1
|
Ashok Kumar SS, Bashir S, Pershaanaa M, Kamarulazam F, Kuppusamy AV, Badawi N, Ramesh K, Ramesh S. A review of the role of graphene-based nanomaterials in tackling challenges posed by the COVID-19 pandemic. Microb Pathog 2024; 197:107059. [PMID: 39442812 DOI: 10.1016/j.micpath.2024.107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/31/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
In 2020, the World Health Organization (WHO) declared a pandemic due to the emergence of the coronavirus disease (COVID-19) which had resulted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). At present, the emergence of many new variants and mutants were found to be more harmful compared to the previous strains. As a result, research scientists around the world had devoted significant efforts to understand the mechanism, causes and transmission due to COVID-19 along with the treatment to cure these diseases. However, despite achieving several findings, much more was unknown and yet to be explored. Hence, along with these developments, it is also extremely essential to design effective systems by incorporating smart materials to battle the COVID-19. Therefore, several approaches have been implemented to combat against COVID-19. Recently, the graphene-based materials have been explored for the current COVID-19 and future pandemics due to its superior physicochemical properties, providing efficient nanoplatforms for optical and electrochemical sensing and diagnostic applications with high sensitivity and selectivity. Moreover, based on the photothermal effects or reactive oxygen species formation, the carbon-based nanomaterials have shown its potentiality for targeted antiviral drug delivery and the inhibitory effects against pathogenic viruses. Therefore, this review article sheds light on the recent progress and the most promising strategies related to graphene and related materials and its applications for detection, decontamination, diagnosis, and protection against COVID-19. In addition, the key challenges and future directives are discussed in detail for fundamental design and development of technologies based on graphene-based materials along with the demand aspects of graphene-based products and lastly, our personal opinions on the appropriate approaches to improve these technologies respectively.
Collapse
Affiliation(s)
- Sachin Sharma Ashok Kumar
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; School of Engineering, Taylor's University, 1 Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia.
| | - Shahid Bashir
- Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, Universiti Malaya, Jalan Pantai Baharu, 59990, Kuala Lumpur, Malaysia
| | - M Pershaanaa
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Fathiah Kamarulazam
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - A V Kuppusamy
- School of Engineering and Computing, Manipal International University, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Nujud Badawi
- University of Hafr Al-Batin College of Science, Hafer Al-Batin, 39921, Saudi Arabia
| | - K Ramesh
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Physical Sciences, Saveetha School of Engineering, Saveetha University (SIMATS), Chennai, India.
| | - S Ramesh
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Physical Sciences, Saveetha School of Engineering, Saveetha University (SIMATS), Chennai, India
| |
Collapse
|
2
|
Kumari S, Nehra A, Gupta K, Puri A, Kumar V, Singh KP, Kumar M, Sharma A. Chlorambucil-Loaded Graphene-Oxide-Based Nano-Vesicles for Cancer Therapy. Pharmaceutics 2023; 15:649. [PMID: 36839970 PMCID: PMC9961782 DOI: 10.3390/pharmaceutics15020649] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/17/2023] Open
Abstract
In this study, the authors have designed biocompatible nano-vesicles using graphene oxide (GO) for the release of chlorambucil (CHL) drugs targeting cancerous cells. The GO sheets were first sulfonated and conjugated with folic acid (FA) molecules for controlled release and high loading efficiency of CHL. The chlorambucil (CHL) drug loading onto the functionalized GO surface was performed through π-π stacking and hydrophobic interactions with the aromatic planes of GO. The drug loading and "in vitro" release from the nano-vesicles at different pH were studied. The average particle size, absorption, and loading efficiency (%) of FA-conjugated GO sheets (CHL-GO) were observed to be 300 nm, 58%, and 77%, respectively. The drug release study at different pH (i.e., 7.4 and 5.5) showed a slight deceleration at pH 7.4 over pH 5.5. The amount of drug released was very small at pH 7.4 in the first hour which progressively increased to 24% after 8 h. The rate of drug release was faster at pH 5.5; initially, 16% to 27% in the first 3 h, and finally it reached 73% after 9 h. These observations indicate that the drug is released more rapidly at acidic pH with a larger amount of drug-loading ability. The rate of drug release from the CHL-loaded GO was 25% and 75% after 24 h. The biotoxicity study in terms of % cell viability of CHL-free and CHL-loaded GO against human cervical adenocarcinoma cell line was found to have lower cytotoxicity of CHL-loaded nano-vesicles (IC50 = 18 μM) as compared to CHL-free (IC50 = 8 μM). It is concluded that a high drug-loading efficiency and controlled release with excellent biotoxicity of CHL-GO offers an excellent application in the biomedical field.
