1
|
Chen Q, Zhang L, Zhang Y, Shen J, Zhang D, Wang M. High-efficient depletion and separation of histidine-rich proteins via Cu 2+-chelated porous polymer microspheres. Talanta 2024; 277:126337. [PMID: 38823331 DOI: 10.1016/j.talanta.2024.126337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/26/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Depletion and separation of histidine-rich proteins from complicated biosamples are crucial for various downstream applications in proteome research and clinical diagnosis. Herein, porous polymer microspheres coated with polyacrylic acid (SPSDVB-PAA) were fabricated through double emulsion interfacial polymerization technique and followed by immobilization of Cu2+ ions on the surface of SPSDVB-PAA. The as-prepared SPSDVB-PAA-Cu with uniform size and nanoscale pore structure enabled coordination interaction of Cu2+ with histidine residues in his-rich proteins, resulting in high-performance adsorption. As metal affinity adsorbent, the SPSDVB-PAA-Cu exhibited favorable selectivity for adsorbing hemoglobin (Hb) and human serum albumin (HSA) with the maximum adsorption capacities of 152.2 and 100.7 mg g-1. Furthermore, the polymer microspheres were used to isolate histidine-rich proteins from human whole blood and plasma, underscoring their effectiveness. The liquid chromatography tandem mass spectrometry (LC-MS/MS) results indicated that the content of 14 most abundant proteins in human plasma was depleted from 81.6 % to 30.7 % and low-abundance proteins were enriched from 18.4 % to 69.3 % after treatment with SPSDVB-PAA-Cu, illustrating potential application of SPSDVB-PAA-Cu in proteomic research.
Collapse
Affiliation(s)
- Qing Chen
- Department of Pharmacy, Shenyang Medical College, Shenyang, 110034, China
| | - Lijie Zhang
- Department of Pharmacy, Shenyang Medical College, Shenyang, 110034, China
| | - Yang Zhang
- Department of Pharmacy, Shenyang Medical College, Shenyang, 110034, China
| | - Jiajun Shen
- Department of Pharmacy, Shenyang Medical College, Shenyang, 110034, China
| | - Dandan Zhang
- Department of Public Health, Shenyang Medical College, Shenyang, 110034, China.
| | - Mengmeng Wang
- Department of Pharmacy, Shenyang Medical College, Shenyang, 110034, China.
| |
Collapse
|
2
|
Zhang Q, Hu L, Yang J, Guo P, Wang J, Zhang W. Cu(II)-Loaded Polydopamine-Coated Urchin-like Titanate Microspheres as a High-Performance IMAC Adsorbent for Hemoglobin Separation. Molecules 2024; 29:1656. [PMID: 38611935 PMCID: PMC11013688 DOI: 10.3390/molecules29071656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Immobilized metal ion affinity chromatography (IMAC) adsorbents generally have excellent affinity for histidine-rich proteins. However, the leaching of metal ions from the adsorbent usually affects its adsorption performance, which greatly affects the reusable performance of the adsorbent, resulting in many limitations in practical applications. Herein, a novel IMAC adsorbent, i.e., Cu(II)-loaded polydopamine-coated urchin-like titanate microspheres (Cu-PDA-UTMS), was prepared via metal coordination to make Cu ions uniformly decorate polydopamine-coated titanate microspheres. The as-synthesized microspheres exhibit an urchin-like structure, providing more binding sites for hemoglobin. Cu-PDA-UTMS exhibit favorable selectivity for hemoglobin adsorption and have a desirable adsorption capacity towards hemoglobin up to 2704.6 mg g-1. Using 0.1% CTAB as eluent, the adsorbed hemoglobin was easily eluted with a recovery rate of 86.8%. In addition, Cu-PDA-UTMS shows good reusability up to six cycles. In the end, the adsorption properties by Cu-PDA-UTMS towards hemoglobin from human blood samples were analyzed by SDS-PAGE. The results showed that Cu-PDA-UTMS are a high-performance IMAC adsorbent for hemoglobin separation, which provides a new method for the effective separation and purification of hemoglobin from complex biological samples.
