1
|
Hussain MK, Khatoon S, Khan MF, Akhtar MS, Ahamad S, Saquib M. Coumarins as versatile therapeutic phytomolecules: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155972. [PMID: 39265442 DOI: 10.1016/j.phymed.2024.155972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Coumarins, abundantly distributed in a plethora of biologically active compounds, serve as a fundamental motif in numerous natural products, drugs, and therapeutic leads. Despite their small size, they exhibit a diverse range of biological activities, intriguing researchers with their immense pharmacological potential. PURPOSE This study consolidates the evidence regarding the essential role of coumarins in modern drug discovery, exploring their broad-spectrum pharmaceutical effects, structural versatility, and mechanisms of action across various domains. METHODS For literature search, we utilized PubMed, Google scholar, and SciFinder databases. Keyword and keyword combinations such as "coumarins", "natural coumarins", "specific natural coumarins for particular diseases", and "therapeutic effects" were employed to retrieve relevant studies. The search encompassed articles published between 2005 and 2023. Selection criteria included studies reporting on the pharmacological activities of natural coumarins against various diseases. RESULTS The results highlight the therapeutic potential of natural coumarins against various diseases, demonstrating anti-cancer, anti-oxidant, and anti-inflammatory activities. They also act as monoamine oxidase inhibitors and phosphodiesterase inhibitors, and as anti-thrombotic, anti-diabetic, and hepatoprotective agents. They also show efficacy against diabetic nephropathy, neurodegenerative diseases, microbial infections and many other diseases. CONCLUSION This review underscores the significant role of natural coumarins in medicinal chemistry and drug discovery. Their diverse biological activities and structural versatility make them promising therapeutic agents. This study serves as a catalyst for further research in the field, aiming to address emerging challenges and opportunities in drug development.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, Rampur 244901, M.J.P Rohil Khand University, Bareilly, India.
| | | | - Mohammad Faheem Khan
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Lucknow 226003, India
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur 242001, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad) 211002, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad) 211010, India.
| |
Collapse
|
2
|
Huang HS, Chen YH, Chien WT, Yeh MY. Quaternary phosphonium AIEgens nanoparticles as innovative agents for developing latent fingerprints. Anal Chim Acta 2024; 1320:343032. [PMID: 39142795 DOI: 10.1016/j.aca.2024.343032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024]
Abstract
Quaternary phosphonium salts, a significant category of organophosphorus compounds, have garnered substantial attention from chemists due to their wide range of applications across various research areas. These compounds are utilized in organic synthesis, catalysis, medicinal chemistry, natural materials, and coordination chemistry. Their versatility and effectiveness in these fields make them valuable tools in scientific research. Despite their extensive use in various applications, the potential of quaternary phosphonium compounds as fluorescent agents for revealing latent fingerprints (LFPs) remains largely unexplored, presenting an exciting opportunity for further research and development in forensic science. In this study, we designed molecules that combine the aggregation-induced emission (AIE) chromophore with triphenylphosphine to create a series of novel AIE amphiphiles, namely TPP1, TPP2, and TPP3. Through precise adjustment of the carbon chain length between the phenoxy group and the terminal triphenylphosphine, we were able to finely tune the nanostructures and hydrophobicity of the materials. TPP3 emerged as the optimal candidate, possessing the ideal particle size and hydrophobicity to effectively bind to LFPs, thus enabling efficient fingerprint visualization with enhanced fluorescence upon aggregation. Our findings introduce an innovative approach to fingerprint visualization, offering high selectivity, superior imaging of level 3 structures, and long-term effectiveness (up to 30 days). Additionally, TPP3's outstanding performance in imaging level 3 structures of LFPs is beneficial for analyzing incomplete LFPs and identifying individuals. By significantly improving the detection and analysis of LFPs, this approach ensures more accurate and reliable identification, making it invaluable for forensic investigations and security measures. The adaptability of these compounds to various fingerprint surfaces highlights their potential in diverse practical applications, enhancing their utility in both forensic science and security fields. This versatility allows for precise fingerprint visualization across different scenarios, making them a critical tool for advancing biometric and security technologies.
Collapse
Affiliation(s)
- He-Shin Huang
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City, 320314, Taiwan, Republic of China
| | - Yu-Hsin Chen
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City, 320314, Taiwan, Republic of China
| | - Wei-Ting Chien
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City, 320314, Taiwan, Republic of China
| | - Mei-Yu Yeh
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City, 320314, Taiwan, Republic of China; Center for Nano Technology, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City, 320314, Taiwan, Republic of China.
| |
Collapse
|
3
|
Ramírez-Lozano CM, Ochoa ME, Labra-Vázquez P, Jiménez-Sánchez A, Farfán N, Santillan R. Exploring the self-assembly dynamics of novel steroid-coumarin conjugates: a comprehensive spectroscopic and solid-state investigation. Org Biomol Chem 2024; 22:3314-3327. [PMID: 38578064 DOI: 10.1039/d4ob00192c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The design, synthesis, and characterization of seven novel steroid-coumarin conjugates with diverse steroidal nuclei as lipophilic fluorescent materials for bioimaging applications are presented. The conjugates were synthesized through amidation, characterized using spectroscopic and spectrometric methods, and their main photophysical properties were determined. Dioxane : water titration experiments revealed their ability to self-assemble, forming J-aggregates as evidenced by new spectral bands at higher wavelengths. Monocrystal X-ray diffraction analysis disclosed distinctive aggregation patterns exhibiting J- or H-aggregates for selected compounds. Bioimaging studies demonstrated cell membrane localization for most conjugates, with some of them displaying an interesting selectivity for lipid droplets. Notably, the presence of the steroid fragments significantly influenced both the self-assembly patterns and the cellular localization of the fluorescent probes.
