1
|
Natongchai W, Crespy D, D'Elia V. CO 2 fixation: cycloaddition of CO 2 to epoxides using practical metal-free recyclable catalysts. Chem Commun (Camb) 2025; 61:419-440. [PMID: 39635881 DOI: 10.1039/d4cc05291a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The conversion of CO2 into valuable chemicals is a crucial field of research. Cyclic organic carbonates have attracted great interest because they can be prepared under mild conditions and because of their structural versatility which enables a large variety of applications. Therefore, there is a need for potent and yet practical catalysts for the cycloaddition of CO2 to cyclic carbonates that are able to combine availability, low cost and an adequate performance. We review here several recyclable catalytic systems that are readily available, easy to prepare, and inexpensive with an eye to the future development of more efficient practical catalysts through the provided guidelines.
Collapse
Affiliation(s)
- Wuttichai Natongchai
- Department of Materials Science and Engineering, VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Vidyasirimedhi Institute of Science and Technology, (VISTEC), Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Wangchan, Rayong 21210, Thailand
| | - Valerio D'Elia
- Department of Materials Science and Engineering, VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Vidyasirimedhi Institute of Science and Technology, (VISTEC), Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
2
|
Nasiriani T, Nigjeh NA, Torabi S, Shaabani A. MIL-88-NH 2(Fe) conjugated pectin through a post-modification Ugi four-component reaction: A robust bio-based catalyst for the synthesis of cyclic carbonate via CO 2 fixation reaction. Carbohydr Polym 2024; 342:122418. [PMID: 39048205 DOI: 10.1016/j.carbpol.2024.122418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
The functionalization of materials via multicomponent reactions (MCRs) led to a recent surge in the interest of researchers, owing to the creation of exceptional properties in materials. Herein, a novel robust porous catalyst was prepared via the conjugation of MIL-88-NH2(Fe) and pectin (DAP/MIL-88-NH2(Fe)) through the post-modification Ugi four-component reaction (Ugi-4CR) for the first time. To achieve this aim, pectin was oxidized using sodium periodate as an oxidant agent to produce dialdehyde pectin (DAP). Next, the generated carbonyl functional groups participated in the Ugi-4CR of MIL-88-NH2(Fe), 4-methyl carboxylic acid, and cyclohexyl (c-hex) isocyanide to produce DAP/MIL-88-NH2(Fe) catalyst. The catalytic activity of the prepared bio-based catalyst was examined in producing cyclic carbonates through the chemical fixation of CO2 with epoxides in the presence of TBAB as a co-catalyst. Interestingly, catalytic experiments revealed that the prepared bio-based catalyst could be remarkably active regarding the CO2 fixation reaction and performed it in the shortest reaction time (1 h) via high CO2 adsorbent capacity. The outstanding benefits of the prepared bio-based catalyst include its non-hazardous nature, inexpensive, green and gentle reaction conditions, and ability to be reusable in several runs with slight loss of catalytic activity due to a more durable framework with high chemical and thermal stability.
Collapse
Affiliation(s)
- Tahereh Nasiriani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 1983963113, Tehran, Iran
| | - Neda Adabi Nigjeh
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 1983963113, Tehran, Iran
| | - Saeed Torabi
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 1983963113, Tehran, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 1983963113, Tehran, Iran.
| |
Collapse
|
3
|
Jyoti, Kumari S, Chakraborty S, Kanoo P, Kumar V, Chakraborty A. MIL-101(Cr)/aminoclay nanocomposites for conversion of CO 2 into cyclic carbonates. Dalton Trans 2024; 53:15815-15825. [PMID: 38771593 DOI: 10.1039/d4dt00849a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
We present the use of an amine functionalized two-dimensional clay i.e., aminoclay (AC), in the chemistry of a three-dimensional metal-organic framework (MOF) i.e., MIL-101(Cr), to prepare MIL-101(Cr)/AC composites, which are exploited as catalysts for efficient conversion of CO2 gas into cyclic carbonates under ambient reaction conditions. Three different MOF nanocomposites, denoted as MIL-101(Cr)/AC-1, MIL-101(Cr)/AC-2, and MIL-101(Cr)/AC-3, were synthesized by an in situ process by adding different amounts of AC to the precursor solutions of the MIL-101(Cr). The composites were characterized by various techniques such as FT-IR, PXRD, FESEM, EDX, TGA, N2 adsorption, as well as CO2 and NH3-TPD measurements. The composites were exploited as heterogeneous catalysts for CO2 cycloaddition reactions with different epoxides and the catalytic activity was investigated at atmospheric pressure under solvent-free conditions. Among all the materials, MIL-101(Cr)/AC-2 shows the best catalytic efficiency under the optimized conditions and exhibits enhanced efficacy compared to various MIL-101(Cr)-based MOF catalysts, which typically need either high temperature and pressure or a longer reaction time or a combination of all the parameters. The present protocol using MIL-101(Cr)/AC-2 as the heterogeneous catalyst gives 99.9% conversion for all the substrates into the products at atmospheric pressure.
Collapse
Affiliation(s)
- Jyoti
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| | - Sarita Kumari
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| | - Samiran Chakraborty
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| | - Prakash Kanoo
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
- Special Centre for Nano Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, Delhi 110067, India
| | - Vinod Kumar
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| | - Anindita Chakraborty
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| |
Collapse
|
4
|
Zhou YB, Chen F, Du ZH, Liu BY, Liu N. Iron(III) Complexes with Pyridine Group Coordination and Dissociation Reversible Equilibrium: Cooperative Activation of CO 2 and Epoxides into Cyclic Carbonates. Inorg Chem 2024; 63:16491-16506. [PMID: 39163141 DOI: 10.1021/acs.inorgchem.4c02452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Herein, a series of [ONSN]-type iron(III) complexes were synthesized. A binary catalytic system in combination with iron complexes and tetrabutylammonium bromide (TBAB) exhibited high activity for the synthesis of cyclic carbonates from CO2 (1 atm) and terminal epoxides at room temperature. Additionally, single-component iron complexes without using additional TBAB as nucleophiles also showed high activity for the cycloaddition of CO2 and terminal epoxides under 80 °C and 0.5 MPa of CO2. This study demonstrates that single-component iron catalysts provide a competitive alternative to binary catalytic systems for the synthesis of cyclic carbonates from CO2 and epoxides. Mechanistic studies on a single-component iron catalytic system suggest that the temperature serves as a role of responsive switch for controlling the coordination and dissociation of pyridine bearing iron catalysts detected using in situ infrared spectroscopy, and uncoordinated pyridine activates CO2 to form carbamate. Studies of electrospray ionization high-resolution mass spectrometry reveal that an iron center was used as a Lewis acidic site, free halogen anions from the iron center were used as a nucleophilic site, and coordinated pyridine was released from iron complexes to activate CO2.
