1
|
Zhang Q, Xuan Q, Wang C, Shi C, Wang X, Ma T, Zhang W, Li H, Wang P, Chen C. Bioengineered "Molecular Glue"-Mediated Tumor-Specific Cascade Nanoreactors with Self-Destruction Ability for Enhanced Precise Starvation/Chemosynergistic Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41271-41286. [PMID: 37622208 DOI: 10.1021/acsami.3c06871] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The ordered and directed functionalization of targeting elements on the surface of nanomaterials for precise tumor therapy remains a challenge. To address the above problem, herein, we adopted a materials-based synthetic biotechnology strategy to fabricate a bioengineered fusion protein of materials-binding peptides and targeting elements, which can serve as a "molecular glue" to achieve a directional and organized assembly of targeting biological macromolecules on the surface of nanocarriers. The hypoxia microenvironment of solid tumors inspired the rapid development of starvation/chemosynergistic therapy; however, the unsatisfied spatiotemporal specific performance hindered its further development in precise tumor therapy. As a proof of concept, a bioengineered fusion protein containing a dendritic mesoporous silicon (DMSN)-binding peptide, and a tumor-targeted and acidity-decomposable ferritin heavy chain 1 (FTH1), was constructed by fusion expression and further assembled on the surface of DMSN companying with the insertion of hypoxia-activated prodrug tirapazamine (TPZ) and glucose oxidase (GOX) to establish a nanoreactor for precise starvation/chemosynergistic tumor therapy. In this context, the as-prepared therapeutic nanoreactors revealed obvious tumor-specific accumulation and an endocytosis effect. Next, the acidic tumor microenvironment triggered the structural collapse of FTH1 and the subsequent release of GOX and TPZ, in which GOX-mediated catalysis cut off the nutrition supply to realize starvation therapy based on the consumption of endogenous glucose and further provided an exacerbated hypoxia environment for TPZ in situ activation to initiate tumor chemotherapy. More significantly, the presence of "molecular glue" elevated the tumor-targeting capacity of nanoreactors and further enhanced the starvation/chemosynergistic therapeutic effect remarkably, suggesting that such a strategy provided a solution for the functionality of nanomaterials and facilitated the design of novel targeting nanomedicines. Overall, this study highlights materials-binding peptides as a new type of "molecular glue" and opens new avenues for designing and exploring active biological materials for biological functions and applications.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Centre, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Qize Xuan
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Centre, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Chongli Shi
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Xiaoli Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Centre, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Tonghao Ma
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Centre, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Centre, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, Minnesota 55108, United States
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Centre, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
2
|
Targeted Two-Step Delivery of Oncotheranostic Nano-PLGA for HER2-Positive Tumor Imaging and Therapy In Vivo: Improved Effectiveness Compared to One-Step Strategy. Pharmaceutics 2023; 15:pharmaceutics15030833. [PMID: 36986694 PMCID: PMC10053351 DOI: 10.3390/pharmaceutics15030833] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Therapy for aggressive metastatic breast cancer remains a great challenge for modern biomedicine. Biocompatible polymer nanoparticles have been successfully used in clinic and are seen as a potential solution. Specifically, researchers are exploring the development of chemotherapeutic nanoagents targeting the membrane-associated receptors of cancer cells, such as HER2. However, there are no targeting nanomedications that have been approved for human cancer therapy. Novel strategies are being developed to alter the architecture of agents and optimize their systemic administration. Here, we describe a combination of these approaches, namely, the design of a targeted polymer nanocarrier and a method for its systemic delivery to the tumor site. Namely, PLGA nanocapsules loaded with a diagnostic dye, Nile Blue, and a chemotherapeutic compound, doxorubicin, are used for two-step targeted delivery using the concept of tumor pre-targeting through the barnase/barstar protein “bacterial superglue”. The first pre-targeting component consists of an anti-HER2 scaffold protein, DARPin9_29 fused with barstar, Bs-DARPin9_29, and the second component comprises chemotherapeutic PLGA nanocapsules conjugated to barnase, PLGA-Bn. The efficacy of this system was evaluated in vivo. To this aim, we developed an immunocompetent BALB/c mouse tumor model with a stable expression of human HER2 oncomarkers to test the potential of two-step delivery of oncotheranostic nano-PLGA. In vitro and ex vivo studies confirmed HER2 receptor stable expression in the tumor, making it a feasible tool for HER2-targeted drug evaluation. We demonstrated that two-step delivery was more effective than one-step delivery for both imaging and tumor therapy: two-step delivery had higher imaging capabilities than one-step and a tumor growth inhibition of 94.9% in comparison to 68.4% for the one-step strategy. The barnase*barstar protein pair has been proven to possess excellent biocompatibility, as evidenced by the successful completion of biosafety tests assessing immunogenicity and hemotoxicity. This renders the protein pair a highly versatile tool for pre-targeting tumors with various molecular profiles, thereby enabling the development of personalized medicine.
