1
|
Li F, Zhang Z, Wang X, Yin X, Fu M, Qin T, Ji X, Yang G, Sun S. A physical crosslinked pH-sensitive hydrogel based on hemicellulose/graphene oxide for controlled oral drug delivery. Int J Biol Macromol 2024; 289:138875. [PMID: 39701251 DOI: 10.1016/j.ijbiomac.2024.138875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
The design of innovative pH-sensitive hydrogels for oral drug delivery is particularly promising for the treatment of intestinal diseases. The traditional pH-responsive hydrogels still have some problems such as low biocompatibility, complex preparation process and poor therapeutic effect, so a new method needs to be developed to solve these problems. Here, a pH-sensitive hemicellulose/graphene oxide (HC/GO) composite hydrogel (HGCH) was prepared through a one-step strategy. Benefitting from the multiple hydrogen bonding between HC and GO, HGCH possessed a low gelator concentration (∼0.79 wt%), well-defined 3D porous network and excellent mechanical properties. Remarkably, HGCH exhibited pH-induced gel-sol transition and a high drug loading efficiency, showing great potential as a candidate for advanced drug carrier. The drug loading and release test revealed that about 85 % Vitamin B 12 was released in neutral PBS solution (pH 7.4). However, only about 30 % drug was diffused into acid medium (pH 1.7) in the same period, which suggested the HGCH have high adaptability to soluble drugs and pH sensitivity triggered release. Further cellular toxicity tests demonstrated that the HGCH was nontoxic and biocompatible for cells. Thus, the physically cross-linked HGCH would be an attractive drug carrier for controlled drug release at physiological pH in the future.
Collapse
Affiliation(s)
- Fengfeng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China
| | - Zhili Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China.
| | - Xiluan Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Xiuxin Yin
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China
| | - Maoqing Fu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China
| | - Tianci Qin
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China
| | - Shaolong Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong academy of sciences, Jinan 250353, PR China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| |
Collapse
|
2
|
Chen S, Xie Y, Ma K, Wei Z, Ran X, Fu X, Zhang C, Zhao C. Electrospun nanofibrous membranes meet antibacterial nanomaterials: From preparation strategies to biomedical applications. Bioact Mater 2024; 42:478-518. [PMID: 39308550 PMCID: PMC11415839 DOI: 10.1016/j.bioactmat.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Electrospun nanofibrous membranes (eNFMs) have been extensively developed for bio-applications due to their structural and compositional similarity to the natural extracellular matrix. However, the emergence of antibiotic resistance in bacterial infections significantly impedes the further development and applications of eNFMs. The development of antibacterial nanomaterials substantially nourishes the engineering design of antibacterial eNFMs for combating bacterial infections without relying on antibiotics. Herein, a comprehensive review of diverse fabrication techniques for incorporating antibacterial nanomaterials into eNFMs is presented, encompassing an exhaustive introduction to various nanomaterials and their bactericidal mechanisms. Furthermore, the latest achievements and breakthroughs in the application of these antibacterial eNFMs in tissue regenerative therapy, mainly focusing on skin, bone, periodontal and tendon tissues regeneration and repair, are systematically summarized and discussed. In particular, for the treatment of skin infection wounds, we highlight the antibiotic-free antibacterial therapy strategies of antibacterial eNFMs, including (i) single model therapies such as metal ion therapy, chemodynamic therapy, photothermal therapy, and photodynamic therapy; and (ii) multi-model therapies involving arbitrary combinations of these single models. Additionally, the limitations, challenges and future opportunities of antibacterial eNFMs in biomedical applications are also discussed. We anticipate that this comprehensive review will provide novel insights for the design and utilization of antibacterial eNFMs in future research.
Collapse
Affiliation(s)
- Shengqiu Chen
- Innovation Research Center for Diabetic Foot, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Zhiwei Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xingwu Ran
- Innovation Research Center for Diabetic Foot, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Endocrinology and Metabolism, Diabetic Foot Care Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
3
|
Li J, Jin Y, Yang YY, Song XQ. A Multifunctional Ca II-Eu III Heterometallic Organic Framework with Sensing and Selective Adsorption in Water. Inorg Chem 2024; 63:6871-6882. [PMID: 38557029 DOI: 10.1021/acs.inorgchem.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
With increasing global industrialization, it is urgent and challenging to develop multifunctional species for detection and adsorption in the environment. For this purpose, a novel anionic heterometallic organic framework, [(CH3)2NH2][CaEu(CAM)2(H2O)2]·4H2O·4DMF (CaEuCAM), is hydrothermally synthesized based on chelidamic acid (H3CAM). Single crystal analysis shows that CaEuCAM features two different oxygen-rich channels along the c-axis in which one CAM3- bridges two sextuple-coordinated Ca2+ and two octuple-coordinated Eu3+ with a μ4-η1: η1: η1: η1: η1: η1 new chelating and bridging mode. The characteristic bright red emission and superior hydrostability of CaEuCAM under harsh acidic and basic conditions benefit it by acting as a highly sensitive sensor for Fe3+ and 3-nitrophenol (3-NP) with extremely low LODs through remarkable quenching. The combination of experiments and theoretical calculations for sensing mechanisms shows that the competitive absorption and interaction are responsible for Fe3+-induced selective emission quenching, while that for 3-NP is the result of the synergism of host-guest chemistry and the inner filter effect. Meanwhile, the assimilation of negative charge plus channels renders CaEuCAM a highly selective adsorbent for methylene blue (MB) due to a synergy of electrostatic affinity, ion-dipole interaction, and size matching. Of note is the reusability of CaEuCAM toward Fe3+/3-NP sensing and MB adsorption besides its fast response. These findings could be very useful in guiding the development of multifunctional Ln-MOFs for sensing and adsorption applications in water media.