Collapse
Affiliation(s)
- Yong-Bo Zhou
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, North Fourth Road, Shihezi 832003, China
| | - Fei Chen
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, North Fourth Road, Shihezi 832003, China
| | - Zhi-Hong Du
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, North Fourth Road, Shihezi 832003, China
| | - Bin-Yuan Liu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ning Liu
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, North Fourth Road, Shihezi 832003, China
| |
Collapse
|
5
|
Tangyen N, Natongchai W, D’Elia V. Catalytic Strategies for the Cycloaddition of CO 2 to Epoxides in Aqueous Media to Enhance the Activity and Recyclability of Molecular Organocatalysts. Molecules 2024; 29:2307. [PMID: 38792168 PMCID: PMC11124216 DOI: 10.3390/molecules29102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
The cycloaddition of CO2 to epoxides to afford versatile and useful cyclic carbonate compounds is a highly investigated method for the nonreductive upcycling of CO2. One of the main focuses of the current research in this area is the discovery of readily available, sustainable, and inexpensive catalysts, and of catalytic methodologies that allow their seamless solvent-free recycling. Water, often regarded as an undesirable pollutant in the cycloaddition process, is progressively emerging as a helpful reaction component. On the one hand, it serves as an inexpensive hydrogen bond donor (HBD) to enhance the performance of ionic compounds; on the other hand, aqueous media allow the development of diverse catalytic protocols that can boost catalytic performance or ease the recycling of molecular catalysts. An overview of the advances in the use of aqueous and biphasic aqueous systems for the cycloaddition of CO2 to epoxides is provided in this work along with recommendations for possible future developments.
Collapse
Affiliation(s)
| | | | - Valerio D’Elia
- VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Wangchan, Thailand; (N.T.); (W.N.)
| |
Collapse
|
6
|
Pang Y, Wang B, Gu X, Shen H, Yan X, Li Y, Chen L. Hydroxy-Rich Covalent Organic Framework for the Efficient Catalysis of the Cycloaddition of CO 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16721-16730. [PMID: 37967303 DOI: 10.1021/acs.langmuir.3c01719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The cycloaddition of CO2 with epoxides to cyclic carbonates is one of the most promising and green pathways for CO2 utilization, and the development of highly efficient catalysts remains a challenge. In this work, a novel hydroxy-rich covalent organic framework (TFPB-DHBD-COF) was synthesized, and it served as an efficient heterogeneous catalyst for the reaction of CO2 with 1,2-epoxybutane under mild conditions, providing the desired products in 90% conversion. The abundant hydroxy groups in the pore channels of TFPB-DHBD-COF could not only activate epoxides and CO2 via hydrogen bonding but also obviously enhance its stability through intramolecular five-membered ring hydrogen bonding. Thus, this COF also exhibited outstanding stability and tolerance for diverse substrates. Undoubtedly, this work has enriched the application of tailored COFs in the activation and utilization of CO2.
Collapse
Affiliation(s)
- Yiying Pang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Bowei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| | - Xiaoyi Gu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Huawei Shen
- Shaoxing Xingxin New Materials Co., Ltd., Shaoxing 312300, Zhejiang, P. R. China
| | - Xilong Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| | - Ligong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| |
Collapse
|
7
|
Zou Y, Amuti Q, Zou Z, Xu Y, Yan C, Cheng G, Ke H. Diamide-linked imidazolyl Poly(dicationic ionic liquid)s for the conversion of CO 2 to cyclic carbonates under ambient pressure. J Colloid Interface Sci 2023; 656:47-57. [PMID: 37984170 DOI: 10.1016/j.jcis.2023.11.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
The ionic active centers and hydrogen-bond donors (HBDs) in heterogeneous catalytic materials are highly beneficial for enhancing the interaction between solid-liquid-gas three-phase interfaces and promoting effective fixation of carbon dioxide (CO2). Diamide-linked imidazolyl poly(dicationic ionic liquid)s catalysts PIMDILs (PMAIL-x and PBAIL-2) were synthesized through the copolymerization of diamide-linked imidazolyl dicationic ionic liquids (IMDILs) with divinylbenzene (DVB), which successfully enable the simultaneous construction of high-density and uniformly distributed ionic active centers (2.014-4.883 mmol g-1) and hydrogen-bond donors (HBDs). The as-synthesized PIMDILs present excellent catalytic activity in promoting the cycloaddition of CO2 with epoxides. PMAIL-2 could convert epichlorohydrin (ECH) with a quantitative conversion of 99.8 % (selectivity > 99 %) under ambient pressure. Furthermore, only a decrease in activity of 5 % was observed even after six cycles of recycling. The excellent conversions (>97.3 %) were achieved for various terminal substituted epoxides. The experimental and characterization results reveal that the high-density ionic active centers and amide HBDs can effectively activate the reaction substrates, their synergistic effect plays a crucial role at the catalyst interface. This work is expected to provide some useful insights for the rational construction of heterogeneous catalysts for CO2 conversion.