Collapse
Affiliation(s)
- Qian Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Q.Z.); (L.H.); (W.Z.)
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China
| | - Linlin Hu
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Q.Z.); (L.H.); (W.Z.)
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China
| | - Jianyu Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;
| | - Pengfei Guo
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Q.Z.); (L.H.); (W.Z.)
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China
| | - Jinhong Wang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Q.Z.); (L.H.); (W.Z.)
| | - Weifen Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Q.Z.); (L.H.); (W.Z.)
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China
| |
Collapse
|
3
|
Xu Q, Jiang W, Bu F, Wang ZF, Jiang Y. Magnetic Dendritic Polymer Nanospheres for High-Performance Separation of Histidine-Rich Proteins. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37332160 DOI: 10.1021/acsami.3c05475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Magnetic nanospheres are becoming a promising platform for a wide range of applications in pharmacy, life science, and immunodiagnostics due to their high surface area, ease of synthesis and manipulation, fast separation, good biocompatibility, and recyclable performance. In this work, an innovative and efficient method is developed by in situ reducing and growing Ni(OH)2 for the preparation of dendritic mesoporous nanocomposites of silica@Fe3O4/tannic acid@nickel hydroxide (dSiO2@Fe3O4/TA@Ni(OH)2). The flower-like nanospheres have good magnetic response, large surface area, and high histidine-rich protein (His-protein) purification performance. The dSiO2@Fe3O4/TA@Ni(OH)2 nanospheres were synthesized on the basis of a φ(NaSal/CTAB) of 1/1 and a mass of ferrous chloride tetrahydrate of 0.3 g, resulting in a saturation magnetization value of 48.21 emu/g, which means it can be collected within ∼1 min using a magnetic stand. Also, the BET test showed that the surface area is 92.47 m2/g and the pore size is ∼3.9 nm for dSiO2@Fe3O4/TA@Ni(OH)2 nanocomposites. Notably, the nickel hydroxide with unique flower-like structural features enables the combination of a large number of Ni2+ ions and His-proteins for high performance. The isolation and purification experiments of the synthesized dSiO2@Fe3O4/TA@Ni(OH)2 were performed by separating His-proteins from a matrix composed of bovine hemoglobin (BHb), bovine serum albumin (BSA), and lysozyme (LYZ). The result showed that the nanospheres have a high combination capacity of ∼1880 mg/g in a rapid equilibrium time of 20 min, which was selective for the adsorption of BHb. In addition, the stability and recyclability of BHb are 80% after seven cycles. Furthermore, the nanospheres were also used to isolate His-proteins from fetal bovine serum, proving its utility. Therefore, the strategy of separating and purifying His-proteins using dSiO2@Fe3O4/TA@Ni(OH)2 nanospheres is promising for practical applications.
Collapse
Affiliation(s)
- Qianrui Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wenjie Jiang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Fengjie Bu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhi-Fei Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yong Jiang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
4
|
Chen X, Chai J, Yang X, Chai F, Tian M. Amino acid-immobilized copper ion-modified carbon-based adsorbent for selective adsorption of bovine hemoglobin. J Chromatogr A 2022; 1680:463440. [PMID: 36037577 DOI: 10.1016/j.chroma.2022.463440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/13/2022] [Accepted: 08/21/2022] [Indexed: 11/30/2022]
Abstract
We prepared an amino acid-immobilized copper ion-modified carbon-based adsorbent (C@TA@P@A-Cu) for selective bovine hemoglobin (BHb) adsorption in biological samples. Carbon nanoparticles were used as the matrix, and copper ions were attached to the amino acid-modified carbon nanoparticles as metal chelate complexes via immobilized metal affinity. BSA, Lyz, OVA, and HRP were chosen as reference proteins for further study. Furthermore, the synthesis conditions of adsorbents, SPE conditions, selectivity, competitivity, reproducibility, and reusability were extensively investigated. The results showed that the maximum adsorption capacity of C@TA@P@A-Cu microspheres for BHb under optimal conditions was 673.0 mg g-1. The addition of a TiO2 layer with an increased specific surface area of the adsorbent and the addition of poly-l-lysine (PLL) inhibited the adsorbent's binding ability to non-BHb proteins, but chelated Cu2+ increased the adsorbent's specific binding ability to BHb. Furthermore, after six adsorption-desorption cycles, the adsorbent has satisfactory reusability with no significant change in adsorption capacity. Furthermore, C@TA@P@A-Cu was successfully used to identify BHb from real blood samples, as confirmed by SDS-PAGE, and it is expected to have potential applications in protein purification and disease diagnosis.
