1
|
Zhao Q, Zhu S, Peng J. Unraveling the Co-Crystallization-Charge Transport Relation in Conjugated Polymer Blends via Meniscus-Assisted Solution-Shearing. Macromol Rapid Commun 2023; 44:e2200622. [PMID: 36103725 DOI: 10.1002/marc.202200622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/07/2022] [Indexed: 01/26/2023]
Abstract
The ability to craft the co-crystallization in conjugated polymer blends represents an important endeavor for the enhancement of charge transport. However, simple and efficient approaches to co-crystallization have yet to be realized. Herein, for the first time, a robust meniscus-assisted solution-shearing (MASS) strategy is reported to achieve co-crystallization in the poly(2,5-bis(3-hexylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-C6) and poly(2,5-bis(3-decylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-C10) blended films, and correlate this co-crystalline structure to the charge transport properties. The as-cast PBTTT-C6/PBTTT-C10 blends exhibit co-crystalline or phase-separated structures influenced by their molecular weights. Interestingly, confined-shearing of the initial phase-separated blended solution to MASS produces the formation of their co-crystallization. The co-crystallization kinetics accompanied by the chain packing change and optical properties are scrutinized. Finally, the resulting organic field-effect transistors (OFETs) signify the cocrystal-facilitated charge transport in the blends. Conceptually, this efficient MASS strategy in rendering the co-crystallization in conjugated polymer blends can be readily extended to other conjugated polymer blends of interest for a variety of device applications.
Collapse
Affiliation(s)
- Qingqing Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Shuyin Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Juan Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
2
|
Lan R, Bao J, Li Z, Wang Z, Song C, Shen C, Huang R, Sun J, Wang Q, Zhang L, Yang H. Orthogonally Integrating Programmable Structural Color and Photo‐Rewritable Fluorescence in Hydrazone Photoswitch‐bonded Cholesteric Liquid Crystalline Network. Angew Chem Int Ed Engl 2022; 61:e202213915. [DOI: 10.1002/anie.202213915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Ruochen Lan
- Beijing Advanced Innovation Center for Materials Genome Engineering&School of Materials Science and Engineering Peking University Beijing 100871 P. R. China
- Institute of Advanced Materials Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education Jiangxi Normal University Nanchang 330022 P. R. China
| | - Jinying Bao
- Beijing Advanced Innovation Center for Materials Genome Engineering&School of Materials Science and Engineering Peking University Beijing 100871 P. R. China
| | - Zhaozhong Li
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Zizheng Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering&School of Materials Science and Engineering Peking University Beijing 100871 P. R. China
| | - Chenjie Song
- Department of Ophthalmology Beijing Anzhen Hospital Capital Medical University Beijing 100029 P. R. China
| | - Chen Shen
- China National Machinery Industry Corporation (Sinomach) Beijing 100080 P. R. China
| | - Rui Huang
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Jian Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering&School of Materials Science and Engineering Peking University Beijing 100871 P. R. China
| | - Qian Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering&School of Materials Science and Engineering Peking University Beijing 100871 P. R. China
| | - Lanying Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering&School of Materials Science and Engineering Peking University Beijing 100871 P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 P. R. China
| | - Huai Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering&School of Materials Science and Engineering Peking University Beijing 100871 P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 P. R. China
| |
Collapse
|
3
|
Ji Y, Yang B, Cai F, Yu H. Regulate Surface Topography of Liquid‐Crystalline Polymer by External Stimuli. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yufan Ji