Collapse
Affiliation(s)
- Yizhen Zou
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan). 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan 430078, China
| | - Qimanguli Amuti
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan). 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan 430078, China
| | - Zhongwei Zou
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan). 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan 430078, China
| | - Yuping Xu
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan). 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan 430078, China
| | - Chong Yan
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan). 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan 430078, China
| | - Guoe Cheng
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan). 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan 430078, China
| | - Hanzhong Ke
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan). 68 Jincheng Street, East Lake High-tech Development Zone, Wuhan 430078, China.
| |
Collapse
|
8
|
Kessaratikoon T, Theerathanagorn T, Crespy D, D'Elia V. Organocatalytic Polymers from Affordable and Readily Available Building Blocks for the Cycloaddition of CO 2 to Epoxides. J Org Chem 2023; 88:4894-4924. [PMID: 36692489 DOI: 10.1021/acs.joc.2c02447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The catalytic cycloaddition of CO2 to epoxides to afford cyclic carbonates as useful monomers, intermediates, solvents, and additives is a continuously growing field of investigation as a way to carry out the atom-economic conversion of CO2 to value-added products. Metal-free organocatalytic compounds are attractive systems among various catalysts for such transformations because they are inexpensive, nontoxic, and readily available. Herein, we highlight and discuss key advances in the development of polymer-based organocatalytic materials that match these requirements of affordability and availability by considering their synthetic routes, the monomers, and the supports employed. The discussion is organized according to the number (monofunctional versus bifunctional materials) and type of catalytically active moieties, including both halide-based and halide-free systems. Two general synthetic approaches are identified based on the postsynthetic functionalization of polymeric supports or the copolymerization of monomers bearing catalytically active moieties. After a review of the material syntheses and catalytic activities, the chemical and structural features affecting catalytic performance are discussed. Based on such analysis, some strategies for the future design of affordable and readily available polymer-based organocatalysts with enhanced catalytic activity under mild conditions are considered.
Collapse
Affiliation(s)
- Tanika Kessaratikoon
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Tharinee Theerathanagorn
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Daniel Crespy
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Valerio D'Elia
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| |
Collapse
|
9
|
Patel B, Dabas S, Patel P, Subramanian S. Electrostatically tuned phenols: a scalable organocatalyst for transfer hydrogenation and tandem reductive alkylation of N-heteroarenes. Chem Sci 2023; 14:540-549. [PMID: 36741513 PMCID: PMC9847667 DOI: 10.1039/d2sc05843j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
One of the fundamental aims in catalysis research is to understand what makes a certain scaffold perform better as a catalyst than another. For instance, in nature enzymes act as versatile catalysts, providing a starting point for researchers to understand how to achieve superior performance by positioning the substrate close to the catalyst using non-covalent interactions. However, translating this information to a non-biological catalyst is a challenging task. Here, we report a simple and scalable electrostatically tuned phenol (ETP) as an organocatalyst for transfer hydrogenation of N-arenes using the Hantzsch ester as a hydride source. The biomimetic catalyst (1-5 mol%) displays potential catalytic activity to prepare diverse tetrahydroquinoline derivatives with good to excellent conversion under ambient reaction conditions. Kinetic studies reveal that the ETP is 130-fold faster than the uncharged counterpart, towards completion of the reaction. Control experiments and NMR spectroscopic investigations elucidate the role of the charged environment in the catalytic transformation.
Collapse
Affiliation(s)
- Brijesh Patel
- Inorganic Materials and Catalysis Division, CSIR – Central Salt & Marine Chemicals Research InstituteBhavnagar-364002GujaratIndia,Academy of Scientific and Innovative Research (AcSIR)Gaziabad-201002India
| | - Shilpa Dabas
- Inorganic Materials and Catalysis Division, CSIR – Central Salt & Marine Chemicals Research InstituteBhavnagar-364002GujaratIndia,Academy of Scientific and Innovative Research (AcSIR)Gaziabad-201002India
| | - Parth Patel
- Inorganic Materials and Catalysis Division, CSIR – Central Salt & Marine Chemicals Research InstituteBhavnagar-364002GujaratIndia,Academy of Scientific and Innovative Research (AcSIR)Gaziabad-201002India
| | - Saravanan Subramanian
- Inorganic Materials and Catalysis Division, CSIR – Central Salt & Marine Chemicals Research InstituteBhavnagar-364002GujaratIndia,Academy of Scientific and Innovative Research (AcSIR)Gaziabad-201002India
| |
Collapse
|
10
|
Barker RE, Guo L, Mota CJA, North M, Ozorio LP, Pointer W, Walberton S, Wu X. General Approach to Silica-Supported Salens and Salophens and Their Use as Catalysts for the Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide. J Org Chem 2022; 87:16410-16423. [DOI: 10.1021/acs.joc.2c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Ryan E. Barker
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Liping Guo
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, U.K
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Claudio J. A. Mota
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, Brazil
- Universidade Federal do Rio de Janeiro, Escola de Química, 21941-909, Rio de Janeiro, Brazil
- INCT Energia & Ambiente, Universidade Federal do Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - Michael North
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Leonardo P. Ozorio
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, Brazil
- Universidade Federal do Rio de Janeiro, Escola de Química, 21941-909, Rio de Janeiro, Brazil
- INCT Energia & Ambiente, Universidade Federal do Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - William Pointer
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Sarah Walberton
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Xiao Wu
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, U.K
| |
Collapse
|
11
|
Song KS, Fritz PW, Coskun A. Porous organic polymers for CO 2 capture, separation and conversion. Chem Soc Rev 2022; 51:9831-9852. [PMID: 36374129 PMCID: PMC9703447 DOI: 10.1039/d2cs00727d] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 08/15/2023]
Abstract
Porous organic polymers (POPs) have long been considered as prime candidates for carbon dioxide (CO2) capture, separation, and conversion. Especially their permanent porosity, structural tunability, stability and relatively low cost are key factors in such considerations. Whereas heteratom-rich microporous networks as well as their amine impregnation/functionalization have been actively exploited to boost the CO2 affinity of POPs, recently, the focus has shifted to engineering the pore environment, resulting in a new generation of highly microporous POPs rich in heteroatoms and featuring abundant catalytic sites for the capture and conversion of CO2 into value-added products. In this review, we aim to provide key insights into structure-property relationships governing the separation, capture and conversion of CO2 using POPs and highlight recent advances in the field.