Collapse
Affiliation(s)
- Claudia M Ramírez-Lozano
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000, Mexico.
| | - Ma Eugenia Ochoa
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000, Mexico.
| | - Pablo Labra-Vázquez
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, Cedex 9, France
| | - Arturo Jiménez-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Norberto Farfán
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico
| | - Rosa Santillan
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000, Mexico.
| |
Collapse
|
4
|
Giovannuzzi S, Chavarria D, Provensi G, Leri M, Bucciantini M, Carradori S, Bonardi A, Gratteri P, Borges F, Nocentini A, Supuran CT. Dual Inhibitors of Brain Carbonic Anhydrases and Monoamine Oxidase-B Efficiently Protect against Amyloid-β-Induced Neuronal Toxicity, Oxidative Stress, and Mitochondrial Dysfunction. J Med Chem 2024; 67:4170-4193. [PMID: 38436571 DOI: 10.1021/acs.jmedchem.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
We report here the first dual inhibitors of brain carbonic anhydrases (CAs) and monoamine oxidase-B (MAO-B) for the management of Alzheimer's disease. Classical CA inhibitors (CAIs) such as methazolamide prevent amyloid-β-peptide (Aβ)-induced overproduction of reactive oxygen species (ROS) and mitochondrial dysfunction. MAO-B is also implicated in ROS production, cholinergic system disruption, and amyloid plaque formation. In this work, we combined a reversible MAO-B inhibitor of the coumarin and chromone type with benzenesulfonamide fragments as highly effective CAIs. A hit-to-lead optimization led to a significant set of derivatives showing potent low nanomolar inhibition of the target brain CAs (KIs in the range of 0.1-90.0 nM) and MAO-B (IC50 in the range of 6.7-32.6 nM). Computational studies were conducted to elucidate the structure-activity relationship and predict ADMET properties. The most effective multitarget compounds totally prevented Aβ-related toxicity, reverted ROS formation, and restored the mitochondrial functionality in an SH-SY5Y cell model surpassing the efficacy of single-target drugs.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Daniel Chavarria
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Gustavo Provensi
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, via G. Pieraccini 6, 50139 Florence, Italy
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. D'Annunzio" University of Chieti and Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Fernanda Borges
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
5
|
Hong Luo G, Zhao Xu T, Li X, Jiang W, Hong Duo Y, Zhong Tang B. Cellular organelle-targeted smart AIEgens in tumor detection, imaging and therapeutics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
6
|
Aldossary AM, Tawfik EA, Alomary MN, Alsudir SA, Alfahad AJ, Alshehri AA, Almughem FA, Mohammed RY, Alzaydi MM. Recent Advances in Mitochondrial Diseases: from Molecular Insights to Therapeutic Perspectives. Saudi Pharm J 2022; 30:1065-1078. [PMID: 36164575 PMCID: PMC9508646 DOI: 10.1016/j.jsps.2022.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/24/2022] [Indexed: 11/07/2022] Open
Abstract
Mitochondria are double-membraned cytoplasmic organelles that are responsible for the production of energy in eukaryotic cells. The process is completed through oxidative phosphorylation (OXPHOS) by the respiratory chain (RC) in mitochondria. Thousands of mitochondria may be present in each cell, depending on the function of that cell. Primary mitochondria disorder (PMD) is a clinically heterogeneous disease associated with germline mutations in mitochondrial DNA (mtDNA) and/or nuclear DNA (nDNA) genes, and impairs mitochondrial structure and function. Mitochondrial dysfunction can be detected in early childhood and may be severe, progressive and often multi-systemic, involving a wide range of organs. Understanding epigenetic factors and pathways mutations can help pave the way for developing an effective cure. However, the lack of information about the disease (including age of onset, symptoms, clinical phenotype, morbidity and mortality), the limits of current preclinical models and the wide range of phenotypic presentations hamper the development of effective medicines. Although new therapeutic approaches have been introduced with encouraging preclinical and clinical outcomes, there is no definitive cure for PMD. This review highlights recent advances, particularly in children, in terms of etiology, pathophysiology, clinical diagnosis, molecular pathways and epigenetic alterations. Current therapeutic approaches, future advances and proposed new therapeutic plans will also be discussed.
Collapse
|
7
|
A Nanosized Codelivery System Based on Intracellular Stimuli-Triggered Dual-Drug Release for Multilevel Chemotherapy Amplification in Drug-Resistant Breast Cancer. Pharmaceutics 2022; 14:pharmaceutics14020422. [PMID: 35214154 PMCID: PMC8878749 DOI: 10.3390/pharmaceutics14020422] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Lacking nano-systems for precisely codelivering the chemotherapeutics paclitaxel (PTX) and the natural P-glycoprotein (P-gp) inhibitor, quercetin (QU), into cancer cells and controlling their intracellular release extremely decreased the anticancer effects in multidrug resistant (MDR) tumors. To overcome this hurdle, we constructed hybrid polymeric nanoparticles (PNPs) which consist of redox-sensitive PTX/polyethyleneimine-tocopherol hydrogen succinate-dithioglycollic acid PNPs and pH-sensitive hyaluronic acid-QU conjugates. The obtained hybrid PNPs can be internalized into drug-resistant breast cancer cells by the hyaluronic acid/CD44-mediated endocytosis pathway and escape from the lysosome through the “proton sponge effect”. Under the trigger of intracellular stimuli, the nanoplatform used the pH/glutathione dual-sensitive disassembly to release QU and PTX. The PTX diffused into microtubules to induce tumor cell apoptosis, while QU promoted PTX retention by down-regulating P-gp expression. Moreover, tocopherol hydrogen succinate and QU disturbed mitochondrial functions by generating excessive reactive oxygen species, decreasing the mitochondrial membrane potential, and releasing cytochrome c into the cytosol which consequently achieved intracellular multilevel chemotherapy amplification in MDR cancers. Importantly, the PNPs substantially suppressed tumors growth with an average volume 2.54-fold lower than that of the control group in the MCF-7/ADR tumor-bearing nude mice model. These presented PNPs would provide a valuable reference for the coadministration of natural compounds and anticarcinogens for satisfactory combination therapy in MDR cancers.
Collapse
|
8
|
Zhang L, Li HM, Chen JL, She WY, Zhao Y, Liu Y, Jiang FL, Liu Y, Jiang P. Multifunctional Probes with High Utilization Rates: Self-Assembled Merocyanine Nanoparticles in Water as Acid-Base Indicators and Mitochondrion-Targeting Chemotherapeutic Agents. J Phys Chem Lett 2022; 13:1090-1098. [PMID: 35080405 DOI: 10.1021/acs.jpclett.1c04092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multifunctional probes with high utilization rates have great value in practical applications in various fields such as cancer diagnosis and therapy. Here we have synthesized two organic molecules based on merocyanine. They can self-assemble in water to form ∼1.5 nm nanoparticles. Both of them have good application potential in fluorescent anticounterfeit printing ink and pH detection. More importantly, they have excellent mitochondrial targeting ability, intracellular red light and near-infrared dual-channel imaging ability, strong antiphotobleaching ability, and in vivo and in vitro near-infrared imaging capabilities, showing superior chemotherapy capabilities and biocompatibility in the 4T1 tumor-bearing mouse model.
