1
|
Xu G, Lu Y, Zhou X, Moloto N, Liu J, Kure-Chu SZ, Hihara T, Zhang W, Sun Z. Thermochromic hydrogel-based energy efficient smart windows: fabrication, mechanisms, and advancements. MATERIALS HORIZONS 2024; 11:4867-4884. [PMID: 39324863 DOI: 10.1039/d4mh00903g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Thermochromic smart windows are regarded as highly cost-effective and easily implementable strategies with zero energy input among the smart window technologies. They possess the capability to spontaneously adjust between transparent and opaque states according to the ambient temperatures, which is essential for energy-efficient buildings. Recently, thermochromic smart windows based on hydrogels with various chromic mechanisms have emerged to meet the increasing demand for energy-saving smart windows. This review provides an overview of recent advancements in hydrogel-based thermochromic smart windows, focusing on fabrication strategies, chromic mechanisms, and improvements in responsiveness, stability and energy-saving performance. Key developments include dual-responsiveness, tunable critical transition temperatures, freezing resistance, and integrations with radiative cooling/power generation technologies. Finally, we also offer a perspective on the future development of thermochromic smart windows utilizing hydrogels. We hope that this review will enhance the understanding of the chromic mechanism of thermochromic hydrogels, and bring new insights and inspirations on the further design and development of thermochromic hydrogels and derived smart windows.
Collapse
Affiliation(s)
- Gang Xu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Yucan Lu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Xinguantong Zhou
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Nosipho Moloto
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits2050, Johannesburg 2000, South Africa
| | - Jiacheng Liu
- Department of Materials Function and Design, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Song-Zhu Kure-Chu
- Department of Materials Function and Design, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Takehiko Hihara
- Department of Materials Function and Design, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Wei Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - ZhengMing Sun
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
2
|
Guan H, Lu Y, You Y, Gao S, Liu L, Wu G. Toughness and Thermoresponsive Hydrogel for Sandwich Smart Window with Adaptive Solar Modulation and Energy Saving. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52997-53006. [PMID: 39314179 DOI: 10.1021/acsami.4c13133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Thermochromic hydrogels with self-regulating solar transmittance are gaining increasing attention due to their significant potential in the fields of smart windows and energy conservation. Smart windows incorporating viscosity-tough hydrogels as an interlayer exhibit enhanced advantages in resisting external forces. In this study, a tough and thermoresponsive composite hydrogel was developed by incorporating poly(N-isopropylacrylamide) nanoparticles (PNIPAM NPs) and W-doped VO2 into a polyacrylamide-agar (PAM-Agar) double network hydrogel. Upon solar irradiation, thermochromism of PNIPAM NPs could regulate the visible light transmittance of the composite hydrogel and the photothermal effect of W-VO2 contributes to the optical regulation and NIR shielding. The smart window, with the composite hydrogel as an interlayer, demonstrates excellent optical modulation capabilities, with a luminous transmittance (Tum(20 °C)) of 86.81%, high light modulation (ΔTum = 78.89%), a high solar modulation (Tsol) of 83.59%, and a lower critical solution temperature (LCST) of 32.6 °C. The composite hydrogel's superior toughness (0.215 MJ/m3) also enhances the impact resistance of the smart window glass. Additionally, the adhesion between the hydrogel and the glass, with a maximum peeling force of up to 151 N/m (attributed to interactions between the amide groups and the silicon hydroxyl groups), was confirmed through a falling ball experiment. Moreover, the hydrogel exhibits a certain degree of thermal insulation, further promoting its utility in energy-saving applications. In conclusion, this study highlights the significant potential of such composite hydrogels in the development of smart windows for energy-efficient buildings.
Collapse
Affiliation(s)
- Huijie Guan
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Yinghan Lu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Yijiang You
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Shengxiang Gao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Li Liu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Guangfeng Wu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
3
|
Ariati R, Souza A, Souza M, Zille A, Soares D, Lima R, Ribeiro J. Mechanical and optical properties assessment of an innovative PDMS/beeswax composite for a wide range of applications. J Mech Behav Biomed Mater 2024; 160:106716. [PMID: 39288665 DOI: 10.1016/j.jmbbm.2024.106716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 09/20/2024]
Abstract
Polydimethylsiloxane (PDMS) is an elastomer that has received primary attention from researchers due to its excellent physical, chemical, and thermal properties, together with biocompatibility and high flexibility properties. Another material that has been receiving attention is beeswax because it is a natural raw material, extremely ductile, and biodegradable, with peculiar hydrophobic properties. These materials are applied in hydrophobic coatings, clear films for foods, and films with controllable transparency. However, there is no study with a wide range of mechanical, optical, and wettability tests, and with various proportions of beeswax reported to date. Thus, we report an experimental study of these properties of pure PDMS with the addition of beeswax and manufactured in a multifunctional vacuum chamber. In this study, we report in a tensile test a 37% increase in deformation of a sample containing 1% beeswax (BW1%) when compared to pure PDMS (BW0%). The Shore A hardness test revealed a 27% increase in the BW8% sample compared to BW0%. In the optical test, the samples were subjected to a temperature of 80 °C and the BW1% sample increased 30% in transmittance when compared to room temperature making it as transparent as BW0% in the visible region. The thermogravimetric analysis showed thermal stability of the BW8% composite up to a temperature of 200 °C. The dynamic mechanical analysis test revealed a 100% increase in the storage modulus of the BW8% composite. Finally, in the wettability test, the composite BW8% presented a contact angle with water of 145°. As a result of this wide range of tests, it is possible to increase the hydrophobic properties of PDMS with beeswax and the composite has great potential for application in smart devices, food and medicines packaging films, and films with controllable transparency, water-repellent surfaces, and anti-corrosive coatings.
Collapse
Affiliation(s)
- Ronaldo Ariati
- Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Andrews Souza
- MEtRICs, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal; CMEMS - UMinho, Universidade Do Minho, 4800-058, Guimarães, Portugal; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Maria Souza
- MEtRICs, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal
| | - Andrea Zille
- 2C2T - Centre for Textile Science and Technology, University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal
| | - Delfim Soares
- CMEMS - UMinho, Universidade Do Minho, 4800-058, Guimarães, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui Lima
- MEtRICs, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal; CEFT, Faculdade de Engenharia da Universidade Do Porto (FEUP), Rua Roberto Frias, 4200-465, Porto, Portugal; ALiCE, Faculty of Engineering, University of Porto, Porto, Portugal
| | - João Ribeiro
- Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| |
Collapse
|
4
|
Gao Y, Li K, Ren X, Gao G. Thermochromic Hydrogels with Opaque-Transparent Gradient Transition for Switchable Window and Temperature Monitor. Chemistry 2024; 30:e202302147. [PMID: 37584162 DOI: 10.1002/chem.202302147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
In recent years, the thermochromic hydrogel was acted as suitable sandwiching material to adjust light transmission. However, to accurately control the thermochromic temperature in a wide range still was a significant challenge. Here, a simple method was explored to prepare hydrogels with gradient opaque-transparent transition thermochromic temperature from 5 °C to 53 °C, which was regulated by the aggregation state of sodium dodecyl sulfate micelles by adding potassium tartrate hemihydrate and cations. Using Li+ , Na+ , and K+ as cations, the accuracy was controlled at 1 °C. Moreover, the transmittance of the hydrogel was not changed when the thermochromic temperature was adjusted. As a result, an intelligent window was fabricated by utilizing thermochromic hydrogel as a sandwiching layer into the outer glass layers, which could effectively and stably regulate the visible and infrared light. The temperature monitors/detectors were also designed, which showed excellent temperature monitoring/detecting ability. Therefore, this low-cost, high-efficient, large-scale prepared thermochromic hydrogel provided more potential for intelligent temperature devices.