Collapse
|
3
|
Obozina AS, Komedchikova EN, Kolesnikova OA, Iureva AM, Kovalenko VL, Zavalko FA, Rozhnikova TV, Tereshina ED, Mochalova EN, Shipunova VO. Genetically Encoded Self-Assembling Protein Nanoparticles for the Targeted Delivery In Vitro and In Vivo. Pharmaceutics 2023; 15:231. [PMID: 36678860 PMCID: PMC9861179 DOI: 10.3390/pharmaceutics15010231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Targeted nanoparticles of different origins are considered as new-generation diagnostic and therapeutic tools. However, there are no targeted drug formulations within the composition of nanoparticles approved by the FDA for use in the clinic, which is associated with the insufficient effectiveness of the developed candidates, the difficulties of their biotechnological production, and inadequate batch-to-batch reproducibility. Targeted protein self-assembling nanoparticles circumvent this problem since proteins are encoded in DNA and the final protein product is produced in only one possible way. We believe that the combination of the endless biomedical potential of protein carriers as nanoparticles and the standardized protein purification protocols will make significant progress in "magic bullet" creation possible, bringing modern biomedicine to a new level. In this review, we are focused on the currently existing platforms for targeted self-assembling protein nanoparticles based on transferrin, lactoferrin, casein, lumazine synthase, albumin, ferritin, and encapsulin proteins, as well as on proteins from magnetosomes and virus-like particles. The applications of these self-assembling proteins for targeted delivery in vitro and in vivo are thoroughly discussed, including bioimaging applications and different therapeutic approaches, such as chemotherapy, gene delivery, and photodynamic and photothermal therapy. A critical assessment of these protein platforms' efficacy in biomedicine is provided and possible problems associated with their further development are described.
Collapse
Affiliation(s)
| | | | | | - Anna M. Iureva
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Vera L. Kovalenko
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Fedor A. Zavalko
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | | | | | - Elizaveta N. Mochalova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Nanobiomedicine Division, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Victoria O. Shipunova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Nanobiomedicine Division, Sirius University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|
4
|
Novoselova MV, Shramova EI, Sergeeva OV, Shcherbinina EY, Perevoschikov SV, Melnikov P, Griaznova OY, Sergeev IS, Konovalova EV, Schulga AA, Proshkina GM, Zatsepin TS, Deyev SM, Gorin DA. Polymer/magnetite carriers functionalized by HER2-DARPin: Avoiding lysosomes during internalization and controlled toxicity of doxorubicin by focused ultrasound induced release. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102612. [PMID: 36243307 DOI: 10.1016/j.nano.2022.102612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/08/2022] [Accepted: 09/25/2022] [Indexed: 11/05/2022]
Abstract
Nanomedicine has revolutionized the available treatment options during the last decade, but poor selectivity of targeted drug delivery and release is still poses a challenge. In this study, doxorubicin (DOX) and magnetite nanoparticles were encapsulated by freezing-induced loading, coated with polymeric shell bearing two bi-layers of polyarginine/dextran sulphate and finally modified with HER2-specific DARPin proteins. We demonstrated that the enhanced cellular uptake of these nanocarriers predominantly occurs by SKOV-3 (HER2+) cells, in comparison to CHO (HER2-) cells, together with the controlled DOX release using low intensity focused ultrasound (LIFU). In addition, a good ability of DARPin+ capsules to accumulate in the tumor and the possibility of combination therapy with LIFU were demonstrated. A relatively high sensitivity of the obtained nanocarriers to LIFU and their preferential interactions with mitochondria in cancer cells make these carriers promising candidates for cancer treatment, including novel approaches to overcome drug resistance.
