1
|
Wu Y, An C, Guo Y, Zong Y, Jiang N, Zheng Q, Yu ZZ. Highly Aligned Graphene Aerogels for Multifunctional Composites. NANO-MICRO LETTERS 2024; 16:118. [PMID: 38361077 PMCID: PMC10869679 DOI: 10.1007/s40820-024-01357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
Stemming from the unique in-plane honeycomb lattice structure and the sp2 hybridized carbon atoms bonded by exceptionally strong carbon-carbon bonds, graphene exhibits remarkable anisotropic electrical, mechanical, and thermal properties. To maximize the utilization of graphene's in-plane properties, pre-constructed and aligned structures, such as oriented aerogels, films, and fibers, have been designed. The unique combination of aligned structure, high surface area, excellent electrical conductivity, mechanical stability, thermal conductivity, and porous nature of highly aligned graphene aerogels allows for tailored and enhanced performance in specific directions, enabling advancements in diverse fields. This review provides a comprehensive overview of recent advances in highly aligned graphene aerogels and their composites. It highlights the fabrication methods of aligned graphene aerogels and the optimization of alignment which can be estimated both qualitatively and quantitatively. The oriented scaffolds endow graphene aerogels and their composites with anisotropic properties, showing enhanced electrical, mechanical, and thermal properties along the alignment at the sacrifice of the perpendicular direction. This review showcases remarkable properties and applications of aligned graphene aerogels and their composites, such as their suitability for electronics, environmental applications, thermal management, and energy storage. Challenges and potential opportunities are proposed to offer new insights into prospects of this material.
Collapse
Affiliation(s)
- Ying Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, People's Republic of China.
| | - Chao An
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, People's Republic of China
| | - Yaru Guo
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, People's Republic of China
| | - Yangyang Zong
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, People's Republic of China
| | - Naisheng Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, People's Republic of China
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, People's Republic of China.
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
2
|
Saeed MU, Weng YK, Bahzad M, Shin S, Aaron DS, Kihm KD. Structural Formation and Pore Control of Freeze-Cast Directional Graphene Aerogel (DGA). ACS APPLIED MATERIALS & INTERFACES 2024; 16:425-434. [PMID: 38115766 DOI: 10.1021/acsami.3c10998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Directional graphene aerogels (DGAs) are proposed as electrode materials to alleviate ionic and mass transport issues in organic redox flow batteries (ORFBs). DGAs with high pore directionality would provide low resistance channels for effective ionic charge and liquid electrolyte transport in these devices. DGAs' porous and directional characteristics can be controlled by the growth of ice crystals during freeze casting, which is influenced by the self-diffusivity of water, phase change driving forces, water-ice graphene interactions, and convection in the water-graphene media. It is found that mass transport-related properties of DGAs, including pore size and directionality, show a significant dependence on freezing temperature, graphene oxide (GO) loadings, and synthesis vessel diameter-to-height ratio (D/H). For the freezing temperature change from -20 to -115 °C, the average pore size progressively decreased from 120 to 20 μm, and the pore directionality transitioned from lamellar to ill-defined structures. When GO loadings were increased from 2 to 10 mg/mL at a fixed freezing temperature, pore size reduction was observed with less defined directionality. Furthermore, the pore directionality diminished with an increased width-to-height aspect ratio of DGA samples due to the buoyancy-driven convective circulation, which interfered with the directional ice/pore growth. Understanding the comprehensive effects of these mechanisms enables the controlled growth of ice crystals, leading to graphene aerogels with highly directional microstructures.
Collapse
Affiliation(s)
- Mian U Saeed
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville 37996, Tennessee, United States
| | - Yu-Kai Weng
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville 37996, Tennessee, United States
| | - Mohammad Bahzad
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville 37996, Tennessee, United States
| | - Seungha Shin
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville 37996, Tennessee, United States
| | - Doug S Aaron
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville 37996, Tennessee, United States
| | - Kenneth D Kihm
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville 37996, Tennessee, United States
| |
Collapse
|
3
|
Zhang J, Bai X, Zeng J, Liu D, Ye Z, Han M, Xu JB, Yao Y, Sun R. Creating Biomimetic Central-Radial Skeletons with Efficient Mass Adsorption and Transport. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48551-48563. [PMID: 37788362 DOI: 10.1021/acsami.3c10938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Porous skeletons play a crucial role in various applications. Their fundamental significance stems from their remarkable surface area and capacity to enhance mass adsorption and transport. Freeze-casting is a commonly utilized methodology for the production of porous skeletons featuring vertically aligned channels. Nevertheless, the resultant single-oriented skeleton displays anisotropic mass transfer characteristics and suboptimal mechanical properties. Our investigation was motivated by the intricate microstructures observed in botanical organisms, leading us to devise an advanced freeze-casting methodology. A novel central-radial skeleton with significantly enhanced capabilities has been successfully engineered. The central-radial architecture demonstrates superior refinement and uniformity in its pore structure, featuring an axial mass transfer axis and meticulously arranged radial channels. This microstructure endows the porous skeleton with a higher compression resilience, superior adsorption rate, and structural maintenance capacity. Through a rigorous examination of the thermal conductivity of skeleton-filled composites coupled with comprehensive COMSOL simulations, the exceptional characteristics of this unique structural arrangement have been definitively ascertained. Furthermore, the efficacy of implementing this skeleton in chip cooling and photothermal conversion has been convincingly substantiated. Our pioneering method of microstructure preparation, employing freeze-casting, holds immense potential in expanding its applicability and inspiring innovative concepts for the advancement of novel structures.
Collapse
Affiliation(s)
- Jingjing Zhang
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215000, China
| | - Xue Bai
- International Quantum Academy, Shenzhen 518048, China
| | - Jianhui Zeng
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of New Metal Materials Preparation and Forming, South China University of Technology, Guangzhou 510641, China
| | - Daoqing Liu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215000, China
| | - Zhenqiang Ye
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Meng Han
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jian-Bin Xu
- Department of Electronics Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yimin Yao
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rong Sun
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
4
|
Kaushik J, Sharma C, Lamba NK, Sharma P, Das GS, Tripathi KM, Joshi RK, Sonkar SK. 3D Porous MoS 2-Decorated Reduced Graphene Oxide Aerogel as a Heterogeneous Catalyst for Reductive Transformation Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12865-12877. [PMID: 37639338 DOI: 10.1021/acs.langmuir.3c01785] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The MoS2-based reduced graphene oxide aerogel (MoS2-rGOA)-assisted organic transformation reactions are presented. MoS2-rGOA is used as a heterogeneous catalyst for the reduction of benzene derivatives such as benzaldehyde, nitrobenzene, and benzonitrile to benzyl alcohol, aniline, and benzamide and their derivatives, respectively, in green solvents (water/methanol) and green reducing agents (hydrazine hydrate having N2 and H2 as byproducts). The mechanistic features of the reduction pathway, substrate scope, and the best suitable conditions by varying the temperature, solvent, reducing agent, catalyst loading, time, etc. are optimized. All of the synthesized products are obtained in quantitative yield with purity and well characterized based on nuclear magnetic resonance analysis. Further, it is also observed that our catalyst is efficiently recyclable and works well checked up to 5 cycles.
Collapse
Affiliation(s)
- Jaidev Kaushik
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Charu Sharma
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Nicky Kumar Lamba
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Purshotam Sharma
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Gouri Sankar Das
- Department of Chemistry, Indian Institute of Petroleum and Energy, Visakhapatnam 530003, Andhra Pradesh, India
| | - Kumud Malika Tripathi
- Department of Chemistry, Indian Institute of Petroleum and Energy, Visakhapatnam 530003, Andhra Pradesh, India
| | - Raj Kumar Joshi
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Sumit Kumar Sonkar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India
| |
Collapse
|
5
|
Dang A, Liu X, Wang Y, Liu Y, Cheng T, Zada A, Ye F, Deng W, Sun Y, Zhao T, Li T. High-efficient adsorption for versatile adsorbates by elastic reduced graphene oxide/Fe 3O 4 magnetic aerogels mediated by carbon nanotubes. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131846. [PMID: 37320905 DOI: 10.1016/j.jhazmat.2023.131846] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/04/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Fabrication of highly elastic three-dimensional aerogel adsorbents with outstanding adsorption capacities is a long pursuit for the treatment of industrial contaminated water. In this work, a magnetic reduced graphene oxide (rGO)/Fe3O4/carbon nanotubes (CNTs) aerogel material was constructed by the electrostatic attraction between the negatively charged GO and positively charged CNTs following a one-pot water bath treatment. The as-synthesized aerogel demonstrated high compressive stress (28.4 kPa) and lower density (24.11 mg/cm3) with exceptional adsorption capacities for versatile adsorbates which are attributed to CNTs and magnetic Fe3O4 nanoparticles. The effect of pH, initial concentration of adsorbates (dyes, Cd (ІІ) ions, organic solvents, and pump oil), content of CNTs and cyclic times on the adsorption capacities of the aerogel were investigated in detail. Furthermore, from simulation, the adsorption kinetics, and thermodynamics of the aerogel for adsorbates were more satisfied by endothermic quasi-second-order kinetic model with characteristic physical adsorption. Thus, the optimized rGO/Fe3O4/CNTs-10 aerogel adsorbent can be used as a powerful and versatile tool to deal with contaminated industrial or domestic wastewater.