Collapse
Affiliation(s)
- Yang Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Kunming Li
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Xiuyan Ren
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| |
Collapse
|
5
|
Xiao Y, Lu C, Yu Z, Lian Y, Ma Y, Chen Z, Jiang X, Zhang Y. Transparent, High Stretchable, Environmental Tolerance, and Excellent Sensitivity Hydrogel for Flexible Sensors and Capacitive Pens. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44280-44293. [PMID: 37698302 DOI: 10.1021/acsami.3c08949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The prospect of ionic conductive hydrogels in multifunctional sensors has generated widespread scientific interest. The new generation of flexible materials should be combined with superior mechanical properties, high conductivity, transparency, sensitivity, good self-restoring fatigue properties, and other multifunctional characteristics, while the current materials are difficult to meet these requirements. Herein, we prepared poly(acrylamide-acrylic acid) (P(AM-AA))/gelatin/glycerol-Al3+ (PG1G2A) ionic conducting hydrogel by one-pot polymerization under UV light. The prepared PG1G2A ionic conductive hydrogel had high tensile strength (539.18 kPa), excellent tensile property (1412.96%), good fast self-recovery and fatigue resistance, high transparency (>80%), excellent moisturizing, and antifreezing/drying properties. In addition, the ionic conductive hydrogel-based strain sensor can respond to mechanical stimulation and generate accurate, stable, and recyclable electrical signals, with excellent sensitivity (GF 5.81). In addition, the PG1G2A hydrogel could be used as flexible wearable devices for monitoring multiple strain and subtle movements of different body parts at different temperatures. Interestingly, the PG1G2A hydrogel capacitive pen embedded in the mold can be used to write and draw on the screen of a phone or tablet. This new multifunctional ionic conducting hydrogel shows broad application prospects in E-skin, motion monitoring, and human-computer interaction in extreme environments.
Collapse
Affiliation(s)
- Yanwen Xiao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Chengcheng Lu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhenkun Yu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yue Lian
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yulin Ma
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhaoxia Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xueliang Jiang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yuhong Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
6
|
Li G, Chen J, Yan Z, Wang S, Ke Y, Luo W, Ma H, Guan J, Long Y. Physical crosslinked hydrogel-derived smart windows: anti-freezing and fast thermal responsive performance. MATERIALS HORIZONS 2023; 10:2004-2012. [PMID: 37000535 DOI: 10.1039/d3mh00057e] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Thermochromic hydrogels are versatile smart materials that have many applications, including in smart windows, sensing, camouflage, etc. The previous reports of hydrogel smart windows have been based on covalent crosslinking, requiring multistep processing, and complicated preparation. Moreover, most research studies focused on enhancing the luminous transmittance (Tlum) and modulating ability (ΔTsol), while the structural integrity and antifreezing ability, which are essential in practical applications, have been compromised and rarely investigated. Herein, we develop a new physical (noncovalent crosslinked) hydrogel-derived smart window by introducing an in situ free radical polymerization (FRP) of N-isopropylacrylamide (NIPAM) in a glycerol-water (GW) binary solvent system. The noncovalent crosslinked PNIPAM GW solutions are facilely synthesized, giving outstanding freezing tolerance (∼-18 °C), a comparably high Tlum of 90%, and ΔTsol of 60.8%, together with added advantages of fast response time (∼10 s) and good structural integrity before and after phase transition. This work could provide a new strategy to design and fabricate heat stimulated smart hydrogels not limited to energy saving smart windows.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiwei Chen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhaonan Yan
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China
| | - Shancheng Wang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yujie Ke
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Wei Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Huiru Ma
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Yi Long
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China.
| |
Collapse
|
7
|
Wang K, Chen G, Weng S, Hou L, Ye D, Jiang X. Thermo-Responsive Poly( N-isopropylacrylamide)/Hydroxypropylmethyl Cellulose Hydrogel with High Luminous Transmittance and Solar Modulation for Smart Windows. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4385-4397. [PMID: 36629280 DOI: 10.1021/acsami.2c15367] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Thermochromic smart windows are considered to be promising energy-saving devices for reducing energy consumption in buildings. The ideal materials for thermochromic smart windows should have high transmittance, high solar modulation, low phase-transition temperature, and excellent high-temperature thermal stability, which are difficult to achieve simultaneously. This work reports a simple one-step low-temperature polymerization method to prepare a thermo-responsive poly(N-isopropylacrylamide)/hydroxypropylmethyl cellulose (PNIPAM/HPMC) hydrogel achieving the above performances simultaneously. The low-temperature polymerization environment endowed the hydrogel with a high luminous transmittance (Tlum) of 90.82%. HPMC as a functional material effectively enhanced the mechanical properties and thermal stability of the hydrogel. Meanwhile, the PNIPAM/HPMC hydrogel showed a low phase-transition temperature (∼32 °C) and high solar modulation (ΔTsol = 81.52%), which proved that it is an ideal material for thermochromic smart windows. Moreover, a PNIPAM/HPMC smart window exhibited high light transmittance (T380-760 = 86.27%), excellent light modulation (ΔT365 = 74.27%, ΔT380-760 = 86.17%, and ΔT940 = 63.93%), good indoor temperature regulation ability and stability, which indicated that it was an attractive candidate for application in reducing energy consumption in buildings. This work also provides an option and direction for modifying PNIPAM-based thermochromic smart windows.
Collapse
Affiliation(s)
- Kai Wang
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362114, China
| | - Guoqi Chen
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Sen Weng
- Qingyuan Innovation Laboratory, Quanzhou 362114, China
| | - Linxi Hou
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362114, China
| | - Dezhan Ye
- State Key Laboratory of New Textile Materials & Advanced Processing Technologies, Wuhan Textile University, No. 1 Yangguang Avenue, Jiangxia District, Wuhan 430200, China
| | - Xiancai Jiang
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362114, China
| |
Collapse
|
8
|
Dai M, Zhao J, Zhang Y, Li H, Zhang L, Liu Y, Ye Z, Zhu S. Dual-Responsive Hydrogels with Three-Stage Optical Modulation for Smart Windows. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53314-53322. [PMID: 36382563 DOI: 10.1021/acsami.2c16319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since room temperature management consumes a large amount of building energy, thermochromic smart windows have been extensively used for temperature regulation and energy management. However, the development of the smart window is still limited by its simple thermochromic performance, unreasonable thermochromic temperature, and the lack of additional stimulation conditions. In this work, a dual-responsive hydrogel was developed by introducing sodium dodecyl sulfate (SDS) and sodium chloride into the cross-linking network of poly(N-isopropylacrylamide) (PNIPAM) and polyacrylamide (PAM) for energy-saving and privacy protection. By controlling the temperature from low (<15 °C) to medium (15-28 °C) to high (>28 °C), the dual-responsive hydrogel achieved a reversible three-stage transition of opaque-transparent-translucent. The hydrogel exhibited a satisfactory solar modulation ability (Tlum = 80.3%, ΔTsol,15-18°C = 72.9%, ΔTsol,18-35°C = 42.7%) and effective IR and UV shielding at high (or low) temperatures. Moreover, compared with traditional windows, smart windows made of dual-responsive hydrogels could offer better thermal insulation and heat preservation. The electrochromic properties of the dual-responsive hydrogel presented a facile strategy to meet the needs of different situations. The dual-responsive hydrogel features energy-saving, privacy protection, three-stage optical modulation, and multistimulus responsiveness, making it an ideal smart window candidate.