Collapse
Affiliation(s)
- Kyung Seob Song
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| | - Patrick W Fritz
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| | - Ali Coskun
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
12
|
Mitra A, Ghosh S, Paliwal KS, Ghosh S, Tudu G, Chandrasekar A, Mahalingam V. Alumina-Based Bifunctional Catalyst for Efficient CO 2 Fixation into Epoxides at Atmospheric Pressure. Inorg Chem 2022; 61:16356-16369. [PMID: 36194766 DOI: 10.1021/acs.inorgchem.2c02363] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The quest toward sustainability and decarbonization demands the development of methods for efficient carbon dioxide capture and utilization. The nonreductive CO2 fixation into epoxides to prepare cyclic carbonates has gained attention in recent years. In this work, we report the development of guanidine hydrochloride-functionalized γ alumina (γ-Al2O3), prepared using green solvents, as an efficient bifunctional catalyst for CO2 fixation. The resulting guanidine-grafted γ-Al2O3 (Al-Gh) proved to be an excellent catalyst to prepare cyclic carbonates from epoxides and CO2 with high selectivity. The nitrogen-rich Al-Gh shows increased CO2 adsorption capacity compared to that of γ-Al2O3. The as-prepared catalyst was able to carry out CO2 fixation at 85 °C under atmospheric pressure in the absence of solvents and external additives (e.g., TBAI or KI). The material showed negligible loss of catalytic activity even after five cycles of catalysis. The catalyst successfully converted many epoxides into their respective cyclic carbonates under the optimized conditions. The gram-scale synthesis of commercially important styrene carbonates from styrene oxide and CO2 using Al-Gh was also achieved. Density functional theory (DFT) calculations revealed the role of alumina in activating the epoxide. This activation facilitated the chloride ion to open the ring to react with CO2. The DFT studies also validated the role of alumina in stabilizing the electron-rich intermediates during the course of the reaction.
Collapse
Affiliation(s)
- Antarip Mitra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Sourav Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Khushboo S Paliwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Suptish Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Gouri Tudu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Aditi Chandrasekar
- School of Arts and Sciences, Azim Premji University, Bangalore 562125, India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
13
|
Yun R, Li T, He L, Shi C, Xu R. Atomically Dispersed Iron Sites on the Hollow Nitrogen-Doped Carbon Framework with a Highly Efficient Performance on Carbon Dioxide Cycloaddition. Inorg Chem 2022; 61:15817-15821. [PMID: 36178332 DOI: 10.1021/acs.inorgchem.2c02695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The exploration of efficient and low-consumption catalysts for carbon dioxide (CO2) conversion is desirable yet remains a great challenge. Herein, a novel catalyst composed of a hollow nitrogen-doped carbon framework (HNF) enriched with high-loading (9.8 wt %) atomically dispersed iron sites (defined as FeSAs/HNF) has been fabricated by a polymer-assisted strategy. As a result, FeSAs/HNF has an excellent performance on the cycloaddition reactions of CO2 with epoxides (the conversion >96%) under milder conditions because of its ultrahigh loading of atomically dispersed iron sites. This study not only provides an advanced catalyst for driving CO2 cycloaddition but also furnishes a novel perspective on the rational design of superior catalysts with high-loading active sites for diverse heterogeneous catalytic reactions.
Collapse
Affiliation(s)
- Ruirui Yun
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Tuanhui Li
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Lei He
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Changsong Shi
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Ruiming Xu
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| |
Collapse
|
14
|
Liu S, Su Q, Fu M, Deng L, Wang Y, Dong L, Liu Y, Ma X, Cheng W. Core–Shell Dispersed Polymeric Ionic Liquids as Efficient Heterogeneous Catalyst for CO2 Conversion into Cyclic Carbonates. Catal Letters 2022. [DOI: 10.1007/s10562-022-04103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
15
|
Liu Y, Hu S, Zhi Y, Hu T, Yue Z, Tang X, Shan S. Non-metal and non-halide enol PENDI catalysts for the cycloaddition of CO2 and epoxide. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Alhafez A, Aytar E, Kilic A. Enhancing catalytic strategy for cyclic carbonates synthesized from CO2 and epoxides by using cobaloxime-based double complex salts as catalysts. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Ge Y, Liu W, Zou Y, Cheng G, Ke H. A solid Zn complex catalyst for efficient transformation of CO2 to cyclic carbonates at mild conditions. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Paliwal KS, Biswas T, Mitra A, Tudu G, Mahalingam V. Ionic liquid functionalized chitosan catalyst with optimized hydrophilic/hydrophobic structural balance for efficient CO2 fixation. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Khushboo Shivdas Paliwal
- Indian Institute of Science Education and Research Kolkata Department of chemical sciences IISER- KOLKATA, NIVEDITA GIRLS HOSTEL ROOM NO-C114, NADIA , MOHANPUR, 741246 Nadia INDIA
| | - Tanmoy Biswas
- IISER-K: Indian Institute of Science Education and Research Kolkata Department of chemical sciences IISER- KOLKATA, NIVEDITA GIRLS HOSTEL ROOM NO-C114, NADIA , MOHANPUR, 741246 Nadia INDIA
| | - Antarip Mitra
- IISER-K: Indian Institute of Science Education and Research Kolkata Department of chemical sciences 741246 Nadia INDIA
| | - Gouri Tudu
- IISER-K: Indian Institute of Science Education and Research Kolkata Department of chemical sciences 741246 Nadia INDIA
| | - Venkataramanan Mahalingam
- Indian Institute of Science Education and Research (IISER)-Kolkata Chemical Sciences BCKV PO Mohanpur CampusNadia 741252 741252 Mhanpur INDIA
| |
Collapse
|
19
|
Mitra A, Biswas T, Ghosh S, Tudu G, Paliwal KS, Ganatra P, Mahalingam V. Prudent Choice of Iron‐based Metal‐Organic Networks for Solvent‐free CO
2
Fixation at Ambient Pressure. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Antarip Mitra
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Tanmoy Biswas
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Sourav Ghosh
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Gouri Tudu
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Khushboo S. Paliwal
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Pragati Ganatra
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| |
Collapse
|
20
|
Modification of ZnCoPBA by different organic ligands and its application in the cycloaddition of CO2 and epoxides. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02034-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Emelyanov MA, Lisov AA, Medvedev MG, Maleev VI, Larionov VA. Cobalt(III) Complexes as Bifunctional Hydrogen Bond Donor Catalysts Featuring Halide Anions for Cyclic Carbonate Synthesis at Ambient Temperature and Pressure: Mechanistic Insight. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mikhail A. Emelyanov
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN LAC Vavilov Str. 28 119991 Moscow RUSSIAN FEDERATION
| | - Alexey A. Lisov
- Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova Chemistry Leninskie Gory 1/3 119991 Moscow RUSSIAN FEDERATION
| | - Michael G. Medvedev
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Chemistry Leninsky prospect 47 119991 Moscow RUSSIAN FEDERATION
| | - Victor I. Maleev
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN LAC Vavilov Str. 28 119991 Moscow RUSSIAN FEDERATION
| | - Vladimir A. Larionov
- Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Laboratory of Asymmetric Catalysis Vavilov Street 28 119991 Moscow RUSSIAN FEDERATION
| |
Collapse
|
22
|
Tudu G, Paliwal KS, Ghosh S, Biswas T, Koppisetti HVSRM, Mitra A, Mahalingam V. para-Aminobenzoic acid-capped hematite as an efficient nanocatalyst for solvent-free CO 2 fixation under atmospheric pressure. Dalton Trans 2022; 51:1918-1926. [PMID: 35019928 DOI: 10.1039/d1dt03821d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Utilization of carbon dioxide by converting it into value-added chemicals is a sustainable remedy approach that stipulates abundant, cheap, non-toxic and efficient catalytic materials. In this study, we have demonstrated the use of para-aminobenzoic acid-capped hematite (PABA@α-Fe2O3) as an efficient nanocatalyst for the conversion of epoxides to cyclic carbonates utilizing CO2. The developed PABA@α-Fe2O3 nanocatalyst along with a cocatalyst, tetrabutylammonium iodide (TBAI), was able to convert a variety of epoxide substrates into their corresponding cyclic carbonates under atmospheric pressure and solvent-free conditions. The efficient catalytic activity of the material is attributed to the synergistic effect between α-Fe2O3 and the amine group of the PABA molecule present on the surface. Furthermore, the recyclability study and post-catalytic analysis revealed that the developed catalyst can be used for multiple catalytic cycles due to the stable and robust nature of the nanocatalyst. The choice of the PABA@α-Fe2O3 nanocatalyst is indeed a sustainable approach from the CO2 capture and utilization point of view.