Collapse
Affiliation(s)
- Alei Dang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Xin Liu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yujia Wang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yuhui Liu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Tao Cheng
- Shanghai Institute of Spacecraft Equipment, Shanghai 200240, PR China
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Fei Ye
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Weibin Deng
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yiting Sun
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Tingkai Zhao
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Tiehu Li
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; Shannxi Engineering laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
6
|
Paul J, Ahankari SS. Nanocellulose-based aerogels for water purification: A review. Carbohydr Polym 2023; 309:120677. [PMID: 36906371 DOI: 10.1016/j.carbpol.2023.120677] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
Water purification using thin membranes at high pressures through adsorption and size exclusion is the widely used mechanism due to its simplicity and enhanced efficiency compared to other traditional water purification methods. Aerogels have the potential to replace conventional thin membranes considering their unmatched adsorption/absorption capacity and higher water flux due to their unique highly porous (99 %) 3D structure, ultra-low density (~1.1 to 500 mg/cm3), and very high surface area. The availability of a large number of functional groups, surface tunability, hydrophilicity, tensile strength and flexibility of nanocellulose (NC) makes it a potential candidate for aerogel preparation. This review discusses the preparation and employment of NC-based aerogels in the removal of dyes, metal ions and oils/organic solvents. It also offers recent updates on the effect of various parameters that enhance its adsorption/absorption performance. The future perspectives of NC aerogels and their performance with the emerging materials chitosan and graphene oxide are also compared.
Collapse
Affiliation(s)
- Joyel Paul
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Sandeep S Ahankari
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
7
|
Ye X, Yu Y, Yang C, Fan Q, Shang L, Ye F. Microfluidic electrospray generation of porous magnetic Janus reduced graphene oxide/carbon composite microspheres for versatile adsorption. J Colloid Interface Sci 2022; 624:546-554. [PMID: 35679642 DOI: 10.1016/j.jcis.2022.05.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
Abstract
HYPOTHESIS Graphene-based microparticles materials are broadly utilized in all sorts of fields owing to their outstanding properties. Despite great progress, the present graphene microparticles still face challenges in the aspects of size uniformity, motion flexibility, and tailorable surface chemistry, which limit their application in some specific fields, such as versatile adsorption. Hence, the development of novel graphene microparticles with the aforementioned characteristics is urgently required. EXPERIMENTS We presented a simple microfluidic electrospray strategy to generate magnetic Janus reduced graphene oxide/carbon (rGO/C) composite microspheres with a variety of unique features. Specifically, the microfluidic electrospray method endowed the obtaiend microspheres with sufficient size uniformity as well as magnetic responsive motion ability. Additionally, magnetic-mediated surface assembly of phase transition lysozyme (PTL) nanofilm on the microspheres rendered the deposited area hydrophilic while non-deposited area hydrophobic. FINDINGS Such magnetic Janus rGO/C composite microspheres with regionalized wettability characteristics not only showed prominent performance in adsorbing organic liquids with high adsorption capacity and remarkable reusability but also displayed satisfying biocompatibility for the efficient uptake of bilirubin. More encouragingly, the microspheres could serve as adsorbents in a simulative hemoperfusion setup, which further demonstrated the clinical application potential of the magnetic Janus rGO/C microspheres. Thus, we anticipate that the obtained magnetic Janus rGO/C composite microspheres could show multifunctional properties toward water treatment and blood molecule cleaning.
Collapse
Affiliation(s)
- Xiaomin Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunru Yu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Chaoyu Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
8
|
He Z, Qin M, Han C, Bai X, Wu Y, Yao D, Zheng Y. Pectin/Graphene Oxide Aerogel with Bamboo-like Structure for Enhanced Dyes Adsorption. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Sampath S, Vadivelu M, Raheem AA, Indirajith R, Parthasarathy K, Karthikeyan K, Praveen C. Practical Coprecipitation Approach for High-Aspect Ratio Cupric Oxide Nanoparticles: A Sustainable Catalytic Platform for Huisgen and Fluorogenic Click Chemistry. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sugirdha Sampath
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
- Department of Metallurgical & Materials Engineering, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Murugan Vadivelu
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - Abbasriyaludeen Abdul Raheem
- Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, India
| | - Ravanan Indirajith
- Department of Physics, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - Kannabiran Parthasarathy
- Animal & Mineral Origin Drug Research Laboratory, CCRS─Siddha Central Research Institute, Chennai 600106, India
| | - Kesavan Karthikeyan
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - Chandrasekar Praveen
- Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, India
| |
Collapse
|
10
|
Yu S, Ni J, Zhou Z, Xu S, Li D, Li Y, Qiu J. Perfect Broadband Sound Absorption on a Graphene-Decorated Porous System with Dual-3D Structures. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28145-28153. [PMID: 35670698 DOI: 10.1021/acsami.2c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Noise is a threat to human life quality and an invisible killer that causes many chronic diseases. The vast majority of porous sound absorbers are single-phased, which limits their sound absorption potential. Herein, a graphene-decorated porous system (GDPS) prepared using the immersion-hydrothermal-freezing self-assembly method is reported as an efficient sound absorber based on its unique consecutive double three-dimensional (dual-3D) structure. Due to the increased tortuosity and other gain effects, the novel structure can achieve the perfect broadband absorption at a wide bandwidth in which the sound absorption coefficient exceeds 0.9 easily. Within the effective thicknesses, the widest perfect absorption bandwidth of 814-6400 Hz is realized. Moreover, a higher graphene concentration and the addition of a polymer are found to be able to decrease the absorption frequency to the lowest values of 1979 and 1544 Hz, respectively. The design of a unique dual-3D structure opens up new strategies and applications to use graphene aerogels in noise and vibration applications.
Collapse
Affiliation(s)
- Silin Yu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Jingnan Ni
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Zhiling Zhou
- School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Shijie Xu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Dongting Li
- School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Yong Li
- School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jun Qiu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
- Key Laboratory of Advanced Civil Engineering Materials, Education of Ministry, Tongji University, Shanghai 201804, P. R. China
| |
Collapse
|
11
|
Yan Y, Lu L, Li Y, Han W, Gao A, Zhao S, Cui J, Zhang G. Robust and Multifunctional 3D Graphene-Based Aerogels Reinforced by Hydroxyapatite Nanowires for Highly Efficient Organic Solvent Adsorption and Fluoride Removal. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25385-25396. [PMID: 35606335 DOI: 10.1021/acsami.2c03622] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In view of the serious perniciousness and complex diversity of actual wastewater systems, exploiting a robust and multifunctional adsorbent material featuring high sorption efficiency, broad-spectrum applicability, and excellent recyclability in treating multifarious pollutants in water (such as oils and fluoride ions) is highly required; however, it is still a daunting goal to pursue to date. In this work, novel mechanically robust and exceptional graphene oxide/hydroxyapatite nanowire (GO/HAPNW) aerogels (RGHAs/polydopamine (PDA)@RGHAs) with adjustable surface wettability were developed through a facile sol-gel self-assembly technology and subsequently optional bioinspired hydrophilic modification. Thanks to the reinforcing effect of HAPNWs with higher aspect ratio, a remarkably improved mechanical robustness (including superior compressibility and superelasticity) was acquired for the resulting aerogels. Based on the cooperative effect of the favorable selective wetting properties (i.e., hydrophobic/oleophilic for RGHAs) and the excellent mechanic stability, the aerogels displayed an outstanding sorption performance for diverse oils/organic solvents accompanied with a prominent recyclability. Specifically, a fairly high adsorption capacity of as high as 191 times of its own mass (for pump oil) was achieved based on a fast adsorption kinetic process. More importantly, superamphiphilic three-dimensional (3D) PDA@RGHAs revealed an extraordinary removal capability for water-soluble fluoride ions, exhibiting a superior equilibrium adsorption capacity (qe, 9.93 mg/g), which is distinctly superior to those of low-dimensional fluorine adsorbent materials recently reported. Accordingly, the as-prepared 3D aerogels combining both superior oil/organic solvent adsorption and excellent defluorination capability reveal a competitive application prospect toward effective intricate oily wastewater purification.