Collapse
Affiliation(s)
- M V Novoselova
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | - E I Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - O V Sergeeva
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | - E Y Shcherbinina
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | | | - P Melnikov
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - O Yu Griaznova
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia.
| | - I S Sergeev
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - E V Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - A A Schulga
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - G M Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia.
| | - T S Zatsepin
- Lomonosov Moscow State University, Moscow 119991, Russia.
| | - S M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - D A Gorin
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| |
Collapse
|
5
|
Kovalenko VL, Komedchikova EN, Sogomonyan AS, Tereshina ED, Kolesnikova OA, Mirkasymov AB, Iureva AM, Zvyagin AV, Nikitin PI, Shipunova VO. Lectin-Modified Magnetic Nano-PLGA for Photodynamic Therapy In Vivo. Pharmaceutics 2022; 15:pharmaceutics15010092. [PMID: 36678721 PMCID: PMC9862264 DOI: 10.3390/pharmaceutics15010092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
The extreme aggressiveness and lethality of many cancer types appeal to the problem of the development of new-generation treatment strategies based on smart materials with a mechanism of action that differs from standard treatment approaches. The targeted delivery of nanoparticles to specific cancer cell receptors is believed to be such a strategy; however, there are no targeted nano-drugs that have successfully completed clinical trials to date. To meet the challenge, we designed an alternative way to eliminate tumors in vivo. Here, we show for the first time that the targeting of lectin-equipped polymer nanoparticles to the glycosylation profile of cancer cells, followed by photodynamic therapy (PDT), is a promising strategy for the treatment of aggressive tumors. We synthesized polymer nanoparticles loaded with magnetite and a PDT agent, IR775 dye (mPLGA/IR775). The magnetite incorporation into the PLGA particle structure allows for the quantitative tracking of their accumulation in different organs and the performing of magnetic-assisted delivery, while IR775 makes fluorescent in vivo bioimaging as well as light-induced PDT possible, thus realizing the theranostics concept. To equip PLGA nanoparticles with targeting modality, the particles were conjugated with lectins of different origins, and the flow cytometry screening revealed that the most effective candidate for breast cancer cell labeling is ConA, a lectin from Canavalia ensiformis. In vivo experiments showed that after i.v. administration, mPLGA/IR775-ConA nanoparticles efficiently accumulated in the allograft tumors under the external magnetic field; produced a bright fluorescent signal for in vivo bioimaging; and led to 100% tumor growth inhibition after the single session of PDT, even for large solid tumors of more than 200 mm3 in BALB/c mice. The obtained results indicate that the mPLGA/IR775 nanostructure has great potential to become a highly effective oncotheranostic agent.