Collapse
Affiliation(s)
- Lu Zhang
- College of Chemistry and Molecular Sciences and School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China
| | - Hai-Mei Li
- Institute of Advanced Materials and Nanotechnology and Hubei Province Key Laboratory of Coal Conversion and New Type of Carbon Materials, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Ji-Lei Chen
- College of Chemistry and Molecular Sciences and School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China
| | - Wen-Yan She
- College of Chemistry and Molecular Sciences and School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China
| | - Yi Zhao
- College of Chemistry and Molecular Sciences and School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China
| | - Yang Liu
- College of Chemistry and Molecular Sciences and School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China
| | - Feng-Lei Jiang
- College of Chemistry and Molecular Sciences and School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China
| | - Yi Liu
- College of Chemistry and Molecular Sciences and School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry and Chemical Engineering and School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
- Institute of Advanced Materials and Nanotechnology and Hubei Province Key Laboratory of Coal Conversion and New Type of Carbon Materials, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Peng Jiang
- College of Chemistry and Molecular Sciences and School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
9
|
Meng Y, Yuan C, Du C, Jia K, Liu C, Wang KP, Chen S, Hu ZQ. A coumarin-based portable fluorescent probe for rapid turn-on detection of amine vapors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120152. [PMID: 34256238 DOI: 10.1016/j.saa.2021.120152] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/26/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Amines are widely used in many fields including agriculture, dyes, medicine and food processing. However, volatile amine vapors could initiate acute and serious damage to human bodies. Thus, highly efficient detection of volatile amine vapors has great importance for academic research as well as practical application. In this work, a turn-on type fluorescent sensor BZCO has been developed, which could be used to detect volatile amine vapors. The portable BZCO sensor can be easily prepared through immersing filter paper into its CH2Cl2 solution and then evaporating it to dryness. This paper-based amine vapor sensor exhibits high sensitivity with a relatively low detection limit at 3.82 ppm. It also has good selectivity for discriminating amine vapors from volatile organic solvents. The detection mechanism has been confirmed by UV-vis spectral analysis. The practical applications of this paper-based BZCO sensor, such as detection of food spoilage and fluorescent security ink, have been investigated. This work has developed a new fluorescent sensor BZCO, which has broad applications in various fields, including amine gas detection, security and anti-counterfeiting materials.
Collapse
Affiliation(s)
- Yuanyuan Meng
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Chunming Yuan
- College of Chemistry and Enviromental Science, YiLi Normal University, Yining 835000, PR China
| | - Chunhui Du
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ke Jia
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Chunfang Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Kun-Peng Wang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shaojin Chen
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Zhi-Qiang Hu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
10
|
Mitochondria-targeted nanoparticles (mitoNANO): An emerging therapeutic shortcut for cancer. BIOMATERIALS AND BIOSYSTEMS 2021; 3:100023. [PMID: 36824307 PMCID: PMC9934427 DOI: 10.1016/j.bbiosy.2021.100023] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
The early understanding of mitochondria posited that they were 'innocent organelles' solely devoted to energy production and utilisation. Intriguingly, recent findings have outlined in detail the 'modern-day' view that mitochondria are an important but underappreciated drug target. Mitochondria have been implicated in the pathophysiology of many human diseases, ranging from neurodegenerative disorders and cardiovascular diseases to infections and cancer. It is now clear that normal mitochondrial function involves the building blocks of a cell to generate lipids, proteins and nucleic acids thereby facilitating cell growth. On the other hand, mitochondrial dysfunction reprograms crucial cellular functions into pathological pathways, and is considered as an integral hallmark of cancer. Therefore, strategies to target mitochondria can provide a wealth of new therapeutic approaches in the fight against cancer, by overcoming a number of problems associated with conventional pharmaceutical drugs, including low solubility, poor bioavailability and non-selective biodistribution. The combination of nanoparticles with 'classical' chemotherapeutic drugs to create biocompatible, multifunctional mitochondria-targeted nanoplatforms has been recently studied. This approach is now rapidly expanding for targeted drug delivery systems, and for hybrid nanostructures that can be activated with light (photodynamic and/or photothermal therapy). The selective delivery of nanoparticles to mitochondria is an elegant shortcut to more selective, targeted, and safer cancer treatment. We propose that the use of nanoparticles to target mitochondria be termed "mitoNANO". The present minireview sheds light on the design and application of mitoNANO as advanced cancer therapeutics, that may overcome drug resistance and show fewer side effects.
Collapse
|
11
|
Song G, Heng H, Wang J, Liu R, Huang Y, Lu H, Du K, Feng F, Wang S. Photoactivated In Situ Generation of Near Infrared Cyanines for Spatiotemporally Controlled Fluorescence Imaging in Living Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Gang Song
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Hao Heng
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Jiaqi Wang
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Ronghua Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Huan Lu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Ke Du
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Fude Feng
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
12
|
Song G, Heng H, Wang J, Liu R, Huang Y, Lu H, Du K, Feng F, Wang S. Photoactivated In Situ Generation of Near Infrared Cyanines for Spatiotemporally Controlled Fluorescence Imaging in Living Cells. Angew Chem Int Ed Engl 2021; 60:16889-16893. [PMID: 34050693 DOI: 10.1002/anie.202103706] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Indexed: 11/07/2022]
Abstract
Photoactivated trimerization of 2,3,3-trimethyl-3H-indole derivatives created near infrared fluorophore Cy5. The synthetic method is air-tolerant, photosensitizer free, metal free, and condensation agent free. Living cells make Cy5 on a time scale of minutes under white light irradiation at a low power intensity, with the monomer as the only exogenous agent. The new method is promising to find applications in cell studies for in situ spatiotemporally controlled fluorescence imaging in living cells.
