1
|
Liu X, Obacz J, Emanuelli G, Chambers JE, Abreu S, Chen X, Linnane E, Mehta JP, Wheatley AEH, Marciniak SJ, Fairen-Jimenez D. Enhancing Drug Delivery Efficacy Through Bilayer Coating of Zirconium-Based Metal-Organic Frameworks: Sustained Release and Improved Chemical Stability and Cellular Uptake for Cancer Therapy. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:3588-3603. [PMID: 38681089 PMCID: PMC11044268 DOI: 10.1021/acs.chemmater.3c02954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 05/01/2024]
Abstract
The development of nanoparticle (NP)-based drug carriers has presented an exciting opportunity to address challenges in oncology. Among the 100,000 available possibilities, zirconium-based metal-organic frameworks (MOFs) have emerged as promising candidates in biomedical applications. Zr-MOFs can be easily synthesized as small-size NPs compatible with intravenous injection, whereas the ease of decorating their external surfaces with functional groups allows for targeted treatment. Despite these benefits, Zr-MOFs suffer degradation and aggregation in real, in vivo conditions, whereas the loaded drugs will suffer the burst effect-i.e., the fast release of drugs in less than 48 h. To tackle these issues, we developed a simple but effective bilayer coating strategy in a generic, two-step process. In this work, bilayer-coated MOF NU-901 remained well dispersed in biologically relevant fluids such as buffers and cell growth media. Additionally, the coating enhances the long-term stability of drug-loaded MOFs in water by simultaneously preventing sustained leakage of the drug and aggregation of the MOF particles. We evaluated our materials for the encapsulation and transport of pemetrexed, the standard-of-care chemotherapy in mesothelioma. The bilayer coating allowed for a slowed release of pemetrexed over 7 days, superior to the typical 48 h release found in bare MOFs. This slow release and the related performance were studied in vitro using both A549 lung cancer and 3T mesothelioma cells. Using high-resolution microscopy, we found the successful uptake of bilayer-coated MOFs by the cells with an accumulation in the lysosomes. The pemetrex-loaded NU-901 was indeed cytotoxic to 3T and A549 cancer cells. Finally, we demonstrated the general approach by extending the coating strategy using two additional lipids and four surfactants. This research highlights how a simple yet effective bilayer coating provides new insights into the design of promising MOF-based drug delivery systems.
Collapse
Affiliation(s)
- Xiewen Liu
- The
Adsorption & Advanced Materials Laboratory (AML),
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United
Kingdom
| | - Joanna Obacz
- Cambridge
Institute for Medical Research, Keith Peters Building, Cambridge Biomedical
Campus, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Giulia Emanuelli
- Cambridge
Institute for Medical Research, Keith Peters Building, Cambridge Biomedical
Campus, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Joseph E. Chambers
- Cambridge
Institute for Medical Research, Keith Peters Building, Cambridge Biomedical
Campus, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Susana Abreu
- Cambridge
Institute for Medical Research, Keith Peters Building, Cambridge Biomedical
Campus, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Xu Chen
- The
Adsorption & Advanced Materials Laboratory (AML),
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United
Kingdom
| | - Emily Linnane
- The
Adsorption & Advanced Materials Laboratory (AML),
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United
Kingdom
| | - Joshua P. Mehta
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Andrew E. H. Wheatley
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Stefan J. Marciniak
- Cambridge
Institute for Medical Research, Keith Peters Building, Cambridge Biomedical
Campus, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - David Fairen-Jimenez
- The
Adsorption & Advanced Materials Laboratory (AML),
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United
Kingdom
| |
Collapse
|
2
|
Abazari R, Sanati S, Bajaber MA, Javed MS, Junk PC, Nanjundan AK, Qian J, Dubal DP. Design and Advanced Manufacturing of NU-1000 Metal-Organic Frameworks with Future Perspectives for Environmental and Renewable Energy Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306353. [PMID: 37997226 DOI: 10.1002/smll.202306353] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Metal-organic frameworks (MOFs) represent a relatively new family of materials that attract lots of attention thanks to their unique features such as hierarchical porosity, active metal centers, versatility of linkers/metal nodes, and large surface area. Among the extended list of MOFs, Zr-based-MOFs demonstrate comparably superior chemical and thermal stabilities, making them ideal candidates for energy and environmental applications. As a Zr-MOF, NU-1000 is first synthesized at Northwestern University. A comprehensive review of various approaches to the synthesis of NU-1000 MOFs for obtaining unique surface properties (e.g., diverse surface morphologies, large surface area, and particular pore size distribution) and their applications in the catalysis (electro-, and photo-catalysis), CO2 reduction, batteries, hydrogen storage, gas storage/separation, and other environmental fields are presented. The review further outlines the current challenges in the development of NU-1000 MOFs and their derivatives in practical applications, revealing areas for future investigation.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Majed A Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Peter C Junk
- College of Science and Engineering, James Cook University, Townsville, 4811, Australia
| | - Ashok Kumar Nanjundan
- Schole of Engineering, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, China
| | - Deepak P Dubal
- Centre for Materials Science, School of Chemistry & Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
3
|
Koschnick C, Terban MW, Canossa S, Etter M, Dinnebier RE, Lotsch BV. Influence of Water Content on Speciation and Phase Formation in Zr-Porphyrin-Based MOFs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210613. [PMID: 36930851 DOI: 10.1002/adma.202210613] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Controlled synthesis of phase-pure metal-organic frameworks (MOFs) is essential for their application in technological areas such as catalysis or gas sorption. Yet, knowledge of their phase formation and growth remain rather limited, particularly with respect to species such as water whose vital role in MOF synthesis is often neglected. As a consequence, synthetic protocols often lack reproducibility when multiple MOFs can form from the same metal source and linker, and phase mixtures are obtained with little or no control over their composition. In this work, the role of water in the formation of the Zr-porphyrin MOF disordered PCN-224 (dPCN-224) is investigated. Through X-ray total scattering and scanning electron microscopy, it is observed that dPCN-224 forms via a metal-organic intermediate that consists of Zr6O4(OH)4 clusters linked by tetrakis(4-carboxy-phenyl)porphyrin molecules. Importantly, water is not only essential to the formation of Zr6O4(OH)4 clusters, but it also plays a primary role in dictating the formation kinetics of dPCN-224. This multidisciplinary approach to studying the speciation of dPCN-224 provides a blueprint for how Zr-MOF synthesis protocols can be assessed and their reproducibility increased, and highlights the importance of understanding the role of water as a decisive component in Zr-MOF formation.