Collapse
Affiliation(s)
- Surabhi Kumari
- Bio-Nanotechnology Research Laboratory, Biophysics Unit, College of Basic Science & Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India
| | - Anuj Nehra
- Bio-Nanotechnology Research Laboratory, Biophysics Unit, College of Basic Science & Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India
- Department of Physics, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Kshitij Gupta
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute-Frederick, National Institute of Health, Post Office Box. Building 469, Room No. 216A, Frederick, MD 21702-1201, USA
| | - Anu Puri
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute-Frederick, National Institute of Health, Post Office Box. Building 469, Room No. 216A, Frederick, MD 21702-1201, USA
| | - Vinay Kumar
- Department of Physics, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Krishna Pal Singh
- Bio-Nanotechnology Research Laboratory, Biophysics Unit, College of Basic Science & Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India
- Vice Chancellor Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly 243006, Uttar Pradesh, India
| | - Mukesh Kumar
- Department of Physics, Faculty of Science, Shree Guru Gobind Singh Tricentenary University, Gurgaon 122505, Haryana, India
| | - Ashutosh Sharma
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
3
|
Nain A, Sangili A, Hu SR, Chen CH, Chen YL, Chang HT. Recent progress in nanomaterial-functionalized membranes for removal of pollutants. iScience 2022; 25:104616. [PMID: 35789839 PMCID: PMC9250028 DOI: 10.1016/j.isci.2022.104616] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Membrane technology has gained tremendous attention for removing pollutants from wastewater, mainly due to their affordable capital cost, miniature equipment size, low energy consumption, and high efficiency even for the pollutants present in lower concentrations. In this paper, we review the literature to summarize the progress of nanomaterial-modified membranes for wastewater treatment applications. Introduction of nanomaterial in the polymeric matrix influences membrane properties such as surface roughness, hydrophobicity, porosity, and fouling resistance. This review also covers the importance of functionalization strategies to prepare thin-film nanocomposite hybrid membranes and their effect on eliminating pollutants. Systematic discussion regarding the impact of the nanomaterials incorporated within membrane, toward the recovery of various pollutants such as metal ions, organic compounds, dyes, and microbes. Successful examples are provided to show the potential of nanomaterial-functionalized membranes for regeneration of wastewater. In the end, future prospects are discussed to develop nanomaterial-based membrane technology.
Collapse
Affiliation(s)
- Amit Nain
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Arumugam Sangili
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shun-Ruei Hu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Hsien Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Yen-Ling Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621301, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Hashmi A, Nayak V, Singh KR, Jain B, Baid M, Alexis F, Singh AK. Potentialities of graphene and its allied derivatives to combat against SARS-CoV-2 infection. MATERIALS TODAY. ADVANCES 2022; 13:100208. [PMID: 35039802 PMCID: PMC8755454 DOI: 10.1016/j.mtadv.2022.100208] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/05/2021] [Accepted: 01/11/2022] [Indexed: 05/06/2023]
Abstract
Graphene is a two-dimensional material with sp2 hybridization that has found its broad-spectrum potentialities in various domains like electronics, robotics, aeronautics, etc.; it has recently gained its utilities in the biomedical domain. The unique properties of graphene and its derivatives of graphene have helped them find their utilities in the biomedical domain. Additionally, the sudden outbreak of SARS-CoV-2 has immensely expanded the research field, which has also benefitted graphene and its derivatives. Currently, the world is facing a global pandemic due to the sudden outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), also known as COVID-19, from its major onset in Wuhan city, China, in December 2019. Presently, many new variants and mutants appear, which is more harmful than previous strains. However, researchers and scientists are focused on understanding the target structure of coronavirus, mechanism, causes and transmission mode, treatment, and alternatives to cure these diseases in this critical pandemic situation; many findings are achieved, but much more is unknown and pending to be explored. This review paper is dedicated to exploring the utilities of graphene and its derivatives in combating the SARS-CoV-2 by highlighting their mechanism and applications in the fabrication of biosensors, personal protection equipment (PPE) kits, 3-D printing, and antiviral coatings. Further, the paper also covers the cytotoxicity caused by graphene and its derivatives and highlights the graphene-based derivatives market aspects in biomedical domains. Thus, graphene and graphene-derived materials are our new hope in this pandemic time, and this review helps acquire broad knowledge about them.