Collapse
Affiliation(s)
- Gang Song
- Department of Polymer Science & Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hao Heng
- Department of Polymer Science & Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Jiaqi Wang
- Department of Polymer Science & Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Ronghua Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huan Lu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ke Du
- Department of Polymer Science & Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Fude Feng
- Department of Polymer Science & Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
13
|
S Allemailem K, Almatroudi A, Alsahli MA, Aljaghwani A, M El-Kady A, Rahmani AH, Khan AA. Novel Strategies for Disrupting Cancer-Cell Functions with Mitochondria-Targeted Antitumor Drug-Loaded Nanoformulations. Int J Nanomedicine 2021; 16:3907-3936. [PMID: 34135584 PMCID: PMC8200140 DOI: 10.2147/ijn.s303832] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/24/2021] [Indexed: 12/16/2022] Open
Abstract
Any variation in normal cellular function results in mitochondrial dysregulation that occurs in several diseases, including cancer. Such processes as oxidative stress, metabolism, signaling, and biogenesis play significant roles in cancer initiation and progression. Due to their central role in cellular metabolism, mitochondria are favorable therapeutic targets for the prevention and treatment of conditions like neurodegenerative diseases, diabetes, and cancer. Subcellular mitochondria-specific theranostic nanoformulations for simultaneous targeting, drug delivery, and imaging of these organelles are of immense interest in cancer therapy. It is a challenging task to cross multiple barriers to target mitochondria in diseased cells. To overcome these multiple barriers, several mitochondriotropic nanoformulations have been engineered for the transportation of mitochondria-specific drugs. These nanoformulations include liposomes, dendrimers, carbon nanotubes, polymeric nanoparticles (NPs), and inorganic NPs. These nanoformulations are made mitochondriotropic by conjugating them with moieties like dequalinium, Mito-Porter, triphenylphosphonium, and Mitochondria-penetrating peptides. Most of these nanoformulations are meticulously tailored to control their size, charge, shape, mitochondriotropic drug loading, and specific cell-membrane interactions. Recently, some novel mitochondria-selective antitumor compounds known as mitocans have shown high toxicity against cancer cells. These selective compounds form vicious oxidative stress and reactive oxygen species cycles within cancer cells and ultimately push them to cell death. Nanoformulations approved by the FDA and EMA for clinical applications in cancer patients include Doxil, NK105, and Abraxane. The novel use of these NPs still faces tremendous challenges and an immense amount of research is needed to understand the proper mechanisms of cancer progression and control by these NPs. Here in this review, we summarize current advancements and novel strategies of delivering different anticancer therapeutic agents to mitochondria with the help of various nanoformulations.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Aseel Aljaghwani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Asmaa M El-Kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
14
|
Yerer MB, Dayan S, Han MI, Sharma A, Tuli HS, Sak K. Nanoformulations of Coumarins and the Hybrid Molecules of Coumarins with Potential Anticancer Effects. Anticancer Agents Med Chem 2021; 20:1797-1816. [PMID: 32156246 DOI: 10.2174/1871520620666200310094646] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/04/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022]
Abstract
Coumarins are the secondary metabolites of some plants, fungi, and bacteria. Coumarins and the hybrid molecules of coumarins are the compounds which have been widely studied for their potential anticancer effects. They belong to benzopyrone chemical class, more precisely benzo-α-pyrones, where benzene ring is fused to pyrone ring. In nature, coumarins are found in higher plants like Rutaceae and Umbelliferae and some essential oils like cinnamon bark oil, cassia leaf oil and lavender oil are also rich in coumarins. The six main classes of coumarins are furanocoumarins, dihydrofuranocoumarins, pyrano coumarins, pyrone substituted coumarins, phenylcoumarins and bicoumarins. As well as their wide range of biological activities, coumarins and the hybrid molecules of coumarins are proven to have an important role in anticancer drug development due to the fact that many of its derivatives have shown an anticancer activity on various cell lines. Osthol, imperatorin, esculetin, scopoletin, umbelliprenin, angelicine, bergamottin, limettin, metoxhalen, aurapten and isopimpinellin are some of these coumarins. This review summarizes the anticancer effects of coumarins and their hybrid molecules including the novel pharmaceutical formulations adding further information on the topic for the last ten years and basically focusing on the structureactivity relationship of these compounds in cancer.
Collapse
Affiliation(s)
- Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey.,Drug Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Serkan Dayan
- Drug Application and Research Center, Erciyes University, Kayseri, Turkey
| | - M Ihsan Han
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ajay Sharma
- Department of Chemistry, Career Point University, Tikker-kharwarian, Hamirpur, Himachal Pradesh 176041, India
| | - Hardeep S Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana-133207, India
| | | |
Collapse
|
15
|
Pei D, Liu B, Zhao S, Shu X, Nie J, Chang Y. Controllable Release Mode Based on ATP Hydrolysis-Fueled Supra-Amphiphile Assembly. ACS APPLIED BIO MATERIALS 2021; 4:3532-3538. [DOI: 10.1021/acsabm.1c00060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Di Pei
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Bo Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shuai Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xin Shu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jun Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yincheng Chang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
16
|
Kamimura A, Umemoto H, Kawamoto T, Honda T. Development of Water Solubility of 2-Phenylsulfanylhydroquinone Dimer Dye. ACS OMEGA 2021; 6:9254-9262. [PMID: 33842794 PMCID: PMC8028172 DOI: 10.1021/acsomega.1c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
With the aim of developing a new fluorescence dye with enhanced photophysical properties, this study describes the modification of the 2-phenylsulfanylhydroquinone dimer to realize a new bioimaging molecule. The characteristics of the dimer were advanced by introducing tetraethylene glycol side chains to provide sufficient water solubility and a tether consisting of an N-hydroxysuccinimide-terminated C6-carbon chain to attach bioactive molecules. Two derivatives containing two or three tetraethylene glycol side chains were designed and prepared, and the latter showed sufficient water solubility for biochemical applications. Both compounds exhibited similar photophysical properties and blue fluorescence under UV light irradiation. The dye containing three tetraethylene glycol units reacted with bovine serum albumin in water to give fluorescent derivatives.
Collapse
Affiliation(s)
- Akio Kamimura
- Department
of Applied Chemistry, Yamaguchi University, Ube 755-8611, Japan
| | - Haruka Umemoto
- Department
of Applied Chemistry, Yamaguchi University, Ube 755-8611, Japan
| | - Takuji Kawamoto
- Department
of Applied Chemistry, Yamaguchi University, Ube 755-8611, Japan
| | - Takeshi Honda
- Department
of Pharmacology, School of Medicine, Yamaguchi
University, Ube 755-8505, Japan
| |
Collapse
|
17
|
Yan Q, Mao L, Feng B, Zhang L, Wu Y, Huang W. Reversible Patterning Cross-Linked, Humidity-Responsive Polymer Films with Programmatically and Accurately Controlled Deformation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7608-7616. [PMID: 33555181 DOI: 10.1021/acsami.0c22023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A series of novel humidity-responsive and photosensitive polymer films (PCA-PAA-PEG) are prepared. These films can be patterning cross-linked by the photodimerization of coumarin pendant groups. The humidity-induced deformation can be well controlled by the pattern because of the different modulus and hydrophilicity between cross-linked and un-cross-linked segments. In addition, the pattern can be erased and the deformation direction can be changed programmatically by the de-cross-linking-re-cross-linking approach due to the reversible photodimerization of coumarin groups. The cross-linking degree also affects the humidity responsiveness of the film. The deformation of the gradient patterning cross-linked film can be more accurately controlled. Moreover, the length and width ratio (L/Ws/Wh) of the un-cross-linked segment to the cross-linked segment affects the deformation of the films as well. When L/Ws/Wh is 5/2/1 or 5/3/1, the deformation is controllable, and when L/Ws/Wh is 5/1/1 or 5/4/1, the deformation is random at the initial stage, but the whole film will bend along the short axis in the end.