- School of Materials Science and Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 P. R. China
| | - Bowen Yang
- School of Materials Science and Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 P. R. China
| | - Feng Cai
- School of Materials Science and Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 P. R. China
| | - Haifeng Yu
- School of Materials Science and Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 P. R. China
| |
Collapse
|
4
|
Pan S, Peng J, Lin Z. Large‐Scale Rapid Positioning of Hierarchical Assemblies of Conjugated Polymers via Meniscus‐Assisted Self‐Assembly. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shuang Pan
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Juan Peng
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Zhiqun Lin
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
5
|
Pan S, Peng J, Lin Z. Large-Scale Rapid Positioning of Hierarchical Assemblies of Conjugated Polymers via Meniscus-Assisted Self-Assembly. Angew Chem Int Ed Engl 2021; 60:11751-11757. [PMID: 33650301 DOI: 10.1002/anie.202101272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/23/2021] [Indexed: 02/04/2023]
Abstract
Rapid and deliberate patterning of nanomaterials over a large area is desirable for device manufacturing. We report a method for meniscus-assisted self-assembly (MASA)-enabled rapid positioning of hierarchically assembled dots and stripes composed of luminescent conjugated polymer over two length scales. Periodically arranged conjugated poly(9,9-dioctylfluorene) (PFO) polymers, yield dots, punch-holes and stripes at microscopic scale via MASA. Concurrent self-assembly of PFOs into two-dimensional lenticular crystals within each dot, punch-hole and stripe is realized at nanoscopic scale. Hierarchical assembly is achieved by constraining the evaporation of the PFOs solution in two approximately parallel plates via a MASA process. The three-phase contact line (TCL) of the liquid meniscus of the PFOs was printed using the upper plate, yielding an array of curved stripes. Rapid creation of hierarchical assemblies via MASA opens up possibilities for large-scale organization of a wide range of soft matters and nanomaterials.
Collapse
Affiliation(s)
- Shuang Pan
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Juan Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
6
|
|
7
|
Jeon J, Tan ATL, Lee J, Park JE, Won S, Kim S, Bedewy M, Go J, Kim JK, Hart AJ, Wie JJ. High-Speed Production of Crystalline Semiconducting Polymer Line Arrays by Meniscus Oscillation Self-Assembly. ACS NANO 2020; 14:17254-17261. [PMID: 33232120 DOI: 10.1021/acsnano.0c07268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Evaporative self-assembly of semiconducting polymers is a low-cost route to fabricating micrometer and nanoscale features for use in organic and flexible electronic devices. However, in most cases, rate is limited by the kinetics of solvent evaporation, and it is challenging to achieve uniformity over length- and time-scales that are compelling for manufacturing scale-up. In this study, we report high-throughput, continuous printing of poly(3-hexylthiophene) (P3HT) by a modified doctor blading technique with oscillatory meniscus motion-meniscus-oscillated self-assembly (MOSA), which forms P3HT features ∼100 times faster than previously reported techniques. The meniscus is pinned to a roller, and the oscillatory meniscus motion of the roller generates repetitive cycles of contact-line formation and subsequent slip. The printed P3HT lines demonstrate reproducible and tailorable structures: nanometer scale thickness, micrometer scale width, submillimeter pattern intervals, and millimeter-to-centimeter scale coverage with highly defined boundaries. The line width as well as interval of P3HT patterns can be independently controlled by varying the polymer concentration levels and the rotation rate of the roller. Furthermore, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals that this dynamic meniscus control technique dramatically enhances the crystallinity of P3HT. The MOSA process can potentially be applied to other geometries, and to a wide range of solution-based precursors, and therefore will develop for practical applications in printed electronics.