Collapse
Affiliation(s)
- Mingyun Dai
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, China
| | - Jian Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, China
| | - Yadong Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, China
| | - Haijun Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, China
| | - Leping Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, China
| | - Ying Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian116023, China
| | - Zhangying Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, China
| | - Songming Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
9
|
Facile Fabrication of Transparent and Opaque Albumin Methacryloyl Gels with Highly Improved Mechanical Properties and Controlled Pore Structures. Gels 2022; 8:gels8060367. [PMID: 35735711 PMCID: PMC9222780 DOI: 10.3390/gels8060367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
For porous protein scaffolds to be employed in tissue-engineered structures, the development of cost-effective, macroporous, and mechanically improved protein-based hydrogels, without compromising the original properties of native protein, is crucial. Here, we introduced a facile method of albumin methacryloyl transparent hydrogels and opaque cryogels with adjustable porosity and improved mechanical characteristics via controlling polymerization temperatures (room temperature and −80 °C). The structural, morphological, mechanical, and physical characteristics of both porous albumin methacryloyl biomaterials were investigated using FTIR, CD, SEM, XRD, compression tests, TGA, and swelling behavior. The biodegradation and biocompatibility of the various gels were also carefully examined. Albumin methacryloyl opaque cryogels outperformed their counterpart transparent hydrogels in terms of mechanical characteristics and interconnecting macropores. Both materials demonstrated high mineralization potential as well as good cell compatibility. The solvation and phase separation owing to ice crystal formation during polymerization are attributed to the transparency of hydrogels and opacity of cryogels, respectively, suggesting that two fully protein-based hydrogels could be used as visible detectors/sensors in medical devices or bone regeneration scaffolds in the future.
Collapse
|
10
|
Meng L, He J, Pan C. Research Progress on Hydrogel-Elastomer Adhesion. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2548. [PMID: 35407880 PMCID: PMC8999559 DOI: 10.3390/ma15072548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022]
Abstract
Hydrophilic hydrogels exhibit good mechanical properties and biocompatibility, whereas hydrophobic elastomers show excellent stability, mechanical firmness, and waterproofing in various environments. Hydrogel-elastomer hybrid material devices show varied application prospects in the field of bioelectronics. In this paper, the research progress in hydrogel-elastomer adhesion in recent years, including the hydrogel-elastomer adhesion mechanism, adhesion method, and applications in the bioelectronics field, is reviewed. Finally, the research status of adhesion between hydrogels and elastomers is presented.
Collapse
Affiliation(s)
- Lirong Meng
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China; (L.M.); (C.P.)
| | - Jiang He
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| | - Caofeng Pan
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China; (L.M.); (C.P.)
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Feng YQ, Lv ML, Yang M, Ma WX, Zhang G, Yu YZ, Wu YQ, Li HB, Liu DZ, Yang YS. Application of New Energy Thermochromic Composite Thermosensitive Materials of Smart Windows in Recent Years. Molecules 2022; 27:1638. [PMID: 35268739 PMCID: PMC8912046 DOI: 10.3390/molecules27051638] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Thermochromic smart windows technology can intelligently regulate indoor solar radiation by changing indoor light transmittance in response to thermal stimulation, thus reducing energy consumption of the building. In recent years, with the development of new energy-saving materials and the combination with practical technology, energy-saving smart windows technology has received more and more attention from scientific research. Based on the summary of thermochromic smart windows by Yi Long research groups, this review described the applications of thermal responsive organic materials in smart windows, including poly(N-isopropylacrylamide) (PNIPAm) hydrogels, hydroxypropyl cellulose (HPC) hydrogels, ionic liquids and liquid crystals. Besides, the mechanism of various organic materials and the properties of functional materials were also introduced. Finally, opportunities and challenges relating to thermochromic smart windows and prospects for future development are discussed.
Collapse
Affiliation(s)
- Yu-Qin Feng
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, School of Chemistry and Engineering, Wuhan Textile University, 1 Textile Road, Wuhan 430073, China; (Y.-Q.F.); (M.Y.); (W.-X.M.); (G.Z.); (Y.-Z.Y.); (Y.-Q.W.); (H.-B.L.)
| | - Mei-Ling Lv
- Department of Mechanical Electricity, Wuhan Instrument and Electronic Technical School, Wuhan 430074, China;
| | - Ming Yang
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, School of Chemistry and Engineering, Wuhan Textile University, 1 Textile Road, Wuhan 430073, China; (Y.-Q.F.); (M.Y.); (W.-X.M.); (G.Z.); (Y.-Z.Y.); (Y.-Q.W.); (H.-B.L.)
| | - Wen-Xia Ma
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, School of Chemistry and Engineering, Wuhan Textile University, 1 Textile Road, Wuhan 430073, China; (Y.-Q.F.); (M.Y.); (W.-X.M.); (G.Z.); (Y.-Z.Y.); (Y.-Q.W.); (H.-B.L.)
| | - Gang Zhang
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, School of Chemistry and Engineering, Wuhan Textile University, 1 Textile Road, Wuhan 430073, China; (Y.-Q.F.); (M.Y.); (W.-X.M.); (G.Z.); (Y.-Z.Y.); (Y.-Q.W.); (H.-B.L.)
| | - Yun-Zi Yu
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, School of Chemistry and Engineering, Wuhan Textile University, 1 Textile Road, Wuhan 430073, China; (Y.-Q.F.); (M.Y.); (W.-X.M.); (G.Z.); (Y.-Z.Y.); (Y.-Q.W.); (H.-B.L.)
| | - Ya-Qi Wu
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, School of Chemistry and Engineering, Wuhan Textile University, 1 Textile Road, Wuhan 430073, China; (Y.-Q.F.); (M.Y.); (W.-X.M.); (G.Z.); (Y.-Z.Y.); (Y.-Q.W.); (H.-B.L.)
| | - Hai-Bo Li
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, School of Chemistry and Engineering, Wuhan Textile University, 1 Textile Road, Wuhan 430073, China; (Y.-Q.F.); (M.Y.); (W.-X.M.); (G.Z.); (Y.-Z.Y.); (Y.-Q.W.); (H.-B.L.)
| | - De-Zheng Liu
- Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Yong-Sheng Yang
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, School of Chemistry and Engineering, Wuhan Textile University, 1 Textile Road, Wuhan 430073, China; (Y.-Q.F.); (M.Y.); (W.-X.M.); (G.Z.); (Y.-Z.Y.); (Y.-Q.W.); (H.-B.L.)
| |
Collapse
|
12
|
Precise control over tunable translucency and hysteresis of thermo-responsive hydrogel for customized smart windows. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Liu Y, Han Y, Huang Z, Qi P, Song A, Hao J. New focus of the cloud point/Krafft point of nonionic/cationic surfactants as thermochromic materials for smart windows. Chem Commun (Camb) 2022; 58:2814-2817. [DOI: 10.1039/d1cc06605f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A nonionic poly(oxyethylene) monoalkyl ether (C12(EO)6) and a cationic hexadecylpyridinium bromide (HPB) were used to achieve warm/cool transparency transition.
Collapse
Affiliation(s)
- Yihan Liu
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P. R. China
| | - Yanan Han
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P. R. China
| | - Zhaohui Huang
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P. R. China
| | - Ping Qi
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P. R. China
| | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P. R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
14
|
Wu Z, Rong L, Yang J, Wei Y, Tao K, Zhou Y, Yang BR, Xie X, Wu J. Ion-Conductive Hydrogel-Based Stretchable, Self-Healing, and Transparent NO 2 Sensor with High Sensitivity and Selectivity at Room Temperature. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104997. [PMID: 34672085 DOI: 10.1002/smll.202104997] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Indexed: 05/07/2023]
Abstract
Here stretchable, self-healable, and transparent gas sensors based on salt-infiltrated hydrogels for high-performance NO2 sensing in both anaerobic environment and air at room temperature, are reported. The salt-infiltrated hydrogel displays high sensitivity to NO2 (119.9%/ppm), short response and recovery time (29.8 and 41.0 s, respectively), good linearity, low theoretical limit of detection (LOD) of 86 ppt, high selectivity, stability, and conductivity. A new gas sensing mechanism based on redox reactions occurring at the electrode-hydrogel interface is proposed to understand the sensing behaviors. The gas sensing performance of hydrogel is greatly improved by incorporating calcium chloride (CaCl2 ) in the hydrogel via a facile salt-infiltration strategy, leading to a higher sensitivity (2.32 times) and much lower LOD (0.06 times). Notably, both the gas sensing ability, conductivity, and mechanical deformability of hydrogels are readily self-healable after cutting off and reconnection. Such large deformations as 100% strain do not deprive the gas sensing capability, but rather shorten the response and recovery time significantly. The CaCl2 -infiltrated hydrogel shows excellent selectivity of NO2 , with good immunity to the interference gases. These results indicate that the salt-infiltrated hydrogel has great potential for wearable electronics equipped with gas sensing capability in both anaerobic and aerobic environments.
