipid bilayer of liposomes (ILs). Compared to free IR-780, ILs showed well-preserved photothermal response by maintaining the photostability of IR-780 from repeated near infrared (NIR) laser exposure both in vitro and in vivo. Combined with fast endocytosis by human glioblastoma cells, ILs demonstrated enhanced cytotoxicity and induced higher cell apoptosis rate toward human glioblastoma cells over free IR-780, due to PTT with overexpression of heat shock protein and PDT with generation of intracellular reactive oxygen species. To overcome the blood–brain barrier, we used convection enhanced delivery (CED) for specific delivery of ILs to brain tumors in intracranial glioma xenograft. Upon three successive NIR laser irradiations, the liposomal IR-780 could significantly improve the anti-cancer efficacy in glioma treatment, leading to diminished intracranial tumor size and prolonged animal survival time. Abstract As a hydrophobic photosensitizer, IR-780 suffers from poor water solubility and low photostability under near infrared (NIR) light, which severely limits its use during successive NIR laser-assisted photothermal/photodynamic therapy (PTT/PDT). To solve this problem, we fabricate cationic IR-780-loaded liposomes (ILs) by entrapping IR-780 within the lipid bilayer of liposomes. We demonstrate enhanced photostability of IR-780 in ILs with well-preserved photothermal response after three repeated NIR laser exposures, in contrast to the rapid decomposition of free IR-780. The cationic nature of ILs promotes fast endocytosis of liposomal IR-780 by U87MG human glioblastoma cells within 30 min. For PTT/PDT in vitro, ILs treatment plus NIR laser irradiation leads to overexpression of heat shock protein 70 and generation of intracellular reactive oxygen species by U87MG cells, resulting in enhanced cytotoxicity and higher cell apoptosis rate. Using intracranial glioma xenograft in nude mice and administration of ILs by convection enhanced delivery (CED) to overcome blood-brain barrier, liposomal IR-780 could be specifically delivered to the brain tumor, as demonstrated from fluorescence imaging. By providing a highly stable liposomal IR-780, ILs significantly improved anti-cancer efficacy in glioma treatment, as revealed from various diagnostic imaging tools and histological examination. Overall, CED of ILs plus successive laser-assisted PTT/PDT may be an alternative approach for treating brain tumor, which can retard glioma growth and prolong animal survival times from orthotopic brain tumor models.
Collapse
|