Collapse
Affiliation(s)
- Gouri Tudu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India.
| | - Khushboo S Paliwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India.
| | - Sourav Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India.
| | - Tanmoy Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India.
| | - Heramba V S R M Koppisetti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India.
| | - Antarip Mitra
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India.
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
23
|
Hao Y, Yan X, Liu X, Qin S, Zhu Z, Panchal B, Chang T. Urea-based covalent organic crown polymers and KI electrostatic synergy in CO2 fixation reaction: A combined experimental and theoretical study. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Qing Y, Liu T, Zhao B, Bao X, Yuan D, Yao Y. Cycloaddition of di-substituted epoxides and CO 2 under ambient conditions catalysed by rare-earth poly(phenolate) complexes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00592a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lanthanum complex 1/TBAI is the first catalyst to achieve the cycloaddition of 1,2-disubstituted epoxides with 1 bar CO2 at room temperature. A DFT study discloses that the poly(phenolato) ligand plays a key role in the product dissociation step.
Collapse
Affiliation(s)
- Yuting Qing
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Tiantian Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Bei Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaoguang Bao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Dan Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
25
|
Fang X, Liu C, Yang L, Yu T, Zhai D, Zhao W, Deng WQ. Bifunctional poly(ionic liquid) catalyst with dual-active-center for CO2 conversion: Synergistic effect of triazine and imidazolium motifs. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Three-dimensional amino acid backbone Cu-aspartate metal–organic framework as a catalyst for the cycloaddition of propylene oxide and CO2. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-01991-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Bakhtin SG, Shved EN, Sinelnikova MA, Bespalko YN. Nucleophilic Opening of the Oxirane Ring with Tetraalkylammonium Salt Anions in the Presence of Proton Donors. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Saptal VB, Singh R, Juneja G, Singh S, Chauhan SM, Polshettiwar V, Bhanage BM. Nitridated Fibrous Silica/Tetrabutylammonium Iodide (N‐DFNS/TBAI): Robust and Efficient Catalytic System for Chemical Fixation of Carbon Dioxide to Cyclic Carbonates. ChemCatChem 2021. [DOI: 10.1002/cctc.202100245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Vitthal B. Saptal
- Department of Chemistry Institute of Chemical Technology Matunga Mumbai 400019 India
| | - Rustam Singh
- Department of Chemical Sciences Tata Institute of Fundamental Research (TIFR) Mumbai India
| | - Gaurav Juneja
- Department of Chemistry Institute of Chemical Technology Matunga Mumbai 400019 India
| | - Saideep Singh
- Department of Chemical Sciences Tata Institute of Fundamental Research (TIFR) Mumbai India
| | - Satish M. Chauhan
- Department of Chemistry Institute of Chemical Technology Matunga Mumbai 400019 India
| | - Vivek Polshettiwar
- Department of Chemical Sciences Tata Institute of Fundamental Research (TIFR) Mumbai India
| | | |
Collapse
|
29
|
The role of Zn in the sustainable one-pot synthesis of dimethyl carbonate from carbon dioxide, methanol and propylene oxide. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Guo CH, Liang M, Jiao H. Cycloaddition mechanisms of CO2 and epoxide catalyzed by salophen – an organocatalyst free from metals and halides. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02256j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coupling mechanism of CO2 and epichlorohydrin catalyzed by salophen is computed. A neutral concerted bifunctional mechanism of phenolate as nucleophile and phenol as H-bonding donor in epoxide ring-opening and CO2 addition is suggested.
Collapse
Affiliation(s)
- Cai-Hong Guo
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Min Liang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- Rostock
- Germany
| |
Collapse
|
31
|
Natongchai W, Luque-Urrutia JA, Phungpanya C, Solà M, D'Elia V, Poater A, Zipse H. Cycloaddition of CO2 to epoxides by highly nucleophilic 4-aminopyridines: establishing a relationship between carbon basicity and catalytic performance by experimental and DFT investigations. Org Chem Front 2021. [DOI: 10.1039/d0qo01327g] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
New highly nucleophilic homogeneous and heterogeneous catalysts based on the 3,4-diaminopyridine scaffold are reported for the halogen-free cycloaddition of CO2 to epoxides.
Collapse
Affiliation(s)
- Wuttichai Natongchai
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Jesús Antonio Luque-Urrutia
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Chalida Phungpanya
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Valerio D'Elia
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Hendrik Zipse
- Department Chemie
- Ludwig-Maximilians-Universität München
- 81377 München
- Germany
| |
Collapse
|
32
|
Narzary BB, Baker BC, Yadav N, D'Elia V, Faul CFJ. Crosslinked porous polyimides: structure, properties and applications. Polym Chem 2021. [DOI: 10.1039/d1py00997d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Porous polyimides (pPIs) represent a fascinating class of porous organic polymers (POPs). Here the properties and functions of amorphous and crystalline pPIs are reviewed, and applications contributing to solutions to global challenges highlighted.