Collapse
Affiliation(s)
- Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Limin Rong
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jinglan Yang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yaoming Wei
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Kai Tao
- The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072, P.R. China
| | - Yubin Zhou
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, P.R. China
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
15
|
Wang D, Zhang L, Xu L, Zhang X, Cheng C, Zhang A. Bionic Polyurethane with a Reversible Core-Sheath for Real-Time On-Demand Performance Adjustment and Fluorescence Self-Reflection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54375-54385. [PMID: 34729980 DOI: 10.1021/acsami.1c16264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Smart materials that can respond to external stimuli have attracted considerable scientific interest and achieved fruitful results with the advancement of research. However, materials with adjustable performance and which could be intervened on-demand through stimulation are still rarely mentioned. Furthermore, most of these materials published so far usually require high temperature or the assistance of catalysts to change the structure and adjust their performance, and the process is always irreversible. Herein, we proposed an anthracene-functionalized novel polyurethane with adjustable performance and fluorescence self-reflection inspired by shellfish. Anthracene was used as a dynamic group to make the polymer chain structure topologically isomerize after UV exposure, finally constructing a reversible core-sheath in a homogeneous polymer. Moreover, this process is catalyst-free and has strong spatiotemporal controllability. The appearance of the reversible core-sheath structure could achieve the performance adjustment of materials, and the strength can be increased easily in real time and on-demand by UV light exposure. Through selective irradiation, spatial control stiffening of this material can also be realized. In addition, the performance can also be self-reflected through the fluorescence to realize the performance that is visualizable. This work dramatically simplifies the requirements and conditions for material performance adjustment while expanding the versatility and applications in intelligent materials such as artificial muscles, variably flexible electronic devices, heterogeneous materials, 4D printing, and what may be discovered in the future.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Lun Zhang
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Liqiang Xu
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Xiaoyu Zhang
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Chuchu Cheng
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Aimin Zhang
- State Key Laboratory of Polymers Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
16
|
A Systematic Review of the Most Recent Concepts in Smart Windows Technologies with a Focus on Electrochromics. SUSTAINABILITY 2021. [DOI: 10.3390/su13179604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the context of sustainability and in the face of ambitious goals towards the reduction of CO2 emission, the modification of transparency in architecture becomes an important tool of energy flow management into the building. Windows that dim to stop the energy transfer reduce the cooling load in the building. Recently, however, the latest achievements in the development of electrochromic materials allowed us to integrate some additional—previously unknown—functionalities into EC devices. The purpose of this paper is to provide a systematic review of recent technological innovations in the field of smart windows and present the possibilities of recently established functionalities. This review article outlines recent general progress in electrochromic but concentrates on multicolour and neutral black electrochromism, spectrally selective systems, electrochromic energy storage windows, hybrid EC/TC systems, OLED lighting integrated with the EC device, and EC devices powered by solar cells. The review was based on the most recent publication from the years 2015–2020 recorded in the databases WoS and Scopus.
Collapse
|
17
|
Abstract
Smart materials are a kind of functional materials which can sense and response to environmental conditions or stimuli from optical, electrical, magnetic mechanical, thermal, and chemical signals, etc. Patterning of smart materials is the key to achieving large-scale arrays of functional devices. Over the last decades, printing methods including inkjet printing, template-assisted printing, and 3D printing are extensively investigated and utilized in fabricating intelligent micro/nano devices, as printing strategies allow for constructing multidimensional and multimaterial architectures. Great strides in printable smart materials are opening new possibilities for functional devices to better serve human beings, such as wearable sensors, integrated optoelectronics, artificial neurons, and so on. However, there are still many challenges and drawbacks that need to be overcome in order to achieve the controllable modulation between smart materials and device performance. In this review, we give an overview on printable smart materials, printing strategies, and applications of printed functional devices. In addition, the advantages in actual practices of printing smart materials-based devices are discussed, and the current limitations and future opportunities are proposed. This review aims to summarize the recent progress and provide reference for novel smart materials and printing strategies as well as applications of intelligent devices.
Collapse
Affiliation(s)
- Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street 2, 100190 Beijing, P. R. China.,University of Chinese Academy of Sciences, Yuquan Road no.19A, 100049 Beijing, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street 2, 100190 Beijing, P. R. China.,University of Chinese Academy of Sciences, Yuquan Road no.19A, 100049 Beijing, P. R. China
| |
Collapse
|
18
|
Yang J, Tang C, Sun H, Liu Z, Liu Z, Li K, Zhu L, Qin G, Sun G, Li Y, Chen Q. Tough, Transparent, and Anti-Freezing Nanocomposite Organohydrogels with Photochromic Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31180-31192. [PMID: 34180220 DOI: 10.1021/acsami.1c07563] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Poor mechanical properties and freezing at low temperatures of traditional photochromic hydrogels limit their applications. Here, a novel type of photochromic nanocomposite organohydrogels (NC OGHs) by adding tungsten oxide nanoparticles was prepared by a simple one-pot method. The photochromic NC OGHs demonstrated excellent integrated properties, including high transparency, high mechanical properties, low-temperature resistance, anti-dehydration, rewrite capability, and UV blocking ability. In addition, the degree of coloration of NC OGHs could be precisely controlled by UV irradiation, and the bleaching process could be controlled by the temperature and atmosphere. Besides flexible optical information storage devices and optical filters, these photochromic NC OGHs were also used for smart windows in both room temperature and cold environments. The work provides a new insight into photochromic organohydrogels.
Collapse
Affiliation(s)
- Jia Yang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Chen Tang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Huan Sun
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhao Liu
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhuangzhuang Liu
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Ke Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Lin Zhu
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Gang Qin
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Gengzhi Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Yangling Li
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529000, China
| | - Qiang Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
| |
Collapse
|
19
|
Lu J, Xu M, Lei Y, Gong L, Zhao C. Aqueous Synthesis of Upper Critical Solution Temperature and Lower Critical Solution Temperature Copolymers through Combination of Hydrogen-Donors and Hydrogen-Acceptors. Macromol Rapid Commun 2021; 42:e2000661. [PMID: 33480461 DOI: 10.1002/marc.202000661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/08/2021] [Indexed: 11/06/2022]
Abstract
The synthesis of thermo-responsive polymers from non-responsive and water-soluble monomers has great practical advantages but significant challenges. Herein, the authors report a novel aqueous copolymerization strategy to prepare polymers with tunable upper critical solution temperature (UCST) or lower critical solution temperature (LCST) from non-responsive monomers. Acrylic acid (AAc), N-vinylpyrrolidone (NVP), and acrylamide (AAm) are copolymerized in water, yielding copolymers with UCST behavior. Interestingly, by simply replacing AAm with its methylated homologue, dimethyl acrylamide (DMA), the thermo-responsiveness of the copolymers is converted into LCST-type. The cloud points of the copolymers can be tuned rationally with their monomer ratios and the condition of the solvent. The UCST property of the poly(AAc-NVP-AAm) comes from the AAc-AAm and AAc-NVP hydrogen-bonds, while the LCST property of poly(AAc-NVP-DMA) originates from the hydrophobic aggregation of AAc-NVP complex and DMA, as indicated by temperature-dependent 1 H NMR and dynamic light scattering.