Collapse
Affiliation(s)
- Yehai Yan
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China
| | - Li Lu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China
| | - Yuzhen Li
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Wenqing Han
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China
| | - Ailin Gao
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China
| | - Shuai Zhao
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China
| | - Jian Cui
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China
| | - Guangfa Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China
| |
Collapse
|
12
|
He Z, Li X, Wang H, Su F, Wang D, Yao D, Zheng Y. Synergistic Regulation of the Microstructure for Multifunctional Graphene Aerogels by a Dual Template Method. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22544-22553. [PMID: 35511465 DOI: 10.1021/acsami.2c00525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The performance of graphene aerogels (GAs) is based on the microstructure. However, GAs face a challenge of simultaneously controlling the size and alignment of pores strategically. Herein, we initially proposed a simple strategy to construct GAs with an adjustable structure based on the emulsion and ice dual template methods. Specifically, GAs with a honeycomb structure prepared by conventional freezing (CGAs) exhibited a high specific surface of 176 m2/g, superelasticity with a compressive strain of 95%, isotropic compression and thermal insulation performances, as well as an excellent absorption capacity of 150-550 g/g. Instead, the GAs with a bamboo-like network frozen by unidirectional freezing (UGAs) showed anisotropy in compression and thermal insulation behavior. Furthermore, UGAs exhibited incredible special stress (7.9 kPa cm3/mg) along the axial direction twice than that of the radial direction. Meanwhile, the apparent temperature of UGAs was only 45.6 °C when placed on a 120 °C hot stage along the radial direction. Remarkably, the properties of CGAs and UGAs were significantly improved with the adjustment of the microstructure.
Collapse
Affiliation(s)
- Zhongjie He
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Xiaoqian Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Hongni Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Fangfang Su
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Dechao Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Dongdong Yao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Yaping Zheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| |
Collapse
|
13
|
Chen X, Yang Y, Guan Y, Luo C, Bao M, Li Y. A solar-heated antibacterial sodium alginate aerogel for highly efficient cleanup of viscous oil spills. J Colloid Interface Sci 2022; 621:241-253. [PMID: 35461139 DOI: 10.1016/j.jcis.2022.04.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
HYPOTHESIS Major oil spills highlight the need for environmentally responsible and cost-effective recovery technologies. However, challenges remain for heavy oil spill recovery because of its high viscosity and low fluidity. To achieve this goal, an ecofriendly bio-based aerogel with efficient photothermal conversion ability was developed as a novel absorbent to achieve the fast removal of heavy oil spill by reducing the oil viscosity. EXPERIMENTS From the renewable and abundant raw material sodium alginate (SA), hydrophobic and antibacterial SA/graphene oxide/ZIF-8 aerogel (SAGZM) was successfully fabricated via freezing-drying and chemical vapor deposition (CVD) technique. A series of characterization and tests, including aerogel structure, selective wettability, photothermal conversion ability, crude oil removal capability, and antibacterial ability, have been investigated in detail. SAGZM aerogels have rich pore structure, high porosity, excellent mechanical properties, and better photothermal conversion efficiency. FINDINGS Under sunlight illumination, the recovery ability of SAGZM for heavy crude oil was investigated through infrared thermal imaging, oil permeability behavior analysis, and the continuous absorption for crude oil. In addition, these results are well supported by the theoretical liquid absorption coefficient. This study indicates that SAGZM is highly efficient in in situ regulating oil viscosity through its remarkably photothermal conversion capability. Importantly, SAGZM possesses an excellent antibacterial ability that is often neglected in the design of environmentally friendly materials in extending its service life. The findings of this work not only provide an eco-friendly bio-based aerogel material but also demonstrate that the photo-responsive SAGZM is efficient in heavy crude oil absorption. The proposed solar-heated SA-based aerogel provides a sustainable approach and material to solve the recovery problem of viscous crude oil spills.
Collapse
Affiliation(s)
- Xiuping Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, PR China
| | - Yushuang Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, PR China
| | - Yihao Guan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, PR China
| | - Chengyi Luo
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, PR China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, PR China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, PR China.
| |
Collapse
|
14
|
Dong S, Guo L, Chen Y, Zhang Z, Yang Z, Xiang M. Three-dimensional loofah sponge derived amorphous carbon−graphene aerogel via one-pot synthesis for high-performance electrochemical sensor for hydrogen peroxide and dopamine. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Kong H, Chen Y, Yang G, Liu B, Guo L, Wang Y, Zhou X, Wei G. Two-dimensional material-based functional aerogels for treating hazards in the environment: synthesis, functional tailoring, applications, and sustainability analysis. NANOSCALE HORIZONS 2022; 7:112-140. [PMID: 35044403 DOI: 10.1039/d1nh00633a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Environmental pollution is a global problem that endangers human health and ecological balance. As a new type of functional material, two-dimensional material (2DM)-based aerogel is one of the most promising candidates for pollutant detection and environmental remediation. The porous, network-like, interconnected three-dimensional (3D) structure of 2DM-based aerogels can not only preserve the characteristics of the original 2DMs, but also bring many distinct physical and chemical properties to offer abundant active sites for adsorbing and combining pollutants, thereby facilitating highly efficient monitoring and treatment of hazardous pollutants. In this review, the synthesis methods of 2DM aerogels and their broad environmental applications, including various sensors, adsorbents, and photocatalysts for the detection and treatment of pollutants, are summarized and discussed. In addition, the sustainability of 2DM aerogels compared to other water purification materials, such as activated carbon, 2DMs, and other aerogels are analyzed by the Sustainability Footprint method. According to the characteristics of different 2DMs, special focuses and perspectives are given on the adsorption properties of graphene, MXene, and boron nitride aerogels, as well as the sensing and photocatalytic properties of transition metal dichalcogenide/oxide and carbon nitride aerogels. This comprehensive work introduces the synthesis, modification, and functional tailoring strategies of different 2DM aerogels, as well as their unique characteristics of adsorption, photocatalysis, and recovery, which will be useful for the readers in various fields of materials science, nanotechnology, environmental science, bioanalysis, and others.
Collapse
Affiliation(s)
- Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | - Yun Chen
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | - Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | - Bin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, 266071 Qingdao, P. R. China
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | - Xin Zhou
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| |
Collapse
|
16
|
Chen Y, Li S, Li X, Mei C, Zheng J, E S, Duan G, Liu K, Jiang S. Liquid Transport and Real-Time Dye Purification via Lotus Petiole-Inspired Long-Range-Ordered Anisotropic Cellulose Nanofibril Aerogels. ACS NANO 2021; 15:20666-20677. [PMID: 34881863 DOI: 10.1021/acsnano.1c10093] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nowadays, large-scale oriented functional porous materials have been sought after by researchers. However, regulation of the long-range uniform and oriented structures of the material remains a challenge. Herein, ultralong anisotropic cellulose nanofibril (CNF) aerogels with uniformly ordered structures of pore walls inspired by lotus petioles were constructed by applying external speeds to counterbalance the growth driving forces of ice crystals. Based on the growth law of ice crystals, the ice crystals grew at a stable rate when the applied external speed was 0.04 mm/s, ensuring the consistent orientation of the large-scale CNF aerogel. The aerogel exhibited a rapid long-range directional transport ability to different liquid solvents, delivering ethanol up to 40 mm from bottom to top within 50 s. Moreover, by introducing rectorites with good cation-exchange properties, the resulting long-range composite possessed an enhanced adsorption capacity for methylene blue. Furthermore, aerogel successfully achieved real-time dye purification at a long distance, such as fast dye adsorption or selective adsorption. This flexible and straightforward strategy of fabricating ultralong oriented CNF aerogel materials is expected to promote the development of functional aerogels in directional liquid transport and sewage treatment.
Collapse
Affiliation(s)
- Yiming Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Shujing Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinlin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changtong Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiajia Zheng
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Shiju E
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Kunming Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| |
Collapse
|
17
|
Davardoostmanesh M, Ahmadzadeh H. A Mechanically Flexible Superhydrophobic Rock Wool Modified with Reduced Graphene Oxide-Chloroperene Rubber for Oil-Spill Clean-Up. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2100072. [PMID: 34938574 PMCID: PMC8671620 DOI: 10.1002/gch2.202100072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/21/2021] [Indexed: 06/14/2023]
Abstract
The leakage of industrial oil and organic wastewater discharge has caused serious damage to the natural environment and ecology. Therefore, implementation of a low-cost and high-performance adsorbent material is of great significant. This work reports the preparation of superhydrophobic rock wool (RW) for efficient clean-up of oil and organic solvents. The modified RW is prepared by coating a commercial RW with reduced graphene oxide (RGO) nanosheets under hydrothermal treatment. To improve the adhesion between the RGO nanosheets and RW, a film of chloroperene rubber is deposited on the RW surface followed by modification with RGO. The modified RW possesses superhydrophobicity and superoleophilicity with a water contact angle of 152.4°, and it is used for separation of oil-water mixture. The modified RW exhibits excellent mechanical elasticity and durability when compared with commercial one, and the adsorbed oils are recycled by simple squeezing. Its oil adsorption capacities are maintained above 95%, after several compression cycles. Importantly, the modified RW exhibits excellent photothermal properties which are beneficial for the separation of high-viscosity oils. Owing to low costs, versatility, and scalability in production, the modified RW can be regarded as a suitable choice for large-scale oil/water separation.