Collapse
Affiliation(s)
- Qiwen Yan
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Lina Mao
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Bang Feng
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Lidong Zhang
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Yiqian Wu
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Wei Huang
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| |
Collapse
|
18
|
Novel strategies of third level (Organelle-specific) drug targeting: An innovative approach of modern therapeutics. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102315] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Mitocans Revisited: Mitochondrial Targeting as Efficient Anti-Cancer Therapy. Int J Mol Sci 2020; 21:ijms21217941. [PMID: 33114695 PMCID: PMC7663685 DOI: 10.3390/ijms21217941] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are essential cellular organelles, controlling multiple signalling pathways critical for cell survival and cell death. Increasing evidence suggests that mitochondrial metabolism and functions are indispensable in tumorigenesis and cancer progression, rendering mitochondria and mitochondrial functions as plausible targets for anti-cancer therapeutics. In this review, we summarised the major strategies of selective targeting of mitochondria and their functions to combat cancer, including targeting mitochondrial metabolism, the electron transport chain and tricarboxylic acid cycle, mitochondrial redox signalling pathways, and ROS homeostasis. We highlight that delivering anti-cancer drugs into mitochondria exhibits enormous potential for future cancer therapeutic strategies, with a great advantage of potentially overcoming drug resistance. Mitocans, exemplified by mitochondrially targeted vitamin E succinate and tamoxifen (MitoTam), selectively target cancer cell mitochondria and efficiently kill multiple types of cancer cells by disrupting mitochondrial function, with MitoTam currently undergoing a clinical trial.
Collapse
|
20
|
Hatai J, Hirschhäuser C, Schmuck C, Niemeyer J. A Metallosupramolecular Coordination Polymer for the 'Turn-on' Fluorescence Detection of Hydrogen Sulfide. ChemistryOpen 2020; 9:786-792. [PMID: 32760642 PMCID: PMC7391242 DOI: 10.1002/open.202000163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
A coumarin based probe for the efficient detection of hydrogen sulfide in aqueous medium is reported. The investigated coumarine-based derivative forms spherical nanoparticles in aqueous media. In presence of Pd2+, a metallosupramolecular coordination polymer is formed, which is accompanied by quenching of the coumarin emission at 390 nm. Its Pd2+ complex could be used as a probe for chemoselective detection of monohydrogensulfide (HS-). Presence of HS- leads to a'turn-on' fluorescence signal, resulting from decomplexation of Pd2+ from the metallosupramolecular probe. The probe was successfully applied for qualitative and quantitative detection of HS- in different sources of water directly collected from sea, river, tap and laboratory drain water, as well as in growth media for aquatic species.
Collapse
Affiliation(s)
- Joydev Hatai
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg- Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745141EssenGermany
| | - Christoph Hirschhäuser
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg- Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745141EssenGermany
| | - Carsten Schmuck
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg- Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745141EssenGermany
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg- Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745141EssenGermany
| |
Collapse
|
21
|
Yang X, Jiang X, Yang H, Bian L, Chang C, Zhang L. Biocompatible cellulose-based supramolecular nanoparticles driven by host–guest interactions for drug delivery. Carbohydr Polym 2020; 237:116114. [DOI: 10.1016/j.carbpol.2020.116114] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 11/29/2022]
|
22
|
Kumar A, Ahmad A, Vyawahare A, Khan R. Membrane Trafficking and Subcellular Drug Targeting Pathways. Front Pharmacol 2020; 11:629. [PMID: 32536862 PMCID: PMC7267071 DOI: 10.3389/fphar.2020.00629] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/21/2020] [Indexed: 12/29/2022] Open
Abstract
The movement of micro and macro molecules into and within a cell significantly governs several of their pharmacokinetic and pharmacodynamic parameters, thus regulating the cellular response to exogenous and endogenous stimuli. Trafficking of various pharmacological agents and other bioactive molecules throughout and within the cell is necessary for the fidelity of the cells but has been poorly investigated. Novel strategies against cancer and microbial infections need a deeper understanding of membrane as well as subcellular trafficking pathways and essentially regulate several aspects of the initiation and spread of anti-microbial and anti-cancer drug resistance. Furthermore, in order to avail the maximum possible bioavailability and therapeutic efficacy and to restrict the unwanted toxicity of pharmacological bioactives, these sometimes need to be functionalized with targeting ligands to regulate the subcellular trafficking and to enhance the localization. In the recent past the scenario drug targeting has primarily focused on targeting tissue components and cell vicinities, however, it is the membranous and subcellular trafficking system that directs the molecules to plausible locations. The effectiveness of the delivery platforms largely depends on their physicochemical nature, intracellular barriers, and biodistribution of the drugs, pharmacokinetics and pharmacodynamic paradigms. Most subcellular organelles possess some peculiar characteristics by which membranous and subcellular targeting can be manipulated, such as negative transmembrane potential in mitochondria, intraluminal delta pH in a lysosome, and many others. Many specialized methods, which positively promote the subcellular targeting and restrict the off-targeting of the bioactive molecules, exist. Recent advancements in designing the carrier molecules enable the handling of membrane trafficking to facilitate the delivery of active compounds to subcellular localizations. This review aims to cover membrane trafficking pathways which promote the delivery of the active molecule in to the subcellular locations, the associated pathways of the subcellular drug delivery system, and the role of the carrier system in drug delivery techniques.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Mohali, India
| | - Anas Ahmad
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Mohali, India
| | - Akshay Vyawahare
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Mohali, India
| | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Mohali, India
| |
Collapse
|
23
|
Tian G, Zhang Z, Li H, Li D, Wang X, Qin C. Design, Synthesis and Application in Analytical Chemistry of Photo-Sensitive Probes Based on Coumarin. Crit Rev Anal Chem 2020; 51:565-581. [DOI: 10.1080/10408347.2020.1753163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Guang Tian
- Department of Applied Chemistry, Shanxi Key Laboratory of Polymer Science & Technology, OME Key Laboratory of Supernomal Material Physics & Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, P. R. China
| | - Zixin Zhang
- Department of Applied Chemistry, Shanxi Key Laboratory of Polymer Science & Technology, OME Key Laboratory of Supernomal Material Physics & Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, P. R. China
| | - Haidi Li
- Department of Applied Chemistry, Shanxi Key Laboratory of Polymer Science & Technology, OME Key Laboratory of Supernomal Material Physics & Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, P. R. China
| | - Dongsheng Li
- Department of Applied Chemistry, Shanxi Key Laboratory of Polymer Science & Technology, OME Key Laboratory of Supernomal Material Physics & Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, P. R. China
| | - Xinrui Wang
- Department of Applied Chemistry, Shanxi Key Laboratory of Polymer Science & Technology, OME Key Laboratory of Supernomal Material Physics & Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, P. R. China
| | - Chuanguang Qin
- Department of Applied Chemistry, Shanxi Key Laboratory of Polymer Science & Technology, OME Key Laboratory of Supernomal Material Physics & Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, P. R. China
| |
Collapse
|
24
|
Hatai J, Hirschhäuser C, Niemeyer J, Schmuck C. Multi-Stimuli-Responsive Supramolecular Polymers Based on Noncovalent and Dynamic Covalent Bonds. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2107-2115. [PMID: 31859472 DOI: 10.1021/acsami.9b19279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Several modes of supramolecular assembly relying on noncovalent as well as dynamic covalent interactions were combined in a single molecule. The supramolecular self-assembly of 1 can be controlled by three stimuli, namely light, pH, and addition of metal ions, in both organic and aqueous media. The multi-stimuli-responsive nature of 1 was used successfully for the controlled encapsulation and on-demand release of hydrophobic molecules, such as dyes and drugs.