Collapse
Affiliation(s)
- Xue Chen
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Jinyue Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Xue Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Fang Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Miaomiao Tian
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
5
|
Xu H, Guo J, Li C, Zhao J, Gao Z, Song YY. Nanoarchitectonics of a MOF-in-Nanochannel (HKUST-1/TiO 2) Membrane for Multitarget Selective Enrichment and Staged Recovery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22006-22015. [PMID: 35533013 DOI: 10.1021/acsami.2c05296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Enrichment and separation of specific endogenous molecules are essential for disease diagnosis and the pharmaceutical industry. Although many solid sorbents have been developed for target molecule enrichment, simultaneous separation of multitargets is still a challenge for adsorbents. In this study, we develop a multitarget selective sorbent based on a nanochannel membrane prepared by the anodization of a Ti-Cu alloy. The in situ growth of a metal-organic framework (MOF, herein using Cu-based HKUST-1) in the nanochannels enables the resulting MOF-in-nanochannel membrane to act as a nanofilter. Benefitting from the size-exclusion effect of MOFs and the distinct surface characteristics of each component in the HKUST-1/TiO2 nanochannels, the as-proposed membranes can be simply operated as a filter and exhibit satisfactory selectivities and enrichment capacities in the separation of aromatic amino acids, histidine-rich proteins, and phosphoproteins. More importantly, the adsorbed multitargets can be further controllably released from the membrane in a sequence via a staged recovery process. The use of this system is envisioned to provide an innovative and potential design for efficient sorption media for the selective enrichment and staged separation of specific biomolecules.
Collapse
Affiliation(s)
- Huijie Xu
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Junli Guo
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Chaowei Li
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Junjian Zhao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Zhida Gao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang 110004, China
| |
Collapse
|
6
|
Sarkar AN, Singha K, Panda AB, Pal S. In-situ deposited CdS NPs on pH induced fully exfoliated layered titanate-biopolymeric composite and its photocatalytic activity. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Kamran U, Park SJ. Microwave-assisted acid functionalized carbon nanofibers decorated with Mn doped TNTs nanocomposites: Efficient contenders for lithium adsorption and recovery from aqueous media. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Guo PF, Wang XM, Chen XW, Yang T, Chen ML, Wang JH. Nanostructures serve as adsorbents for the selective separation/enrichment of proteins. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115650] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Dugasani S, Kim DY, Gnapareddy B, Yoo S, Jung JH, Park SH. Large-Scale Fabrication of Copper-Ion-Coated Deoxyribonucleic Acid Hybrid Fibers by Ion Exchange and Self-Metallization. ACS OMEGA 2019; 4:16462-16470. [PMID: 31616824 PMCID: PMC6787883 DOI: 10.1021/acsomega.9b02073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