Collapse
Affiliation(s)
- Maryam Davardoostmanesh
- Department of ChemistryFaculty of ScienceFerdowsi University of MashhadMashhad9177948974Iran
| | - Hossein Ahmadzadeh
- Department of ChemistryFaculty of ScienceFerdowsi University of MashhadMashhad9177948974Iran
| |
Collapse
|
18
|
Jiang D, Zhang J, Qin S, Hegh D, Usman KAS, Wang J, Lei W, Liu J, Razal JM. Scalable Fabrication of Ti 3C 2T x MXene/RGO/Carbon Hybrid Aerogel for Organics Absorption and Energy Conversion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51333-51342. [PMID: 34696589 DOI: 10.1021/acsami.1c13808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High aspect ratio two-dimensional Ti3C2Tx MXene flakes with extraordinary mechanical, electrical, and thermal properties are ideal candidates for assembling elastic and conductive aerogels. However, the scalable fabrication of large MXene-based aerogels remains a challenge because the traditional preparation method relies on supercritical drying techniques such as freeze drying, resulting in poor scalability and high cost. Herein, the use of porous melamine foam as a robust template for MXene/reduced graphene oxide aerogel circumvents the volume shrinkage during its natural drying process. Through this approach, we were able to produce large size (up to 600 cm3) MXene-based aerogel with controllable shape. In addition, the aerogels possess an interconnected cellular structure and display resilience up to 70% of compressive strain. Some key features also include high solvent absorption capacity (∼50-90 g g-1), good photothermal conversion ability (an average evaporation rate of 1.48 kg m-2 h-1 for steam generation), and an excellent electrothermal conversion rate (1.8 kg m-2 h-1 at 1 V). More importantly, this passive drying process provides a scalable, convenient, and cost-effective approach to produce high-performance MXene-based aerogels, demonstrating the feasibility of commercial production of MXene-based aerogels toward practical applications.
Collapse
Affiliation(s)
- Degang Jiang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Jizhen Zhang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Si Qin
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Dylan Hegh
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Ken Aldren S Usman
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Jinfeng Wang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Weiwei Lei
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
19
|
Mo L, Shen Y, Tan Y, Zhang S. Ultralight and shapeable nanocellulose/metal-organic framework aerogel with hierarchical cellular architecture for highly efficient adsorption of Cu(II) ions. Int J Biol Macromol 2021; 193:1488-1498. [PMID: 34740681 DOI: 10.1016/j.ijbiomac.2021.10.212] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
Water contamination by heavy metal pollutants is a global concern due to detrimental effects on the environment and human health. Regenerable, high-performance heavy metal sorbents are urgently demanded for improved water purification. Herein, we present an elegant strategy of interweaving metal-organic framework (MOF-808-ethylene diamine tetraacetic acid) and TEMPO-oxidized cellulose nanofibers (TCNF) to construct freeways in hybrid aerogels for rapid and efficient transport and capture of heavy metal ions. In this strategy, a postsynthetic ligand exchange approach is applied to introduce ordered and high-density accessible binding sites for metal ions. The prepared aerogels show excellent shapeability, ultralow density less than 0.005 g cm-3, and high hierarchical porosity of 99.82%. Furthermore, benefiting from the abundant chelating groups and accessible surface areas, these aerogels exhibit outstanding uptake capacity of 300 mg g-1 and rapid adsorption kinetics of 0.031 mg g-1 h-1 for Cu(II) ions, significantly better than conventional TCNF aerogels. The aerogels could be easily regenerated at least five cycles without greatly performance loss. These aerogels could effectively remove diverse heavy metal ions from complicated contaminated water. Thus, this work provides a novel method to synthesize environmental-friendly, regenerable, and high-performance adsorption materials for water remediation.
Collapse
Affiliation(s)
- Liuting Mo
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yulin Shen
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yi Tan
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shifeng Zhang
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
20
|
Zhu Y, Du Y, Su J, Mo Y, Yu S, Wang Z. Durable superhydrophobic melamine sponge based on polybenzoxazine and Fe3O4 for oil/water separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119130] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Hirani RAK, Asif AH, Rafique N, Shi L, Zhang S, Wu H, Sun H. Wastewater Remediation Technologies Using Macroscopic Graphene-Based Materials: A Perspective. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.688552] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Three-dimensional (3D) graphene-based macrostructures are being developed to combat the issues associated with two-dimensional (2D) graphene materials in practical applications. The 3D macrostructures (3DMs), for example, membranes, fibres, sponges, beads, and mats, can be formed by the self-assembly of 2D graphene-based precursors with exceptional surface area and unique chemistry. With rational design, the 3D macrostructures can then possess outstanding properties and exclusive structures. Thanks to various advantages, these macrostructures are competing in a variety of applications with promising performances unlike the traditional activated carbons, biochars and hydrochars, which have less flexibilities for modifications towards versatile applications. However, despite having such a wide range of applications, 3DMs remain applicable on laboratory scale due to the associated factors like cost and extensive research. This perspective provides an overview of available graphene-based macrostructures and their diverse synthesis protocols. In the synthesis, hydrothermal route, chemical vapor deposition (CVD), wet spinning, 3D printing, vacuum filtration, spray drying and emulsion methods are highlighted. In addition, the physio-chemical properties of these macrostructures are discussed with the relationship among the porosity, surface area and the bulk density. The perspective also highlights the versatile potentials of different 3DMs in wastewater remediation by adsorption, desalination, and catalytic oxidation, etc. Following the concluding remarks, future outlooks on commercial applications of 3DMs are also provided.
Collapse
|
22
|
Swathy TS, Jinish Antony M, George N. Active Solvent Hydrogen-Enhanced p-Nitrophenol Reduction Using Heterogeneous Silver Nanocatalysts@Surface-Functionalized Multiwalled Carbon Nanotubes. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T. S. Swathy
- Research and P.G. Department of Chemistry, Centre for Sustainable Chemistry, St. Thomas College (Autonomous Under University of Calicut), Thrissur, Kerala 680 001, India
| | - M. Jinish Antony
- Research and P.G. Department of Chemistry, Centre for Sustainable Chemistry, St. Thomas College (Autonomous Under University of Calicut), Thrissur, Kerala 680 001, India
| | - Naijil George
- Department of Biotechnology, St. Joseph’s College (Autonomous Under University of Calicut), Irinjalakuda, Thrissur, Kerala 680 121, India
| |
Collapse
|
23
|
Dong J, Zeng J, Wang B, Cheng Z, Xu J, Gao W, Chen K. Mechanically Flexible Carbon Aerogel with Wavy Layers and Springboard Elastic Supporting Structure for Selective Oil/Organic Solvent Recovery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15910-15924. [PMID: 33779136 DOI: 10.1021/acsami.1c02394] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Even though compressible carbon aerogels are widely studied for oil/organic solvent recovery, it is challenging to simultaneously achieve excellent mechanical performance and recovery efficiency due to the brittleness of the carbon skeleton. Here a novel strategy is proposed to efficiently fabricate a 3D elastic reduced graphene oxide (RGO)-cross-linked carbon aerogel. Notably, cellulose nanocrystals (CNCs) isolated from plant pulp act as an essential component, and prehydrolysis liquor (PHL), an industrial byproduct in the plant pulping process, serves as the adhesion promoter to achieve enhancement of the strength and flexibility of the carbon aerogel. For the first time, all components (pulp and PHL) of the tree were fully exploited to design a carbon aerogel. The formation of wavy carbon layers with springboard elastic supporting microstructure enables mechanical stretch and shrink as well as avoids interfacial collapse during compression. Benefiting from the unique wavy layer structure and strong interaction, the carbon aerogels are ultralight (4.98 mg cm-3) and exhibit supercompression (undergoing extreme strain of 95%) and superelasticity (about 100% height retention after 500 cycles at a strain of 50%). Particularly, the carbon aerogel can selectively and quickly adsorb various oily contaminants, exhibiting high oil/organic solvents absorption capacity (reaches up to 276 g g-1 for carbon tetrachloride) and good recyclability. Finally, practical applications of the carbon aerogel in oil-cleanup and pollution-remediation devices are exhibited. Hence, this versatile and robust functionalized carbon aerogel has promising potential in oil cleanup and pollution remediation.
Collapse
Affiliation(s)
- Jiran Dong
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN 510640, China
| | - Jinsong Zeng
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN 510640, China
| | - Bin Wang
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN 510640, China
| | - Zheng Cheng
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN 510640, China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, CN 510640, China
| | - Jun Xu
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN 510640, China
| | - Wenhua Gao
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN 510640, China
| | - Kefu Chen
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN 510640, China
| |
Collapse
|
24
|
Ren F, Wang T, Liu H, Liu D, Zhong R, You C, Zhang W, Lv S, Liu S, Zhu H, Chang L, Wang B. CoMn2O4 nanoparticles embed in graphene oxide aerogel with three-dimensional network for practical application prospects of oxytetracycline degradation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118179] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Weng D, Song L, Li W, Yan J, Chen L, Liu Y. Review on synthesis of three-dimensional graphene skeletons and their absorption performance for oily wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16-34. [PMID: 33009615 DOI: 10.1007/s11356-020-10971-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Water pollution is a global environmental problem that affects the ecosystem severely. Treatment of oily wastewater and organic pollutants is a major challenge that waits to be solved as soon as possible. Adsorbing is one of the most effective strategies to deal with this problem. Three-dimensional (3D) porous adsorbents made of graphene or graphene-based nanomaterials skeletons had attracted more attention in wastewater treatment because of their large surface area, high porosity, low density, high chemical/thermal stability, and steady mechanical properties, which allow different pollutants to easily access and diffuse into 3D networks of adsorbents. This work presents an extensive summarization of recent progress in the synthesis methodologies and microstructures of 3D graphene foams and 3D graphene-based foams and highlights their adsorption performance for oils and organic solvents. Advantages and disadvantages of various preparation strategies are compared and the corresponded structures of these skeletons are studied in detail. Furthermore, the effects of the structures on oil-adsorption properties are analyzed and some data and parameters of the oil-adsorption properties are listed and studied for easier comparison. At last, the future research directions and technical challenges are prospected, which is hoped that the researchers will be inspired to develop the new graphene-based adsorbents.