Collapse
Affiliation(s)
- Charlotte Koschnick
- Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
- Department of Chemistry, University of Munich, Butenandtstraße 5-13, 81377, Munich, Germany
- Center for Nanoscience, Schellingstraße 4, 80799, Munich, Germany
| | - Maxwell W Terban
- Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Stefano Canossa
- Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Martin Etter
- German Electron Synchrotron (DESY), Notkestraße 85, D-22607, Hamburg, Germany
| | - Robert E Dinnebier
- Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Bettina V Lotsch
- Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
- Department of Chemistry, University of Munich, Butenandtstraße 5-13, 81377, Munich, Germany
- Center for Nanoscience, Schellingstraße 4, 80799, Munich, Germany
| |
Collapse
|
4
|
Liu J, Prelesnik JL, Patel R, Kramar BV, Wang R, Malliakas CD, Chen LX, Siepmann JI, Hupp JT. A Nanocavitation Approach to Understanding Water Capture, Water Release, and Framework Physical Stability in Hierarchically Porous MOFs. J Am Chem Soc 2023; 145:27975-27983. [PMID: 38085867 DOI: 10.1021/jacs.3c07624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Chemically stable metal-organic frameworks (MOFs) featuring interconnected hierarchical pores have proven to be promising for a remarkable variety of applications. Nevertheless, the framework's susceptibility to capillary-force-induced pore collapse, especially during water evacuation, has often limited practical applications. Methodologies capable of predicting the relative magnitudes of these forces as functions of the pore size, chemical composition of the pore walls, and fluid loading would be valuable for resolution of the pore collapse problem. Here, we report that a molecular simulation approach centered on evacuation-induced nanocavitation within fluids occupying MOF pores can yield the desired physical-force information. The computations can spatially pinpoint evacuation elements responsible for collapse and the chemical basis for mitigation of the collapse of modified pores. Experimental isotherms and difference-electron density measurements of the MOF NU-1000 and four chemical variants validate the computational approach and corroborate predictions regarding relative stability, anomalous sequence of pore-filling, and chemical basis for mitigation of destructive forces.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry and Materials Science, and Department of Chemical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Jesse L Prelesnik
- Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Roshan Patel
- Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, 412 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Boris V Kramar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Rui Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Christos D Malliakas
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - J Ilja Siepmann
- Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, 412 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
6
|
Ren Z, Zhang N, Wu Y, Ding X, Yang X, Kong Y, Xing H. Facet-controlled assembly for organizing metal-organic framework particles into extended structures. iScience 2023; 26:107867. [PMID: 37766967 PMCID: PMC10520824 DOI: 10.1016/j.isci.2023.107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Metal-organic frameworks (MOFs) are crystalline porous materials characterized by their high porosity and chemical tailorability. To realize the full potential of synthesized MOFs, it is important to transform them from crystalline solid powders into materials with integrated morphologies and properties. One promising approach is facet-controlled assembly, which involves arranging individual crystalline MOF particles into ordered macroscale structures by carefully controlling the interactions between particles. The resulting assembled MOF structures maintain the characteristics of individual particles while also exhibiting improved properties overall. In this article, we emphasize the essential concepts of MOF assembly, highlighting the impact of building blocks, surface interactions, and Gibbs free energy on the assembly process. We systematically examine three methods of guiding facet-controlled MOF assembly, including spontaneous assembly, assembly guided by external forces, and assembly through surface modifications. Lastly, we offer outlooks on future advancements in the fabrication of MOF-based material and potential application exploration.
Collapse
Affiliation(s)
- Zhongwu Ren
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Nannan Zhang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yuanyuan Wu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xue Ding
- School of Design and Art, Hunan University, Changsha, Hunan 410082, China
| | - Xiaoxin Yang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yuhan Kong
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
7
|
Fan W, Liu X, Cheng Y, Chang S, Wang L, Liu Y, Liu P, Zheng LY, Cao QE. Novel Lanthanide-Based Metal-Organic Framework Isomer as a Double Ratiometric Fluorescent Probe for Vanillymandelic Acid. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22590-22601. [PMID: 37098047 DOI: 10.1021/acsami.3c03662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The concentration of vanillymandelic acid (VMA) in urine is closely related with pheochromocytoma diagnosis. Thus, it is essential to develop more accurate and convenient fluorescence sensing strategies toward VMA. Until now, the design of double ratiometric detection methods for VMA was still in the unexplored stage. In this work, novel Ln3+-based metal-organic frameworks (QBA-Eu and QBA-Gd0.875Eu0.125) possessing dual emission peaks was fabricated successfully, which served as isomers of YNU-1 and exhibited more excellent water stability in fluorescence and structure than the ones of YNU-1. The formation of the complex between QBA ligands and VMA molecules via hydrogen bonds within QBA-Eu frameworks produced a new emission band centered at 450 nm and resulted in the decline of monomer emission intensity for QBA at 390 nm. Owing to the reduced energy gap [ΔE (S1 - T1)], the antenna effect was hampered and luminescence of Eu3+ ions also decreased. The developed double ratiometric (I615nm/I475nm, I390nm/I475nm) fluorescence sensors based on QBA-Eu and QBA-Gd0.875Eu0.125 possessed the advantages of fast response (4 min), low detection limits (0.58 and 0.51; 0.22 and 0.31 μM), and wide linear ranges (2-100 and 2-80 μM), which met the requirements of pheochromocytoma diagnosis. We also applied them to determine VMA in an artificial urine sample and diluted human urine sample and obtained satisfactory results. They will become prospective fluorescence sensing platforms for VMA.
Collapse
Affiliation(s)
- Wenwen Fan
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming 650091, P. R. China
| | - Xiaolan Liu
- Drug Control College of Yunnan Police Officer Academy, No. 249 North Jiaochang Road, Kunming 650091, P. R. China
| | - Yi Cheng
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming 650091, P. R. China
| | - Shasha Chang
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming 650091, P. R. China
| | - Longjie Wang
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming 650091, P. R. China
| | - Yanxiong Liu
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming 650091, P. R. China
| | - Peng Liu
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming 650091, P. R. China
| | - Li-Yan Zheng
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming 650091, P. R. China
| | - Qiu-E Cao
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming 650091, P. R. China
| |
Collapse
|
8
|
Duan J, Shabbir H, Chen Z, Bi W, Liu Q, Sui J, Đorđević L, Stupp SI, Chapman KW, Martinson ABF, Li A, Schaller RD, Goswami S, Getman RB, Hupp JT. Synthetic Access to a Framework-Stabilized and Fully Sulfided Analogue of an Anderson Polyoxometalate that is Catalytically Competent for Reduction Reactions. J Am Chem Soc 2023; 145:7268-7277. [PMID: 36947559 DOI: 10.1021/jacs.2c12992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Polyoxometalates (POMs) featuring 7, 12, 18, or more redox-accessible transition metal ions are ubiquitous as selective catalysts, especially for oxidation reactions. The corresponding synthetic and catalytic chemistry of stable, discrete, capping-ligand-free polythiometalates (PTMs), which could be especially attractive for reduction reactions, is much less well developed. Among the challenges are the propensity of PTMs to agglomerate and the tendency for agglomeration to block reactant access of catalyst active sites. Nevertheless, the pervasive presence of transition metal sulfur clusters metalloenzymes or cofactors that catalyze reduction reactions and the justifiable proliferation of studies of two-dimensional (2D) metal-chalcogenides as reduction catalysts point to the promise of well-defined and controllable PTMs as reduction catalysts. Here, we report the fabrication of agglomeration-immune, reactant-accessible, capping-ligand-free CoIIMo6IVS24n- clusters as periodic arrays in a water-stable, hierarchically porous Zr-metal-organic framework (MOF; NU1K) by first installing a disk-like Anderson polyoxometalate, CoIIIMo6VIO24m-, in size-matched micropores where the siting is established via difference electron density (DED) X-ray diffraction (XRD) experiments. Flowing H2S, while heating, reduces molybdenum(VI) ions to Mo(IV) and quantitatively replaces oxygen anions with sulfur anions (S2-, HS-, S22-). DED maps show that MOF-templated POM-to-PTM conversion leaves clusters individually isolated in open-channel-connected micropores. The structure of the immobilized cluster as determined, in part, by X-ray photoelectron spectroscopy (XPS), X-ray absorption fine structure (XAFS) analysis, and pair distribution function (PDF) analysis of total X-ray scattering agrees well with the theoretically simulated structure. PTM@MOF displays both electrocatalytic and photocatalytic competency for hydrogen evolution. Nevertheless, the initially installed PTM appears to be a precatalyst, gaining competency only after the loss of ∼3 to 6 sulfurs and exposure to hydride-forming metal ions.