Collapse
Affiliation(s)
- Joydev Hatai
- Institute of Organic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen , Universitätsstrasse 7 , 45141 Essen , Germany
| | - Christoph Hirschhäuser
- Institute of Organic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen , Universitätsstrasse 7 , 45141 Essen , Germany
| | - Jochen Niemeyer
- Institute of Organic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen , Universitätsstrasse 7 , 45141 Essen , Germany
| | - Carsten Schmuck
- Institute of Organic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen , Universitätsstrasse 7 , 45141 Essen , Germany
| |
Collapse
|
25
|
Wang Z, Wang C, Gan Q, Cao Y, Yuan H, Hua D. Donor-Acceptor-Type Conjugated Polymer-Based Multicolored Drug Carriers with Tunable Aggregation-Induced Emission Behavior for Self-Illuminating Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41853-41861. [PMID: 31668068 DOI: 10.1021/acsami.9b11237] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nowadays, multicolored drug carriers have exhibited high significance in designing self-illuminating drug delivery systems to adapt different experimental conditions. In this study, we developed an efficient strategy for self-illuminating antitumor therapy using multicolored aggregation-induced emission (AIE)-active drug carriers by tuning electron donor moieties in donor-acceptor (D-A) structures. Three amphipathic conjugated polymers, P1 to P3, were successfully synthesized using an AIE-active tetraphenylethylene (TPE) moiety and donor-acceptor (D-A)-type electronic structure. Interestingly, the fluorescence behavior of P1 to P3 could be tuned between aggregation-caused quenching and AIE by changing the electron donor moiety. Their fluorescence color in aqueous solution could be easily adjusted from yellow to red by choosing stronger electron donors. After the anticancer drug paclitaxel was loaded, two AIE-active polymers, P1 and P2, could be engineered into polymer dots (Pdots) and applied in self-illuminating cancer therapy. The Pdots could not only reveal their location by a yellow- or red-colored fluorescence signal but also exhibit almost two times in vivo antitumor efficacy, high biocompatibility, and obvious tumor-targeting behavior compared to the commercially available anticancer drug Taxol. Furthermore, P2dots exhibited similar in vivo antitumor efficacy and biocompatibility compared to nonemission Abraxane, a commercially available drug delivery system. This work demonstrates the significant application of a D-A-type structure in the design of self-illuminating drug delivery systems.
Collapse
Affiliation(s)
- Ziyu Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Cheng Wang
- College of Pharmaceutical Science , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , P. R. China
- School of Food Science and Pharmaceutical Engineering , Nanjing Normal University , No. 1 Wenyuan Road , Nanjing 210046 , P. R. China
| | - Quan Gan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Yu Cao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Hong Yuan
- College of Pharmaceutical Science , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , P. R. China
| | - Daoben Hua
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| |
Collapse
|
26
|
Kamimura A, Sakamoto S, Umemoto H, Kawamoto T, Sumimoto M. 2-Sulfanylhydroquinone Dimer as a Switchable Fluorescent Dye. Chemistry 2019; 25:14081-14088. [PMID: 31418938 DOI: 10.1002/chem.201903436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Indexed: 02/05/2023]
Abstract
A new dye was developed, the photoluminescence properties of which are controlled by a chemical reaction. The fluorescence properties of 2-sulfanylhydroquinone dimers depend on the number of hydroxyl groups that are acylated. Unprotected or monoacylated 2-sulfanylhydroquinone dimers displayed good fluorescence properties, whereas diacylated and tetraacylated 2-sulfanylhydroquinone dimers showed dramatically decreased fluorescence. A monomesylated derivative was devised, which shows good fluorescence characteristics as a switching fluorescence dye through a chemical reaction.
Collapse
Affiliation(s)
- Akio Kamimura
- Department Applied Chemistry, Yamaguchi University, Ube, 755-8611, Japan
| | - Sanshiro Sakamoto
- Department Applied Chemistry, Yamaguchi University, Ube, 755-8611, Japan
| | - Haruka Umemoto
- Department Applied Chemistry, Yamaguchi University, Ube, 755-8611, Japan
| | - Takuji Kawamoto
- Department Applied Chemistry, Yamaguchi University, Ube, 755-8611, Japan
| | - Michinori Sumimoto
- Department of Environmental Chemistry, Yamaguchi University, Ube, 755-8611, Japan
| |
Collapse
|
27
|
Yang C, Zhang H, Wang Z, Wu X, Jin Y. Mitochondria-targeted tri-triphenylphosphonium substituted meso-tetra(4-carboxyphenyl)porphyrin(TCPP) by conjugation with folic acid and graphene oxide for improved photodynamic therapy. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mitochondria are extensively researched as target sites to maximize photodynamic therapy (PDT) effects because they play crucial roles in metabolism. Here, a mitochondria targeting PDT agent, tri-triphenylphosphonium substituted meso-tetra(4-carboxyphenyl)porphyrin (TCPP-TPP) is prepared for the first time. Considering that many porphyrin derivatives are quick to aggregate, thereby reducing the PDT effect, our photosensitizer (PS) was loaded on a folic acid (FA) decorated graphene oxide (GO) nanosystem, called GF@TCPP-TPP, by electrostatic and [Formula: see text]–[Formula: see text] stacking or hydrophobic cooperative interactions, to improve the transportation of photosensitizers and enhance the therapeutic effect. Herein, we have performed a detailed study of photodynamic activity of GF@TCPP-TPP nanocomposites and evaluated their potential as a photosensitizer in PDT. An MTT assay showed that GF@TCPP-TPP inhibited HeLa cells in a concentration-dependent manner under light (650 ± 10 nm, 5 mW [Formula: see text] and 10 min), and presented remarkably improved PDT efficiency (IC[Formula: see text] g [Formula: see text] mL[Formula: see text] of equivalent TCPP-TPP) over free TCPP (IC[Formula: see text] after irradiation. Furthermore, our research indicated that Type I mechanisms (the generation of hydroxyl radicals) play a predominant role in the GF@TCPP-TPP induced PDT process. This coincides with the low singlet oxygen (1O[Formula: see text] quantum yield ([Formula: see text] [Formula: see text] 33.6%) in a DMF solution. Moreover, cell morphological changes after GF@TCPP-TPP PDT further demonstrated that GF@TCPP-TPP could induce damage and apoptotic cell death efficiently. In particular, precise delivery of photosensitizers to mitochondria was proven by organelle localization.