Collapse
Affiliation(s)
- Dandan Weng
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Leilei Song
- AECC Aegis Advanced Protective Technology Co., Ltd, Tianjin, 300304, People's Republic of China
| | - Wenxiao Li
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Jun Yan
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Lei Chen
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China.
| | - Yong Liu
- Key Laboratory of Advanced Braided Composites, Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China.
| |
Collapse
|
26
|
|
27
|
Kobina Sam D, Kobina Sam E, Lv X. Application of Biomass‐Derived Nitrogen‐Doped Carbon Aerogels in Electrocatalysis and Supercapacitors. ChemElectroChem 2020. [DOI: 10.1002/celc.202000829] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Daniel Kobina Sam
- School of Chemistry and Chemical Engineering Jiangsu University Zhenjiang 212013 PR China
| | - Ebenezer Kobina Sam
- School of Chemistry and Chemical Engineering Jiangsu University Zhenjiang 212013 PR China
| | - Xiaomeng Lv
- School of Chemistry and Chemical Engineering Jiangsu University Zhenjiang 212013 PR China
| |
Collapse
|
28
|
Aerogel doped by sulfur-functionalized graphene oxide with convenient separability for efficient patulin removal from apple juice. Food Chem 2020; 338:127785. [PMID: 32798825 DOI: 10.1016/j.foodchem.2020.127785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/22/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
Patulin (PAT) contaminant causes severe food safety issue throughout apple industry. Although adsorption is the feasible approach to remove PAT, the limited adsorption capacity and separation difficulty of most adsorbent is the major drawback that remains to be overcome. Here GO-SH doped aerogel was prepared and used for removal PAT from apple juice. The intrinsic porous of the aerogel and abundant active sites including -COOH, -NH2 and -SH offered the PAT adsorption capacity of 24.75 μg/mg that superior to most reported adsorbents. Furthermore, it could reduce 89 ± 1.23% PAT in real apple juice without juice quality deterioration and cytotoxicity. Importantly, the aerogel with good mechanical strength and structure stability could endure the complex juice solution so that there was no any residue after convenient separation of the aerogel, which proved that the proposed aerogel was a promising adsorbent to be applied to apple juice industry for PAT removal.
Collapse
|
29
|
Zhang N, Qi Y, Zhang Y, Luo J, Cui P, Jiang W. A Review on Oil/Water Mixture Separation Material. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02524] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ning Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Yunfei Qi
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Yana Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, P. R. China
| | - Jialiang Luo
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, P. R. China
| | - Ping Cui
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
| | - Wei Jiang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210014, P. R. China
| |
Collapse
|
30
|
Zu G, Wang X, Kanamori K, Nakanishi K. Superhydrophobic highly flexible doubly cross-linked aerogel/carbon nanotube composites as strain/pressure sensors. J Mater Chem B 2020; 8:4883-4889. [PMID: 32149308 DOI: 10.1039/c9tb02953b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report novel superhydrophobic highly flexible composites based on a doubly cross-linked (DCL) aerogel and carbon nanotubes (CNTs) for strain/pressure sensing. The DCL aerogel/CNT composite is prepared by radical polymerization of vinylmethyldimethoxysilane and vinyldimethylmethoxysilane, respectively, followed by hydrolytic co-polycondensation of the obtained polyvinylmethyldimethoxysilane and polyvinyldimethylmethoxysilane, combined with the incorporation of CNTs. Benefiting from the flexible methyl-rich DCL structure of the aerogel and conductive CNTs, the resultant DCL aerogel/CNT composite combines superhydrophobicity, high compressibility, high bendability, high elasticity, and strain- and pressure-sensitive conductivity. We demonstrate that the composite can be applied as a high-performance strain/pressure sensor for the detection of arterial pulse waves and joint bending with high sensitivity and high durability against humidity.
Collapse
Affiliation(s)
- Guoqing Zu
- School of Materials Science and Engineering, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
| | - Xiaodong Wang
- School of Materials Science and Engineering, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
| | - Kazuyoshi Kanamori
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuki Nakanishi
- Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
31
|
Luo Z, Wang X, Yang D, Zhang S, Zhao T, Qin L, Yu ZZ. Photothermal hierarchical carbon nanotube/reduced graphene oxide microspherical aerogels with radially orientated microchannels for efficient cleanup of crude oil spills. J Colloid Interface Sci 2020; 570:61-71. [DOI: 10.1016/j.jcis.2020.02.097] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
|
32
|
Xu C, Yan F, Wang M, Yan H, Cui Z, Li J, He B. Fabrication of hyperbranched polyether demulsifier modified PVDF membrane for demulsification and separation of oil-in-water emulsion. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117974] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Huang J, Zeng J, Wang H, Etim UJ, Liang B, Meteku EB, Li H, Wang Y, Qiu Z, Rood MJ, Yan Z. Biomimetic fabrication of highly ordered laminae-trestle-laminae structured copper aero-sponge. NANOSCALE 2020; 12:8982-8990. [PMID: 32270797 DOI: 10.1039/c9nr10593j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Light-weight metallic aero-sponges are highly desirable for electronics, energy storage, catalysis and environmental remediation. Although several fabrication methods have been developed, the mechanical strength and the structural fatigue resistance of the metallic aero-sponges remain unsatisfactory. Loofah sponge is known for its mechanical strength and grease absorption due to its highly ordered hierarchical laminae-trestle-laminae (L-T-L) microstructure. Inspired by this structure-function relationship, we engineered a highly ordered L-T-L structured copper aero-sponge by unidirectional freeze-casting of copper nanowires (CuNWs) and polyvinyl alcohols (PVA). By this approach, water-to-ice crystallization shaped the building blocks into vertically distributed microchannels and horizontally arranged hollow pores. The copper aero-sponge exhibits anisotropic mechanical elasticity with a maximum tolerable compressive stress of 57 kPa, sustainable resilience at a strain of 75% and structure-induced hydrophobicity with a water contact angle more than 130°. The elasticity and hydrophobicity of the copper aero-sponge are also superior to those of the mimicked loofah sponge and copper aero-sponge with disordered pore structure made by the conventional freeze-casting. This work can be extended to manufacture novel bioinspired aero-sponges/aero-gels with hierarchical ordered microstructures.
Collapse
Affiliation(s)
- Jiankun Huang
- College of Science, China University of Petroleum (east), Qingdao, 266580, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lu M, Li J, Song S, Li L, Lin J, Zhang B, Li J. The synthesis of 3D graphene/Au composites via γ-ray irradiation and their use for catalytic reduction of 4-nitrophenol. NANOTECHNOLOGY 2020; 31:235604. [PMID: 32106098 DOI: 10.1088/1361-6528/ab7aa5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene oxide (GO) and gold ions (Au3+) can be simultaneously reduced and self-assembled into a three-dimensional (3D) graphene/Au composite (GA/Au) porous structure at room temperature via one-step γ-ray irradiation. The microstructure of GA/Au composites were observed under different magnifications and the pores were observed to be uniform 3D porous structure. In addition, Au nanoparticles were homogeneously attached to graphene sheets and had a typical diameter of 6 nm. These GA/Au composites were analyzed and characterized by x-ray diffraction analysis, x-ray photoelectron spectroscopy, and thermal gravity analysis. Due to synergistic catalysis between graphene and Au nanoparticles, GA/Au composites catalyzed 4-nitrophenol with excellent catalytic performance, even at concentrations up to 6.48 × 10-3 M. When the concentration of 4-nitrophenol was 2.16 × 10-3 M and 4.22 × 10-3 M, the first-order kinetic constants were 2.00 and 1.43 min-1, respectively.