Collapse
Affiliation(s)
- Jiaxin Duan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hafeera Shabbir
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, New York 11794-3400, United States
| | - Wentuan Bi
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Qin Liu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jingyi Sui
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Luka Đorđević
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology and Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, New York 11794-3400, United States
| | - Alex B F Martinson
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Alice Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Subhadip Goswami
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Rachel B Getman
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Li J, Huang JY, Meng YX, Li L, Zhang LL, Jiang HL. Zr- and Ti-based metal-organic frameworks: synthesis, structures and catalytic applications. Chem Commun (Camb) 2023; 59:2541-2559. [PMID: 36749364 DOI: 10.1039/d2cc06948b] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recently, Zr- and Ti-based metal-organic frameworks (MOFs) have gathered increasing interest in the field of chemistry and materials science, not only for their ordered porous structure, large surface area, and high thermal and chemical stability, but also for their various potential applications. Particularly, the unique features of Zr- and Ti-based MOFs enable them to be a highly versatile platform for catalysis. Although much effort has been devoted to developing Zr- and Ti-based MOF materials, they still suffer from difficulties in targeted synthesis, especially for Ti-based MOFs. In this Feature Article, we discuss the evolution of Zr- and Ti-based MOFs, giving a brief overview of their synthesis and structures. Furthermore, the catalytic uses of Zr- and Ti-based MOF materials in the previous 3-5 years have been highlighted. Finally, perspectives on the Zr- and Ti-based MOF materials are also proposed. This work provides in-depth insight into the advances in Zr- and Ti-based MOFs and boosts their catalytic applications.
Collapse
Affiliation(s)
- Ji Li
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China. .,Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, ShaanXi, P. R. China
| | - Jin-Yi Huang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China.
| | - Yu-Xuan Meng
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China.
| | - Luyan Li
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Liang-Liang Zhang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China. .,Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, ShaanXi, P. R. China.,Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, Zhejiang, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
10
|
Stanley PM, Su AY, Ramm V, Fink P, Kimna C, Lieleg O, Elsner M, Lercher JA, Rieger B, Warnan J, Fischer RA. Photocatalytic CO 2 -to-Syngas Evolution with Molecular Catalyst Metal-Organic Framework Nanozymes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207380. [PMID: 36394175 DOI: 10.1002/adma.202207380] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Syngas, a mixture of CO and H2 , is a high-priority intermediate for producing several commodity chemicals, e.g., ammonia, methanol, and synthetic hydrocarbon fuels. Accordingly, parallel sunlight-driven catalytic conversion of CO2 and protons to syngas is a key step toward a sustainable energy cycle. State-of-the-art catalytic systems and materials often fall short as application-oriented concurrent CO and H2 evolution requires challenging reaction conditions which can hamper stability, selectivity, and efficiency. Here a light-harvesting metal-organic framework hosting two molecular catalysts is engineered to yield colloidal, water-stable, versatile nanoreactors for photocatalytic syngas generation with highly controllable product ratios. In-depth fluorescence, X-ray, and microscopic studies paired with kinetic analysis show that the host delivers energy efficiently to active sites, conceptually yielding nanozymes. This unlocked sustained CO2 reduction and H2 evolution with benchmark turnover numbers and record incident photon conversions up to 36%, showcasing a highly active and durable all-in-one material toward application in solar energy-driven syngas generation.
Collapse
Affiliation(s)
- Philip M Stanley
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- WACKER-Chair of Macromolecular Chemistry, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Alice Y Su
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Vanessa Ramm
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Pascal Fink
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Ceren Kimna
- School of Engineering and Design, Department of Materials Engineering and Center for Protein Assemblies (CPA), Technical University of Munich, 85748, Garching, Germany
| | - Oliver Lieleg
- School of Engineering and Design, Department of Materials Engineering and Center for Protein Assemblies (CPA), Technical University of Munich, 85748, Garching, Germany
| | - Martin Elsner
- Chair of Analytical Chemistry and Water Chemistry, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Johannes A Lercher
- Chair of Chemical Technology II, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Julien Warnan
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
11
|
Li W, Zhang C, Zheng Z, Zhang X, Zhang L, Kuhn A. Fine-Tuning the Electrocatalytic Regeneration of NADH Cofactor Using [Rh(Cp*)(bpy)Cl] +-Functionalized Metal-Organic Framework Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46673-46681. [PMID: 36215128 DOI: 10.1021/acsami.2c13631] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrochemical regeneration of the reduced form of the nicotinamide adenine dinucleotide (NADH) cofactor catalyzed by immobilized [Rh(Cp*)(bpy)Cl]+ is a promising approach for the enzymatic synthesis of many valuable chemicals with NAD-dependent dehydrogenases. However, rational control of the efficiency is often limited by the irregular structure of the electrode/electrolyte interface and the accessibility of the molecular catalyst. Here, we propose an electrochemical system for NADH cofactor regeneration, based on highly ordered three- dimensional (3D) metal-organic framework (NU-1000) films. [Rh(Cp*)(bpy)Cl]+ is incorporated at the zirconium nodes of NU-1000 via solvent-assisted ligand incorporation (SALI), leading to a diffusion-controlled behavior, associated with an electron hopping mechanism. Varying the ratio of redox-active [Rh(Cp*)(bpy)Cl]+ and inactive postgrafting agents enables the elaboration of functional electrodes with tunable electrocatalytic activity for NADH regeneration. The exceptionally high faradic efficiency of 97%, associated with a very high turnover frequency (TOF) of ∼1400 h-1 for NADH regeneration, and the total turnover number (TTN) of over 20000 for the enzymatic conversion from pyruvate to l-lactate, when coupled with l-lactate dehydrogenases (LDH) as a model reaction, open up promising perspectives for employing these electrodes in various alternative bioelectrosynthesis approaches.
Collapse
Affiliation(s)
- Weiwei Li
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475000, China
| | - Chunhua Zhang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475000, China
| | - Ziman Zheng
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475000, China
| | - Xiaoyu Zhang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475000, China
| | - Lin Zhang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475000, China
| | - Alexander Kuhn
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475000, China
- University Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, Site ENSCBP, Pessac 33400, France
| |
Collapse
|
12
|
Chen FE, Pitt TA, Okong’o DJ, Wetherbee LG, Fuentes-Rivera JJ, Milner PJ. A Structure-Activity Study of Aromatic Acid Modulators for the Synthesis of Zirconium-Based Metal-Organic Frameworks. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:3383-3394. [PMID: 36238710 PMCID: PMC9555823 DOI: 10.1021/acs.chemmater.2c00241] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Acid modulation is among the most widely employed methods for preparing metal-organic frameworks (MOFs) that are both stable and highly crystalline, yet there exist few guiding principles for selecting the optimal modulator for a given system. Using the Zr-based MOFs UiO-66 and UiO-68-Me2 (UiO = Universitetet i Oslo) as representative materials, here we present for the first time an in-depth structure-activity study of acid modulators and identify key principles of modulation for the synthesis of highly crystalline Zr-MOFs. By applying whole pattern fitting of powder X-ray diffraction (PXRD) patterns as a technique for evaluating modulator efficacy, complemented by scanning electron microscopy (SEM), 1H NMR, and thermogravimetric analysis (TGA), we demonstrate that the key to effective modulation is competition between the linker and modulator for coordination to the Zr secondary building units (SBUs). Specifically, we illustrate that a close match in pK a and structure between the linker and modulator favors larger and more well-defined crystallites, particularly with sterically unhindered aromatic acid modulators. Based on our findings, we demonstrate that 5-membered heteroaromatic carboxylic acids are among the most efficient acid modulators identified to date for the synthesis of several representative Zr-MOFs with fcu net topologies. In addition, we find that coordination modulation is superior to exogenous acid modulation at higher modulator concentrations. Finally, we compare 1H NMR and TGA as data-driven methods for quantifying linker deficiencies in modulated MOF syntheses. The guiding principles established herein have critical implications for the scalable and controllable synthesis of highly crystalline and stable MOFs relevant to chemical separations, gas storage, and catalysis.