Collapse
Affiliation(s)
- Ayesha Hashmi
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India
| | - Vanya Nayak
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Kshitij Rb Singh
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Bhawana Jain
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India
| | - Mitisha Baid
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India
| | - Frank Alexis
- Department of Chemical Engineering, Universidad de San Francisco de Quito, Quito, 107910, Ecuador
| | - Ajaya Kumar Singh
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India
| |
Collapse
|
5
|
Nehra A, Kumar A, Ahlawat S, Kumar V, Singh KP. Substrate-Free Untagged Detection of miR393a Using an Ultrasensitive Electrochemical Biosensor. ACS OMEGA 2022; 7:5176-5189. [PMID: 35187333 PMCID: PMC8851637 DOI: 10.1021/acsomega.1c06098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/13/2022] [Indexed: 05/15/2023]
Abstract
Rapid and sensitive detection of numerous regulatory pathways in growth and development processes and defensive responses in plant-pathogen interactions caused by miRNA has been the current interest of agricultural scientists. Herein, an uncomplicated ultrasensitive electrochemical biosensor was fabricated to detect miR393a, as its detection is of vital importance for plant diseases. A streptavidin-coated screen-printed carbon electrode (SPCE) was fabricated and characterized by scanning electrochemical microscopy, scanning electron microscopy, surface plasmon resonance, and cyclic voltammetry. The two-dimensional (2D) structure and chemical functionality of the streptavidin-coated SPCE render it a superior platform for loading a modified probe via a 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-N-hydroxysuccinimide linker. This biorecognition platform is capable of efficiently using its excellent conductivity, greater surface area, and effective electrochemical execution due to its synergistic effect between streptavidin and carbon electrodes. The biosensor showed a good linear response (R 2 = 0.96) to miR393a concentrations ranging from 100 nM to 100 fM. This streptavidin-based biosensor is highly sensitive to the minimum concentration of miR393a, lowest detection limit, and ultrasensitivity under optimized conditions, i.e., 100 fM, 0.33 fM, and 33.72 μA fM-1 cm-2, respectively. In addition, remarkable recoveries could be obtained to confirm the feasibility of this assay in plant disease samples. The fabricated technology could offer a selective, adaptable, and farmer-friendly strategy for the timely detection of miRNA of plant samples.
Collapse
Affiliation(s)
- Anuj Nehra
- Centre
for Bio-Nanotechnology, and Department of Nematology, College of Agriculture, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, India
| | - Anil Kumar
- Department
of Nematology, College of Agriculture, Chaudhary
Charan Singh Haryana Agricultural University, Hisar 125004, India
| | - Sweeti Ahlawat
- Bio-Nanotechnology
Research Laboratory, Biophysics Unit, College of Basic Sciences &
Humanities, G.B. Pant University of Agriculture
& Technology, U.S. Nagar, Pantnagar 263145, Uttarakhand, India
| | - Vinay Kumar
- Department
of Physics, College of Basic Science & Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, India
| | - Krishna Pal Singh
- Bio-Nanotechnology
Research Laboratory, Biophysics Unit, College of Basic Sciences &
Humanities, G.B. Pant University of Agriculture
& Technology, U.S. Nagar, Pantnagar 263145, Uttarakhand, India
- Department
of Molecular Biology, Biotechnology and Bioinformatics, College of
Basic Science & Humanities, Chaudhary
Charan Singh Haryana Agricultural University, Hisar 125004, Haryana, India
- . Phone: +91-0581-2527282
| |
Collapse
|
6
|
Han Q, Pang J, Li Y, Sun B, Ibarlucea B, Liu X, Gemming T, Cheng Q, Zhang S, Liu H, Wang J, Zhou W, Cuniberti G, Rümmeli MH. Graphene Biodevices for Early Disease Diagnosis Based on Biomarker Detection. ACS Sens 2021; 6:3841-3881. [PMID: 34696585 DOI: 10.1021/acssensors.1c01172] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The early diagnosis of diseases plays a vital role in healthcare and the extension of human life. Graphene-based biosensors have boosted the early diagnosis of diseases by detecting and monitoring related biomarkers, providing a better understanding of various physiological and pathological processes. They have generated tremendous interest, made significant advances, and offered promising application prospects. In this paper, we discuss the background of graphene and biosensors, including the properties and functionalization of graphene and biosensors. Second, the significant technologies adopted by biosensors are discussed, such as field-effect transistors and electrochemical and optical methods. Subsequently, we highlight biosensors for detecting various biomarkers, including ions, small molecules, macromolecules, viruses, bacteria, and living human cells. Finally, the opportunities and challenges of graphene-based biosensors and related broad research interests are discussed.