Collapse
Affiliation(s)
- Manli Lu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China. University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
35
|
Hu S, Cao X, Reddyhoff T, Puhan D, Vladescu SC, Wang Q, Shi X, Peng Z, deMello AJ, Dini D. Self-Compensating Liquid-Repellent Surfaces with Stratified Morphology. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4174-4182. [PMID: 31889435 DOI: 10.1021/acsami.9b22896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Artificial liquid-repellent surfaces have recently attracted vast scientific attention; however, achieving mechanical robustness remains a formidable challenge before industrialization can be realized. To this end, inspired by plateaus in geological landscapes, a self-compensating strategy is developed to pave the way for the synthesis of durable repellent surfaces. This self-compensating surface comprises tall hydrophobic structural elements, which can repel liquid droplets. When these elements are damaged, they expose shorter structural elements that also suspend the droplets and thus preserve interfacial repellency. An example of this plateau-inspired stratified surface was created by three-dimensional (3D) direct laser lithography micro-nano fabrication. Even after being subjected to serious frictional damage, it maintained static repellency to water with a contact angle above 147° and was simultaneously able to endure high pressures arising from droplet impacts. Extending the scope of nature-inspired functional surfaces from conventional biomimetics to geological landscapes, this work demonstrates that the plateau-inspired self-compensating strategy can provide an unprecedented level of robustness in terms of sustained liquid repellency.
Collapse
Affiliation(s)
- Songtao Hu
- State Key Laboratory of Mechanical System and Vibration , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Xiaobao Cao
- Department of Chemistry and Applied Biosciences , ETH Zurich , Zurich 8093 , Switzerland
| | - Tom Reddyhoff
- Department of Mechanical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| | - Debashis Puhan
- Department of Mechanical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| | - Sorin-Cristian Vladescu
- Department of Mechanical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| | - Qian Wang
- Department of Mechanical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| | - Xi Shi
- State Key Laboratory of Mechanical System and Vibration , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Zhike Peng
- State Key Laboratory of Mechanical System and Vibration , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Andrew J deMello
- Department of Chemistry and Applied Biosciences , ETH Zurich , Zurich 8093 , Switzerland
| | - Daniele Dini
- Department of Mechanical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| |
Collapse
|
36
|
Hou S, Lv Y, Wu X, Guo J, Sun Q, Wang L, Jia D. Ultralight and highly compressible coal oxide-modified graphene aerogels for organic solvent absorption and light-to-heat conversion. NEW J CHEM 2020. [DOI: 10.1039/c9nj05447b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ultralight, hydrophobic, highly compressible and low-cost coal oxide-modified graphene aerogels exhibit high absorption capacity and high solar thermal conversion efficiency.
Collapse
Affiliation(s)
- Shengchao Hou
- Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
| | - Yan Lv
- Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
| | - Xueyan Wu
- Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
| | - Jixi Guo
- Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
| | - Qingqing Sun
- Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
| | - Luxiang Wang
- Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
| | - Dianzeng Jia
- Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
| |
Collapse
|
37
|
Superhydrophobic, compressible, and reusable polyvinyl alcohol-wrapped silver nanowire composite sponge for continuous oil-water separation. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.124028] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Zhang E, Liu W, Liang Q, Liu X, Zhao Z, Yang Y. Polypyrrole nanospheres@graphene aerogel with high specific surface area, compressibility, and proper water wettability prepared in dimethylformamide-dependent environment. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Wang NN, Wang H, Wang YY, Wei YH, Si JY, Yuen ACY, Xie JS, Yu B, Zhu SE, Lu HD, Yang W, Chan QN, Yeoh GH. Robust, Lightweight, Hydrophobic, and Fire-Retarded Polyimide/MXene Aerogels for Effective Oil/Water Separation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40512-40523. [PMID: 31577120 DOI: 10.1021/acsami.9b14265] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polyimide (PI) aerogels have attracted great attention owing to their low density and excellent thermal stability. However, hydrophobic surface modification is required for PI aerogels to improve their ability in oil/water separation due to their amphiphilic characteristic. Two-dimensional MXenes (transition metal carbides/nitrides) can be utilized as nanofillers to enhance the properties of polymers because of their unique layered structure and versatile interface chemistry. Herein, the robust, lightweight, and hydrophobic PI/MXene three-dimensional architectures were fabricated via freeze-drying of polyamide acid/MXene suspensions and thermal imidization. Polyamide acid was synthesized using N-N-dimethylacetamide and 4,4'-oxydianiline. MXene (Ti3C2Tx) dispersion was obtained via the etching of Ti3AlC2 and ultrasonic exfoliation. Taking advantage of the strong interaction between PI chains and MXene nanosheets, the interconnected, highly porous, and hydrophobic PI/MXene aerogels with low density were fabricated, resulting in the improved compressive performance, remarkable oil absorption capacity, and efficient separation of oil and water. For the PI/MXene-3 aerogel (weight ratio, 5.2:1) without any surface modification, the water contact angle was 119° with a density of 23 mg/cm3. This aerogel can completely recover to its original height after 50 compression-release cycles, exhibiting superelasticity and exceptional fatigue-resistant ability. It also showed high absorption capacities to various organic liquids ranging from approximately 18 to 58 times of their own weight. This hybrid aerogel can rapidly separate the chloroform, soybean oil, and liquid paraffin from the water-oil system. The thermally stable hybrid aerogel also exhibited excellent fire safety properties and outstanding reusability under an extreme environment.
Collapse
Affiliation(s)
- Ning-Ning Wang
- Department of Chemical and Materials Engineering , Hefei University , Hefei , Anhui 230601 , People's Republic of China
| | - Hao Wang
- Department of Chemical and Materials Engineering , Hefei University , Hefei , Anhui 230601 , People's Republic of China
| | - Yu-Ying Wang
- Department of Chemical and Materials Engineering , Hefei University , Hefei , Anhui 230601 , People's Republic of China
| | - You-Hao Wei
- Department of Chemical and Materials Engineering , Hefei University , Hefei , Anhui 230601 , People's Republic of China
| | - Jing-Yu Si
- Department of Chemical and Materials Engineering , Hefei University , Hefei , Anhui 230601 , People's Republic of China
| | - Anthony Chun Yin Yuen
- School of Mechanical and Manufacturing Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Jin-Song Xie
- Department of Chemical and Materials Engineering , Hefei University , Hefei , Anhui 230601 , People's Republic of China
| | - Bin Yu
- Department of Architecture and Civil Engineering , City University of Hong Kong , 88 Tat Chee Avenue , Kowloon , Hong Kong, People's Republic of China
| | - San-E Zhu
- Department of Chemical and Materials Engineering , Hefei University , Hefei , Anhui 230601 , People's Republic of China
| | - Hong-Dian Lu
- Department of Chemical and Materials Engineering , Hefei University , Hefei , Anhui 230601 , People's Republic of China
| | - Wei Yang
- Department of Chemical and Materials Engineering , Hefei University , Hefei , Anhui 230601 , People's Republic of China
- School of Mechanical and Manufacturing Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Qing Nian Chan
- School of Mechanical and Manufacturing Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Guan-Heng Yeoh
- School of Mechanical and Manufacturing Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
| |
Collapse
|
40
|
Yu XJ, Qu J, Yuan Z, Min P, Hao SM, Zhu ZS, Li X, Yang D, Yu ZZ. Anisotropic CoFe 2O 4@Graphene Hybrid Aerogels with High Flux and Excellent Stability as Building Blocks for Rapid Catalytic Degradation of Organic Contaminants in a Flow-Type Setup. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34222-34231. [PMID: 31425650 DOI: 10.1021/acsami.9b10287] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Macroscopic three-dimensional catalytic materials could overcome the poor operability and avoid secondary pollution of common powdery counterparts, especially in flow-type setups. However, conventional isotropic graphene-based aerogels and foams have randomly distributed graphene sheets, which may cause stream erosion and reduce the flux seriously. Herein, for the first time, we design and fabricate a novel anisotropic CoFe2O4@graphene hybrid aerogel (CFO@GA-A) with a hydrothermal synthesis followed by directional-freezing and freeze-drying for a tube-like flow-type setup analogous to a wastewater discharge pipeline. The long and vertically aligned pores inside the aerogel provide an exceptional flux of 1100 L m-2 h-1, 450% higher than that of the rough and zigzag paths in the isotropic CoFe2O4@graphene hybrid aerogel (CFO@GA-I), and the leaching of metal ions is obviously inhibited by relieving the erosion of CoFe2O4. Besides, the CFO@GA-A could sustain the scour of high-speed flowing wastewater and maintain its structural stability. Therefore, organic contaminants of indigo carmine, methyl orange, orange II, malachite green, phenol, and norfloxacin could readily flow over the nanocatalysts and be degraded rapidly within 7.5-12.5 min at varied flow rates from 60 to 120 mL h-1. The CFO@GA-A also exhibits a much better long-term stability with removal efficiencies toward indigo carmine at 100%, 91%, and 85% for at least 30 h (60 mL h-1), 25 h (90 mL h-1), and 21 h (120 mL h-1), respectively. On the contrary, the CFO@GA-I exhibits unsatisfactory removal efficiencies of <40%. Interestingly, CFO@GA-A could also serve as building blocks to stack on each other for degrading intense flowing wastewater, exhibiting an outstanding composability. The high-flux and long-term stability make the CFO@GA-A promising as an ideal catalytic material for wastewater treatments.