Collapse
Affiliation(s)
- Faith E. Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| | - Tristan A. Pitt
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| | - Diane J. Okong’o
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| | - Luc G. Wetherbee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| | - José J. Fuentes-Rivera
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| |
Collapse
|
13
|
Gong X, Gnanasekaran K, Ma K, Forman CJ, Wang X, Su S, Farha OK, Gianneschi NC. Rapid Generation of Metal-Organic Framework Phase Diagrams by High-Throughput Transmission Electron Microscopy. J Am Chem Soc 2022; 144:6674-6680. [PMID: 35385280 DOI: 10.1021/jacs.2c01095] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metal-organic frameworks (MOFs) constructed from Zr6 nodes and tetratopic carboxylate linkers display high structural diversity and complexity in which various crystal topologies can result from identical building units. To determine correlations between MOF topologies and experimental parameters, such as solvent choice or modulator identity and concentration, we demonstrate the rapid generation of phase diagrams for Zr6-MOFs with 1,4-dibromo-2,3,5,6-tetrakis(4-carboxyphenyl)benzene linkers under a variety of conditions. We have developed a full set of methods for high-throughput transmission electron microscopy (TEM), including automated sample preparation and data acquisition, to accelerate MOF characterization. The use of acetic acid as a modulator yields amorphous, NU-906, NU-600, and mixed-phase structures depending on the ratio of N,N-dimethylformamide to N,N-diethylformamide solvent and the quantity of the modulator. Notably, the use of formic acid as a modulator enables direct control of crystal growth along the c direction through variation of the modulator quantity, thus realizing aspect ratio control of NU-1008 crystals with different catalytic hydrolysis performance toward a nerve agent simulant.
Collapse
Affiliation(s)
- Xinyi Gong
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karthikeyan Gnanasekaran
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Departments of Biomedical Engineering, Materials Science & Engineering, and Pharmacology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, and Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Christopher J Forman
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Departments of Biomedical Engineering, Materials Science & Engineering, and Pharmacology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, and Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Shengyi Su
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nathan C Gianneschi
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Departments of Biomedical Engineering, Materials Science & Engineering, and Pharmacology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, and Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Attia MS, Youssef AO, Abou-Omar MN, Mohamed EH, Boukherroub R, Khan A, Altalhi T, Amin MA. Emerging advances and current applications of nanoMOF-based membranes for water treatment. CHEMOSPHERE 2022; 292:133369. [PMID: 34953879 DOI: 10.1016/j.chemosphere.2021.133369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/28/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) are significantly tunable materials that can be exploited in a wide range of applications. In recent years, a large number of studies have been focused on synthesizing nano-scale MOFs (nanoMOFs), thus taking advantage of these unique materials in various applications, especially those that are only possible at nano-scale. One of the technologies where nanoMOF materials occupy a central role is the membrane technology as one of the most efficient separation techniques. Therefore, numerous reports can be found on the enhancement of the physicochemical properties of polymeric membranes by using nanoMOFs, leading to remarkably improved performance. One of the most considerable applications of these nanoMOF-based membranes is in water treatment systems, because freshwater scarcity is now an undeniable crisis facing humanity. In this in-depth review, the most prominent synthesis and post-synthesis methods for the fabrication of nanoMOFs are initially discussed. Afterwards, different nanoMOF-based composite membranes such as thin-film nanocomposites (TFN) and mixed-matrix membranes (MMM) and their various fabrication methods are reviewed and compared. Then, the impacts of using MOFs-based membranes for water purification through growing metal-organic frameworks crystals on the support materials and utilization of metal-organic frameworks as fillers in mixed matrix membrane (MMM) are highlighted. Finally, a summary of pros and cons of using nanoMOFs in membrane technology for water treatment purposes and clear future prospects and research potentials are presented.
Collapse
Affiliation(s)
- M S Attia
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt.
| | - A O Youssef
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Mona N Abou-Omar
- Department of Chemistry, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Ekram H Mohamed
- Pharmaceutical Analytical, Chemistry Department, Faculty of Pharmacy, The British University in Egypt, 11837, El Sherouk City, Cairo, Egypt
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000, Lille, France
| | - Afrasyab Khan
- Institute of Engineering and Technology, Department of Hydraulics and Hydraulic and Pneumatic Systems, South Ural State University, Lenin Prospect 76, Chelyabinsk, 454080, Russian Federation
| | - Tariq Altalhi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
15
|
Xu M, Meng SS, Cai P, Gu YH, Yan TA, Yan TH, Zhang QH, Gu L, Liu DH, Zhou HC, Gu ZY. Homogeneously Mixing Different Metal-Organic Framework Structures in Single Nanocrystals through Forming Solid Solutions. ACS CENTRAL SCIENCE 2022; 8:184-191. [PMID: 35233451 PMCID: PMC8874727 DOI: 10.1021/acscentsci.1c01344] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 06/01/2023]
Abstract
Pore engineering plays a significant role in the applications of porous materials, especially in the area of separation and catalysis. Here, we demonstrated a metal-organic framework (MOF) solid solution (MOSS) strategy to homogeneously and controllably mix NU-1000 and NU-901 structures inside single MOF nanocrystals. The key for the homogeneous mixing and forming of MOSS was the bidentate modulator, which was designed to have a slightly longer distance between two carboxylate groups than the original tetratopic ligand. All of the MOSS nanocrystals showed a uniform pore size distribution with a well-tuned ratio of mesopores to micropores. Because of the appropriate pore ratio, MOSS nanocrystals can balance the thermodynamic interactions and kinetic diffusion of the substrates, thus showing exceedingly higher separation abilities and a unique elution sequence. Our work proposes a rational strategy to design mixed-porous MOFs with controlled pore ratios and provides a new direction to design homogeneously mixed MOFs with a high separation ability and unique separation selectivity.
Collapse
Affiliation(s)
- Ming Xu
- Jiangsu
Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, Jiangsu Key Laboratory
of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Sha-Sha Meng
- Jiangsu
Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, Jiangsu Key Laboratory
of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Peiyu Cai
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Yu-Hao Gu
- Jiangsu
Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, Jiangsu Key Laboratory
of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Tong-An Yan
- State
Key Laboratory of Organic−Inorganic Composites, Beijing Advanced
Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tian-Hao Yan
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Qing-Hua Zhang
- Institute
of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Gu
- Institute
of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Da-Huan Liu
- State
Key Laboratory of Organic−Inorganic Composites, Beijing Advanced
Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77842, United States
| | - Zhi-Yuan Gu
- Jiangsu
Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, Jiangsu Key Laboratory
of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
16
|
Allahyarli K, Reithofer MR, Cheng F, Young AJ, Kiss E, Tan TTY, Prado-Roller A, Chin JM. Metal-Organic Framework superstructures with long-ranged orientational order via E-field assisted liquid crystal assembly. J Colloid Interface Sci 2021; 610:1027-1034. [PMID: 34920862 DOI: 10.1016/j.jcis.2021.11.151] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Most MOFs are non-cubic, with functionality dependent upon crystallographic direction, and are largely prepared as microcrystalline powders. Therefore, general methods to orient and assemble free-standing MOF crystals are especially important and urgently needed. This is addressed here through the novel strategy of E-field assisted liquid crystal assembly, applied to MIL-53-NH2(Al), MIL-68(In) and NU-1000 MOF crystals, with aspect ratios ranging from 10 to 1.2, to form highly oriented MOF superstructures which were photopolymerized to fix their long-ranged order. This new strategy for controlling MOF orientation and packing side-steps the traditional requirements of particle monodispersity, shape homogeneity and high aspect ratios (>4.7) typical of colloidal and liquid crystal assembly, and is applicable even to polydispersed MOF crystals, thereby paving the way towards the development of highly oriented MOF composites with improved functionality.