It has been a challenge to achieve deoxyribonucleic acid (DNA) metallization and mass production with a high quality. The main aim of this study was to develop a large-scale production method of metal-ion-coated DNA hybrid fibers, which can be useful for the development of physical devices and sensors. Cetyltrimethylammonium-chloride-modified DNA molecules (CDNA) coated with metal ions through self-metallization exhibit enhanced optical and magnetic properties and thermal stability. In this paper, we present a simple synthesis route for Cu2+-coated CDNA hybrid fibers through ion exchange followed by self-metallization and analyze their structural and chemical composition (by X-ray diffraction (XRD), high-resolution field emission transmission electron microscopy (FETEM), and energy-dispersive X-ray spectroscopy (EDS)) and optical (by ultraviolet (UV)-visible absorption, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopies (XPS)), magnetic (by vibrating-sample magnetometry), and thermal (by a thermogravimetric analysis) characteristics. The XRD patterns, high-resolution FETEM images, and selected-area electron diffraction patterns confirmed the triclinic structure of Cu2+ in CDNA. The EDS results revealed the formation of Cu2+-coated CDNA fibers with a homogeneous distribution of Cu2+. The UV-vis, FTIR, and XPS spectra showed the electronic transition, interaction, and energy transfer between CDNA and Cu2+, respectively. The Cu2+-coated CDNA fibers exhibited a ferromagnetic nature owing to the presence of Cu2+. The magnetization of the Cu2+-coated CDNA fibers increased with the concentration of Cu2+ and decreased with the increase in temperature. Endothermic (absorbed heat) and exothermic (released heat) peaks in the differential thermal analysis curve were observed owing to the interaction of Cu2+ with the phosphate backbone.
Collapse
Affiliation(s)
- Sreekantha
Reddy Dugasani
- Department
of Physics and Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Dong Yeong Kim
- Department
of Physics, Inha University, Incheon 22212, Korea
| | - Bramaramba Gnapareddy
- Department
of Physics and Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Sanghyun Yoo
- Department
of Physics and Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Jong Hoon Jung
- Department
of Physics, Inha University, Incheon 22212, Korea
| | - Sung Ha Park
- Department
of Physics and Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
10
|
Guo PF, Wang XM, Wang MM, Yang T, Chen ML, Wang JH. Two-dimensional titanate-based zwitterionic hydrophilic sorbent for the selective adsorption of glycoproteins. Anal Chim Acta 2019; 1088:72-78. [PMID: 31623718 DOI: 10.1016/j.aca.2019.08.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/16/2019] [Accepted: 08/19/2019] [Indexed: 01/07/2023]
Abstract
The selective adsorption towards glycoproteins from complex biosamples is of vital importance in life science studies. A new zwitterionic hydrophilic material, i.e., a functionalized titanate nanosheet, is prepared by assembling well-dispersed gold nanoparticles (AuNPs) on the surface of ultrathin titanate nanosheets via an ion-exchange approach, followed through immobilizing l-cysteine (L-Cys) by Au-S bonding. This 2D-titanate-based zwitterionic hydrophilic material is shortly termed as L-Cys/Au/TiNSs and it exhibits transverse several hundred nanometers with an ultrathin nanosheet structure. The zwitterionic hydrophilic titanate nanosheets have strong adsorption affinity to glycoproteins, offering a large binding capacity towards immunoglobulin G (1098.9 mg g-1), which could be readily stripped into an ammonium hydroxide (NH4OH) solution (0.5%, m/v) with a recovery of 82.4%. The practical applications of L-Cys/Au/TiNSs are further proved by successful specific adsorption of IgG from human serum.