Collapse
Affiliation(s)
- Jianlei Lu
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Mengdi Xu
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yi Lei
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Lihao Gong
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chuanzhuang Zhao
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
20
|
Li K, Meng S, Xia S, Ren X, Gao G. Durable and Controllable Smart Windows Based on Thermochromic Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42193-42201. [PMID: 32820627 DOI: 10.1021/acsami.0c12710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In recent years, the use of smart windows to adjust sunlight to achieve energy conversion has received increasing attention. In this paper, a novel smart window was easily prepared by using thermochromic hydrogels as an interlayer and indium tin oxide films as an electric heating layer. The shielding transmission rates of visible and near-infrared light reached 88.3 and 85.4% at the temperature of 25 °C, respectively. However, the transmittance at a light wavelength of 550 nm was greater than 70% after applying voltage. The smart windows with different components could possess thermochromic temperature ranging from 28 to 35 °C, which was suitable for daily life. The smart window could maintain a stable reversible thermochromic transition. Importantly, the time of light transition and the demand of energy efficiency could be adjusted by controlling the magnitude of the output voltage, which benefited the development of energy-efficient materials.
Collapse
Affiliation(s)
- Kunming Li
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Shengfei Meng
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Shan Xia
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Xiuyan Ren
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
21
|
Xie Y, Guan F, Li Z, Meng Y, Cheng J, Li L, Pei Q. A Phase-Changing Polymer Film for Broadband Smart Window Applications. Macromol Rapid Commun 2020; 41:e2000290. [PMID: 32691931 DOI: 10.1002/marc.202000290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 12/21/2022]
Abstract
Smart windows (SWs) with tunable opacity are sought to regulate solar-irradiation and privacy protection. A new smart window material based on a phase-changing polymer that can be reversibly switched between a semicrystalline, opaque state and an amorphous, transparent state is introduced. The polymer film is a network of the phase-changing poly(stearyl acrylate) crosslinked with a poly(ethylene oxide) oligomer. The two constituent polymers show strong phase separation. The transmission switching of the resulting copolymer film is resulted from the combination of three different mechanisms: reversible phase changing of the poly(stearyl acrylate) component, phase separation between the two distinct constituent polymers, and a large change of refractive index of the phase-changing polymer during the amorphous-to-semicrystalline transition. The opaqueness switching can be reversed and repeated for more than 500 cycles of heating and cooling. A silver nanowire (AgNW)-based transparent heater is combined with the SW film to control the semicrystalline-to-amorphous phase transition. The resulting smart window exhibits a high infrared transmittance modulation (ΔTIR ) of 80.4% and solar transmittance modulation (ΔTsolar ) of 70.2%, which significantly outperform existing thermochromic smart windows.
Collapse
Affiliation(s)
- Yu Xie
- Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, 90095, USA
| | - Fangyi Guan
- Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, 90095, USA.,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhou Li
- Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, 90095, USA
| | - Yuan Meng
- Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, 90095, USA
| | - Jiang Cheng
- Co-Innovation Center for Micro/Nano Optoelectronic Materials and Devices, Research Institute for New Materials and Technology, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| | - Lu Li
- Co-Innovation Center for Micro/Nano Optoelectronic Materials and Devices, Research Institute for New Materials and Technology, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| | - Qibing Pei
- Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
22
|
Eklund A, Zhang H, Zeng H, Priimagi A, Ikkala O. Fast Switching of Bright Whiteness in Channeled Hydrogel Networks. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2000754. [PMID: 32684907 PMCID: PMC7357574 DOI: 10.1002/adfm.202000754] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/26/2020] [Accepted: 04/15/2020] [Indexed: 05/22/2023]
Abstract
Beside pigment absorption and reflection by periodic photonic structures, natural species often use light scattering to achieve whiteness. Synthetic hydrogels offer opportunities in stimuli-responsive materials and devices; however, they are not conventionally considered as ideal materials to achieve high whiteness by scattering due to the ill-defined porosities and the low refractive index contrast between the polymer and water. Herein, a poly(N-isopropylacrylamide) hydrogel network with percolated empty channels (ch-PNIPAm) is demonstrated to possess switchable bright whiteness upon temperature changes, obtained by removing the physical agarose gel in a semi-interpenetrating network of agarose and PNIPAm. The hydrogel is highly transparent at room temperature and becomes brightly white above 35 °C. Compared to conventional PNIPAm, the ch-PNIPAm hydrogel exhibits 80% higher reflectance at 800 nm and 18 times faster phase transition kinetics. The nanoscopic channels in the ch-PNIPAm facilitate water diffusion upon phase transition, thus enabling the formation of smaller pores and enhanced whiteness in the gel. Furthermore, fast photothermally triggered response down to tens of milliseconds can be achieved. This unique property of the ch-PNIPAm hydrogel to efficiently scatter visible light can be potentially used for, e.g., smart windows, optical switches, and, as demonstrated in this report, thermoresponsive color displays.
Collapse
Affiliation(s)
- Amanda Eklund
- Department of Applied PhysicsAalto UniversityP.O. Box 15100EspooFI 02150Finland
| | - Hang Zhang
- Department of Applied PhysicsAalto UniversityP.O. Box 15100EspooFI 02150Finland
| | - Hao Zeng
- Smart Photonic MaterialsFaculty of Engineering and Natural SciencesTampere UniversityP.O. Box 541TampereFI‐33101Finland
| | - Arri Priimagi
- Smart Photonic MaterialsFaculty of Engineering and Natural SciencesTampere UniversityP.O. Box 541TampereFI‐33101Finland
| | - Olli Ikkala
- Department of Applied PhysicsAalto UniversityP.O. Box 15100EspooFI 02150Finland
| |
Collapse
|
23
|
Zhang Z, Guo L, Zhang X, Hao J. Environmentally stable, photochromic and thermotropic organohydrogels for low cost on-demand optical devices. J Colloid Interface Sci 2020; 578:315-325. [PMID: 32531561 DOI: 10.1016/j.jcis.2020.05.110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
HYPOTHESIS The color-changing ability of creatures widely existed in nature has inspired the development of adaptive allochroic materials, which can respond to various external stimuli. Integrating multi-stimuli responsiveness and long-term stability in allochroic system are urgent for practical applications under complex circumstances. EXPERIMENTS The photochromic/thermotropic organohydrogels (PTOs) comprised polyacrylamide and cationic cellulose (JR400) were prepared by facile free-radical polymerization and glycerol displacement. The coexisting covalent bonds and noncovalent interactions collaboratively reinforce the networks, endowing the PTOs with boosted stretchability and toughness. FINDINGS The photochromic ammonium molybdate (Mo7) and thermo-sensitive poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (EPE) were made into networks. In these cooperative networks, each constituent performed their own function without disruption, including fast photochromism (10 s) and durable thermo-responsiveness. Importantly, the glycerol-water solvent bestowed the distinct anti-freezing (-30 °C) and anti-dehydration performances on the PTOs. Accordingly, the materials could serve as promising rewritable devices for high-resolution and long-term data storage/encryption. Moreover, on-demand PTO windows integrating UV-prevention and solar energy regulation with Tlum (92.96%) and ΔTsol (46.02%) could create comfortable and healthy environments for occupants. This work offers a new design strategy for low-cost, environmentally stable smart optical devices.
Collapse
Affiliation(s)
- Zhuo Zhang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, People's Republic of China
| | - Luxuan Guo
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, People's Republic of China
| | - Xiaolai Zhang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, People's Republic of China.