Collapse
Affiliation(s)
| | | | - Neha Yadav
- School of Molecular Science and Engineering, VISTEC, Thailand
| | - Valerio D'Elia
- School of Molecular Science and Engineering, VISTEC, Thailand
| | | |
Collapse
|
33
|
Zhong H, Gao J, Sa R, Yang S, Wu Z, Wang R. Carbon Dioxide Conversion Upgraded by Host-guest Cooperation between Nitrogen-Rich Covalent Organic Framework and Imidazolium-Based Ionic Polymer. CHEMSUSCHEM 2020; 13:6323-6329. [PMID: 32710471 DOI: 10.1002/cssc.202001658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/23/2020] [Indexed: 06/11/2023]
Abstract
The chemical conversion of CO2 into value-added chemicals is one promising approach for CO2 utilization. It is crucial to explore highly efficient catalysts containing task-specific components for CO2 fixation. Here, a host-guest catalytic system was developed by integrating nitrogen-rich covalent organic framework (TT-COF) and imidazolium-based ionic polymer (ImIP), which serve as hydrogen-bonding donor and nucleophilic agent, respectively, for cooperatively facilitating the activation of the epoxides and subsequent CO2 cycloaddition. The catalytic activity of the host-guest system was remarkably superior to those of ImIP, TT-COF, and their physical mixture. Furthermore, selective adsorption for CO2 over N2 rendered this catalytic system effective for the cycloaddition reaction of the simulated flue gas. The protocols for the unification of two catalytically active components provide new opportunities for the development of composite systems in multiple applications.
Collapse
Affiliation(s)
- Hong Zhong
- Institute of Oceanography, Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou, Fujian, 350108, P.R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350007, Fuzhou, P.R. China
| | - Jinwei Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350007, Fuzhou, P.R. China
| | - Rongjian Sa
- Institute of Oceanography, Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou, Fujian, 350108, P.R. China
| | - Shuailong Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350007, Fuzhou, P.R. China
| | - Zhicheng Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350007, Fuzhou, P.R. China
| | - Ruihu Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350007, Fuzhou, P.R. China
| |
Collapse
|
34
|
Facile syntheses of ionic polymers for efficient catalytic conversion of CO2 to cyclic carbonates. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101301] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Kim D, Subramanian S, Thirion D, Song Y, Jamal A, Otaibi MS, Yavuz CT. Quaternary ammonium salt grafted nanoporous covalent organic polymer for atmospheric CO2 fixation and cyclic carbonate formation. Catal Today 2020. [DOI: 10.1016/j.cattod.2020.03.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Janeta M, Lis T, Szafert S. Zinc Imine Polyhedral Oligomeric Silsesquioxane as a Quattro-Site Catalyst for the Synthesis of Cyclic Carbonates from Epoxides and Low-Pressure CO 2. Chemistry 2020; 26:13686-13697. [PMID: 33463802 DOI: 10.1002/chem.202002996] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/22/2020] [Indexed: 01/13/2023]
Abstract
In the present research, the synthesis, spectroscopic characterization, and structural investigations of a unique ZnII complex of imine-functionalized polyhedral oligomeric silsesquioxane (POSS) is designed, and hereby described, as a catalyst for the synthesis of cyclic carbonates from epoxides and CO2. The uncommon features of the designed catalytic system is the elimination of the need for a high pressure of CO2 and the significant shortening of reaction times commonly associated with such difficult transformations like that of styrene oxide to styrene carbonate. Our studies have shown that imine-POSS is able to chelate metal ions like ZnII to form a unique coordination complex. The silsesquioxane core and the hindrance of the side arms (their steric effect) influence the construction process of the homoleptic Zn4@POSS-1 complex. The compound was characterized in solution by NMR (1H, 13C, 29Si), ESI-MS, UV/Vis spectroscopy and in the solid state by thermogravimetric/differential thermal analysis (TG-DTA), elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), cross-polarization magic angle spinning (CP MAS) NMR (13C, 29Si) spectroscopy, and X-ray crystallography.
Collapse
Affiliation(s)
- Mateusz Janeta
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Tadeusz Lis
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Sławomir Szafert
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
37
|
Hao Y, Yuan D, Yao Y. Metal‐Free Cycloaddition of Epoxides and Carbon Dioxide Catalyzed by Triazole‐Bridged Bisphenol. ChemCatChem 2020. [DOI: 10.1002/cctc.202000508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yanhong Hao
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Dan Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
38
|
Helal A, Usman M, Arafat ME, Abdelnaby MM. Allyl functionalized UiO-66 metal-organic framework as a catalyst for the synthesis of cyclic carbonates by CO2 cycloaddition. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.05.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Dong T, Zheng YJ, Yang GW, Zhang YY, Li B, Wu GP. Crosslinked Resin-Supported Bifunctional Organocatalyst for Conversion of CO 2 into Cyclic Carbonates. CHEMSUSCHEM 2020; 13:4121-4127. [PMID: 32662576 DOI: 10.1002/cssc.202001117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 06/11/2023]
Abstract
The development of solvent-free, metal-free, recyclable organic catalysts is required for the current chemical fixation of carbon dioxide converted into cyclic carbonates. With the goal of reducing the cost, time, and energy consumption for the coupling reaction of CO2 and epoxides, a series of highly active heterogeneous catalysts, based on a thiourea and quaternary ammonium salt system, are synthesized by using a thiol-ene click reaction under ultraviolet light. Benefitting from synergistic interactions of the electrophilic center (thiourea) and the nucleophilic site (ammonium bromide), the catalysts exhibit excellent catalytic selectivity (99 %) for the cycloaddition of carbon dioxide with a diverse range of epoxides under mild conditions (1.2 MPa, 100 °C). Moreover, the catalyst can be easily recycled by facile filtration and reused for 5 times without noticeable loss of activity and selectivity. This work provides a potential heterogeneous catalyst for the conversion of carbon dioxide into high value-added chemicals with the combined advantages of low cost, easy recovery, and satisfactory catalytic properties.