Collapse
Affiliation(s)
- Vera L. Kovalenko
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Elena N. Komedchikova
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Anna S. Sogomonyan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Ekaterina D. Tereshina
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Olga A. Kolesnikova
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Aziz B. Mirkasymov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Anna M. Iureva
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Andrei V. Zvyagin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Petr I. Nikitin
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia
| | - Victoria O. Shipunova
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- Nanobiomedicine Division, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
- Correspondence:
| |
Collapse
|
6
|
Komedchikova EN, Kolesnikova OA, Tereshina ED, Kotelnikova PA, Sogomonyan AS, Stepanov AV, Deyev SM, Nikitin MP, Shipunova VO. Two-Step Targeted Drug Delivery via Proteinaceous Barnase-Barstar Interface and Doxorubicin-Loaded Nano-PLGA Outperforms One-Step Strategy for Targeted Delivery to HER2-Overexpressing Cells. Pharmaceutics 2022; 15:52. [PMID: 36678681 PMCID: PMC9861000 DOI: 10.3390/pharmaceutics15010052] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Nanoparticle-based chemotherapy is considered to be an effective approach to cancer diagnostics and therapy in modern biomedicine. However, efficient tumor targeting remains a great challenge due to the lack of specificity, selectivity, and high dosage of chemotherapeutic drugs required. A two-step targeted drug delivery strategy (DDS), involving cancer cell pre-targeting, first with a first nontoxic module and subsequent targeting with a second complementary toxic module, is a solution for decreasing doses for administration and lowering systemic toxicity. To prove two-step DDS efficiency, we performed a direct comparison of one-step and two-step DDS based on chemotherapy loaded PLGA nanoparticles and barnase*barstar interface. Namely, we developed and thoroughly characterized the two-step targeting strategy of HER2-overexpressing cancer cells. The first targeting block consists of anti-HER2 scaffold polypeptide DARPin9_29 fused with barstar. Barstar exhibits an extremely effective binding to ribonuclease barnase with Kaff = 1014 M-1, thus making the barnase*barstar protein pair one of the strongest known protein*protein complexes. A therapeutic PLGA-based nanocarrier coupled to barnase was used as a second targeting block. The PLGA nanoparticles were loaded with diagnostic dye, Nile Blue, and a chemotherapeutic drug, doxorubicin. We showed that the two-step DDS increases the performance of chemotherapy-loaded nanocarriers: IC50 of doxorubicin delivered via two-step DDS was more than 100 times lower than that for one-step DDS: IC50 = 43 ± 3 nM for two-step DDS vs. IC50 = 4972 ± 1965 nM for one-step DDS. The obtained results demonstrate the significant efficiency of two-step DDS over the classical one-step one. We believe that the obtained data will significantly change the direction of research in developing targeted anti-cancer drugs and promote the creation of new generation cancer treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Polina A. Kotelnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Anna S. Sogomonyan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexey V. Stepanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Maxim P. Nikitin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Nanobiomedicine Division, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Victoria O. Shipunova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Nanobiomedicine Division, Sirius University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|
7
|
Shipunova VO, Belova MM, Kotelnikova PA, Shilova ON, Mirkasymov AB, Danilova NV, Komedchikova EN, Popovtzer R, Deyev SM, Nikitin MP. Photothermal Therapy with HER2-Targeted Silver Nanoparticles Leading to Cancer Remission. Pharmaceutics 2022; 14:1013. [PMID: 35631598 PMCID: PMC9145338 DOI: 10.3390/pharmaceutics14051013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
Nanoparticles exhibiting the localized surface plasmon resonance (LSPR) phenomenon are promising tools for diagnostics and cancer treatment. Among widely used metal nanoparticles, silver nanoparticles (Ag NPs) possess the strongest light scattering and surface plasmon strength. However, the therapeutic potential of Ag NPs has until now been underestimated. Here we show targeted photothermal therapy of solid tumors with 35 nm HER2-targeted Ag NPs, which were produced by the green synthesis using an aqueous extract of Lavandula angustifolia Mill. Light irradiation tests demonstrated effective hyperthermic properties of these NPs, namely heating by 10 °C in 10 min. To mediate targeted cancer therapy, Ag NPs were conjugated to the scaffold polypeptide, affibody ZHER2:342, which recognizes a clinically relevant oncomarker HER2. The conjugation was mediated by the PEG linker to obtain Ag-PEG-HER2 nanoparticles. Flow cytometry tests showed that Ag-PEG-HER2 particles successfully bind to HER2-overexpressing cells with a specificity comparable to that of full-size anti-HER2 IgGs. A confocal microscopy study showed efficient internalization of Ag-PEG-HER2 into cells in less than 2 h of incubation. Cytotoxicity assays demonstrated effective cell death upon exposure to Ag-PEG-HER2 and irradiation, caused by the production of reactive oxygen species. Xenograft tumor therapy with Ag-PEG-HER2 particles in vivo resulted in full primary tumor regression and the prevention of metastatic spread. Thus, for the first time, we have shown that HER2-directed plasmonic Ag nanoparticles are effective sensitizers for targeted photothermal oncotherapy.