Collapse
Affiliation(s)
- Juan Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yan Jin
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yi-Yi Yang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xue-Qin Song
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
4
|
Nusair A, Alkhateb H, D'Alessio M. Synthesis, characterization, and environmental applications of graphene-coated sand: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170107. [PMID: 38232845 DOI: 10.1016/j.scitotenv.2024.170107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Global water quality has deteriorated, leaving over 844 million individuals without access to clean drinking water. While sand filters (SF) offer a solution, their limited surface area and adsorption capacity for emerging contaminants remain a challenge. This has prompted the development of new materials such as graphene-coated sand (GCS) to enhance the sand's adsorptive properties. Notably, GCS also possesses inherent anti-bacterial properties and can function as a photocatalyst when exposed to UV and visible light, offering enhanced water purification. This manuscript 1) reviews the synthesis of GCS, detailing the characterization techniques employed to understand its structure, composition, and multifunctional properties and 2) highlights the superior efficacy of GCS in removing contaminants, including metals (>95 % removal of Cd2+, Pb2+, Zn2+, and Cu2+ in low pH environment), sulfides (full removal compared to 26 % removal by raw sand), antibiotics (98 % removal of tetracycline), and bacteria (complete cell membrane destruction), compared to traditional SF. Due to its enhanced performance and multifaceted purification capabilities, GCS presents a promising alternative to SFs, especially in developing countries, aiming to improve water quality and ensure safe drinking water access. To the best of our knowledge, no other work groups the available research on GCS. Furthermore, future research directions should focus on reducing the overall production cost of GCS, exploring surface modification techniques, and expanding the range of contaminants tested by GCS, to fully realize its potential in water purification.
Collapse
Affiliation(s)
- Abdulla Nusair
- Department of Civil Engineering, University of Mississippi, Carrier Hall, University, MS 38677, USA
| | - Hunain Alkhateb
- Department of Civil Engineering, University of Mississippi, Carrier Hall, University, MS 38677, USA
| | - Matteo D'Alessio
- Department of Civil Engineering, University of Mississippi, Carrier Hall, University, MS 38677, USA.
| |
Collapse
|
5
|
Abbady G, Hakamy A, Abd-Elnaiem AM. Physical characterizations of Sn1-Zn2Cr2O5 nanocomposites and their adsorption performance towards methylene blue. CERAMICS INTERNATIONAL 2023. [DOI: 10.1016/j.ceramint.2023.07.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
6
|
Battisti A, Samal SK, Puppi D. Biosensing Systems Based on Graphene Oxide Fluorescence Quenching Effect. MICROMACHINES 2023; 14:1522. [PMID: 37630058 PMCID: PMC10456591 DOI: 10.3390/mi14081522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023]
Abstract
Graphene oxide (GO) is a versatile material obtained by the strong oxidation of graphite. Among its peculiar properties, there is the outstanding ability to significantly alter the fluorescence of many common fluorophores and dyes. This property has been exploited in the design of novel switch-ON and switch-OFF fluorescence biosensing platforms for the detection of a plethora of biomolecules, especially pathological biomarkers and environmental contaminants. Currently, novel advanced strategies are being developed for therapeutic, diagnostic and theranostic approaches to widespread pathologies caused by viral or bacterial agents, as well as to cancer. This work illustrates an overview of the most recent applications of GO-based sensing systems relying on its fluorescence quenching effect.
Collapse
Affiliation(s)
- Antonella Battisti
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, p.zza San Silvestro 12, I-56127 Pisa, Italy
| | - Sangram Keshari Samal
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-RMRC, Bhubaneswar 751023, Odisha, India;
| | - Dario Puppi
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, I-56124 Pisa, Italy;
| |
Collapse
|
7
|
Comparative study on the structural and electrochemical properties of nitrogen-doped and nitrogen and sulfur co-doped reduced graphene oxide electrode prepared by hydrothermal technique. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Fuxiang S, Na W, Qiangqiang Z, Jie W, Bin L. 3D printing calcium alginate adsorbents for highly efficient recovery of U(VI) in acidic conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129774. [PMID: 35988488 DOI: 10.1016/j.jhazmat.2022.129774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
In this study, a three-dimensional (3D) porous calcium alginate (3D CA) scaffold was successfully constructed using a direct-ink-writing-based 3D printing method combined with an in-situ calcium ion cross-linking procedure. The 3D CA contained orderly aligned microstructures with excellent structural robustness and an abundant number of active binding sites. The adsorption experiments verified that 3D CA had a considerably wide pH value (3-10) serving range, but also delivered a significantly higher adsorption capacity for U(VI) (117.3 mg/g at pH = 2.5) under acidic conditions, compared to other previously reported alginate-based porous adsorbents. The adsorption mechanisms originated from the synergistic effect of electrostatic interactions and ion exchange. The 3D CA eluted the adsorbed U(VI) in a strong acid solution through protonation mechanism, facilitating the continued enrichment and recycling of U(VI). In addition, the 3D CA demonstrated good microstructure stability and absorption capacity stability when it was immersed in hydrochloric acid solutions at different concentrations (3.6 × 10-3 to 2 mol/L) for 24 h. Therefore, the 3D CA could be used for the removal and recycling of U(VI) from acidic solutions beyond its wide pH working range, due to its stronger acid stability and higher U(VI) adsorption capacity.