Collapse
Affiliation(s)
- Jisoo Jeon
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Alvin T L Tan
- Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jaeyong Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 37673, Republic of Korea
| | - Jeong Eun Park
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sukyoung Won
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sanha Kim
- Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mostafa Bedewy
- Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jamison Go
- Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jin Kon Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 37673, Republic of Korea
| | - A John Hart
- Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeong Jae Wie
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
8
|
Xu B, Qian H, Lin S. Self-Assembly and Photoinduced Spindle-Toroid Morphology Transition of Macromolecular Double-Brushes with Azobenzene Pendants. ACS Macro Lett 2020; 9:404-409. [PMID: 35648535 DOI: 10.1021/acsmacrolett.0c00079] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Asymmetric macromolecular double-brushes (MDBs) are composed of two different side chains grafted on a linear backbone, possessing distinct assembly behaviors in comparison with conventional amphiphiles, owing to the Janus architecture and combined effects of backbone and hetero double-brushes. Additionally, the introduction of unique functionalities and responsiveness into the self-assembly system of MDBs endows extra opportunities to pursue morphologic diversity and intriguing properties. Herein, we report the synthesis of Janus-like MDBs of polyacrylate-g-poly(6-(4-butyl-4'-oxyazobenzene) hexyl acrylate)/poly(ethylene oxide) (PA-g-PAzo/PEO), in which hydrophilic PEO and hydrophobic PAzo brushes were grafted using the combination of concurrent ATRP and click reaction. Due to the special Janus topology and inter/intramolecular association of pendant azobenzene groups, amphiphilic PA-g-PAzo/PEO self-assembled into multimolecular rod and spindle-like aggregates. It is interesting that a transition of spindle-toroid-spindle was observed upon the alternative irradiation between UV and visible light, which is ascribed to the trans-to-cis isomerization of azobenzene molecular brushes. To our best knowledge, this is the first time that azobenzene-containing MDBs enable the fabrication of distinctive self-assembled morphologies and photoinduced toroid formation. The controlled synthesis of MDBs with unique functionalities and subsequent development of their structure-property relationships would shed light on the design and optimization of bottlebrush-based nanomaterials.
Collapse
Affiliation(s)
- Binbin Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongyu Qian
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
9
|
Jeong B, Han H, Kim HH, Choi WK, Park YJ, Park C. Polymer-Assisted Nanoimprinting for Environment- and Phase-Stable Perovskite Nanopatterns. ACS NANO 2020; 14:1645-1655. [PMID: 31951365 DOI: 10.1021/acsnano.9b06980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite the great interest in inorganic halide perovskites (IHPs) for a variety of photoelectronic applications, environmentally robust nanopatterns of IHPs have hardly been developed mainly owing to the uncontrollable rapid crystallization or temperature and humidity sensitive polymorphs. Herein, we present a facile route for fabricating environment- and phase-stable IHP nanopatterns over large areas. Our method is based on nanoimprinting of a soft and moldable IHP adduct. A small amount of poly(ethylene oxide) was added to an IHP precursor solution to fabricate a spin-coated film that is soft and moldable in an amorphous adduct state. Subsequently, a topographically prepatterned elastomeric mold was used to nanoimprint the film to develop well-defined IHP nanopatterns of CsPbBr3 and CsPbI3 of 200 nm in width over a large area. To ensure environment- and phase-stable black CsPbI3 nanopatterns, a polymer backfilling process was employed on a nanopatterned CsPbI3. The CsPbI3 nanopatterns were overcoated with a thin poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) film, followed by thermal melting of PVDF-TrFE, which formed the air-exposed CsPbI3 nanopatterns laterally confined with PVDF-TrFE. Our polymer backfilled CsPbI3 nanopatterns exhibited excellent environmental stability over one year at ambient conditions and for 10 h at 85 °C, allowing the development of arrays of two-terminal, parallel-type photodetectors with nanopatterned photoactive CsPbI3 channels. Our polymer-assisted nanoimprinting offers a fast, low-pressure/temperature patterning method for high-quality nanopatterns on various substrates over a large area, overcoming conventional costly time-consuming lithographic techniques.