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, People's Republic of China.
| |
Collapse
|
24
|
Zha XJ, Zhang ST, Pu JH, Zhao X, Ke K, Bao RY, Bai L, Liu ZY, Yang MB, Yang W. Nanofibrillar Poly(vinyl alcohol) Ionic Organohydrogels for Smart Contact Lens and Human-Interactive Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23514-23522. [PMID: 32329606 DOI: 10.1021/acsami.0c06263] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogel bioelectronics as one of the next-generation wearable and implantable electronics ensures excellent biocompatibility and softness to link the human body and electronics. However, volatile, opaque, and fragile features of hydrogels due to the sparse and microscale three-dimensional network seriously limit their practical applications. Here, we report a type of smart and robust nanofibrillar poly(vinyl alcohol) (PVA) organohydrogels fabricated via one-step physical cross-linking. The nanofibrillar network cross-linked by numerous PVA nanocrystallites enables the formation of organohydrogels with high transparency (90%), drying resistance, high toughness (3.2 MJ/m3), and tensile strength (1.4 MPa). For strain sensor application, the PVA ionic organohydrogel after soaking in NaCl solution shows excellent linear sensitivity (GF = 1.56, R2 > 0.998) owing to the homogeneous nanofibrillar PVA network. We demonstrate the potential applications of the nanofibrillar PVA-based organohydrogel in smart contact lens and emotion recognition. Such a strategy paves an effective way to fabricate strong, tough, biocompatible, and ionically conductive organohydrogels, shedding light on multifunctional sensing applications in next-generation flexible bioelectronics.
Collapse
Affiliation(s)
- Xiang-Jun Zha
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Shu-Ting Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Jun-Hong Pu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xing Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Rui-Ying Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Lu Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Zheng-Ying Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Ming-Bo Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
25
|
Liu Y, Guo Y, Zhang Z, Huang Z, Qi P, Cui J, Song A, Hao J. A new application of Krafft point concept: an ultraviolet-shielded surfactant switchable window. Chem Commun (Camb) 2020; 56:5315-5318. [PMID: 32282006 DOI: 10.1039/d0cc01727b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report thermo-responsive gels of polyacrylamide (PAAm) with ionic surfactants in mixed water and ethylene glycol (W-EG) solvents as smart windows to solubilize ultraviolet absorbents for UV shielding materials. The Krafft point (TK) of the ionic surfactants determines the phase transition that switches the transparency and opacity of the gels. The TK can be flexibly tuned within a wide temperature range (6-75 °C) with high predictability by changing the surfactant or adjusting the ratio of W-EG solvents.
Collapse
Affiliation(s)
- Yihan Liu
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
McCune JA, Mommer S, Parkins CC, Scherman OA. Design Principles for Aqueous Interactive Materials: Lessons from Small Molecules and Stimuli-Responsive Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906890. [PMID: 32227391 DOI: 10.1002/adma.201906890] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Interactive materials are at the forefront of current materials research with few examples in the literature. Researchers are inspired by nature to develop materials that can modulate and adapt their behavior in accordance with their surroundings. Stimuli-responsive systems have been developed over the past decades which, although often described as "smart," lack the ability to act autonomously. Nevertheless, these systems attract attention on account of the resultant materials' ability to change their properties in a predicable manner. These materials find application in a plethora of areas including drug delivery, artificial muscles, etc. Stimuli-responsive materials are serving as the precursors for next-generation interactive materials. Interest in these systems has resulted in a library of well-developed chemical motifs; however, there is a fundamental gap between stimuli-responsive and interactive materials. In this perspective, current state-of-the-art stimuli-responsive materials are outlined with a specific emphasis on aqueous macroscopic interactive materials. Compartmentalization, critical for achieving interactivity, relies on hydrophobic, hydrophilic, supramolecular, and ionic interactions, which are commonly present in aqueous systems and enable complex self-assembly processes. Relevant examples of aqueous interactive materials that do exist are given, and design principles to realize the next generation of materials with embedded autonomous function are suggested.
Collapse
Affiliation(s)
- Jade A McCune
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Stefan Mommer
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Christopher C Parkins
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
27
|
Wu Q, He H, Zhou H, Xue F, Zhu H, Zhou S, Wang L, Wang S. Multiple active sites cellulose-based adsorbent for the removal of low-level Cu(II), Pb(II) and Cr(VI) via multiple cooperative mechanisms. Carbohydr Polym 2020; 233:115860. [DOI: 10.1016/j.carbpol.2020.115860] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 10/25/2022]
|
28
|
Liu B, Rasines Mazo A, Gurr PA, Qiao GG. Reversible Nontoxic Thermochromic Microcapsules. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9782-9789. [PMID: 32011116 DOI: 10.1021/acsami.9b21330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thermochromic materials exhibit a color change in response to a change in temperature. Creating nontoxic microcapsules containing thermochromic materials for applications in ink and film materials is historically challenging. In this study, we develop a nontoxic chlorophenol red (CPR)-water thermochromic system and its microcapsules with silicone shells via a reaction between water and octadecyltrichlorosilane (OTS) at the interface of a w/o emulsion. The obtained microcapsules exhibit a clear color change with full reversibility and are successfully used as inks by screen printing and as additives in films. Nontoxicity of both microcapsules and films is demonstrated through cell cytotoxicity assays. These features make these novel materials applicable to the next generation of intelligent sensors, coating, and food packaging materials.
Collapse
Affiliation(s)
- Bingxin Liu
- Polymer Science Group, Department of Chemical Engineering , The University of Melbourne , Parkville , VIC 3010 , Australia
| | - Alicia Rasines Mazo
- Polymer Science Group, Department of Chemical Engineering , The University of Melbourne , Parkville , VIC 3010 , Australia
| | - Paul A Gurr
- Polymer Science Group, Department of Chemical Engineering , The University of Melbourne , Parkville , VIC 3010 , Australia
| | - Greg G Qiao
- Polymer Science Group, Department of Chemical Engineering , The University of Melbourne , Parkville , VIC 3010 , Australia
| |
Collapse
|
29
|
Xue K, Liu Z, Jiang L, Kai D, Li Z, Su X, Loh XJ. A new highly transparent injectable PHA-based thermogelling vitreous substitute. Biomater Sci 2020; 8:926-936. [DOI: 10.1039/c9bm01603a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transparency is an important criterion for the application of biomaterials to the eye and essential for use as a vitreous substitute.
Collapse
Affiliation(s)
- Kun Xue
- Institute of Materials Research and Engineering (IMRE)
- Agency for Science
- Technology and Research (A*STAR)
- Singapore 138634
- Singapore
| | - Zengping Liu
- Department of Ophthalmology
- Yong Loo Lin School of Medicine
- National University of Singapore
- Singapore
- Singapore
| | - Lu Jiang
- Institute of Materials Research and Engineering (IMRE)
- Agency for Science
- Technology and Research (A*STAR)
- Singapore 138634
- Singapore
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE)
- Agency for Science
- Technology and Research (A*STAR)
- Singapore 138634
- Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE)
- Agency for Science
- Technology and Research (A*STAR)
- Singapore 138634
- Singapore
| | - Xinyi Su
- Department of Ophthalmology
- Yong Loo Lin School of Medicine
- National University of Singapore
- Singapore
- Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE)
- Agency for Science
- Technology and Research (A*STAR)
- Singapore 138634
- Singapore
| |
Collapse
|
30
|
Kuang ZY, Deng Y, Hu J, Tao L, Wang P, Chen J, Xie HL. Responsive Smart Windows Enabled by the Azobenzene Copolymer Brush with Photothermal Effect. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37026-37034. [PMID: 31515990 DOI: 10.1021/acsami.9b10286] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
An azobenzene side chain liquid crystalline copolymer (MAzo-co-GMA) is successfully synthesized through copolymerizing the monomer 6-(4-((4-butylphenyl)diazenyl)phenoxy)hexyl methacrylate (MAzo) with glycidyl methacrylate (GMA). The obtained MAzo-co-GMA copolymer can form stabilized polymer brush on the surface after thermal annealing. The obtained polymer brush not only induces the alignment of liquid crystals but also shows a photothermal effect under UV light irradiation due to the azobenzene side group. On basis of these results, the LC cell with this polymer brush as the substrate is further used to fabricate the polymer-stabilized liquid crystal (PSLC) smart window. The resultant PSLC smart window shows the transparent state because the homeotropic alignment in the SmA* phase of PSLC is induced by the polymer brush on the surface of the LC cell. The opaque state can be achieved in the scattering N* phase by UV light irradiation or heating. The response time of the PSLC smart window can be regulated by adjusting the concentration of MAzo-co-GMA copolymer brush and the intensity of UV light. This kind of PSLC smart window with both thermal and UV response shows good reversibility and stability, which endows enormous promising applications in energy-saving devices.