Collapse
Affiliation(s)
- Victoria O. Shipunova
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (M.M.B.); (M.P.N.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (P.A.K.); (O.N.S.); (A.B.M.); (S.M.D.)
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia;
| | - Mariia M. Belova
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (M.M.B.); (M.P.N.)
| | - Polina A. Kotelnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (P.A.K.); (O.N.S.); (A.B.M.); (S.M.D.)
| | - Olga N. Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (P.A.K.); (O.N.S.); (A.B.M.); (S.M.D.)
| | - Aziz B. Mirkasymov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (P.A.K.); (O.N.S.); (A.B.M.); (S.M.D.)
| | - Natalia V. Danilova
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia;
| | - Elena N. Komedchikova
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia;
| | - Rachela Popovtzer
- Faculty of Engineering, Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel;
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (P.A.K.); (O.N.S.); (A.B.M.); (S.M.D.)
| | - Maxim P. Nikitin
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (M.M.B.); (M.P.N.)
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia;
| |
Collapse
|
8
|
Freitas AI, Domingues L, Aguiar TQ. Tag-mediated single-step purification and immobilization of recombinant proteins toward protein-engineered advanced materials. J Adv Res 2022; 36:249-264. [PMID: 35127175 PMCID: PMC8799874 DOI: 10.1016/j.jare.2021.06.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Background The potential applications of protein-engineered functional materials are so wide and exciting that the interest in these eco-friendly advanced materials will further expand in the future. Tag-mediated protein purification/immobilization technologies have emerged as green and cost-effective approaches for the fabrication of such materials. Strategies that combine the purification and immobilization of recombinant proteins/peptides onto/into natural, synthetic or hybrid materials in a single-step are arising and attracting increasing interest. Aim of Review This review highlights the most significant advances of the last 5 years within the scope of tag-mediated protein purification/immobilization and elucidates their contributions for the development of efficient single-step purification and immobilization strategies. Recent progresses in the field of protein-engineered materials created using innovative protein-tag combinations and future opportunities created by these new technologies are also summarized and identified herein. Key Scientific Concepts of Review Protein purification/immobilization tags present a remarkable ability to establish specific non-covalent/covalent interactions between solid materials and biological elements, which prompted the creation of tailor-made and advanced functional materials, and of next-generation hybrid materials. Affinity tags can bind to a wide range of materials (of synthetic, natural or hybrid nature), being most suitable for protein purification. Covalently binding tags are most suitable for long-term protein immobilization, but can only bind naturally to protein-based materials. Hybrid affinity-covalently binding tags have allowed efficient one-step purification and immobilization of proteins onto different materials, as well as the development of innovative protein-engineered materials. Self-aggregating tags have been particularly useful in combination with other tags for generating protein-engineered materials with self-assembling, flexible and/or responsive properties. While these tags have been mainly explored for independent protein purification, immobilization or functionalization purposes, efficient strategies that combine tag-mediated purification and immobilization/functionalization in a single-step will be essential to guarantee the sustainable manufacturing of advanced protein-engineered materials.
Collapse
Affiliation(s)
- Ana I. Freitas
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Tatiana Q. Aguiar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
9
|
Shipunova VO, Deyev SM. Artificial Scaffold Polypeptides As an Efficient Tool for the Targeted Delivery of Nanostructures In Vitro and In Vivo. Acta Naturae 2022; 14:54-72. [PMID: 35441046 PMCID: PMC9013437 DOI: 10.32607/actanaturae.11545] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
The use of traditional tools for the targeted delivery of nanostructures, such as antibodies, transferrin, lectins, or aptamers, often leads to an entire range of undesirable effects. The large size of antibodies often does not allow one to reach the required number of molecules on the surface of nanostructures during modification, and the constant domains of heavy chains, due to their effector functions, can induce phagocytosis. In the recent two decades, targeted polypeptide scaffold molecules of a non-immunoglobulin nature, antibody mimetics, have emerged as much more effective targeting tools. They are small in size (3-20 kDa), possess high affinity (from subnano- to femtomolar binding constants), low immunogenicity, and exceptional thermodynamic stability. These molecules can be effectively produced in bacterial cells, and, using genetic engineering manipulations, it is possible to create multispecific fusion proteins for the targeting of nanoparticles to cells with a given molecular portrait, which makes scaffold polypeptides an optimal tool for theranostics.