Collapse
Affiliation(s)
- Song Fuxiang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Wang Na
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Zhang Qiangqiang
- College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Mechanics on Disaster and Environment in Western China (Lanzhou University), The Ministry of Education of China, Lanzhou 730000, PR China.
| | - Weibo Jie
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Liu Bin
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
9
|
Kumar A, Kujur S, Kujur JP, Sharma R, Pathak DD. Copper‐triazine‐dendrimer‐functionalized‐graphene oxide (CTD‐GO): Synthesis, characterization and application in green synthesis of propargylamines. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Akash Kumar
- Department of Chemistry and Chemical Biology Indian Institute of Technology (ISM) Dhanbad India
| | - Shelly Kujur
- Department of Chemistry and Chemical Biology Indian Institute of Technology (ISM) Dhanbad India
| | - Jyoti Prabha Kujur
- Department of Chemistry and Chemical Biology Indian Institute of Technology (ISM) Dhanbad India
| | - Richa Sharma
- Faculty of Science, Department of Chemistry Dayalbagh Educational Institute, Dayalbagh Agra India
| | - Devendra Deo Pathak
- Department of Chemistry and Chemical Biology Indian Institute of Technology (ISM) Dhanbad India
| |
Collapse
|
10
|
Xing C, Chang J, Ma M, Ma P, Sun L, Li M. Ultrahigh-efficiency antibacterial and adsorption performance induced by copper-substituted polyoxomolybdate-decorated graphene oxide nanocomposites. J Colloid Interface Sci 2022; 612:664-678. [PMID: 35026570 DOI: 10.1016/j.jcis.2021.12.175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
Abstract
Given the rise of drug-resistant pathogens and industrial contaminants, the development of efficient and eco-friendly water treatment technologies and materials is highly desirable and urgent. Herein, a multifunctional graphene oxide/chitosan/copper-based polyoxometalate (GO/CS/Cu-POM) nanocomposite (Cu-POM, [Cu(L)4][Cu(L)3(H2O)][Cu(L)(H2O)][P2Mo5O23]·4H2O, L = pyrazole) was synthesized by the ultrasound-assisted self-assembly strategy. The GO/CS/Cu-POM nanocomposite exhibited potent bactericidal properties against gram-positive/negative bacterial strains Staphylococcus aureus (S. aureus, 99.98%), Escherichia coli (E. coli, 99.99%), and drug-resistant E. coli bacterial strains (kanamycin-resistant E. coli 99.93% and ampicillin-resistant E. coli, 97.94%). Further, the antibacterial performance was strongly dependent on synergistic effect between GO/CS and Cu-POM in GO/CS/Cu-POM. The destruction of bacterial membrane and high levels of oxidative stress induced by GO/CS/Cu-POM played a significant role in the bactericidal process. Furthermore, the GO/CS/Cu-POM nanocomposite also displayed superior performance for removal of methylene blue (MB, 96.86%), gentian violet (GV, 97.77%), basic fuchsin (BF, 96.47%), tetracycline (TC, 78.92%) and norfloxacin (NC, 76.26%). Moreover, the main process of dye removal by GO/CS/Cu-POM was controlled by chemisorption. More importantly, the GO/CS/Cu-POM nanocomposite indicated good biocompatibility to human umbilical vein endothelial cells. Current work provides an effective strategy to design multifunctional POM-based composites for water purification and environmental protection.
Collapse
Affiliation(s)
- Cuili Xing
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Jiangnan Chang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Min Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Lin Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China.
| | - Mingxue Li
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China.
| |
Collapse
|
11
|
Fluorine-18 Fluorodeoxyglucose Isolation Using Graphene Oxide for Alternative Radiopharmaceutical Spillage Decontamination in PET Scan. SUSTAINABILITY 2022. [DOI: 10.3390/su14084492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiopharmaceuticals (RPC) used for diagnostic and therapeutic purposes in nuclear medicine may contaminate surface areas due to spillage during its preparation or accident during RPC transfer from laboratory to the treatment room. Fluorine-18 Fluorodeoxyglucose (18F-FDG) is the most common RPC for positron emission tomography (PET) scan in nuclear medicine due to its ideal annihilation converted energy at 511 keV and short half-life at 109.8 min. Ineffective medical waste management of 18F-FDG may pose a risk to the environment or cause unnecessary radiation doses to the personnel and public. Depending on the incident rate of these events, simple decontamination methods such as the use of chemicals and swabs might not be cost-effective and sustainable in the environment. This study aims to propose an alternative method to decontaminate 18F-FDG by using graphene oxide (GO). GO was synthesised using the Hummers method while the physical morphology was analysed using a field emission scanning electron microscope (FESEM). 18F-FDG adsorption efficiency rate using GO nanolayers was analysed based on the kinetic study of the GO:18F-FDG mixtures. The chemical adsorbability of the material was analysed via UV–vis spectrophotometer to interlink the microstructures of GO with the sorption affinity interaction. Resultantly, the adsorption rate was effective at a slow decay rate and the optical adsorption of GO with 18F-FDG was dominated by the π → π* plasmon peak, which was near 230 nm. By elucidating the underlining GO special features, an alternative technique to isolate 18F-FDG for the decontamination process was successfully proven.