Collapse
Affiliation(s)
- Chen Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Hongyue Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Zhiqiang Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Xiaodan Wu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Yingxue Jin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| |
Collapse
|
28
|
Biasutto L, Mattarei A, La Spina M, Azzolini M, Parrasia S, Szabò I, Zoratti M. Strategies to target bioactive molecules to subcellular compartments. Focus on natural compounds. Eur J Med Chem 2019; 181:111557. [PMID: 31374419 DOI: 10.1016/j.ejmech.2019.07.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023]
Abstract
Many potential pharmacological targets are present in multiple subcellular compartments and have different pathophysiological roles depending on location. In these cases, selective targeting of a drug to the relevant subcellular domain(s) may help to sharpen its impact by providing topological specificity, thus limiting side effects, and to concentrate the compound where needed, thus increasing its effectiveness. We review here the state of the art in precision subcellular delivery. The major approaches confer "homing" properties to the active principle via permanent or reversible (in pro-drug fashion) modifications, or through the use of special-design nanoparticles or liposomes to ferry a drug(s) cargo to its desired destination. An assortment of peptides, substituents with delocalized positive charges, custom-blended lipid mixtures, pH- or enzyme-sensitive groups provide the main tools of the trade. Mitochondria, lysosomes and the cell membrane may be mentioned as the fronts on which the most significant advances have been made. Most of the examples presented here have to do with targeting natural compounds - in particular polyphenols, known as pleiotropic agents - to one or the other subcellular compartment.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy.
| | - Andrea Mattarei
- Dept. Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Martina La Spina
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Michele Azzolini
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Sofia Parrasia
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biology, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| |
Collapse
|
29
|
Xiao L, Ma N, He H, Li J, Cheng S, Yang Q, Hou Y, Song F, Jin H, Su X, Dong J, Zuo R, Song X, Duan W, Hou Y. Development of a novel drug targeting delivery system for cervical cancer therapy. NANOTECHNOLOGY 2019; 30:075604. [PMID: 30523991 DOI: 10.1088/1361-6528/aaf3f8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
'Targeting peptides' have demonstrated their value in diagnostic imaging and therapy and novel peptide probes specific to cervical cancer were developed. In the M13KE phage dodecapeptide (12-mer) peptide library, the phage clone S7 showed the best binding to the cancer cells as confirmed by immunofluorescence and flow cytometry assays, and was selected for continued studies. Its binding peptide, CSP3, was synthesized from the sequence of S7's 12-mer at the N-terminus of the minor coat protein pIII of this M13KE phage vector. The peptide's binding was analyzed by the same assays used for S7. It was also assessed using competitive inhibition and binding to a tissue chip. The results demonstrated that the CSP3 peptide bound to cervical carcinoma cells with high sensitivity and specificity. The positive results indicated that the peptide CSP3, conjugated with nanomaterials and chemotherapeutics, may be developed as a targeting vehicle for therapeutic drug delivery against cervical cancer, especially cervical cancer with multiple drug resistance. For this aim, we prepared a CSP3 conjugated liposome drug delivery system containing doxorubicin (DOX) and microRNA101 (miR101) expression plasmids (CSP3-Lipo-DOX-miR101), and the primary result showed that the system demonstrated significantly enhanced cytotoxicity to SiHa cells and DOX resistant SiHa cells, SiHa/ADR. Our results showed that CSP3 is a cervical cancer targeting 12aa peptide with high specificity and sensitivity, and the CSP3 conjugated drug delivery system, CSP3-Lipo-DOX-miR101 has promising potential for development as an efficient drug system for the therapy of cervical cancer.
Collapse
Affiliation(s)
- Li Xiao
- Laboratory of Tumor Molecular and Cellular Biology, College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, Shaanxi 710119, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang C, Wang Z, Zhao X, Yu F, Quan Y, Cheng Y, Yuan H. DOX Loaded Aggregation-induced Emission Active Polymeric Nanoparticles as a Fluorescence Resonance Energy Transfer Traceable Drug Delivery System for Self-indicating Cancer Therapy. Acta Biomater 2019; 85:218-228. [PMID: 30557697 DOI: 10.1016/j.actbio.2018.12.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/19/2022]
Abstract
In this study, an AIE-active polymer (FTP) was successfully prepared and employed to load anti-cancer drug doxorubicin (DOX) for self-indicating cancer therapy via dual FRET process. Our results demonstrated that the FTP polymer could self-assemble into nanoparticles (NPs) in aqueous solutions to give strong fluorescence emission via intramolecular FRET process. The DOX loaded FTP NPs (drug loading content: 21.77%) were homogeneous particles with size around 50 nm and neutral surface charge, which showed preferable colloidal stability, hemolysis and selective drug release with comparable in vivo antitumor effects to DOX·HCl. In particular, the FRET process between FTP (donor) and DOX (acceptor) could serve as indicator for monitoring the in vitro and in vivo drug release profile, which might be a promising platform to realize real-time monitoring of drug localization and release during the delivery process. STATEMENT OF SIGNIFICANCE: 1. An amphiphilic polymer containing aggregation-induced emission segments and polyethylene glycol (PEG) chains (FTP) was firstly synthesized, which is capable of exerting strong fluorescence via intramolecular Förster resonance energy transfer (FRET) in the aggregate state. 2. The FTP polymer could self-assembled into homogeneous nanoparticles in aqueous environment with decent DOX loading capacity. 3. The DOX loaded FTP nanoparticles can afford FRET-traceable monitoring of the drug release both in vitro and in vivo.
Collapse
Affiliation(s)
- Cheng Wang
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Ziyu Wang
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Xin Zhao
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Fangying Yu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Yiwu Quan
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Yixiang Cheng
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China.
| |
Collapse
|
31
|
Abstract
BACKGROUND Interest in subcellular organelle-targeting theranostics is substantially increasing due to the significance of subcellular organelle-targeting drug delivery for maximizing therapeutic effects and minimizing side effects, as well as the significance of theranostics for delivering therapeutics at the correct locations and doses for diseases throughout diagnosis. Among organelles, mitochondria have received substantial attention due to their significant controlling functions in cells. MAIN BODY With the necessity of subcellular organelle-targeting drug delivery and theranostics, examples of mitochondria-targeting moieties and types of mitochondria-targeting theranostics were introduced. In addition, the current studies of mitochondria-targeting theranostic chemicals, chemical conjugates, and nanosystems were summarized. CONCLUSION With the current issues of mitochondria-targeting theranostic chemicals, chemical conjugates, and nanosystems, their potentials and alternatives are discussed.