Collapse
Affiliation(s)
- V. O. Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - S. M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
10
|
Shilova O, Kotelnikova P, Proshkina G, Shramova E, Deyev S. Barnase-Barstar Pair: Contemporary Application in Cancer Research and Nanotechnology. Molecules 2021; 26:molecules26226785. [PMID: 34833876 PMCID: PMC8625414 DOI: 10.3390/molecules26226785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
Barnase is an extracellular ribonuclease secreted by Bacillus amyloliquefaciens that was originally studied as a small stable enzyme with robust folding. The identification of barnase intracellular inhibitor barstar led to the discovery of an incredibly strong protein-protein interaction. Together, barnase and barstar provide a fully genetically encoded toxin-antitoxin pair having an extremely low dissociation constant. Moreover, compared to other dimerization systems, the barnase-barstar module provides the exact one-to-one ratio of the complex components and possesses high stability of each component in a complex and high solubility in aqueous solutions without self-aggregation. The unique properties of barnase and barstar allow the application of this pair for the engineering of different variants of targeted anticancer compounds and cytotoxic supramolecular complexes. Using barnase in suicide gene therapy has also found its niche in anticancer therapy. The application of barnase and barstar in contemporary experimental cancer therapy is reflected in the review.
Collapse
Affiliation(s)
- Olga Shilova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.); (G.P.); (E.S.)
- Correspondence: (O.S.); (S.D.)
| | - Polina Kotelnikova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.); (G.P.); (E.S.)
| | - Galina Proshkina
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.); (G.P.); (E.S.)
| | - Elena Shramova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.); (G.P.); (E.S.)
| | - Sergey Deyev
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.); (G.P.); (E.S.)
- Center of Biomedical Engineering, Sechenov University, 119991 Moscow, Russia
- Research Centrum for Oncotheranostics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
- Correspondence: (O.S.); (S.D.)
| |
Collapse
|
11
|
Yashchenok AM, Gusliakova OI, Konovalova EV, Novoselova MV, Shipunova VO, Abakumova TO, Efimova OI, Kholodenko R, Schulga AA, Zatsepin TS, Gorin DA, Deyev SM. Barnase encapsulation into submicron porous CaCO 3 particles: studies of loading and enzyme activity. J Mater Chem B 2021; 9:8823-8831. [PMID: 34633027 DOI: 10.1039/d1tb01315g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present study focuses on the immobilization of the bacterial ribonuclease barnase (Bn) into submicron porous calcium carbonate (CaCO3) particles. For encapsulation, we apply adsorption, freezing-induced loading and co-precipitation methods and study the effects of adsorption time, enzyme concentration and anionic polyelectrolytes on the encapsulation efficiency of Bn. We show that the use of negatively charged dextran sulfate (DS) and ribonucleic acid from yeast (RNA) increases the loading capacity (LC) of the enzyme on CaCO3 particles by about 3-fold as compared to the particles with Bn itself. The ribonuclease (RNase) activity of encapsulated enzyme depends on the LC of the particles and transformation of metastable vaterite to stable calcite, as studied by the assessment of enzyme activities in particles.