Collapse
|
12
|
Titanium carbide MXene-based hybrid hydrogel for chemo-photothermal combinational treatment of localized bacterial infection. Acta Biomater 2022; 142:113-123. [PMID: 35189382 DOI: 10.1016/j.actbio.2022.02.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022]
Abstract
With the increased emergence and threat of multi-drug resistant microorganisms, MXenes have become not only an emerging class of two-dimensional functional nanomaterials, but also potential nanomedicines (i.e., antimicrobial agents) that deserve further exploration. Very recently, Ti3C2 MXene was observed to offer a unique membrane-disruption effect and superior light-to-heat conversion efficiency, but its antibacterial property remains unsatisfactory due to poor MXene-bacteria interactions, low photothermal therapy efficiency, and occurrence of bacterial rebound in vivo. Herein, the cationic antibiotic ciprofloxacin (Cip) is combined with Ti3C2 MXene, and a hybrid hydrogel was constructed by incorporating Cip-Ti3C2 nanocomposites into the network structure of a Cip-loaded hydrogels to effectively trap and kill bacteria. We found that the Cip-Ti3C2 nanocomposites achieved an impressive in vitro bactericidal efficiency of >99.99999% (7.03 log10) for the inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by combining chemotherapy with photothermal therapy. In an MRSA-induced murine abscess model, the hybrid hydrogel simultaneously achieved high-efficiency sterilization and long-term inhibition effects, avoiding the rebound of bacteria after photothermal therapy, and thus maximized the in vivo therapeutic efficacy of Ti3C2 MXene-based systems. Overall, this work provides a strategy for efficiently combating localized bacterial infection by rationally designing MXene-based hybrid hydrogels. STATEMENT OF SIGNIFICANCE: Two-dimensional Ti3C2 MXene was recently regarded as a promising functional nanomaterial, however, its antibacterial applications are limited by the poor MXene-bacteria interactions, low photothermal therapy efficiency, and the occurrence of bacterial rebound in vivo. This work aims to construct a Ti3C2 MXene-based hybrid hydrogel for chemo-photothermal therapy and enhance the antimicrobial performance via a combination of the high-efficiency sterilization of ciprofloxacin-Ti3C2 nanocomposites with the long-term inhibition effect of ciprofloxacin hydrogel. The present study provides an example of efficient MXene-based antimicrobials to treat localized bacterial infection such as methicillin-resistant Staphylococcus aureus (MRSA)-induced skin abscess.
Collapse
|
13
|
Cheng C, Liang Q, Yan M, Liu Z, He Q, Wu T, Luo S, Pan Y, Zhao C, Liu Y. Advances in preparation, mechanism and applications of graphene quantum dots/semiconductor composite photocatalysts: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127721. [PMID: 34865907 DOI: 10.1016/j.jhazmat.2021.127721] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Due to the low efficiency of single-component nano materials, there are more and more studies on high-efficiency composites. As zero dimensional (0D) non-metallic semiconductor material, the emergence of graphene quantum dots (GQDs) overcomes the shortcomings of traditional photocatalysts (rapid rate of electron-hole recombination and narrow range of optical response). Their uniqueness is that they can combine the advantages of quantum dots (rich functional groups at edge) and sp2 carbon materials (large specific surface area). The inherent inert carbon stabilizes chemical and physical properties, and brings new breakthroughs to the development of benchmark photocatalysts. The photocatalytic efficiency of GQDs composite with semiconductor materials (SCs) can be improved by the following three points: (1) accelerating charge transfer, (2) extending light absorption range, (3) increasing active sites. The methods of preparation (bottom-up and top-down), types of heterojunctions, mechanisms of photocatalysis, and applications of GQDs/SCs (wastewater treatment, energy storage, gas sensing, UV detection, antibiosis and biomedicine) are comprehensively discussed. And it is hoped that this review can provide some guidance for the future research on of GQDs/SCs on photocatalysis.
Collapse
Affiliation(s)
- Chunyu Cheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qingyun He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ting Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Songhao Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yuan Pan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chenhui Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
14
|
He Y, Fan D, Chen J, Zhao J, Kong M, Lv Y, Huang Y, Li G. Multiple stabilization roles of thermally reduced graphene oxide for both thermo‐ and photo‐oxidation of polypropylene: deter, delay, and defend. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yusong He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China Sichuan University Chengdu China
| | - Daiqi Fan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China Sichuan University Chengdu China
| | - Jiaxing Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China Sichuan University Chengdu China
| | - Jincan Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China Sichuan University Chengdu China
| | - Miqiu Kong
- School of Aeronautics and Astronautics, State Key Laboratory of Polymer Materials Engineering of China Sichuan University Chengdu China
| | - Yadong Lv
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China Sichuan University Chengdu China
| | - Yajiang Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China Sichuan University Chengdu China
| | - Guangxian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China Sichuan University Chengdu China
| |
Collapse
|
15
|
Hu XL, Shang Y, Yan KC, Sedgwick AC, Gan HQ, Chen GR, He XP, James TD, Chen D. Low-dimensional nanomaterials for antibacterial applications. J Mater Chem B 2021; 9:3640-3661. [PMID: 33870985 DOI: 10.1039/d1tb00033k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The excessive use of antibiotics has led to a rise in drug-resistant bacteria. These "superbugs" are continuously emerging and becoming increasingly harder to treat. As a result, new and effective treatment protocols that have minimal risks of generating drug-resistant bacteria are urgently required. Advanced nanomaterials are particularly promising due to their drug loading/releasing capabilities combined with their potential photodynamic/photothermal therapeutic properties. In this review, 0-dimensional, 1-dimensional, 2-dimensional, and 3-dimensional nanomaterial-based systems are comprehensively discussed for bacterial-based diagnostic and treatment applications. Since the use of these platforms as antibacterials is relatively new, this review will provide appropriate insight into their construction and applications. As such, we hope this review will inspire researchers to explore antibacterial-based nanomaterials with the aim of developing systems for clinical applications.