Collapse
Affiliation(s)
- Tongfeng Dong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yu-Jia Zheng
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, P. R. China
| | - Guan-Wen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yao-Yao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Bo Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, P. R. China
| | - Guang-Peng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
40
|
Wang WZ, Lei Z, Jia XG, Li LL, Fan W. A new coordination complex based on 2,2′-dipyridinium ligand as catalyst for the conversion of CO2 to propylene carbonate. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Arunachalam R, Chinnaraja E, Subramanian S, Suresh E, Subramanian PS. Catalytic Conversion of Carbon Dioxide Using Binuclear Double-Stranded Helicates: Cyclic Carbonate from Epoxides and Diol. ACS OMEGA 2020; 5:14890-14899. [PMID: 32637763 PMCID: PMC7330893 DOI: 10.1021/acsomega.9b04241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
The construction of sophisticated molecular architectures from chemical subunits requires careful selection of the spacers, precise synthetic strategies, and substantial efforts. Here, we report a series of binuclear double-stranded helicates synthesized from different combinations of pyridyl hydrazone-based multidentate ligands (H2 1, H2 2, H2 3) by increasing the methylene spacer and transition metals (Co, Ni, and Zn). The ligands H2 1 (N'1,N'3-bis((E)-pyridin-2-ylmethylene)malonohydrazide), H2 2 (N'1,N'4-bis((E)-pyridin-2-ylmethylene)succinohydrazide), and H2 3 (N'1,N'5-bis((E)-pyridin-2-ylmethylene)glutarohydrazide) and their respective complexes with Co, Ni, and Zn were obtained. Single-crystal X-ray diffraction studies of these binuclear metallohelicates confirm the double-stranded helical structure of the complexes derived from H2 2. The set of helicates Co-1, Co-2, and Co-3; Ni-1, Ni-2, and Ni-3; and Zn-1, Zn-2, and Zn-3 were investigated for its catalytic activity in the cyclic carbonate formation reaction. Intriguingly, among the synthesized catalyst, Co-1 was found to be better in terms of conversions with the calculated TOF (turnover frequency) of 128/h. The catalytic performance was significantly improved by adding 0.2 mmol of tetrabutylammonium bromide by achieving 76% conversion in 30 min, with the observed TOF of 15,934 h-1/molecule and 7967 h-1/Co center. The results obtained herein show that the double-stranded helicates are effective catalysts for converting both terminal and non-terminal epoxides into their corresponding cyclic carbonates. The striking feature of this catalytic protocol lies in demonstrating the catalytic activity for the conversion of diol to cyclic carbonate, and the detailed kinetic experiments tempted us to propose a tentative reaction mechanism for this conversion.
Collapse
Affiliation(s)
- Rajendran Arunachalam
- Inorganic
Materials and Catalysis Discipline, CSIR-Central
Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Eswaran Chinnaraja
- Inorganic
Materials and Catalysis Discipline, CSIR-Central
Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saravanan Subramanian
- Inorganic
Materials and Catalysis Discipline, CSIR-Central
Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Eringathodi Suresh
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Analytical
and Environmental Science Division and Centralized Instrumentation
Facility, CSIR-Central Salt and Marine Chemicals
Research Institute, Gujarat 364002, India
| | - Palani S. Subramanian
- Inorganic
Materials and Catalysis Discipline, CSIR-Central
Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
42
|
Grollier K, Vu ND, Onida K, Akhdar A, Norsic S, D'Agosto F, Boisson C, Duguet N. A Thermomorphic Polyethylene‐Supported Imidazolium Salt for the Fixation of CO
2
into Cyclic Carbonates. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kevin Grollier
- Université de LyonUniversité Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard F-69622 Villeurbanne cedex France
| | - Nam Duc Vu
- Université de LyonUniversité Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard F-69622 Villeurbanne cedex France
| | - Killian Onida
- Université de LyonUniversité Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard F-69622 Villeurbanne cedex France
| | - Ayman Akhdar
- Université de LyonUniversité Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard F-69622 Villeurbanne cedex France
| | - Sébastien Norsic
- Université de LyonUniv. Lyon 1, CPE Lyon, CNRS UMR 5265, Laboratoire de Chimie Catalyse Polymères et Procédés (C2P2), Equipe LCPP, Bat 308F 43 Bd du 11 Novembre 1918 F-69616 Villeurbanne France
| | - Franck D'Agosto
- Université de LyonUniv. Lyon 1, CPE Lyon, CNRS UMR 5265, Laboratoire de Chimie Catalyse Polymères et Procédés (C2P2), Equipe LCPP, Bat 308F 43 Bd du 11 Novembre 1918 F-69616 Villeurbanne France
| | - Christophe Boisson
- Université de LyonUniv. Lyon 1, CPE Lyon, CNRS UMR 5265, Laboratoire de Chimie Catalyse Polymères et Procédés (C2P2), Equipe LCPP, Bat 308F 43 Bd du 11 Novembre 1918 F-69616 Villeurbanne France
| | - Nicolas Duguet
- Université de LyonUniversité Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard F-69622 Villeurbanne cedex France
| |
Collapse
|
43
|
Cui C, Sa R, Hong Z, Zhong H, Wang R. Ionic-Liquid-Modified Click-Based Porous Organic Polymers for Controlling Capture and Catalytic Conversion of CO 2. CHEMSUSCHEM 2020; 13:180-187. [PMID: 31710182 DOI: 10.1002/cssc.201902715] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Capture and catalytic conversion of CO2 into value-added chemicals is a promising and sustainable approach to relieve global warming and the energy crisis. Nitrogen-rich porous organic polymers (POPs) are promising materials for CO2 capture and separation, but their application in the additive-free catalytic conversion of CO2 into cyclic carbonates is still a challenge. Herein, a nitrogen-rich click-based POP (CPP) was developed for the cycloaddition reaction of CO2 with epoxides in the absence of metal, solvents, and additives. The introduction of imidazolium-based ionic liquids on the CPP host backbone could modulate the porosity, CO2 adsorption/desorption, CO2 selectivity over N2 , and catalytic activity in the chemical transformation. A tentative catalytic pathway was proposed to account for the superior catalytic activity of the catalytic systems, in which the incorporated ionic liquid and porous properties of CPP synergistically contributed to the catalytic reaction. This study provides a platform to understand the cooperative effects of porous properties and nucleophilic anions on the cycloaddition reaction of CO2 with epoxides.