Collapse
Affiliation(s)
- Alexey M Yashchenok
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia.
| | - Olga I Gusliakova
- Remote Controlled Theranostic Systems Lab, Saratov State University, 410012 Saratov, Russia
| | - Elena V Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
| | - Marina V Novoselova
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia.
| | - Victoria O Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
| | - Tatiana O Abakumova
- Center for Life Science, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Olga I Efimova
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Roman Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
| | - Alexey A Schulga
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
| | - Timofei S Zatsepin
- Center for Life Science, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Dmitry A Gorin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia.
| | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
| |
Collapse
|
12
|
Shramova EI, Shilova MV, Ryabova AV, Dzhalilova DS, Zolotova NA, Telegin GB, Deyev SM, Proshkina GM. Barnase*Barstar-guided two-step targeting approach for drug delivery to tumor cells in vivo. J Control Release 2021; 340:200-208. [PMID: 34740723 DOI: 10.1016/j.jconrel.2021.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022]
Abstract
For precise ligation of a targeting and cytotoxic moiety, the use of Barnase-Barstar pair as a molecular glue is proposed for the first time. Targeting was mediated through the use of a scaffold protein DARPin_9-29 specific for the human epidermal receptor 2 (HER2) antigen that is highly expressed on some types of cancer and Barnase*Barstar native bacterial proteins interacted with each other with Kd 10-14 M. The approach proposed consists of prelabeling a target tumor with hybrid protein DARPin-Barnase prior to administration of cytotoxic component-loaded liposomes that have Barstar covalently attached to their surface. Based on in vivo bioimaging we have proven that DARPin-based Barnase*Barstar-mediated pretargeting possesses precise tumor-targeting capability as well as antitumor activity leading to apparent tumor-growth inhibition of primary tumors and distant metastases in experimental animals. The results obtained indicate that the new system combining DARPin and Barnase*Barstar can be useful both for the drug development and for monitoring the response to treatment in vivo in preclinical studies.
Collapse
Affiliation(s)
- E I Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - M V Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - A V Ryabova
- Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova, 38, 119991 Moscow, Russia.
| | - D S Dzhalilova
- Department of Immunomorphology of Inflammation, Research Institute of Human Morphology, Tsyurupi str 3, 117418 Moscow, Russia
| | - N A Zolotova
- Department of Immunomorphology of Inflammation, Research Institute of Human Morphology, Tsyurupi str 3, 117418 Moscow, Russia
| | - G B Telegin
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospect Nauki 6, Pushchino 142290, Russia.
| | - S M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia; Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634 050 Tomsk, Russia; MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe shosse, Moscow 115409, Russia
| | - G M Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia.
| |
Collapse
|
13
|
Burmistrov DE, Yanykin DV, Paskhin MO, Nagaev EV, Efimov AD, Kaziev AV, Ageychenkov DG, Gudkov SV. Additive Production of a Material Based on an Acrylic Polymer with a Nanoscale Layer of Zno Nanorods Deposited Using a Direct Current Magnetron Discharge: Morphology, Photoconversion Properties, and Biosafety. MATERIALS 2021; 14:ma14216586. [PMID: 34772111 PMCID: PMC8585381 DOI: 10.3390/ma14216586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 01/31/2023]
Abstract
On the basis of a direct current magnetron, a technology has been developed for producing nanoscale-oriented nanorods from zinc oxide on an acrylic polymer. The technology makes it possible to achieve different filling of the surface with zinc oxide nanorods. The nanorods is partially fused into the polymer; the cross section of the nanorods is rather close to an elongated ellipse. It is shown that, with intense abrasion, no delamination of the nanorods from the acrylic polymer is observed. The zinc oxide nanorods abrades together with the acrylic polymer. Zinc oxide nanorods luminesces with the wavelength most preferable for the process of photosynthesis in higher plants. It was shown that plants grown under the obtained material grow faster and gain biomass faster than the control group. In addition, it was found that on surfaces containing zinc oxide nanorods, a more intense formation of such reactive oxygen species as hydrogen peroxide and hydroxyl radical is observed. Intensive formation of long-lived, active forms of the protein is observed on the zinc oxide coating. The formation of 8-oxoguanine in DNA in vitro on a zinc oxide coating was shown using ELISA method. It was found that the multiplication of microorganisms on the developed material is significantly hampered. At the same time, eukaryotic cells of animals grow and develop without hindrance. Thus, the material we have obtained can be used in photonics (photoconversion material for greenhouses, housings for LEDs), and it is also an affordable and non-toxic nanomaterial for creating antibacterial coatings.