Collapse
Affiliation(s)
- Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Ying Shang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Kai-Cheng Yan
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA
| | - Hui-Qi Gan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK. and School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China.
| |
Collapse
|
16
|
Manoj D, Saravanan R, Ponce LC. Recent Strategies on Hybrid Inorganic-Graphene Materials for Enhancing the Electrocatalytic Activity Towards Heavy Metal Detection. Top Catal 2021. [DOI: 10.1007/s11244-021-01475-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Li X, Sun S, Guo S, Hu X. Identifying the Phytotoxicity and Defense Mechanisms Associated with Graphene-Based Nanomaterials by Integrating Multiomics and Regular Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9938-9948. [PMID: 34232619 DOI: 10.1021/acs.est.0c08493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The application of graphene-based nanomaterials (GBNs) has attracted global attention in various fields, and understanding defense mechanisms against the phytotoxicity of GBNs is crucial for assessing their environmental risks and safe-by-design. However, the related information is lacking, especially for edible vegetable crops. In the present study, GBNs (0.25, 2.5, and 25 mg/kg plant fresh weight) were injected into the stems of pepper plants. The results showed that the plant defense was regulated by reducing the calcium content by 21.7-48.3%, intercellular CO2 concentration by 12.0-35.2%, transpiration rate by 8.7-40.2%, and stomatal conductance by 16.9-50.5%. The defense pathways of plants in response to stress were further verified by the downregulation of endocytosis and transmembrane transport proteins, leading to a decrease in the nanomaterial uptake. The phytohormone gibberellin and abscisic acid receptor PYL8 were upregulated, indicating the activation of defense systems. However, reduced graphene oxide and graphene oxide quantum dots trigger stronger oxidative stress (e.g., H2O2 and malondialdehyde) than graphene oxide in fruits due to the breakdown of antioxidant defense systems (e.g., cytochrome P450 86A22 and P450 77A1). Both nontargeted proteomics and metabolomics consistently demonstrated that the downregulation of carbohydrate and upregulation of amino acid metabolism were the main mechanisms underlying the phytotoxicity and defense mechanisms, respectively.
Collapse
Affiliation(s)
- Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Shan Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuqing Guo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
18
|
Babutan I, Lucaci AD, Botiz I. Antimicrobial Polymeric Structures Assembled on Surfaces. Polymers (Basel) 2021; 13:1552. [PMID: 34066135 PMCID: PMC8150949 DOI: 10.3390/polym13101552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pathogenic microbes are the main cause of various undesired infections in living organisms, including humans. Most of these infections are favored in hospital environments where humans are being treated with antibiotics and where some microbes succeed in developing resistance to such drugs. As a consequence, our society is currently researching for alternative, yet more efficient antimicrobial solutions. Certain natural and synthetic polymers are versatile materials that have already proved themselves to be highly suitable for the development of the next-generation of antimicrobial systems that can efficiently prevent and kill microbes in various environments. Here, we discuss the latest developments of polymeric structures, exhibiting (reinforced) antimicrobial attributes that can be assembled on surfaces and coatings either from synthetic polymers displaying antiadhesive and/or antimicrobial properties or from blends and nanocomposites based on such polymers.
Collapse
Affiliation(s)
- Iulia Babutan
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 42 Treboniu Laurian Str., 400271 Cluj-Napoca, Romania;
- Faculty of Physics, Babeș-Bolyai University, 1 M. Kogălniceanu Str., 400084 Cluj-Napoca, Romania
| | - Alexandra-Delia Lucaci
- George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 38 Gheorghe Marinescu Str., 540142 Târgu Mureș, Romania;
| | - Ioan Botiz
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 42 Treboniu Laurian Str., 400271 Cluj-Napoca, Romania;
| |
Collapse
|
19
|
Miri A, Beiki H, Najafidoust A, Khatami M, Sarani M. Cerium oxide nanoparticles: green synthesis using Banana peel, cytotoxic effect, UV protection and their photocatalytic activity. Bioprocess Biosyst Eng 2021; 44:1891-1899. [PMID: 33891183 DOI: 10.1007/s00449-021-02569-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/06/2021] [Indexed: 11/25/2022]
Abstract
Nanomaterials, as an active ingredient, have been widely deployed in various science and technological applications with zinc and titanium oxides nanoparticles being commonly applied in sunscreens. On similar lines, cerium oxide nanoparticles (CeO2-NPs) were synthesized using Musa sapientum peel extract, to investigate its cytotoxic effects, UV protection and photocatalytic activity. The synthesized nanoparticles were identified through Raman, Powder X-ray Diffraction (PXRD), Fourier-Transform Infrared spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FESEM) and Energy-Dispersive Spectroscopy (EDX). FESEM results showed that the size of synthesized nanoparticles is in the range 4-13 nm. Their cytotoxic activity revealed a non-toxic behavior in concentrations below 500 μg/mL on lung (A549) cell lines. The Sun protection factor (SPF) was estimated approximately ~ 40 for synthesized CeO2-NPs. The survey of photocatalytic activity showed that synthesized nanoparticles can remove 81.7% of AO7 in 180 min under visible light.