Collapse
Affiliation(s)
- Caiyan Cui
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P.R. China
| | - Rongjian Sa
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P.R. China
- Institute of Oceanography, Ocean College, Minjiang University, Fuzhou, Fujian, 350108, P.R. China
| | - Zixiao Hong
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian, 361021, P.R. China
| | - Hong Zhong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P.R. China
| | - Ruihu Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P.R. China
| |
Collapse
|
44
|
Zhang Y, Luo N, Xu J, Liu K, Zhang S, Xu Q, Huang R, Long Z, Tong M, Chen G. Metalated-bipyridine-based porous hybrid polymers with POSS-derived Si–OH groups for synergistic catalytic CO2 fixation. Dalton Trans 2020; 49:11300-11309. [DOI: 10.1039/d0dt01667e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ZnBr2 metalated-bipyridine porous hybrid polymers with POSS-derived Si–OH as “all-in-one” heterogeneous catalysts for synergistic catalytic CO2 fixation.
Collapse
|
45
|
Kim NH, Seong EY, Kim JH, Lee SH, Ahn KH, Kang EJ. Functionally-designed heteroleptic Fe-bisiminopyridine systems for the transformation of carbon dioxide. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Subramanian S, Oppenheim J, Kim D, Nguyen TS, Silo WM, Kim B, Goddard WA, Yavuz CT. Catalytic Non-redox Carbon Dioxide Fixation in Cyclic Carbonates. Chem 2019. [DOI: 10.1016/j.chempr.2019.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Novel Cobalt Complex as an Efficient Catalyst for Converting CO2 into Cyclic Carbonates under Mild Conditions. Catalysts 2019. [DOI: 10.3390/catal9110951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Based on the ligand H2dpPzda (1), a novel cobalt complex [Co(H2dpPzda)(NCS)2]·CH3OH(2) has been synthesized and characterized. The Complex 2 exhibited excellent catalytic performance for converting CO2 into cyclic carbonates under mild conditions. For propylene oxide (PO) and CO2 synthesis of propylene carbonate (PC), the catalytic system showed a remarkable TOF as high as 29,200 h−1. The catalytic system also showed broad substrate scope of epoxide. Additionally, the catalyst could be recycled to maintain the integrity of the structure and remained equal to the level of its catalytic activity even after seven catalytic rounds. Additionally, a possible catalytic mechanism was proposed due to the high catalytic activity which might be owing to the synergism of Lewis acidic metal centers and N group.
Collapse
|
48
|
Kurisingal JF, Rachuri Y, Palakkal AS, Pillai RS, Gu Y, Choe Y, Park DW. Water-Tolerant DUT-Series Metal-Organic Frameworks: A Theoretical-Experimental Study for the Chemical Fixation of CO 2 and Catalytic Transfer Hydrogenation of Ethyl Levulinate to γ-Valerolactone. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41458-41471. [PMID: 31613085 DOI: 10.1021/acsami.9b16834] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A series of highly thermally and hydrolytically stable porous solids with intriguing properties of zirconium- and hafnium-based metal-organic frameworks (MOFs) [Dresden University of Technology (DUT) series] was synthesized. The DUT MOFs were found to be effective catalysts for both epoxide-CO2 cycloaddition reactions and the catalytic transfer hydrogenation (CTH) of ethyl levulinate (EL). In particular, 12-connected DUT-52(Zr) showed higher catalytic activity than eight- and six-connected catalysts in the synthesis of cyclic carbonates as well as in the production of γ-valerolactone (GVL). The secondary building unit connectivity, coexistence of a moderate number of acidic and basic sites, Brunauer-Emmett-Teller surface area, and combined effects of the pores of the MOFs seem to influence the catalytic activity. The reaction mechanism for the DUT-52(Zr)-mediated cycloaddition reaction of CO2 and the CTH reactions were investigated in detail by using periodic density functional theory calculations. To the best of our knowledge, this is the first detailed computational study for the formation of GVL from EL by using MOF as the catalyst. In addition, grand canonical Monte Carlo simulations predicted the strong interaction of CO2 molecules with the DUT-52(Zr) framework. Remarkably, the DUT-series catalysts possess extraordinary tolerance toward water. Further, DUT-52(Zr) is recyclable and is an efficient catalyst for cycloaddition and CTH reactions for at least five uses without obvious reductions in the activity or structural integrity.
Collapse
Affiliation(s)
- Jintu Francis Kurisingal
- Division of Chemical and Biomolecular Engineering , Pusan National University , Busan 46241 , Korea
| | - Yadagiri Rachuri
- Division of Chemical and Biomolecular Engineering , Pusan National University , Busan 46241 , Korea
| | - Athulya S Palakkal
- Department of Chemistry, Faculty of Engineering and Technology , SRM Institute of Science and Technology , Kattankulathur, Chennai 603203 , India
| | - Renjith S Pillai
- Department of Chemistry, Faculty of Engineering and Technology , SRM Institute of Science and Technology , Kattankulathur, Chennai 603203 , India
| | - Yunjang Gu
- Division of Chemical and Biomolecular Engineering , Pusan National University , Busan 46241 , Korea
| | - Youngson Choe
- Division of Chemical and Biomolecular Engineering , Pusan National University , Busan 46241 , Korea
| | - Dae-Won Park
- Division of Chemical and Biomolecular Engineering , Pusan National University , Busan 46241 , Korea
| |
Collapse
|
49
|
Chen S, Pudukudy M, Yue Z, Zhang H, Zhi Y, Ni Y, Shan S, Jia Q. Nonmetal Schiff-Base Complex-Anchored Cellulose as a Novel and Reusable Catalyst for the Solvent-Free Ring-Opening Addition of CO2 with Epoxides. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03331] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shiyu Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Manoj Pudukudy
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Zhongxiao Yue
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Heng Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yunfei Zhi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yonghao Ni
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton E3B 5A3, Canada
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Qingming Jia
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
50
|
Rachuri Y, Kurisingal JF, Chitumalla RK, Vuppala S, Gu Y, Jang J, Choe Y, Suresh E, Park DW. Adenine-Based Zn(II)/Cd(II) Metal–Organic Frameworks as Efficient Heterogeneous Catalysts for Facile CO2 Fixation into Cyclic Carbonates: A DFT-Supported Study of the Reaction Mechanism. Inorg Chem 2019; 58:11389-11403. [DOI: 10.1021/acs.inorgchem.9b00814] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | | | | | | | | | | | | | - Eringathodi Suresh
- Analytical and Environmental Science Division and Centralized Instrument Facility, Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364 002, India
| | | |
Collapse
|