Collapse
Affiliation(s)
- Beomjin Jeong
- Department of Materials Science and Engineering , Yonsei University , Yonsei-ro 50 , Seodaemun-gu , Seoul 03722 , Republic of Korea
| | - Hyowon Han
- Department of Materials Science and Engineering , Yonsei University , Yonsei-ro 50 , Seodaemun-gu , Seoul 03722 , Republic of Korea
| | - Hong Hee Kim
- Center for Optoelectronic Materials and Devices , Korea Institute of Science and Technology (KIST) , Hwarang-ro 14 , Seongbuk-gu , Seoul 02792 , Republic of Korea
| | - Won Kook Choi
- Center for Optoelectronic Materials and Devices , Korea Institute of Science and Technology (KIST) , Hwarang-ro 14 , Seongbuk-gu , Seoul 02792 , Republic of Korea
| | - Youn Jung Park
- Samsung Electronics Co. , Seongchon-gil 33 , Seocho-gu , Seoul 06765 , Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering , Yonsei University , Yonsei-ro 50 , Seodaemun-gu , Seoul 03722 , Republic of Korea
| |
Collapse
|
10
|
Raman AS, Haapala KR, Raoufi K, Linke BS, Bernstein WZ, Morris KC. Defining Near-Term to Long-Term Research Opportunities to Advance Metrics, Models, and Methods for Smart and Sustainable Manufacturing. SMART AND SUSTAINABLE MANUFACTURING SYSTEMS 2020; 4:https://doi.org/10.1520/ssms20190047. [PMID: 33043276 PMCID: PMC7542542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Over the past century, research has focused on continuously improving the performance of manufacturing processes and systems-often measured in terms of cost, quality, productivity, and material and energy efficiency. With the advent of smart manufacturing technologies-better production equipment, sensing technologies, computational methods, and data analytics applied from the process to enterprise levels-the potential for sustainability performance improvement is tremendous. Sustainable manufacturing seeks the best balance of a variety of performance measures to satisfy and optimize the goals of all stakeholders. Accurate measures of performance are the foundation on which sustainability objectives can be pursued. Historically, operational and information technologies have undergone disparate development, with little convergence across the domains. To focus future research efforts in advanced manufacturing, the authors organized a one-day workshop, sponsored by the U.S. National Science Foundation, at the joint manufacturing research conferences of the American Society of Mechanical Engineers and Society of Manufacturing Engineers. Research needs were identified to help harmonize disparate manufacturing metrics, models, and methods from across conventional manufacturing, nanomanufacturing, and additive/hybrid manufacturing processes and systems. Experts from academia and government labs presented invited lightning talks to discuss their perspectives on current advanced manufacturing research challenges. Workshop participants also provided their perspectives in facilitated brainstorming breakouts and a reflection activity. The aim was to define advanced manufacturing research and educational needs for improving manufacturing process performance through improved sustainability metrics, modeling approaches, and decision support methods. In addition to these workshop outcomes, a review of the recent literature is presented, which identifies research opportunities across several advanced manufacturing domains. Recommendations for future research describe the short-, mid-, and long-term needs of the advanced manufacturing community for enabling smart and sustainable manufacturing.
Collapse
Affiliation(s)
- Arvind Shankar Raman
- School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, 200 SW Monroe Ave., Corvallis, OR 97331, USA
| | - Karl R Haapala
- School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, 200 SW Monroe Ave., Corvallis, OR 97331, USA
| | - Kamyar Raoufi
- School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, 200 SW Monroe Ave., Corvallis, OR 97331, USA
| | - Barbara S Linke
- Department of Mechanical and Aerospace Engineering, University of California Davis, One Shields Ave., Davis, CA 95616, USA
| | - William Z Bernstein
- Systems Integration Division, Engineering Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 20899, USA
| | - K C Morris
- Systems Integration Division, Engineering Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 20899, USA
| |
Collapse
|
11
|
Ansari M, Bera R, Mondal S, Das N. Triptycene-Derived Photoresponsive Fluorescent Azo-Polymer as Chemosensor for Picric Acid Detection. ACS OMEGA 2019; 4:9383-9392. [PMID: 31460028 PMCID: PMC6648835 DOI: 10.1021/acsomega.9b00497] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/16/2019] [Indexed: 05/08/2023]
Abstract
Two new triptycene-based azobenzene-functionalized polymers (TBAFPs) have been synthesized using the well-known Pd-catalyzed Sonogashira cross-coupling polycondensation reaction between 2,6-diethynyltriptycene and (meta or para) dibromo-azobenzenes. Enhancement of the fluorescent emission intensity was observed upon trans → cis isomerization of -N=N- linkage in TBAFPs. The cis-lifetime of TBAFP1 is rather long (greater than 2 days). The resulting materials were tested as a potential chemosensor for the detection of picric acid (PA)-a water pollutant as well as chemical constituent of explosives used in warfare. PA was found to interact strongly with TBAFPs, which led to significant quenching of the latter's fluorescence emission intensities. The binding constants are in the order of 105 M-1. TBAFPs were also able to detect PA in nanomolar concentrations.