Collapse
Affiliation(s)
- Abdolhossein Miri
- Department of Pharmacognosy, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Honeyeh Beiki
- Department of Pharmacognosy, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Ahmad Najafidoust
- Department of Chemical Engineering, Sahand University of Technology, Tabriz, Iran.,Expert On Organic Micro-Pollutants in Water and Wastewater Company of East Azerbaijan Province, Tabriz, Iran
| | - Mehrdad Khatami
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Mina Sarani
- Toxicology and Addiction Research Center, Zabol University of Medical Sciences, Zabol, Iran.
| |
Collapse
|
20
|
Efficient removal of U(VI) from aqueous solutions via an activated 3D framework carbon. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-020-07541-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Heng S, Li L, Li W, Li H, Pang J, Zhang M, Bai Y, Dang D. Enhanced Photocatalytic Hydrogen Production of the Polyoxoniobate Modified with RGO and PPy. NANOMATERIALS 2020; 10:nano10122449. [PMID: 33297596 PMCID: PMC7762403 DOI: 10.3390/nano10122449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 12/02/2022]
Abstract
The development of high-efficiency, recyclable, and inexpensive photocatalysts for water splitting for hydrogen production is of great significance to the application of solar energy. Herein, a series of graphene-decorated polyoxoniobate photocatalysts Nb6/PPy-RGO (Nb6 = K7HNb6O19, RGO = reduced graphene oxide, PPy = polypyrrole), with the bridging effect of polypyrrole were prepared through a simple one-step solvothermal method, which is the first example of polyoxoniobate-graphene-based nanocomposites. The as-fabricated photocatalyst showed a photocatalytic H2 evolution activity without any co-catalyst. The rate of 1038 µmol g−1 in 5 h under optimal condition is almost 43 times higher than that of pure K7HNb6O19·13H2O. The influencing factors for photocatalysts in photocatalytic hydrogen production under simulated sunlight were studied in detail and the feasible mechanism is presented in this paper. These results demonstrate that Nb6O19 acts as the main catalyst and electron donor, RGO provides active sites, and PPy acted as an electronic bridge to extend the lifetime of photo-generated carriers, which are crucial factors for photocatalytic H2 production.
Collapse
Affiliation(s)
- Shiliang Heng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; (S.H.); (L.L.); (W.L.); (H.L.); (J.P.); (M.Z.)
| | - Lei Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; (S.H.); (L.L.); (W.L.); (H.L.); (J.P.); (M.Z.)
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455002, China
| | - Weiwei Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; (S.H.); (L.L.); (W.L.); (H.L.); (J.P.); (M.Z.)
| | - Haiyan Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; (S.H.); (L.L.); (W.L.); (H.L.); (J.P.); (M.Z.)
| | - Jingyu Pang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; (S.H.); (L.L.); (W.L.); (H.L.); (J.P.); (M.Z.)
| | - Mengzhen Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; (S.H.); (L.L.); (W.L.); (H.L.); (J.P.); (M.Z.)
| | - Yan Bai
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; (S.H.); (L.L.); (W.L.); (H.L.); (J.P.); (M.Z.)
- Correspondence: (Y.B.); (D.D.)
| | - Dongbin Dang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; (S.H.); (L.L.); (W.L.); (H.L.); (J.P.); (M.Z.)
- Correspondence: (Y.B.); (D.D.)
| |
Collapse
|
22
|
Zhang X, Chen Q, Wei R, Jin L, He C, Zhao W, Zhao C. Design of poly ionic liquids modified cotton fabric with ion species-triggered bidirectional oil-water separation performance. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123163. [PMID: 32569985 DOI: 10.1016/j.jhazmat.2020.123163] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 05/16/2023]
Abstract
A novel ion species-responsive oil-water separation material was designed: poly ionic liquid (PIL) was carried on the graphene oxide (GO) by free radical polymerization, then the PIL modified GO sheets (GO-PIL) were coated on cotton fabric (CF). The wettability of the obtained GO-PIL coated CF (GO-PIL@CF) could be switched between hydrophilic and hydrophobic state with the exchange of different types of counteranions. Water contact angle of the GO-PIL@CF could be switched between 0 to about 145°; and correspondingly the underwater oil contact angle would change between about 148 to 0°. Because of the switchable wettability, the GO-PIL@CF could selectively separate water or oil from the oil-water mixtures. Meanwhile, due to the loose fibrous structure, the GO-PIL@CF showed relatively high permeate fluxes; in the hydrophilic state the water flux was about 36000 L/m2h, while in the hydrophobic state the fluxes for the low-density oils (n-hexane and toluene) were about 59,000 and 65000 L/m2h, respectively. Consequently, the separation processes could be completed simply by gravity. In addition, because of the soft and flexible mechanical property, the GO-PIL@CF could serve as wrappage of traditional absorbents and be applied directly as absorbent to remove water or oil selectively from their mixtures.