Collapse
Affiliation(s)
- Kamal Allahyarli
- Faculty of Chemistry, Institute of Physical Chemistry, University of Vienna, Währingerstr. 42, Vienna A-1090, Austria
| | - Michael R Reithofer
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Vienna, Währingerstr. 42, Vienna A-1090, Austria
| | - Fei Cheng
- Department of Chemistry, University of Hull, HU6 7RX, United Kingdom
| | - Adam J Young
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Vienna, Währingerstr. 42, Vienna A-1090, Austria
| | - Endre Kiss
- Faculty of Chemistry, Core Facility Multimodal Imaging, University of Vienna, Währingerstr. 38-42, Vienna A-1090, Austria
| | - Tristan Tsai Yuan Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Alexander Prado-Roller
- Faculty of Chemistry, Department of Inorganic Chemistry - Functional Materials, University of Vienna, Währingerstr. 42, Vienna A-1090, Austria
| | - Jia Min Chin
- Faculty of Chemistry, Institute of Physical Chemistry, University of Vienna, Währingerstr. 42, Vienna A-1090, Austria.
| |
Collapse
|
17
|
Jiang D, Huang C, Zhu J, Wang P, Liu Z, Fang D. Classification and role of modulators on crystal engineering of metal organic frameworks (MOFs). Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214064] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Li X, Yu J, Lu Z, Duan J, Fry HC, Gosztola DJ, Maindan K, Rajasree SS, Deria P. Photoinduced Charge Transfer with a Small Driving Force Facilitated by Exciplex-like Complex Formation in Metal-Organic Frameworks. J Am Chem Soc 2021; 143:15286-15297. [PMID: 34499503 DOI: 10.1021/jacs.1c06629] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Photoinduced charge transfer (PCT) is a key step in the light-harvesting (LH) process producing the redox equivalents for energy conversion. However, like traditional macromolecular donor-acceptor assemblies, most MOF-derived LH systems are designed with a large ΔG0 to drive PCT. To emulate the functionality of the reaction center of the natural LH complex that drives PCT within a pair of identical chromophores producing charge carriers with maximum potentials, we prepared two electronically diverse carboxy-terminated zinc porphyrins, BFBP(Zn)-COOH and TFP(Zn)-COOH, and installed them into the hexagonal pores of NU-1000 via solvent-assisted ligand incorporation (SALI), resulting in BFBP(Zn)@NU-1000 and TFP(Zn)@NU-1000 compositions. Varying the number of trifluoromethyl groups at the porphyrin core, we tuned the ground-state redox potentials of the porphyrins within ca. 0.1 V relative to that of NU-1000, defining a small ΔG0 for PCT. For BFBP(Zn)@NU-1000, the relative ground- and excited-state redox potentials of the components facilitate an energy transfer (EnT) from NU-1000* to BFBP(Zn), forming BFBP(Zn)S1* which entails a long-lived charge-separated complex formed through an exciplex-like [BFBP(Zn)S1*-TBAPy] intermediate. Various time-resolved spectroscopic data suggest that EnT from NU-1000* may not involve a fast Förster-like resonance energy transfer (FRET) but rather through a slow [NU-1000*-BFBP(Zn)] intermediate formation. In contrast, TFP(Zn)@NU-1000 displays an efficient EnT from NU-1000* to [TFP(Zn)-TBAPy], a complex that formed at the ground state through electronic interaction, and thereon showed the excited-state feature of [TFP(Zn)-TBAPy]*. The results will help to develop synthetic LHC systems that can produce long-lived photogenerated charge carriers with high potentials, i.e., high open-circuit voltage in photoelectrochemical setups.
Collapse
Affiliation(s)
- Xinlin Li
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Jierui Yu
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Zhiyong Lu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,College of Mechanics and Materials, Hohai University, Nanjing 210098, P. R. China
| | - Jiaxin Duan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S Cass Ave, Lemont, Illinois 60439, United States
| | - David J Gosztola
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S Cass Ave, Lemont, Illinois 60439, United States
| | - Karan Maindan
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Sreehari Surendran Rajasree
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Pravas Deria
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| |
Collapse
|
19
|
Zhang W, Gong M, Yang J, Gu J. Zr-MOFs Integrated with a Guest Capturer and a Photosensitizer for the Simultaneous Adsorption and Degradation of 4-Chlorophenol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8157-8166. [PMID: 34190558 DOI: 10.1021/acs.langmuir.1c00823] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A bifunctional metal-organic framework (MOF) was successfully designed to realize the purification of 4-chlorophenol (4-CP) under simulated sunlight irradiation. Owing to the large-size mesopores of the MOF matrix NU-1000, β-CMCD (carboxylic β-cyclodextrin) could be incorporated into the frameworks with a density of 2.4% to pre-enrich the pollutant of 4-CP. Meanwhile, the photodegradation promoter [Pd(II) meso-tetra(4-carboxyphenyl)porphine] was in situ co-assembled with the organic ligand to realize its synchronous degradation. As for the current integrator, a Langmuir model was used to explain the adsorption isotherm, and the Langmuir-Hinshelwood model exhibited a better fit to its catalytic degradation behavior. Thanks to the simultaneous presence of a capturer and a photodegradation promoter, the adsorption capacity of 4-CP reached as high as 296 mg g-1, which was further completely detoxified within 60 min under simulated sunlight irradiation with a half-life time of only 5.98 min. Such excellent integrated decontamination properties prefigure the great promising potential of multifunctional MOFs in the field of pollution purification.
Collapse
Affiliation(s)
- Wenliang Zhang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ming Gong
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Fujian Key Laboratory of Architectural Coating, Fujian Technology Innovation Center for Green Functional Coating, Skshu Paint Co., Ltd., 518 North Liyuan Avenue, Licheng District, Putian, Fujian 351100 PR China
| | - Jian Yang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlou Gu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
20
|
Kinik FP, Ortega-Guerrero A, Ongari D, Ireland CP, Smit B. Pyrene-based metal organic frameworks: from synthesis to applications. Chem Soc Rev 2021; 50:3143-3177. [PMID: 33475661 DOI: 10.1039/d0cs00424c] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pyrene is one of the most widely investigated aromatic hydrocarbons given to its unique optical and electronic properties. Hence, pyrene-based ligands have been attractive for the synthesis of metal-organic frameworks (MOFs) in the last few years. In this review, we will focus on the most important characteristics of pyrene, in addition to the development and synthesis of pyrene-based molecules as bridging ligands to be used in MOF structures. We will summarize the synthesis attempts, as well as the post-synthetic modifications of pyrene-based MOFs by the incorporation of metals or ligands in the structure. The discussion of promising results of such MOFs in several applications; including luminescence, photocatalysis, adsorption and separation, heterogeneous catalysis, electrochemical applications and bio-medical applications will be highlighted. Finally, some insights and future prospects will be given based on the studies discussed in the review. This review will pave the way for the researchers in the field for the design and development of novel pyrene-based structures and their utilization for different applications.
Collapse
Affiliation(s)
- F Pelin Kinik
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Andres Ortega-Guerrero
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Daniele Ongari
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Christopher P Ireland
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Berend Smit
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| |
Collapse
|
21
|
Okada K, Tanaka Y, Inose T, Ujii H, Yoshikawa H, Tanaka D. Electrolytic synthesis of porphyrinic Zr-metal-organic frameworks with selective crystal topologies. Dalton Trans 2021; 50:5411-5415. [PMID: 33908962 DOI: 10.1039/d1dt00491c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The thermodynamic (PCN-222) and kinetic (PCN-224) products of porphyrinic Zr-metal-organic frameworks (MOFs) were synthesized via an anodic dissolution approach for the first time. To the best of our knowledge, this is the first report of MOF polymorphs being controlled by electrolysis. The selective formation of PCN-222 requires an amorphous component to be present on the electrode during the initial reaction process.