Collapse
Affiliation(s)
- Ze-Yang Kuang
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry , Xiangtan University , Xiangtan 411105 , Hunan , China
| | - Yuan Deng
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry , Xiangtan University , Xiangtan 411105 , Hunan , China
| | - Jun Hu
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry , Xiangtan University , Xiangtan 411105 , Hunan , China
| | - Lei Tao
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry , Xiangtan University , Xiangtan 411105 , Hunan , China
| | - Ping Wang
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry , Xiangtan University , Xiangtan 411105 , Hunan , China
| | - Jian Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers , Hunan University of Science and Technology , Xiangtan 411201 , Hunan , China
| | - He-Lou Xie
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, and Key Laboratory of Advanced Functional Polymer Materials of Colleges, Universities of Hunan Province and College of Chemistry , Xiangtan University , Xiangtan 411105 , Hunan , China
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers , Hunan University of Science and Technology , Xiangtan 411201 , Hunan , China
| |
Collapse
|
31
|
Pitchaimani J, Karthikeyan S, Lakshminarasimhan N, Anthony SP, Moon D, Madhu V. Reversible Thermochromism of Nickel(II) Complexes and Single-Crystal-to-Single-Crystal Transformation. ACS OMEGA 2019; 4:13756-13761. [PMID: 31497693 PMCID: PMC6714294 DOI: 10.1021/acsomega.9b01263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/27/2019] [Indexed: 06/10/2023]
Abstract
A molecular Ni(II)-NNN pincer complex (1) exhibited unprecedented reversible single-crystal-to-single-crystal transformation and color change upon heating and cooling due to a subtle change in the N-Ni(II) bond length and ligand conformation. UV-vis, thermogravimetric, differential scanning calorimetry, single-crystal structural data, temperature-dependent powder X-ray diffraction, and Raman and computational studies supported the structural change of the Ni(II) complex with temperature.
Collapse
Affiliation(s)
- Jayaraman Pitchaimani
- Department
of Chemistry, Karunya Institute of Technology
and Science (Deemed to be University), Coimbatore 641114, Tamil Nadu, India
| | - Subramanian Karthikeyan
- PG
and Research Department of Chemistry, KhadirMohideen
College, Adirampattinam 614701, Tamil Nadu, India
| | - Narayanan Lakshminarasimhan
- Functional
Materials Division, CSIR-Central Electrochemical
Research Institute, Karaikudi 630003, Tamil Nadu, India
| | | | - Dohyun Moon
- Beamline
Department, Pohang Accelerator Laboratory, 80 Jigokro-127 beongil, Nam-gu, Pohang 37673, Gyeongbuk, Korea
| | - Vedichi Madhu
- Department
of Chemistry, Karunya Institute of Technology
and Science (Deemed to be University), Coimbatore 641114, Tamil Nadu, India
| |
Collapse
|
32
|
Fang L, Cai Z, Ding Z, Chen T, Zhang J, Chen F, Shen J, Chen F, Li R, Zhou X, Xie Z. Skin-Inspired Surface-Microstructured Tough Hydrogel Electrolytes for Stretchable Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21895-21903. [PMID: 31124644 DOI: 10.1021/acsami.9b03410] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Double-network tough hydrogels have raised increasing interest in stretchable electronic applications as well as electronic skin (e-skin) owing to their excellent mechanical properties and functionalities. While hydrogels have been extensively explored as solid-state electrolytes, stretchable energy storage devices based on tough hydrogel electrolytes are still limited despite their high stretchability and strength. A key challenge remains in the robust electrode/electrolyte interface under large mechanical strains. Inspired by the skin structure that involves the microstructured interface for the tight connection between the dermis and epidermis, we demonstrated that a surface-microstructured tough hydrogel electrolyte composed of agar/polyacrylamide/LiCl (AG/PAAm/LiCl) could be exploited to allow stretchable supercapacitors with enhanced mechanical and electrochemical performance. The prestretched tough hydrogel electrolyte was treated to generate surface microstructures with a roughness of tens of micrometers simply via mechanical rubbing followed by the attachment of activated carbon electrodes on both sides to realize the fabrication of the stretchable supercapacitor. Through investigating the properties of the tough hydrogel electrolyte and the electrochemical performance of the as-fabricated supercapacitors under varied strains, the surface-microstructured hydrogel electrolyte was shown to enable robust adhesion to electrodes, improving electrochemical behavior and capacitance, as well as having better performance retention under repeated stretching cycles, which surpassed the pristine hydrogel with smooth surfaces. Our approach could provide an alternative and general strategy to improve the interfacial properties between the electrode and the hydrogel electrolyte, driving new directions for functional stretchable devices based on tough hydrogels.
Collapse
Affiliation(s)
- Lvye Fang
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Zefan Cai
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Zhengqing Ding
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Tianyi Chen
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Jiacheng Zhang
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Fubin Chen
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Jiayan Shen
- College of Chemistry and Environmental Engineering , Shenzhen University , Shenzhen 518055 , P. R. China
| | - Fan Chen
- College of Chemistry and Environmental Engineering , Shenzhen University , Shenzhen 518055 , P. R. China
| | - Rui Li
- School of Advanced Materials , Peking University Shenzhen Graduate School , Shenzhen 518055 , P. R. China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering , Shenzhen University , Shenzhen 518055 , P. R. China
| | - Zhuang Xie
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| |
Collapse
|
33
|
Abdulhalim I, Madhuri PL, Diab M, Mokari T. Novel easy to fabricate liquid crystal composite with potential for electrically or thermally controlled transparency windows. OPTICS EXPRESS 2019; 27:17387-17401. [PMID: 31252949 DOI: 10.1364/oe.27.017387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/24/2019] [Indexed: 05/27/2023]
Abstract
Switchable liquid crystal (LC) composites are a unique and attractive class of functional materials due to their extensive use in various applications including smart and privacy windows. Demand for developing smart windows with good switchable performance has steadily increasing in the past decades due to their importance in energy saving. Herein, we present the use of novel and highly active switchable LC composite material-octadecanol-doped LC-prepared via a facile, low-cost, and scalable process, for thermally or electrically controlled transparency windows. A systematic study of the switchable behavior reveals the formation of a reversible molecular arrangement between the LC and the octadecanol, which allows control of the transparency through scattering modulation of the device by voltage or temperature. The devices fabricated by sandwiching the LC composite material between two ITO-covered glass slides present switchable performance with high potential for cost-effective utilization in various applications, such as light shutters, smart or privacy windows.