Collapse
Affiliation(s)
- Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662 Republic of Korea
| |
Collapse
|
32
|
Boucard J, Linot C, Blondy T, Nedellec S, Hulin P, Blanquart C, Lartigue L, Ishow E. Small Molecule-Based Fluorescent Organic Nanoassemblies with Strong Hydrogen Bonding Networks for Fine Tuning and Monitoring Drug Delivery in Cancer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802307. [PMID: 30146711 DOI: 10.1002/smll.201802307] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/08/2018] [Indexed: 06/08/2023]
Abstract
Bright supramolecular fluorescent organic nanoassemblies (FONs), based on strongly polar red-emissive benzothiadiazole fluorophores containing acidic units, are fabricated to serve as theranostic tools with large colloidal stability in the absence of a polymer or surfactant. High architectural cohesion is ensured by the multiple hydrogen-bonding networks, reinforced by the dipolar and hydrophobic interactions developed between the dyes. Such interactions are harnessed to ensure high payload encapsulation and efficient trapping of hydrophobic and hydrogen-bonding drugs like doxorubicin, as shown by steady state and time-resolved measurements. Fine tuning of the drug release in cancer cells is achieved by adjusting the structure and combination of the fluorophore acidic units. Notably delayed drug delivery is observed by confocal microscopy compared to the entrance of hydrosoluble doxorubicin, demonstrating the absence of undesirable burst release outside the cells by using FONs. Since FON-constituting fluorophores exhibit a large emission shift from red to green when dissociating in contact with the lipid cellular content, drug delivery could advantageously be followed by dual-color spectral detection, independently of the drug staining potentiality.
Collapse
Affiliation(s)
- Joanna Boucard
- CEISAM-UMR CNRS 6230, Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France
| | - Camille Linot
- CRCINA INSERM, INSERM U1232, Université de Nantes, Université d'Angers, 8 quai Moncousu, 44007, Nantes, France
| | - Thibaut Blondy
- CRCINA INSERM, INSERM U1232, Université de Nantes, Université d'Angers, 8 quai Moncousu, 44007, Nantes, France
| | - Steven Nedellec
- INSERM Nantes UMS 016-UMS CNRS 3556, 8 quai Moncousu, 44007, Nantes, France
| | - Philippe Hulin
- INSERM Nantes UMS 016-UMS CNRS 3556, 8 quai Moncousu, 44007, Nantes, France
| | - Christophe Blanquart
- CRCINA INSERM, INSERM U1232, Université de Nantes, Université d'Angers, 8 quai Moncousu, 44007, Nantes, France
| | - Lénaïc Lartigue
- CEISAM-UMR CNRS 6230, Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France
| | - Eléna Ishow
- CEISAM-UMR CNRS 6230, Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France
| |
Collapse
|
33
|
Ahn J, Lee B, Choi Y, Jin H, Lim NY, Park J, Kim JH, Bae J, Jung JH. Non-peptidic guanidinium-functionalized silica nanoparticles as selective mitochondria-targeting drug nanocarriers. J Mater Chem B 2018; 6:5698-5707. [PMID: 32254976 DOI: 10.1039/c8tb01358f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report on the design and fabrication of a Fe3O4 core-mesoporous silica nanoparticle shell (Fe3O4@MSNs)-based mitochondria-targeting drug nanocarrier. A guanidinium derivative (GA) was conjugated onto the Fe3O4@MSNs as the mitochondria-targeting ligand. The fabrication of the Fe3O4@MSNs and their functionalization with GA were carried out by the sol-gel polymerization of alkoxysilane groups. Doxorubicin (DOX), an anti-cancer drug, was loaded into the pores of a GA-attached Fe3O4@MSNs due to both its anti-cancer properties and to allow for the fluorescent visualization of the nanocarriers. The selective and efficient mitochondria-targeting ability of a DOX-loaded GA-Fe3O4@MSNs (DOX/GA-Fe3O4@MSNs) was demonstrated by a co-localization study, transmission electron microscopy, and a fluorometric analysis on isolated mitochondria. It was found that the DOX/GA-Fe3O4@MSNs selectively accumulated into mitochondria within only five minutes; to the best of our knowledge, this is the shortest accumulation time reported for mitochondria targeting systems. Moreover, 2.6 times higher amount of DOX was accumulated in mitochondria by DOX/GA-Fe3O4@MSNs than by DOX/TPP-Fe3O4@MSNs. A cell viability assay indicated that the DOX/GA-Fe3O4@MSNs have high cytotoxicity to cancer cells, whereas the GA-Fe3O4@MSNs without DOX are non-cytotoxic; this indicates that the DOX/GA-Fe3O4@MSNs have great potential for use as biocompatible and effective mitochondria-targeting nanocarriers for cancer therapy.
Collapse
Affiliation(s)
- Junho Ahn
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University, Jinju, 52828, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Battogtokh G, Cho YY, Lee JY, Lee HS, Kang HC. Mitochondrial-Targeting Anticancer Agent Conjugates and Nanocarrier Systems for Cancer Treatment. Front Pharmacol 2018; 9:922. [PMID: 30174604 PMCID: PMC6107715 DOI: 10.3389/fphar.2018.00922] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/26/2018] [Indexed: 12/30/2022] Open
Abstract
The mitochondrion is an important intracellular organelle for drug targeting due to its key roles and functions in cellular proliferation and death. In the last few decades, several studies have revealed mitochondrial functions, attracting the focus of many researchers to work in this field over nuclear targeting. Mitochondrial targeting was initiated in 1995 with a triphenylphosphonium-thiobutyl conjugate as an antioxidant agent. The major driving force for mitochondrial targeting in cancer cells is the higher mitochondrial membrane potential compared with that of the cytosol, which allows some molecules to selectively target mitochondria. In this review, we discuss mitochondria-targeting ligand-conjugated anticancer agents and their in vitro and in vivo behaviors. In addition, we describe a mitochondria-targeting nanocarrier system for anticancer drug delivery. As previously reported, several agents have been known to have mitochondrial targeting potential; however, they are not sufficient for direct application for cancer therapy. Thus, many studies have focused on direct conjugation of targeting ligands to therapeutic agents to improve their efficacy. There are many variables for optimal mitochondria-targeted agent development, such as choosing a correct targeting ligand and linker. However, using the nanocarrier system could solve some issues related to solubility and selectivity. Thus, this review focuses on mitochondria-targeting drug conjugates and mitochondria-targeted nanocarrier systems for anticancer agent delivery.
Collapse
Affiliation(s)
| | | | | | | | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, South Korea
| |
Collapse
|