Collapse
Affiliation(s)
- Qingfang Han
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong, China
| | - Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Yufen Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Baojun Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong, China
| | - Bergoi Ibarlucea
- Dresden Center for Computational Materials Science, Technische Universität Dresden, Dresden 01062, Germany
- Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, Dresden 01062, Germany
| | - Xiaoyan Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Thomas Gemming
- Leibniz Institute for Solid State and Materials Research Dresden, Dresden D-01171, Germany
| | - Qilin Cheng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Shu Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
- State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100, China
| | - Jingang Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Gianaurelio Cuniberti
- Dresden Center for Computational Materials Science, Technische Universität Dresden, Dresden 01062, Germany
- Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, Dresden 01062, Germany
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden 01069, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden 01069, Germany
| | - Mark H. Rümmeli
- Leibniz Institute for Solid State and Materials Research Dresden, Dresden D-01171, Germany
- College of Energy, Soochow, Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie Sklodowskiej 34, Zabrze 41-819, Poland
- Institute of Environmental Technology (CEET), VŠB-Technical University of Ostrava, 17. Listopadu 15, Ostrava 708 33, Czech Republic
| |
Collapse
|
7
|
Highly Sensitive and Cost-Effective Portable Sensor for Early Gastric Carcinoma Diagnosis. SENSORS 2021; 21:s21082639. [PMID: 33918707 PMCID: PMC8069728 DOI: 10.3390/s21082639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022]
Abstract
Facile and efficient early detection of cancer is a major challenge in healthcare. Herein we developed a novel sensor made from a polycarbonate (PC) membrane with nanopores, followed by sequence-specific Oligo RNA modification for early gastric carcinoma diagnosis. In this design, the gastric cancer antigen CA72-4 is specifically conjugated to the Oligo RNA, thereby inhibiting the electrical current through the PC membrane in a concentration-dependent manner. The device can determine the concentration of cancer antigen CA72-4 in the range from 4 to 14 U/mL, possessing a sensitivity of 7.029 µAU-1mLcm-2 with a linear regression (R2) of 0.965 and a lower detection limit of 4 U/mL. This device has integrated advantages including high specificity and sensitivity and being simple, portable, and cost effective, which collectively enables a giant leap for cancer screening technologies towards clinical use. This is the first report to use RNA aptamers to detect CA72-4 for gastric carcinoma diagnosis.
Collapse
|
8
|
Ménard-Moyon C, Bianco A, Kalantar-Zadeh K. Two-Dimensional Material-Based Biosensors for Virus Detection. ACS Sens 2020; 5:3739-3769. [PMID: 33226779 DOI: 10.1021/acssensors.0c01961] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Viral infections are one of the major causes of mortality and economic losses worldwide. Consequently, efficient virus detection methods are crucial to determine the infection prevalence. However, most detection methods face challenges related to false-negative or false-positive results, long response times, high costs, and/or the need for specialized equipment and staff. Such issues can be overcome by access to low-cost and fast response point-of-care detection systems, and two-dimensional materials (2DMs) can play a critical role in this regard. Indeed, the unique and tunable physicochemical properties of 2DMs provide many advantages for developing biosensors for viral infections with high sensitivity and selectivity. Fast, accurate, and reliable detection, even at early infection stages by the virus, can be potentially enabled by highly accessible surface interactions between the 2DMs and the analytes. High selectivity can be obtained by functionalization of the 2DMs with antibodies, nucleic acids, proteins, peptides, or aptamers, allowing for specific binding to a particular virus, viral fingerprints, or proteins released by the host organism. Multiplexed detection and discrimination between different virus strains are also feasible. In this Review, we present a comprehensive overview of the major advances of 2DM-based biosensors for the detection of viruses. We describe the main factors governing the efficient interactions between viruses and 2DMs, making them ideal candidates for the detection of viral infections. We also critically detail their advantages and drawbacks, providing insights for the development of future biosensors for virus detection. Lastly, we provide suggestions to stimulate research in the fast expanding field of 2DMs that could help in designing advanced systems for preventing virus-related pandemics.