Collapse
|
34
|
Blackman LD, Gunatillake PA, Cass P, Locock KES. An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chem Soc Rev 2019; 48:757-770. [PMID: 30548039 DOI: 10.1039/c8cs00508g] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Zwitterionic polymers, including polyampholytes and polybetaines, are polymers with both positive and negative charges incorporated into their structure. They are a unique class of smart materials with great potential in a broad range of applications in nanotechnology, biomaterials science, nanomedicine and healthcare, as additives for bulk construction materials and crude oil, and in water remediation. In this Tutorial Review, we aim to highlight their structural diversity and design criteria, and their preparation using modern techniques. Their behavior, both in solution and at surfaces, will be examined under a range of environmental conditions. Finally, we will exemplify how their unique behaviors give rise to specific properties tailored to a selection of their numerous applications.
Collapse
Affiliation(s)
- Lewis D Blackman
- Manufacturing Business Unit, Commonwealth Scientific and Industrial Research Organisation, Bayview Avenue, Clayton, VIC 3168, Australia.
| | | | | | | |
Collapse
|
35
|
Wang S, Gao W, Hu XY, Shen YZ, Wang L. Supramolecular strategy for smart windows. Chem Commun (Camb) 2019; 55:4137-4149. [DOI: 10.1039/c9cc00273a] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Supramolecular strategy-based materials are outlined and their applications for fabricating smart windows are summarized for future exploration of ideal smart windows.
Collapse
Affiliation(s)
- Sai Wang
- Applied Chemistry Department
- College of Material Science and Technology
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- China
| | - Wei Gao
- Applied Chemistry Department
- College of Material Science and Technology
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- China
| | - Xiao-Yu Hu
- Applied Chemistry Department
- College of Material Science and Technology
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- China
| | - Ying-Zhong Shen
- Applied Chemistry Department
- College of Material Science and Technology
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| |
Collapse
|
36
|
Du Q, Tang Q, Yang K, Yang H, Xu C, Zhang X. One-Step Preparation of Tough and Self-Healing Polyion Complex Hydrogels with Tunable Swelling Behaviors. Macromol Rapid Commun 2018; 40:e1800691. [DOI: 10.1002/marc.201800691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/09/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Qian Du
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science; University of Science and Technology of China; Hefei 230026 P. R. China
| | - Quan Tang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science; University of Science and Technology of China; Hefei 230026 P. R. China
| | - Kaixiang Yang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science; University of Science and Technology of China; Hefei 230026 P. R. China
| | - Haiyang Yang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science; University of Science and Technology of China; Hefei 230026 P. R. China
| | - Chao Xu
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science; University of Science and Technology of China; Hefei 230026 P. R. China
| | - Xingyuan Zhang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science; University of Science and Technology of China; Hefei 230026 P. R. China
| |
Collapse
|
37
|
Baddam V, Aseyev V, Hietala S, Karjalainen E, Tenhu H. Polycation–PEG Block Copolymer Undergoes Stepwise Phase Separation in Aqueous Triflate Solution. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01810] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Vikram Baddam
- Department of Chemistry, PB 55, University of Helsinki, Helsinki FIN-00014, Finland
| | - Vladimir Aseyev
- Department of Chemistry, PB 55, University of Helsinki, Helsinki FIN-00014, Finland
| | - Sami Hietala
- Department of Chemistry, PB 55, University of Helsinki, Helsinki FIN-00014, Finland
| | - Erno Karjalainen
- Department of Chemistry, PB 55, University of Helsinki, Helsinki FIN-00014, Finland
| | - Heikki Tenhu
- Department of Chemistry, PB 55, University of Helsinki, Helsinki FIN-00014, Finland
| |
Collapse
|
38
|
Wang H, Zhan J, Xiao K, Luo F, Li J, Tan H. Thermoresponsive Three-Stage Optical Modulation of a Self-Healing Composite Hydrogel. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Haihuan Wang
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Jianghao Zhan
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Kechen Xiao
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Feng Luo
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Jiehua Li
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Hong Tan
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| |
Collapse
|
39
|
Ho MD, Liu Y, Dong D, Zhao Y, Cheng W. Fractal Gold Nanoframework for Highly Stretchable Transparent Strain-Insensitive Conductors. NANO LETTERS 2018; 18:3593-3599. [PMID: 29767529 DOI: 10.1021/acs.nanolett.8b00694] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Percolation networks of one-dimensional (1D) building blocks (e.g., metallic nanowires or carbon nanotubes) represent the mainstream strategy to fabricate stretchable conductors. One of the inherent limitations is the control over junction resistance between 1D building blocks in natural and strained states of conductors. Herein, we report highly stretchable transparent strain-insensitive conductors using fractal gold (F-Au) nanoframework based on a one-pot templateless wet chemistry synthesis method. The monolayered F-Au nanoframework (∼20 nm in thickness) can be obtained from the one-pot synthesis without any purification steps involved and can be transferred directly to arbitrary substrates like polyethylene terephthalate, food-wrap, polydimethylsiloxane (PDMS), and ecoflex. The F-Au thin film with no capping agents leads to a highly conductive thin film without any post-treatment and can be stretched up to 110% strain without significantly losing conductivity yet with the optical transparency of 70% at 550 nm. Remarkably, the F-Au thin film shows the strain-insensitive behavior up to 20% stretching strain. This originates from the unique fractal nanomesh-like structure which can absorb external mechanical forces, thus maintaining electron pathways throughout the nanoframework. In addition, a semitransparent bilayered F-Au film on 100% prestrained PDMS could achieve to a high stretchability of 420% strain with negligible resistance changes under low-level strains.
Collapse
Affiliation(s)
- My Duyen Ho
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
- The Melbourne Centre for Nanofabrication , 151 Wellington Road , Clayton , Victoria 3800 , Australia
| | - Yiyi Liu
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
| | - Dashen Dong
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
| | - Yunmeng Zhao
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
- The Melbourne Centre for Nanofabrication , 151 Wellington Road , Clayton , Victoria 3800 , Australia
| | - Wenlong Cheng
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
- The Melbourne Centre for Nanofabrication , 151 Wellington Road , Clayton , Victoria 3800 , Australia
| |
Collapse
|
40
|
Effects of polymer micro-structures on the thermo-optical properties of a flexible soft-mater film based on liquid crystals / polymer composite. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.05.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Warm/cool-tone switchable thermochromic material for smart windows by orthogonally integrating properties of pillar[6]arene and ferrocene. Nat Commun 2018; 9:1737. [PMID: 29712901 PMCID: PMC5928112 DOI: 10.1038/s41467-018-03827-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/15/2018] [Indexed: 11/08/2022] Open
Abstract
Functional materials play a vital role in the fabrication of smart windows, which can provide a more comfortable indoor environment for humans to enjoy a better lifestyle. Traditional materials for smart windows tend to possess only a single functionality with the purpose of regulating the input of solar energy. However, different color tones also have great influences on human emotions. Herein, a strategy for orthogonal integration of different properties is proposed, namely the thermo-responsiveness of ethylene glycol-modified pillar[6]arene (EGP6) and the redox-induced reversible color switching of ferrocene/ferrocenium groups are orthogonally integrated into one system. This gives rise to a material with cooperative and non-interfering dual functions, featuring both thermochromism and warm/cool tone-switchability. Consequently, the obtained bifunctional material for fabricating smart windows can not only regulate the input of solar energy but also can provide a more comfortable color tone to improve the feelings and emotions of people in indoor environments. Materials for smart windows usually possess single functionality, thus developing materials that regulate solar energy whilst changing color to affect human emotion is desirable. Here the authors combine pillar[6]arenes and ferrocene/ferrocenium groups to produce warm/cool tone-switchable thermochromic materials.
Collapse
|
42
|
Li X, Charaya H, Bernard GM, Elliott JAW, Michaelis VK, Lee B, Chung HJ. Low-Temperature Ionic Conductivity Enhanced by Disrupted Ice Formation in Polyampholyte Hydrogels. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02498] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xinda Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hemant Charaya
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Guy M. Bernard
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Janet A. W. Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | | | - Byeongdu Lee
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Hyun-Joong Chung
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|