Collapse
Affiliation(s)
- Keito Okada
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan.
| | - Yoko Tanaka
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan.
| | - Tomoko Inose
- Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Sapporo 001-0020, Japan and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Ujii
- Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Sapporo 001-0020, Japan and Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Heverlee, 3001, Belgium
| | - Hirofumi Yoshikawa
- Department of Nanotechnology for Sustainable Energy, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Daisuke Tanaka
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan. and Japan JST PRESTO, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
22
|
Lu Z, Liu J, Zhang X, Liao Y, Wang R, Zhang K, Lyu J, Farha OK, Hupp JT. Node-Accessible Zirconium MOFs. J Am Chem Soc 2020; 142:21110-21121. [PMID: 33263388 DOI: 10.1021/jacs.0c09782] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-stability, zirconium-based metal-organic frameworks are attractive as heterogeneous catalysts and as model supports for uniform arrays of subsequently constructed heterogeneous catalysts-for example, MOF-node-grafted metal-oxy and metal-sulfur clusters. For hexa-Zr(IV)-MOFs characterized by nodes that are less than 12-connected, sites not used for linkers are ideally occupied by reactive and displaceable OH/H2O pairs. The desired pairs are ideal for grafting the aforementioned catalytic clusters, while aqua-ligand lability renders them effective for exposing highly Lewis-acidic Zr(IV) sites (catalytic sites) to candidate reactants. New single-crystal X-ray studies of an eight-connected Zr-MOF, NU-1000, reveal that conventional activation fully removes modulator ligands, but replaces them with three node-blocking formate ligands (from solvent decomposition) and only one OH/H2O pair, not four-a largely overlooked complication that now appears to be general for Zr-MOFs. Here we describe an alternative activation protocol that effectively removes modulators, avoids formate, and installs the full complement of terminal OH/H2O pairs. It does so via an unusual isolatable intermediate featuring eight aqua ligands and four non-ligated chlorides-again as supported by single-crystal X-ray data. We find that complete replacement of node-blocking modulators/formate with the originally envisioned OH/OH2 pairs has striking consequences; here we touch upon just three. First, elimination of unrecognized formate renders aqua ligands much more thermally labile, enabling open Zr(IV) sites to be obtained at lower temperature. Second, in the absence of formate, which otherwise links and locks pairs of node Zr(IV) ions, reversible removal of aqua ligands engenders reversible contraction of MOF meso- and micropores, as evidenced by X-ray diffraction. Third, formate replacement with OH/OH2 pairs renders NU-1000 ca.10× more active for catalytic hydrolytic degradation of a representative simulant of G-type chemical warfare agents.
Collapse
Affiliation(s)
- Zhiyong Lu
- College of Mechanics and Materials, Hohai University, Nanjing 210098, P. R. China.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xuan Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yijun Liao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Rui Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kun Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Jiafei Lyu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Pharmaceutical Engineering and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, P. R. China
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
23
|
Wang Z, Schmalbach KM, Combs RL, Chen Y, Penn RL, Mara NA, Stein A. Effects of Phase Purity and Pore Reinforcement on Mechanical Behavior of NU-1000 and Silica-Infiltrated NU-1000 Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49971-49981. [PMID: 33079519 DOI: 10.1021/acsami.0c12877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal-organic framework (MOF) materials have shown promise in many applications, ranging from gas storage to absorption and catalysis. Because of the high porosity and low density of many MOFs, densification methods such as pelletization and extrusion are needed for practical use and for commercialization of MOF materials. Therefore, it is important to elucidate the mechanical properties of MOFs and to develop methods of further enhancing their mechanical strength. Here, we demonstrate the influence of phase purity and the presence of a pore-reinforcing component on elastic modulus and yield stress of NU-1000 MOFs through nanoindentation methods and finite element simulation. Three types of NU-1000 single crystals were compared: phase-pure NU-1000 prepared with biphenyl-4-carboxylic acid as a modulator (NU-1000-bip), NU-1000 prepared with benzoic acid as a modulator (NU-1000-ben), which results in an additional, denser impurity phase of NU-901, and NU-1000-bip whose mesopores were infiltrated with silica (SiOx(OH)y@NU-1000) by nanocasting methods. By maintaining phase purity and minimizing defects, the elastic modulus could be enhanced by nearly an order of magnitude: phase-pure NU-1000-bip crystals exhibited an elastic modulus of 21 GPa, whereas the value for NU-1000-ben crystals was only 3 GPa. The introduction of silica into the mesopores of NU-1000-bip did not strongly affect the measured elastic modulus (19 GPa) but significantly increased the load at failure from 2000 μN to 3000-4000 μN.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Kevin M Schmalbach
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Rebecca L Combs
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Youxing Chen
- Department of Mechanical Engineering, UNC Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223, United States
| | - R Lee Penn
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Nathan A Mara
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Andreas Stein
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
24
|
Zhao M, Chen J, Chen B, Zhang X, Shi Z, Liu Z, Ma Q, Peng Y, Tan C, Wu XJ, Zhang H. Selective Epitaxial Growth of Oriented Hierarchical Metal–Organic Framework Heterostructures. J Am Chem Soc 2020; 142:8953-8961. [DOI: 10.1021/jacs.0c02489] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Meiting Zhao
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Junze Chen
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Bo Chen
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiao Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Zhenyu Shi
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Zhengqing Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Qinglang Ma
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yongwu Peng
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chaoliang Tan
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xue-Jun Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| |
Collapse
|
25
|
Diao Y, Hu J, Cheng S, Ma F, Li MQ, Hu X, Li YY, He J, Xu Z. Dense Alkyne Arrays of a Zr(IV) Metal–Organic Framework Absorb Co2(CO)8 for Functionalization. Inorg Chem 2020; 59:5626-5631. [DOI: 10.1021/acs.inorgchem.0c00328] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Jieying Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | | | | | | | | | | | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | | |
Collapse
|
26
|
Marshall CR, Staudhammer SA, Brozek CK. Size control over metal-organic framework porous nanocrystals. Chem Sci 2019; 10:9396-9408. [PMID: 32055316 PMCID: PMC6979335 DOI: 10.1039/c9sc03802g] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/11/2019] [Indexed: 01/19/2023] Open
Abstract
Porous nanocrystals of metal-organic frameworks (MOFs) offer greater bioavailability, higher surface-to-volume ratios, superior control over MOF membrane fabrication, and enhanced guest-sorption kinetics compared to analogous bulk phases, but reliable synthesis of uniformly sized particles remains an outstanding challenge. Here, we identify the smallest and most probable sizes of known MOF nanocrystals and present an exhaustive comparative summary of nano- versus bulk-MOF syntheses. Based on critical analysis of reported size data and experimental conditions, an alternate to the LaMer model is proposed that describes nanocrystal formation as a kinetic competition between acid-base and metal-ligand reactivity. Particle growth terminates when ligands outcompete metal-ion diffusion, thereby arresting polymerization to produce kinetically trapped particle sizes. This model reconciles disparate trends in the literature and postulates that minimum particle sizes can be achieved by minimizing the relative ratios of metal-to-linker local concentrations. By identifying conditions that disfavor small nanocrystal sizes, this model also provides routes towards macroscopic MOF single crystals. A universal "seesaw" relationship between nanocrystal sizes and the concentrations of acidic surface-capping ligands provides a roadmap for achieving precise synthetic control. Best practices in synthesis, characterization, and data presentation are recommended for future investigations so that MOF nanocrystals may achieve their full potential as advanced nanomaterials.