Collapse
Affiliation(s)
- Mosim Ansari
- Department of Chemistry, Indian
Institute of Technology Patna, 801106 Bihar, India
| | - Ranajit Bera
- Department of Chemistry, Indian
Institute of Technology Patna, 801106 Bihar, India
| | - Snehasish Mondal
- Department of Chemistry, Indian
Institute of Technology Patna, 801106 Bihar, India
| | - Neeladri Das
- Department of Chemistry, Indian
Institute of Technology Patna, 801106 Bihar, India
| |
Collapse
|
12
|
Zhang R, Chu G, Vasilyev G, Martin P, Camposeo A, Persano L, Pisignano D, Zussman E. Hybrid Nanocomposites for 3D Optics: Using Interpolymer Complexes with Cellulose Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19324-19330. [PMID: 31058491 PMCID: PMC6543505 DOI: 10.1021/acsami.9b01699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/06/2019] [Indexed: 05/03/2023]
Abstract
Manipulation of optical paths by three-dimensional (3D) integrated optics with customized stacked building blocks has gained considerable attention. Herein, we present functional thin films with assembly ability for 3D integrated optics based on nanocomposites made of cellulose nanocrystals (CNCs) embedded in hydrogen-bonded (H-bonded) interpolymer complexes (IPCs). We selected H-bonded IPC poly(ethylene oxide) and neutralized poly(acrylic acid) to render films assembly ability without undesired interplay with charge distribution in CNCs. The CNCs can form a stable chiral nematic liquid crystalline phase with long-range orientational order and helical organization. The resulting nanocomposites are characterized with a high elastic modulus of 8.8 GPa and an adhesion strength of 1.35 MPa through reversible intermolecular interactions at the contact interface upon exposure to acidic vapor. Instead, simply stacked into 3D optics, these functional thin films serve as a facile material for providing a conceptually simple approach to assemble 3D integrated optics with different liquid crystalline orderings to manipulate the light polarization state.
Collapse
Affiliation(s)
- Ruiyan Zhang
- NanoEngineering
Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Guang Chu
- NanoEngineering
Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Gleb Vasilyev
- NanoEngineering
Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Patrick Martin
- NanoEngineering
Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Andrea Camposeo
- NEST,
Instituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, I-56127 Pisa, Italy
| | - Luana Persano
- NEST,
Instituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, I-56127 Pisa, Italy
| | - Dario Pisignano
- Dipartimento
di Fisica “Enrico Fermi”, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
- NEST,
Istituto Nanoscience-CNR, Piazza S. Silvestro 12, I-56127 Pisa, Italy
| | - Eyal Zussman
- NanoEngineering
Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
13
|
Fu L, Yang J, Dong L, Yu H, Yan Q, Zhao F, Zhai F, Xu Y, Dang Y, Hu W, Feng Y, Feng W. Solar Thermal Storage and Room-Temperature Fast Release Using a Uniform Flexible Azobenzene-Grafted Polynorborene Film Enhanced by Stretching. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00384] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Wei Feng
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| |
Collapse
|
14
|
Gerkman MA, Sinha S, Warner JH, Han GGD. Direct Imaging of Photoswitching Molecular Conformations Using Individual Metal Atom Markers. ACS NANO 2019; 13:87-96. [PMID: 30521310 DOI: 10.1021/acsnano.8b08441] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Photoswitching behavior of individual organic molecules was imaged by annular dark-field scanning transmission electron microscopy (ADF-STEM) using a highly electron beam transparent graphene support. Photoswitching azobenzene derivatives with ligands at each end containing single transition-metal atoms (Pt) were designed (Pt-complex), and the distance between the strong ADF-STEM contrast from the two Pt atoms in each Pt-complex is used to track molecular length changes. UV irradiation was used to induce photoswitching of the Pt complex on graphene, and we show that the measured Pt-Pt distances within isolated molecules decrease from ∼2.1 nm to ∼1.4 nm, indicative of a trans-to- cis isomerization. Light illumination of the Pt-complex on the graphene support also caused their diffusion out from initial clusters to the surrounding area of graphene, indicating that the light-activated mobilization overcomes the intermolecular van der Waals interactions. This approach shows how individual isolated heavy metal atoms can be included as markers into complex molecules to track their structural changes using ADF-STEM on graphene supports, providing an effective method to study a diverse range of complex organic materials at the single molecule level.