Collapse
Affiliation(s)
- Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg 67000, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg 67000, France
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales, Kensington, New South Wales 2052, Australia
| |
Collapse
|
9
|
Srivastava AK, Dwivedi N, Dhand C, Khan R, Sathish N, Gupta MK, Kumar R, Kumar S. Potential of graphene-based materials to combat COVID-19: properties, perspectives, and prospects. MATERIALS TODAY. CHEMISTRY 2020; 18:100385. [PMID: 33106780 PMCID: PMC7577689 DOI: 10.1016/j.mtchem.2020.100385] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/18/2020] [Accepted: 10/16/2020] [Indexed: 05/19/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a new virus in the coronavirus family that causes coronavirus disease (COVID-19), emerges as a big threat to the human race. To date, there is no medicine and vaccine available for COVID-19 treatment. While the development of medicines and vaccines are essentially and urgently required, what is also extremely important is the repurposing of smart materials to design effective systems for combating COVID-19. Graphene and graphene-related materials (GRMs) exhibit extraordinary physicochemical, electrical, optical, antiviral, antimicrobial, and other fascinating properties that warrant them as potential candidates for designing and development of high-performance components and devices required for COVID-19 pandemic and other futuristic calamities. In this article, we discuss the potential of graphene and GRMs for healthcare applications and how they may contribute to fighting against COVID-19.
Collapse
Affiliation(s)
- A K Srivastava
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, 462026, India
| | - N Dwivedi
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, 462026, India
| | - C Dhand
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, 462026, India
| | - R Khan
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, 462026, India
| | - N Sathish
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, 462026, India
| | - M K Gupta
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, 462026, India
| | - R Kumar
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, 462026, India
| | - S Kumar
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, 462026, India
| |
Collapse
|
10
|
Vermisoglou E, Panáček D, Jayaramulu K, Pykal M, Frébort I, Kolář M, Hajdúch M, Zbořil R, Otyepka M. Human virus detection with graphene-based materials. Biosens Bioelectron 2020; 166:112436. [PMID: 32750677 PMCID: PMC7375321 DOI: 10.1016/j.bios.2020.112436] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Our recent experience of the COVID-19 pandemic has highlighted the importance of easy-to-use, quick, cheap, sensitive and selective detection of virus pathogens for the efficient monitoring and treatment of virus diseases. Early detection of viruses provides essential information about possible efficient and targeted treatments, prolongs the therapeutic window and hence reduces morbidity. Graphene is a lightweight, chemically stable and conductive material that can be successfully utilized for the detection of various virus strains. The sensitivity and selectivity of graphene can be enhanced by its functionalization or combination with other materials. Introducing suitable functional groups and/or counterparts in the hybrid structure enables tuning of the optical and electrical properties, which is particularly attractive for rapid and easy-to-use virus detection. In this review, we cover all the different types of graphene-based sensors available for virus detection, including, e.g., photoluminescence and colorimetric sensors, and surface plasmon resonance biosensors. Various strategies of electrochemical detection of viruses based on, e.g., DNA hybridization or antigen-antibody interactions, are also discussed. We summarize the current state-of-the-art applications of graphene-based systems for sensing a variety of viruses, e.g., SARS-CoV-2, influenza, dengue fever, hepatitis C virus, HIV, rotavirus and Zika virus. General principles, mechanisms of action, advantages and drawbacks are presented to provide useful information for the further development and construction of advanced virus biosensors. We highlight that the unique and tunable physicochemical properties of graphene-based nanomaterials make them ideal candidates for engineering and miniaturization of biosensors.
Collapse
Affiliation(s)
- Eleni Vermisoglou
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - David Panáček
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic; Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Kolleboyina Jayaramulu
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic; Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India
| | - Martin Pykal
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Ivo Frébort
- Centre of the Region Haná (CRH), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Milan Kolář
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine (UMTM), Faculty of Medicine and Dentistry, Palacký University Olomouc, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials (RCPTM), Faculty of Science, Palacký University Olomouc, Czech Republic.
| |
Collapse
|
11
|
Abstract
Infectious diseases are caused from pathogens, which need a reliable and fast diagnosis. Today, expert personnel and centralized laboratories are needed to afford much time in diagnosing diseases caused from pathogens. Recent progress in electrochemical studies shows that biosensors are very simple, accurate, precise, and cheap at virus detection, for which researchers find great interest in this field. The clinical levels of these pathogens can be easily analyzed with proposed biosensors. Their working principle is based on affinity between antibody and antigen in body fluids. The progress still continues on these biosensors for accurate, rapid, reliable sensors in future.
Collapse
|