Collapse
Affiliation(s)
- Checkers R Marshall
- Department of Chemistry & Biochemistry , Materials Science Institute , University of Oregon , Eugene , Oregon 97403 , USA .
| | - Sara A Staudhammer
- Department of Chemistry & Biochemistry , Materials Science Institute , University of Oregon , Eugene , Oregon 97403 , USA .
| | - Carl K Brozek
- Department of Chemistry & Biochemistry , Materials Science Institute , University of Oregon , Eugene , Oregon 97403 , USA .
| |
Collapse
|
27
|
Li X, Yu J, Gosztola DJ, Fry HC, Deria P. Wavelength-Dependent Energy and Charge Transfer in MOF: A Step toward Artificial Porous Light-Harvesting System. J Am Chem Soc 2019; 141:16849-16857. [DOI: 10.1021/jacs.9b08078] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinlin Li
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United State
| | - Jierui Yu
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United State
| | - David J. Gosztola
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - H. Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Pravas Deria
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United State
| |
Collapse
|
28
|
Desai SP, Ye J, Islamoglu T, Farha OK, Lu CC. Mechanistic Study on the Origin of the Trans Selectivity in Alkyne Semihydrogenation by a Heterobimetallic Rhodium–Gallium Catalyst in a Metal–Organic Framework. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Timur Islamoglu
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | |
Collapse
|
29
|
|
30
|
Gong X, Noh H, Gianneschi NC, Farha OK. Interrogating Kinetic versus Thermodynamic Topologies of Metal–Organic Frameworks via Combined Transmission Electron Microscopy and X-ray Diffraction Analysis. J Am Chem Soc 2019; 141:6146-6151. [DOI: 10.1021/jacs.9b01789] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xinyi Gong
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hyunho Noh
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nathan C. Gianneschi
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
31
|
Shaikh SM, Usov PM, Zhu J, Cai M, Alatis J, Morris AJ. Synthesis and Defect Characterization of Phase-Pure Zr-MOFs Based on Meso-tetracarboxyphenylporphyrin. Inorg Chem 2019; 58:5145-5153. [PMID: 30912437 DOI: 10.1021/acs.inorgchem.9b00200] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The reaction of zirconium salts with meso-tetra(4-carboxyphenyl)porphyrin (TCPP) in the presence of different modulators results in the formation of a diverse set of metal-organic frameworks (MOFs), each displaying distinct crystalline topologies. However, the synthesis of phase-pure crystalline frameworks remains challenging due to the concurrent formation of different polymorphs. The acidity and concentration of the modulator greatly influence the outcome of the MOF synthesis. By systematically varying these two parameters, selective framework formation can be achieved. In the present study, we aimed to elucidate the effect of modulator on the synthesis of zirconium-based TCPP MOFs. With the help of powder X-ray diffraction and scanning electron microscopy, modulator candidates and the optimal synthetic conditions yielding phase-pure PCN-222, PCN-223, and MOF-525 were identified. 1H nuclear magnetic resonance analysis, thermogravimetric analysis, and N2 gas sorption measurements were performed on select MOFs to gain insight into the relationship between their defectivity and modulator properties.
Collapse
Affiliation(s)
- Shaunak M Shaikh
- Department of Chemistry and Macromolecules Innovation Institute , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Pavel M Usov
- Department of Chemistry and Macromolecules Innovation Institute , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Jie Zhu
- Department of Chemistry and Macromolecules Innovation Institute , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Meng Cai
- Department of Chemistry and Macromolecules Innovation Institute , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - James Alatis
- Department of Chemistry and Macromolecules Innovation Institute , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Amanda J Morris
- Department of Chemistry and Macromolecules Innovation Institute , Virginia Tech , Blacksburg , Virginia 24061 , United States
| |
Collapse
|
32
|
Kollias L, Cantu DC, Tubbs MA, Rousseau R, Glezakou VA, Salvalaglio M. Molecular Level Understanding of the Free Energy Landscape in Early Stages of Metal–Organic Framework Nucleation. J Am Chem Soc 2019; 141:6073-6081. [PMID: 30887804 DOI: 10.1021/jacs.9b01829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Loukas Kollias
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - David C. Cantu
- Basic and Applied Molecular Foundations, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Chemical and Materials Engineering Department, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Marcus A. Tubbs
- Basic and Applied Molecular Foundations, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Roger Rousseau
- Basic and Applied Molecular Foundations, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Vassiliki-Alexandra Glezakou
- Basic and Applied Molecular Foundations, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Matteo Salvalaglio
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| |
Collapse
|
33
|
Vogiatzis KD, Polynski MV, Kirkland JK, Townsend J, Hashemi A, Liu C, Pidko EA. Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities. Chem Rev 2019; 119:2453-2523. [PMID: 30376310 PMCID: PMC6396130 DOI: 10.1021/acs.chemrev.8b00361] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Indexed: 12/28/2022]
Abstract
Computational chemistry provides a versatile toolbox for studying mechanistic details of catalytic reactions and holds promise to deliver practical strategies to enable the rational in silico catalyst design. The versatile reactivity and nontrivial electronic structure effects, common for systems based on 3d transition metals, introduce additional complexity that may represent a particular challenge to the standard computational strategies. In this review, we discuss the challenges and capabilities of modern electronic structure methods for studying the reaction mechanisms promoted by 3d transition metal molecular catalysts. Particular focus will be placed on the ways of addressing the multiconfigurational problem in electronic structure calculations and the role of expert bias in the practical utilization of the available methods. The development of density functionals designed to address transition metals is also discussed. Special emphasis is placed on the methods that account for solvation effects and the multicomponent nature of practical catalytic systems. This is followed by an overview of recent computational studies addressing the mechanistic complexity of catalytic processes by molecular catalysts based on 3d metals. Cases that involve noninnocent ligands, multicomponent reaction systems, metal-ligand and metal-metal cooperativity, as well as modeling complex catalytic systems such as metal-organic frameworks are presented. Conventionally, computational studies on catalytic mechanisms are heavily dependent on the chemical intuition and expert input of the researcher. Recent developments in advanced automated methods for reaction path analysis hold promise for eliminating such human-bias from computational catalysis studies. A brief overview of these approaches is presented in the final section of the review. The paper is closed with general concluding remarks.
Collapse
Affiliation(s)
| | | | - Justin K. Kirkland
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jacob Townsend
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ali Hashemi
- Inorganic
Systems Engineering group, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Chong Liu
- Inorganic
Systems Engineering group, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Evgeny A. Pidko
- TheoMAT
group, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
- Inorganic
Systems Engineering group, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
34
|
Osterrieth JWM, Wright D, Noh H, Kung CW, Vulpe D, Li A, Park JE, Van Duyne RP, Moghadam PZ, Baumberg JJ, Farha OK, Fairen-Jimenez D. Core–Shell Gold Nanorod@Zirconium-Based Metal–Organic Framework Composites as in Situ Size-Selective Raman Probes. J Am Chem Soc 2019; 141:3893-3900. [DOI: 10.1021/jacs.8b11300] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Johannes W. M. Osterrieth
- Adsorption and Advanced Materials (AAM) Laboratory, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Demelza Wright
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K
| | - Hyunho Noh
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Chung-Wei Kung
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Diana Vulpe
- Adsorption and Advanced Materials (AAM) Laboratory, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Aurelia Li
- Adsorption and Advanced Materials (AAM) Laboratory, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Ji Eun Park
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard P. Van Duyne
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Peyman Z. Moghadam
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K
| | - Jeremy J. Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K
| | - Omar K. Farha
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 30208, United States
| | - David Fairen-Jimenez
- Adsorption and Advanced Materials (AAM) Laboratory, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| |
Collapse
|
35
|
Wasson MC, Lyu J, Islamoglu T, Farha OK. Linker Competition within a Metal–Organic Framework for Topological Insights. Inorg Chem 2018; 58:1513-1517. [DOI: 10.1021/acs.inorgchem.8b03025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Megan C. Wasson
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jiafei Lyu
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Timur Islamoglu
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
36
|
Palmer RH, Kung CW, Liu J, Farha OK, Hupp JT. Nickel-Carbon-Zirconium Material Derived from Nickel-Oxide Clusters Installed in a Metal-Organic Framework Scaffold by Atomic Layer Deposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14143-14150. [PMID: 30380883 DOI: 10.1021/acs.langmuir.8b02166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Atomic layer deposition is employed to install nickel oxide into NU-1000. Upon heating to 900 °C under nitrogen, a carbon material containing ZrO2 and Ni is formed. In notable contrast to the parent metal-organic framework, the pyrolyzed material is: (a) stable in highly alkaline solutions (typical conditions for water electro-oxidation) and (b) electrically conductive and thus able to deliver oxidizing equivalents (holes) to catalytic sites located far from the underlying conductive-glass electrode. The pyrolysis-derived material was characterized and its electrocatalytic activity for oxygen evolution was investigated.