Collapse
Affiliation(s)
- Xiao-Jie Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
- Beijing Key Laboratory of Advanced Functional Polymer Composites , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Jin Qu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Zuoying Yuan
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Peng Min
- Beijing Key Laboratory of Advanced Functional Polymer Composites , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Shu-Meng Hao
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Zhong-Shuai Zhu
- Beijing Key Laboratory of Advanced Functional Polymer Composites , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Xiaofeng Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Dongzhi Yang
- Beijing Key Laboratory of Advanced Functional Polymer Composites , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
- Beijing Key Laboratory of Advanced Functional Polymer Composites , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| |
Collapse
|
41
|
Kharissova OV, Ibarra Torres CE, González LT, Kharisov BI. All-Carbon Hybrid Aerogels: Synthesis, Properties, and Applications. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03031] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - Lucy T. González
- Department of Chemistry and Nanotechnology, Tecnológico de Monterrey, Monterrey, N.L., Mexico
| | | |
Collapse
|
42
|
Lin YZ, Zhong LB, Dou S, Shao ZD, Liu Q, Zheng YM. Facile synthesis of electrospun carbon nanofiber/graphene oxide composite aerogels for high efficiency oils absorption. ENVIRONMENT INTERNATIONAL 2019; 128:37-45. [PMID: 31029978 DOI: 10.1016/j.envint.2019.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/26/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Oil contamination will seriously affect the health of water environment, so it is necessary to design ideal oil absorbents with large absorption capacity and high selectivity for effectively purify the oil contaminated water. Preparing high performance carbon aerogel for oil absorption has attracted growing attention, but challenges remain. Here we report a facile approach to fabricate mechanical strength enhanced three-dimensional (3D) nanofibrous aerogel principally through supporting agent liquid assisted collection-electrospinning technology, in which the immersion work was applied to measure the immersion capacity of nanofibers according to liquid-solid interfaces theory. Particularly, electrospun polyacrylonitrile (PAN) nanofibers (NFs) were collected directly in graphene oxide (GO) aqueous dispersion, and the continuous fibrous skeleton assembled with two-dimensional (2D) GO sheets to form open porous networks during the electrospinning process, which basically avoided the tedious preparation steps (nanofiber membrane cutting and re-crosslinking) that have been used previously. Due to the open porous networks promising structure stability of the aerogel, the GO sheets content required in the aerogel stacking process was largely reduced, and there was no strict requirement on the pre-freezing temperature and manner in the subsequent freeze-drying process. Furthermore, followed by thermal treating the PAN NFs/GO composite aerogel, fluffy carbon nanofibers/GO aerogels (CNF/GOAs) were obtained, which exhibited ultra-low density (2-3 mg/mL) and great compressibility (80%). After hydrophobic modification of polydimethylsiloxane by vapor deposition, the CNF/GOAs performed high absorption capacity (120-286 wt/wt) toward diverse oils. Owing to the fire-resistance and great elasticity, the CNF/GOAs could be recycled simply by combustion or mechanical squeeze, and still showed great absorption capacity after 10 cycles, which were feasible for large scale application.
Collapse
Affiliation(s)
- Ying-Zheng Lin
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Lu-Bin Zhong
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Shuai Dou
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Zai-Dong Shao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Qing Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Yu-Ming Zheng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
43
|
Hu S, Cao X, Reddyhoff T, Puhan D, Huang W, Shi X, Peng Z, Dini D. Three-Dimensional Printed Surfaces Inspired by Bi-Gaussian Stratified Plateaus. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20528-20534. [PMID: 31091076 DOI: 10.1021/acsami.9b04020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Wettability of artificial surfaces is attracting increasing attention for its relevant technological applications. Functional performance is often achieved by mimicking the topographical structures found in natural flora and fauna; however, surface attributes inspired by geological landscapes have so far escaped attention. We reproduced a stratified morphology of plateaus with a bi-Gaussian height distribution using a three-dimensional direct laser lithography. The plateau-inspired artificial surface exhibits a hydrophobic behavior even if fabricated from a hydrophilic material, giving rise to a new wetting mechanism that divides the well-known macroscopic Wenzel and Cassie states into four substates. We have also successfully applied the plateau-inspired structure to droplet manipulation.
Collapse
Affiliation(s)
- Songtao Hu
- State Key Laboratory of Mechanical System and Vibration , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Xiaobao Cao
- Department of Chemistry and Applied Biosciences , ETH Zurich , Zurich 8093 , Switzerland
| | - Tom Reddyhoff
- Department of Mechanical Engineering , Imperial College London , London SW7 2AZ , U.K
| | - Debashis Puhan
- Department of Mechanical Engineering , Imperial College London , London SW7 2AZ , U.K
| | - Weifeng Huang
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| | - Xi Shi
- State Key Laboratory of Mechanical System and Vibration , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Zhike Peng
- State Key Laboratory of Mechanical System and Vibration , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Daniele Dini
- Department of Mechanical Engineering , Imperial College London , London SW7 2AZ , U.K
| |
Collapse
|
44
|
Gan G, Li X, Fan S, Wang L, Qin M, Yin Z, Chen G. Carbon Aerogels for Environmental Clean-Up. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801512] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Guoqiang Gan
- State Key Laboratory of Fine Chemicals; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE); School of Environmental Science and Technology; Dalian University of Technology; 116024 Dalian China
| | - Xinyong Li
- State Key Laboratory of Fine Chemicals; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE); School of Environmental Science and Technology; Dalian University of Technology; 116024 Dalian China
- Department of Chemical and Biological Engineering; The Hong Kong University of Science and Technology; China
| | - Shiying Fan
- State Key Laboratory of Fine Chemicals; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE); School of Environmental Science and Technology; Dalian University of Technology; 116024 Dalian China
| | - Liang Wang
- State Key Laboratory of Fine Chemicals; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE); School of Environmental Science and Technology; Dalian University of Technology; 116024 Dalian China
| | - Meichun Qin
- State Key Laboratory of Fine Chemicals; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE); School of Environmental Science and Technology; Dalian University of Technology; 116024 Dalian China
| | - Zhifan Yin
- State Key Laboratory of Fine Chemicals; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE); School of Environmental Science and Technology; Dalian University of Technology; 116024 Dalian China
| | - Guohua Chen
- Department of Chemical and Biological Engineering; The Hong Kong University of Science and Technology; China
| |
Collapse
|
45
|
Ding Y, Song X, Chen J. Analysis of Pesticide Residue in Tomatoes by Carbon Nanotubes/β-Cyclodextrin Nanocomposite Reinforced Hollow Fiber Coupled with HPLC. J Food Sci 2019; 84:1651-1659. [PMID: 31107549 DOI: 10.1111/1750-3841.14640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 11/27/2022]
Abstract
For addressing the issues of pesticide residue analysis characterized by the trace levels of target analytes and the complexity of sample matrices, a selective extracting material, carbon nanotubes (CNTs)/β-cyclodextrin (β-CD) nanocomposite reinforced hollow fiber (HF), was developed. CNTs were chemically modified with β-CD and then the resultant nanocomposite was immobilized into the wall pores and lumen of HF by sol-gel technology. The reinforced HF was applied to direct-immersion mode of solid phase microextraction for the determination of carbaryl and 1-naphthol in tomatoes, coupled with high performance liquid chromatography. The proposed method provided 240- and 215-fold enrichment factors, good linearity in the range of 0.6 to 600 ng/g and 0.2 to 600 ng/g, good repeatability with RSDs of 4.5% and 6.9%, and batch-to-batch reproducibility with RSDs of 7.4% and 8.3% for 1-naphthol and carbaryl, respectively. Moreover, the low limits of detection at 0.05 and 0.15 ng/g for 1-naphthol and carbaryl, respectively, along with the high recovery in the range of 84.2% to 108.9% were obtained. The results showed that the material combined the respective advantages of CNTs, β-CD, and HF, thus, exhibiting efficient adsorption property, outstanding molecular recognition performance, and excellent sample clean-up effect, and it is applicable for pesticide residue analysis in complex matrices. PRACTICAL APPLICATION: The developed extracting material can be used for pesticide residue analysis of tomatoes. Pesticides, carbaryl, and 1-naphthol were detected in tomatoes, the most popular vegetable grown and consumed globally. The results supported the necessity to monitor pesticide residue for public health.
Collapse
Affiliation(s)
- Yawen Ding
- School of pharmacy, Lanzhou Univ., Lanzhou, 730000, P. R. China
| | - Xinyue Song
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Linyi Univ., Linyi, 276005, P. R. China
| | - Juan Chen
- School of pharmacy, Lanzhou Univ., Lanzhou, 730000, P. R. China
| |
Collapse
|
46
|
Wang L, Mu RJ, Lin L, Chen X, Lin S, Ye Q, Pang J. Bioinspired aerogel based on konjac glucomannan and functionalized carbon nanotube for controlled drug release. Int J Biol Macromol 2019; 133:693-701. [PMID: 31022486 DOI: 10.1016/j.ijbiomac.2019.04.148] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 11/24/2022]
Abstract
In this study, a facile marine bioinspired surface modification approach for carboxyl-functionalized multiwalled carbon nanotube (CCNT) and enhanced interfacial adhesion with the konjac glucomannan (KGM) matrix were illustrated to develop aerogels. Combined with FT-IR, XRD, Raman, TGA, XPS and SEM results, it was indicated that functionalized CCNT (PCCNT) is a reinforcer through hydrogen bond interactions in the aerogel formation process, which could be the main reason for the enhancement. The swelling and vitro release behavior of KGM/PCCNT aerogels were studied under two conditions using the drug 5-fluorouracil (5-FU). The release amount of 5-FU incorporated into KGM/PCCNT4 aerogel was about 48% at pH 1.2 and 62% at pH 6.8 after11 h, respectively. The results showed that the release rate of 5-FU from the KGM/PCCNT4 aerogel using PCCNT could be effectively controlled, suggesting potential applications for it as a drug carrier in targeted delivery in the biomedical filed.