Collapse
Affiliation(s)
- Peng-Fei Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Xi-Ming Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Meng-Meng Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| |
Collapse
|
11
|
Guo PF, Wang XM, Wang MM, Yang T, Chen ML, Wang JH. Boron-titanate monolayer nanosheets for highly selective adsorption of immunoglobulin G. NANOSCALE 2019; 11:9362-9368. [PMID: 31038517 DOI: 10.1039/c9nr01111k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Boron-titanate monolayer nanosheets were prepared through a scalable step by step intercalation approach for anchoring 3-mercaptopropyltriethoxysilane (MPTS) on the surface. MPTS provides clickable sites with 4-vinylphenylboronic acid (VPBA) via a thiol-ene (TE) click reaction to obtain monolayer titanate nanosheets with boronic acid ligands immobilized on the surface. The nanosheets obtained are denoted as VPBA-MPTS-TiNSs, with a lateral dimension of a few dozen nanometers and with a thickness of ca. 3.5 nm. The nanosheets exhibit a superior adsorption capacity of 1669.7 mg g-1 and favorable selectivity for the adsorption of glycoproteins by employing immunoglobulin G (IgG) as the protein model. The adsorbed IgG is thereafter readily collected by using 0.1% (m/v) cetane trimethyl ammonium bromide (CTAB) as the eluent. The practical applications of VPBA-MPTS-TiNSs are further demonstrated by the selective adsorption/purification of IgG from human serum.
Collapse
Affiliation(s)
- Peng-Fei Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | | | | | | | | | | |
Collapse
|
12
|
Kong X, Wang X, Ma D, Huang J, Li J, Zhao T, Yin L, Feng Q. Introduction of Fe2+ in Fe0.8Ti1.2O40.8− nanosheets via photo reduction and their enhanced electrochemical performance as a lithium ion battery anode. Chem Commun (Camb) 2019; 55:186-189. [DOI: 10.1039/c8cc06874g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fe2+ doped Fe0.8Ti1.2O40.8− nanosheets were prepared via delaminating H0.8Fe0.8Ti1.2O4 precursor and further photo reduction. It shows improved electrochemical performance due to the enhanced electrical conductivity by the introduction of Fe2+.
Collapse
Affiliation(s)
- Xingang Kong
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Weiyang
- Xi’an
- P. R. China
| | - Xing Wang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Weiyang
- Xi’an
- P. R. China
| | - Dingying Ma
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Weiyang
- Xi’an
- P. R. China
| | - Jianfeng Huang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Weiyang
- Xi’an
- P. R. China
| | - Jiayin Li
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Weiyang
- Xi’an
- P. R. China
| | - Ting Zhao
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Weiyang
- Xi’an
- P. R. China
| | - Lixiong Yin
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Weiyang
- Xi’an
- P. R. China
| | - Qi Feng
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Weiyang
- Xi’an
- P. R. China
- Department of Advanced Materials Science, Faculty of Engineering, Kagawa University
- Takamatsu-shi
| |
Collapse
|
13
|
Guo PF, Zhang DD, Guo ZY, Wang XM, Wang MM, Chen ML, Wang JH. PEGylated titanate nanosheets: hydrophilic monolayers with a superior capacity for the selective isolation of immunoglobulin G. NANOSCALE 2018; 10:12535-12542. [PMID: 29931026 DOI: 10.1039/c8nr02995d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel organic-inorganic hybrid was prepared by anchoring (3-aminopropyl)triethoxysilane (APTES) on the surface of monolayer titanate nanosheets and subsequent modification with hydrophilic polyethylene glycol (PEG). The PEGylated hydrophilic monolayer titanate nanosheets were abbreviated as PEG-APTES-TiNSs, and they exhibit a lateral dimension of dozens of nanometers and a thickness of ca. 1.9 nm. PEGylation of the titanate nanosheets significantly improved their selectivity toward the adsorption of glycoproteins through strong hydrophilic interaction, providing an adsorption capacity of 2540.9 mg g-1 for immunoglobulin G (IgG). The retained IgG is readily collected at a recovery rate of 83.4% with 0.5% (m/v) ammonium hydroxide (NH4OH) as the stripping reagent. PEG-APTES-TiNSs are applied for the selective adsorption of IgG from human serum, which is further confirmed by SDS-PAGE assay.
Collapse
Affiliation(s)
- Peng-Fei Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | | | | | | | | | | | | |
Collapse
|