Collapse
Affiliation(s)
- Xiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China; Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesser Str. 18, Karlsruhe, 76131, Germany
| | - Qin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Ran Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Lunqiang Jin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, People's Republic of China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.
| |
Collapse
|
23
|
Peña NO, Ihiawakrim D, Ball V, Stanescu S, Rastei M, Sanchez C, Portehault D, Ersen O. Correlative Microscopy Insight on Electrodeposited Ultrathin Graphite Oxide Films. J Phys Chem Lett 2020; 11:9117-9122. [PMID: 33147972 DOI: 10.1021/acs.jpclett.0c02482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here, we present a correlative microscopic analysis of electrodeposited films from catechol solutions in aqueous electrolytes. The films were prepared in a miniaturized electrochemical cell and were analyzed by identical location transmission electron microscopy, scanning transmission X-ray microscopy, and atomic force microscopy. Thanks to this combined approach, we have shown that the electrodeposited films are constituted of ultrathin graphite oxide nanosheets. Detailed information about the electronic structure of the films was obtained by X-ray absorption near edge structure spectroscopy. These results show the large potential of soft electrochemical conditions for the bottom-up production of ultrathin graphite oxide nanosheet films via a one-pot green chemistry approach from simple organic building blocks.
Collapse
Affiliation(s)
- Nathaly Ortiz Peña
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess, BP 43 Strasbourg Cedex 2, France
| | - Dris Ihiawakrim
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess, BP 43 Strasbourg Cedex 2, France
| | - Vincent Ball
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000 Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale, Unité mixte de Recherche 1121, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Stefan Stanescu
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, Gif-sur-Yvette 91192, France
| | - Mircea Rastei
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess, BP 43 Strasbourg Cedex 2, France
| | - Clément Sanchez
- Sorbonne Université, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris, 4 Place de Jussieu, 75005 Paris, France
- University of Strasbourg Institute for Advanced Studies (USIAS), 5 allée du Général Rouvillois, 67083 Strasbourg, France
| | - David Portehault
- Sorbonne Université, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris, 4 Place de Jussieu, 75005 Paris, France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess, BP 43 Strasbourg Cedex 2, France
| |
Collapse
|
24
|
Yousaf Z, Sajjad S, Ahmed Khan Leghari S, Mehboob M, Kanwal A, Uzair B. Interfacial charge transfer via 2D-NiO and 2D-graphene nanosheets combination for significant visible photocatalysis. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Lei H, Zhou D, Tang J, Hu X, Pan N, Zou H, Chi F, Wang X. Epoxy graphene oxide from a simple photo-Fenton reaction and its hybrid with phytic acid for enhancing U(VI) capture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:140316. [PMID: 32806358 DOI: 10.1016/j.scitotenv.2020.140316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
A novel approach to synthesize phytic acid (PA) functionalized graphene oxide (P-pFGO-7) treated by the photo-Fenton reaction has been designed, which has been used as an adsorbent for efficient capture of U(VI) from aqueous solution. The structure and morphology of P-pFGO-7 were characterized well. The adsorption property for P-pFGO-7 was comprehensively assessed by batch experiments, showing the high adsorption capacity (266.7 mg/g, at pH = 4.0, T = 298 K), fast adsorption kinetics (~10 min), good selectivity for U(VI) and Ln-An ions in various coexisting ions and excellent regeneration capacity. With the assistance of various characterization techniques and batch adsorption results, it is found that PA makes the most contribution to coordinate U(VI) heavily depending on the PO moiety. P-pFGO-7 could be regenerated by 0.1 mol/L Na2CO3 with ~95% desorption efficiency and reused well after five recycles. This present work provides a feasible route to modify graphene oxide and extend PA for potentially practical application in the removal of U(VI) from radioactive wastewater.
Collapse
Affiliation(s)
- Hao Lei
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China; National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Daohui Zhou
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China; National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jiao Tang
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China; National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaoping Hu
- School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ning Pan
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China; National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Hao Zou
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China; National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Fangting Chi
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China; National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaoqiang Wang
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China; National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
26
|
Superior nanofiltration membranes with gradient cross-linked selective layer fabricated via controlled hydrolysis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118067] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Komal R, Uzair B, Sajjad S, Butt S, Kanwal A, Ahmed I, Riaz N, Leghari SAK, Abbas S. Skirmishing MDR strain of Candida albicans by effective antifungal CeO 2 nanostructures using Aspergillus terreus and Talaromyces purpurogenus. MATERIALS RESEARCH EXPRESS 2020; 7:055004. [DOI: 10.1088/2053-1591/ab8ba2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Abstract
Emerging antibiotics resistance fungal infectionsis a major global health problem and new antifungal formulations are direly needed to fight drug resistant Candida albicans strains. This study is aimed to synthesize effective antifungal nanostructures of cerium oxide (CeO2) using culture filtrates of two common fungal strains Aspergillus terreus and Talaromyces pupureogenus. The fungal strains used in the synthesis were identified by 18S rRNA gene sequencing and deposited to NCBI GenBank with the accession number of MN099077 and MN121629, respectively. The biofabricated CeO2 NPs were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Pure CeO2 nanoparticles (NPs) synthesized using Aspergillus terreus culture filtrate were depicted spherical morphology with average size of 28.5 nm. The CeO2NPs synthesized using Talaromyces pupureogenus revealed the presence of nanosponges with average size of 21.4 nm. Gas chromatography mass spectrometry of culture filtrates of respective strains indicated the presence of ethanol, 1-propanol and tri-chloromethane in culture filtrate of Aspergillus terreus and with addition of palmitic acid in Talaromyces pupureogenus culture filtrate which may have a function as bio reducers and capping agents. Dose dependent anticandidal activity of CeO2 NPs using various different concentrations (100, 200, 300, 600 μg ml−1) synthesized by both fungal strains was observed by disc diffusion assay against Candida albicansas evidenced by increase in size of zone of inhibitions with increasing concentration of CeO2NPs. Further in-vitro and in-vivo experiments are required to access the potential of CeO2 NPs for controlling Candida albicans strains.