Collapse
Affiliation(s)
- Lin Wang
- College of food science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruo-Jun Mu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA
| | - Lizhuan Lin
- College of food science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaohan Chen
- College of food science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sisi Lin
- College of food science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qianwen Ye
- College of food science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of food science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
47
|
Zhou L, Zhai S, Chen Y, Xu Z. Anisotropic Cellulose Nanofibers/Polyvinyl Alcohol/Graphene Aerogels Fabricated by Directional Freeze-drying as Effective Oil Adsorbents. Polymers (Basel) 2019; 11:E712. [PMID: 31003569 PMCID: PMC6523222 DOI: 10.3390/polym11040712] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
Under the current situation of frequent oil spills, the development of green and recyclable high-efficiency oil-absorbing aerogel materials has attracted wide attention from researchers. In this study, we report a high-strength, three-dimensional hydrophobic cellulose nanofiber (CNF)/polyvinyl alcohol (PVA)/graphene oxide (GO) composite aerogel with an anisotropic porous structure, which was fabricated by directional freeze-drying technology using anisotropically grown ice crystals as a template, followed by hydrophobic treatment with a simple dip coating process. The prepared composite aerogel presented anisotropic multi-level pore microstructures, low density (17.95 mg/cm3) and high porosity (98.8%), good hydrophobicity (water contact angle of 142°) and great adsorption capacity (oil absorption reaching 96 times its own weight). More importantly, the oriented aerogel had high strength, whose compressive stress at 80% strain reached 0.22 MPa and could bear more than 22,123 times its own weight without deformation. Therefore, the CNF/PVA/GO composite aerogel prepared by a simple and easy-to-operate directional freeze-drying method is a promising absorbent for oil-water separation.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shengcheng Zhai
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yiming Chen
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhaoyang Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
48
|
Wen Y, Ji Y, Zhang S, Zhang J, Cai G. A Simple Low-Cost Method to Prepare Lignocellulose-Based Composites for Efficient Removal of Cd(II) from Wastewater. Polymers (Basel) 2019; 11:polym11040711. [PMID: 31003553 PMCID: PMC6523447 DOI: 10.3390/polym11040711] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 11/23/2022] Open
Abstract
The fabrication of functional lignocellulose-based materials has drawn considerable attention because it acts as a green separation/absorption material owing to its multi-porous mesostructure. In this study, a surface functionalized lignocellulose-based adsorbent for the highly efficient capture of Cd(II) ions was prepared through facile in situ co-deposition of wood waste-derived saw powder (SP) in the presence of tannic acid (TA) and aminopropyltriethoxysilane (APTES) mixed aqueous solution. The SP was first modified using TA-APTES coating to synthesize the functional SP substrate (SP-(TA-APTES)). The SP-(TA-APTES) hybrids served as reactive platforms, which enabled further decoration with amino-rich polyethylenimine (PEI) due to the outstanding secondary reactions of the TA-APTES layer. The surface morphology of the resulting SP-(TA-APTES)-PEI (SP-TAPI) composites were investigated using Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Significantly, the combined advantages of the lignocellulosic skeleton, the layer-particle structure, and the hybrid coating contributed to the enhanced adsorption capacity of Cd(II) (up to 22.66 mg/g at pH = 5.0). This removal capacity was higher than that of most reported agricultural waste-based or lignocellulose-based materials. The Cd(II) adsorption mechanism of the surface-modified SP-TAPI composites was studied in detail. These results provide new insights into the high value-added utilization of agricultural waste for water purification applications.
Collapse
Affiliation(s)
- Yingying Wen
- College of Water Conservancy and Ecological Engineering, Nanchang Institute of Technology, Nanchang 330099, China.
| | - Yong Ji
- College of Water Conservancy and Ecological Engineering, Nanchang Institute of Technology, Nanchang 330099, China.
| | - Shifeng Zhang
- College of Water Conservancy and Ecological Engineering, Nanchang Institute of Technology, Nanchang 330099, China.
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Jie Zhang
- College of Water Conservancy and Ecological Engineering, Nanchang Institute of Technology, Nanchang 330099, China.
| | - Gaotang Cai
- College of Water Conservancy and Ecological Engineering, Nanchang Institute of Technology, Nanchang 330099, China.
| |
Collapse
|
49
|
Qin Y, Zhang Y, Qi N, Wang Q, Zhang X, Li Y. Preparation of Graphene Aerogel with High Mechanical Stability and Microwave Absorption Ability via Combining Surface Support of Metallic-CNTs and Interfacial Cross-Linking by Magnetic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10409-10417. [PMID: 30776887 DOI: 10.1021/acsami.8b22382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The preparation of graphene aerogel by hydrothermal or chemical reduction has been one of the hot topics of research. But in the process of assembly, the random weak connection of GO flakes leads to irreversible deformation under compression, and the mechanical stability of aerogel based on graphene is one of its drawbacks that is hard to overcome. Here, a novel method to prepare graphene aerogel with high mechanical stability was proposed via combining surface support brought by metallic-CNT networks and interfacial cross-linking of GO sheets achieved by nanoparticle selective absorption. Thoroughly dispersed metallic-CNTs absorbed on the basal plane of GO flakes formed continuous network structures, which not only improve the mechanical performance of flakes but also provide steric effects to impel the adsorption of metallic oxide magnetic nanoparticles concentrated on the edge of GO flakes, thereby guaranteeing the interfacial connection of adjacent rGO flakes by nanoparticle cross-linking. Meanwhile, the surface and interface reinforce approach can greatly improve the electrical conductivity and mechanical stability of composites. Owing to the light weight, abundant interface, high electrical conductivity, combined with the superparamagnetic properties brought by the magnetic nanoparticles, composite aerogel with high mechanical stability and excellent microwave absorption was achieved, of which the effective absorption bandwidth of the aerogel is 4.4-18 GHz and the maximum value can reach -49 dB. This approach could not only be used to prepare microwave absorption materials with light weight and high performance but also be meaningful to enlarge the construction and application of carbon-based materials.
Collapse
Affiliation(s)
- Yan Qin
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry , Shandong University , Jinan 250100 , China
| | - Yan Zhang
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry , Shandong University , Jinan 250100 , China
| | - Na Qi
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry , Shandong University , Jinan 250100 , China
| | - Qiaozhi Wang
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry , Shandong University , Jinan 250100 , China
| | - Xuejie Zhang
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry , Shandong University , Jinan 250100 , China
| | - Ying Li
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry , Shandong University , Jinan 250100 , China
| |
Collapse
|
50
|
Wang H, Wang C, Liu S, Chen L, Yang S. Superhydrophobic and superoleophilic graphene aerogel for adsorption of oil pollutants from water. RSC Adv 2019; 9:8569-8574. [PMID: 35518690 PMCID: PMC9061852 DOI: 10.1039/c9ra00279k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/07/2019] [Indexed: 02/02/2023] Open
Abstract
Three-dimensional graphene based materials with superhydrophobic/superoleophilic attributes are highly desirable for water treatment. The graphene aerogel (GA) was prepared by hydrothermal reaction of the graphene oxide (GO) solution in the presence of dopamine followed by freeze-drying. The subsequent surface modification of GA using fluoroalkylsilane occurred by a vapor-liquid deposition process. The superhydrophobic graphene aerogel (SGA) fabricated from GA exhibits superhydrophobicity and superoleophilicity with the water contact angle of 156.5° and the oil contact angle of 0°. With this property, SGA could selectively adsorb various types of oils/organic solvents from the oil-water mixture. Moreover, the SGA possesses excellent low bulk density (9.6 mg cm-3), high absorption capacity (110-230 fold weight gain), and superior adsorption recyclability. With all these desirable features, the SGA is a promising candidate for oil-polluted water remediation.
Collapse
Affiliation(s)
- Hui Wang
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences Urumqi 830011 China +86-991-6992225
| | - Chunchun Wang
- SEL BIOCHEM Xinjiang Company Limited Shihezi 832000 China
| | - Shuai Liu
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences Urumqi 830011 China +86-991-6992225
| | - Lin Chen
- Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute Urumqi 830011 China
| | - Sudong Yang
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences Urumqi 830011 China +86-991-6992225
| |
Collapse
|