Collapse
Affiliation(s)
| | | | | | - Omar K Farha
- Department of Chemistry, Faculty of Science , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
| | | |
Collapse
|
37
|
Desai SP, Ye J, Zheng J, Ferrandon MS, Webber TE, Platero-Prats AE, Duan J, Garcia-Holley P, Camaioni DM, Chapman KW, Delferro M, Farha OK, Fulton JL, Gagliardi L, Lercher JA, Penn RL, Stein A, Lu CC. Well-Defined Rhodium-Gallium Catalytic Sites in a Metal-Organic Framework: Promoter-Controlled Selectivity in Alkyne Semihydrogenation to E-Alkenes. J Am Chem Soc 2018; 140:15309-15318. [PMID: 30352506 DOI: 10.1021/jacs.8b08550] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Promoters are ubiquitous in industrial heterogeneous catalysts. The wider roles of promoters in accelerating catalysis and/or controlling selectivity are, however, not well understood. A model system has been developed where a heterobimetallic active site comprising an active metal (Rh) and a promoter ion (Ga) is preassembled and delivered onto a metal-organic framework (MOF) support, NU-1000. The Rh-Ga sites in NU-1000 selectively catalyze the hydrogenation of acyclic alkynes to E-alkenes. The overall stereoselectivity is complementary to the well-known Lindlar's catalyst, which generates Z-alkenes. The role of the Ga in promoting this unusual selectivity is evidenced by the lack of semihydrogenation selectivity when Ga is absent and only Rh is present in the active site.
Collapse
Affiliation(s)
| | | | - Jian Zheng
- Institute for Integrated Catalysis, and Fundamental and Computational Science Directorate , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | | | | | - Ana E Platero-Prats
- Department of Inorganic Chemistry , Universidad Autónoma de Madrid , Madrid 28049 , Spain
| | | | - Paula Garcia-Holley
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Donald M Camaioni
- Institute for Integrated Catalysis, and Fundamental and Computational Science Directorate , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Karena W Chapman
- Department of Chemistry , Stony Brook University, Stony Brook , New York 11790 , United States
| | | | - Omar K Farha
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - John L Fulton
- Institute for Integrated Catalysis, and Fundamental and Computational Science Directorate , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | | | - Johannes A Lercher
- Institute for Integrated Catalysis, and Fundamental and Computational Science Directorate , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States.,Department of Chemistry and Catalysis Research Institute , Technische Universität München , Garching 85748 , Germany
| | | | | | | |
Collapse
|
38
|
Kung CW, Platero-Prats AE, Drout RJ, Kang J, Wang TC, Audu CO, Hersam MC, Chapman KW, Farha OK, Hupp JT. Inorganic "Conductive Glass" Approach to Rendering Mesoporous Metal-Organic Frameworks Electronically Conductive and Chemically Responsive. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30532-30540. [PMID: 30113802 DOI: 10.1021/acsami.8b08270] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A representative mesoporous metal-organic-framework (MOF) material, NU-1000, has been rendered electronically conductive via a robust inorganic approach that permits retention of MOF crystallinity and porosity. The approach is based on condensed-phase grafting of molecular tin species onto the MOF nodes via irreversible reaction with hydroxyl and aqua ligands presented at the node surface, a self-limiting process termed solvothermal installation (of metal ions) in MOFs (SIM, a solution-phase analog of atomic layer deposition in MOFs). Treatment of the modified MOF with aerated steam at 120 °C converts the grafted tin molecules to tetratin(IV)oxy clusters, with the clusters being sited between insulating pairs of zirconia-like nodes (the zirconium component being key to endowing the parent material with requisite chemical and thermal stability). By introducing new O-H presenting ligands on the modified-MOF node, the high-temperature steam step additionally serves to reset the material to reactive form, thus enabling a second self-limiting tin-grafting step to be run (and after further steam treatment, enabling a third). Difference-envelop-density (DED) analyses of synchrotron-derived X-ray scattering data, with and without installed tin species, show that the clusters formed after one cycle are spatially isolated, but that repetitive SIM cycling adds metal and oxygen ions in a way that enshrouds nodes, links clusters, and yields continuous one-dimensional strands of oxy-tin(IV), oriented exclusively along the c axis of the MOF. Two-probe conductivity measurements show that the parent MOF and the version containing isolated oxy-tin(IV) clusters are electrically insulating, but that the versions featuring continuous strands show an electrical conductivity of 1.8 × 10-7 S/cm after three Sn-SIM cycles. When combined with interdigitated microelectrodes, the solvent-free and conductive-glass-modified material (three Sn-SIM cycles) displays a substantial and persistent increase in electrical conductivity during exposure to 5% H2, indicating a role for dissociated H2 as an electronic dopant. The increase can be repetitively reversed by alternating H2 with air, illustrating the ability of the conductive MOF to function as a resistive sensor for H2 and suggesting further potential applications that may capitalize on the combination of high volumetric surface area, high mesoporosity, high chemical and thermal stability, and significant electrical conductivity.
Collapse
Affiliation(s)
| | - Ana E Platero-Prats
- X-ray Science Division, Advanced Photon Source , Argonne National Laboratory , Argonne , Illinois 60439-4858 , United States
| | | | | | | | | | | | - Karena W Chapman
- X-ray Science Division, Advanced Photon Source , Argonne National Laboratory , Argonne , Illinois 60439-4858 , United States
| | - Omar K Farha
- Department of Chemistry, Faculty of Science , King Abdulaziz University , Jeddah 21589 , Saudi
| | | |
Collapse
|
39
|
Towards Generalized Noise-Level Dependent Crystallographic Symmetry Classifications of More or Less Periodic Crystal Patterns. Symmetry (Basel) 2018. [DOI: 10.3390/sym10050133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
40
|
Garibay SJ, Iordanov I, Islamoglu T, DeCoste JB, Farha OK. Synthesis and functionalization of phase-pure NU-901 for enhanced CO2adsorption: the influence of a zirconium salt and modulator on the topology and phase purity. CrystEngComm 2018. [DOI: 10.1039/c8ce01454j] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phase-pure NU-901 was functionalized with amines through solvent-assisted linker incorporation resulting in more than double the typical CO2adsorption capacity.
Collapse
Affiliation(s)
- Sergio J. Garibay
- Edgewood Chemical Biological Center
- US Army Research, Development, and Engineering Command
- Aberdeen Proving Ground
- USA
| | - Ivan Iordanov
- Edgewood Chemical Biological Center
- US Army Research, Development, and Engineering Command
- Aberdeen Proving Ground
- USA
| | - Timur Islamoglu
- Department of Chemistry the International Institute of Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Jared B. DeCoste
- Edgewood Chemical Biological Center
- US Army Research, Development, and Engineering Command
- Aberdeen Proving Ground
- USA
| | - Omar K. Farha
- Department of Chemistry the International Institute of Nanotechnology
- Northwestern University
- Evanston
- USA
| |
Collapse
|