Collapse
|
28
|
Pedrosa M, Da Silva ES, Pastrana-Martínez LM, Drazic G, Falaras P, Faria JL, Figueiredo JL, Silva AMT. Hummers' and Brodie's graphene oxides as photocatalysts for phenol degradation. J Colloid Interface Sci 2020; 567:243-255. [PMID: 32062085 DOI: 10.1016/j.jcis.2020.01.093] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/11/2022]
Abstract
Undoped metal-free graphene oxide (GO) materials prepared by either a modified Hummers' (GO-H) or a Brodie's (GO-B) method were tested as photocatalysts in aqueous solution for the oxidative conversion of phenol. In the dark, the adsorptive capacity of GO-B towards phenol (~35%) was higher than that of GO-H (~15%). Upon near-UV/Vis irradiation, GO-H was able to remove 21% of phenol after 180 min, mostly through adsorption. On the other hand, by using less energetic visible irradiation, GO-B removed as much as 95% in just 90 min. By thorough characterization of the prepared materials (SEM, HRTEM, TGA, TPD, Raman, XRD, XPS and photoluminescence) the observed performances could be explained in terms of their different surface chemistries. The GO-B presents the lower concentration of oxygen functional groups (in particular carbonyl groups as revealed by XPS) and it has a considerably higher photocatalytic activity compared to GO-H. Photoluminescence (PL) of liquid dispersions and XRD analysis of powders showed lower PL intensity and smaller interlayer distance for GO-B relative to GO-H, respectively: this suggests lower electron-hole recombination and enhanced electron transfer in GO-B, in support of its boosted photocatalytic activity. Reusability tests showed no efficiency loss after a second usage cycle and over three runs under visible irradiation, which was in line with the similarity of the XPS spectra of the fresh and used GO-B materials. Moreover, scavenging studies revealed that holes and hydroxyl radicals were the main reactive species in play during the photocatalytic process. The obtained results, establish for the first time, that GO prepared by Brodie's method is an active and stable undoped metal-free photocatalyst for phenol degradation in aqueous solutions, opening new paths for the application of more sustainable and metal-free materials for water treatment solutions.
Collapse
Affiliation(s)
- Marta Pedrosa
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Eliana S Da Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luisa M Pastrana-Martínez
- Carbon Materials Research Group, Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain
| | - Goran Drazic
- Department for Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Polycarpos Falaras
- National Centre for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, 15341, Agia Paraskevi Attikis, Athens, Greece
| | - Joaquim L Faria
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - José L Figueiredo
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
29
|
Yao N, Li C, Yu J, Xu Q, Wei S, Tian Z, Yang Z, Yang W, Shen J. Insight into adsorption of combined antibiotic-heavy metal contaminants on graphene oxide in water. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116278] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Ghaemmaghami M, Yamini Y, Mousavi KZ. Accordion-like Ti3C2Tx MXene nanosheets as a high-performance solid phase microextraction adsorbent for determination of polycyclic aromatic hydrocarbons using GC-MS. Mikrochim Acta 2020; 187:151. [DOI: 10.1007/s00604-020-4123-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/12/2020] [Indexed: 02/07/2023]
|
31
|
Jamila GS, Sajjad S, Leghari SAK, Li Y. Pivotal role of N and Bi doping in CQD/Mn3O4 composite structure with outstanding visible photoactivity. NEW J CHEM 2020. [DOI: 10.1039/d0nj01457e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The roles of N and Bi doped CQDs have been checked. N-doping resulted in exclusive optical and electronic properties in the CQDs while preserving their intrinsic properties such as quantum size effect, surface area and compatibility.
Collapse
Affiliation(s)
- Ghulam Sughra Jamila
- Faculty of Basic and Applied Sciences
- International Islamic University
- H-10 Islamabad
- Pakistan
| | - Shamaila Sajjad
- Faculty of Basic and Applied Sciences
- International Islamic University
- H-10 Islamabad
- Pakistan
| | | | - Yongdan Li
- Department of Chemical and Metallurgical Engineering
- School of Chemical Engineering University of Aalto
- Finland
| |
Collapse
|
32
|
Sajjad S, Arshad F, Uzair B, Leghari SAK, Noor S, Maaza M. GO/Ag
2
O Composite Nanostructure as an Effective Antibacterial Agent. ChemistrySelect 2019. [DOI: 10.1002/slct.201902641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Farwa Arshad
- International Islamic University, H-10 Islamabad Pakistan
| | - Bushra Uzair
- International Islamic University, H-10 Islamabad Pakistan
| | | | - Saima Noor
- International Islamic University, H-10 Islamabad Pakistan
| | - Malik Maaza
- UNESCO UNISA Africa Chair in Nano-sciences & Nano-technology South Africa
| |
Collapse
|
33
|
Processes associated with ionic current rectification at a 2D-titanate nanosheet deposit on a microhole poly(ethylene terephthalate) substrate. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04199-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Black Phosphorus Cytotoxicity Assessments Pitfalls: Advantages and Disadvantages of Metabolic and Morphological Assays. Chemistry 2018; 25:349-360. [DOI: 10.1002/chem.201804434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Indexed: 02/06/2023]
|