Collapse
Affiliation(s)
- Mihael A Gerkman
- Department of Chemistry , Brandeis University , 415 South Street , Waltham , Massachusetts 02453 , United States
| | - Sapna Sinha
- Department of Materials , University of Oxford , 16 Parks Road , Oxford OX1 3PH , United Kingdom
| | - Jamie H Warner
- Department of Materials , University of Oxford , 16 Parks Road , Oxford OX1 3PH , United Kingdom
| | - Grace G D Han
- Department of Chemistry , Brandeis University , 415 South Street , Waltham , Massachusetts 02453 , United States
| |
Collapse
|
15
|
Abstract
Photoresponsive polymers with multi-azobenzene groups are reviewed and their potential applications in photoactuation, photo-patterning, and photoinduced birefringence are introduced.
Collapse
Affiliation(s)
- Shaodong Sun
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- Anhui Key Laboratory of Optoelectronic Science and Technology
- Department of Polymer Science and Engineering
- University of Science and Technology of China
| | - Shuofeng Liang
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- Anhui Key Laboratory of Optoelectronic Science and Technology
- Department of Polymer Science and Engineering
- University of Science and Technology of China
| | - Wen-Cong Xu
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- Anhui Key Laboratory of Optoelectronic Science and Technology
- Department of Polymer Science and Engineering
- University of Science and Technology of China
| | - Guofeng Xu
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- Anhui Key Laboratory of Optoelectronic Science and Technology
- Department of Polymer Science and Engineering
- University of Science and Technology of China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- Anhui Key Laboratory of Optoelectronic Science and Technology
- Department of Polymer Science and Engineering
- University of Science and Technology of China
| |
Collapse
|
16
|
The effect of various functional groups on mesophase behavior and optical property of blue phase liquid crystal compounds based on (−)‑menthol. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Dong L, Feng Y, Wang L, Feng W. Azobenzene-based solar thermal fuels: design, properties, and applications. Chem Soc Rev 2018; 47:7339-7368. [PMID: 30168543 DOI: 10.1039/c8cs00470f] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Development of renewable energy technologies has been a significant area of research amongst scientists with the aim of attaining a sustainable world society. Solar thermal fuels that can capture, convert, store, and release solar energy in the form of heat through reversible photoisomerization of molecular photoswitches such as azobenzene derivatives are currently in the limelight of research. Herein, we provide a state-of-the-art account on the recent advancements in solar thermal fuels based on azobenzene photoswitches. We begin with an overview on the importance of azobenzene-based solar thermal fuels and their fundamentals. Then, we highlight the recent advances in diverse azobenzene materials for solar thermal fuels such as pure azobenzene derivatives, nanocarbon-templated azobenzene, and polymer-templated azobenzene. The basic design concepts of these advanced solar energy storage materials are discussed, and their promising applications are highlighted. We then introduce the recent endeavors in the molecular design of azobenzene derivatives toward efficient solar thermal fuels, and conclude with new perspectives on the future scope, opportunities and challenges. It is expected that continuous pioneering research involving scientists and engineers from diverse technological backgrounds could trigger the rapid advancement of this important interdisciplinary field, which embraces chemistry, physics, engineering, nanoscience, nanotechnology, materials science, polymer science, etc.
Collapse
Affiliation(s)
- Liqi Dong
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.
| | | | | | | |
Collapse
|