Collapse
Affiliation(s)
- Dmitry E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (D.V.Y.); (M.O.P.); (E.V.N.); (A.D.E.)
| | - Denis V. Yanykin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (D.V.Y.); (M.O.P.); (E.V.N.); (A.D.E.)
| | - Mark O. Paskhin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (D.V.Y.); (M.O.P.); (E.V.N.); (A.D.E.)
| | - Egor V. Nagaev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (D.V.Y.); (M.O.P.); (E.V.N.); (A.D.E.)
| | - Alexey D. Efimov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (D.V.Y.); (M.O.P.); (E.V.N.); (A.D.E.)
| | - Andrey V. Kaziev
- Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, Kashirskoe Sh. 31, 115409 Moscow, Russia; (A.V.K.); (D.G.A.)
| | - Dmitry G. Ageychenkov
- Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, Kashirskoe Sh. 31, 115409 Moscow, Russia; (A.V.K.); (D.G.A.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia; (D.E.B.); (D.V.Y.); (M.O.P.); (E.V.N.); (A.D.E.)
- Correspondence:
| |
Collapse
|
14
|
Morón M. Protein hydration shell formation: Dynamics of water in biological systems exhibiting nanoscopic cavities. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Shipunova VO, Sogomonyan AS, Zelepukin IV, Nikitin MP, Deyev SM. PLGA Nanoparticles Decorated with Anti-HER2 Affibody for Targeted Delivery and Photoinduced Cell Death. Molecules 2021; 26:molecules26133955. [PMID: 34203547 PMCID: PMC8271481 DOI: 10.3390/molecules26133955] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 11/18/2022] Open
Abstract
The effect of enhanced permeability and retention is often not sufficient for highly effective cancer therapy with nanoparticles, and the development of active targeted drug delivery systems based on nanoparticles is probably the main direction of modern cancer medicine. To meet the challenge, we developed polymer PLGA nanoparticles loaded with fluorescent photosensitive xanthene dye, Rose Bengal, and decorated with HER2-recognizing artificial scaffold protein, affibody ZHER2:342. The obtained 170 nm PLGA nanoparticles possess both fluorescent and photosensitive properties. Namely, under irradiation with the green light of 540 nm nanoparticles, they produced reactive oxygen species leading to cancer cell death. The chemical conjugation of PLGA with anti-HER2 affibody resulted in the selective binding of nanoparticles only to HER2-overexpressing cancer cells. HER2 is a receptor tyrosine kinase that belongs to the EGFR/ERbB family and is overexpressed in 30% of breast cancers, thus serving as a clinically relevant oncomarker. However, the standard targeting molecules such as full-size antibodies possess serious drawbacks, such as high immunogenicity and the need for mammalian cell production. We believe that the developed affibody-decorated targeted photosensitive PLGA nanoparticles will provide new solutions for ongoing problems in cancer diagnostics and treatment, as well in cancer theranostics.
Collapse
Affiliation(s)
- Victoria Olegovna Shipunova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (A.S.S.); (I.V.Z.); (M.P.N.); (S.M.D.)
- Institute of Engineering Physics for Biomedicine (PhysBio), MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Correspondence: ; Tel.: +7-985-2519909
| | - Anna Samvelovna Sogomonyan
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (A.S.S.); (I.V.Z.); (M.P.N.); (S.M.D.)
- Institute of Engineering Physics for Biomedicine (PhysBio), MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| | - Ivan Vladimirovich Zelepukin
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (A.S.S.); (I.V.Z.); (M.P.N.); (S.M.D.)
- Institute of Engineering Physics for Biomedicine (PhysBio), MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia
| | - Maxim Petrovich Nikitin
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (A.S.S.); (I.V.Z.); (M.P.N.); (S.M.D.)
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | - Sergey Mikhailovich Deyev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (A.S.S.); (I.V.Z.); (M.P.N.); (S.M.D.)
- Institute of Engineering Physics for Biomedicine (PhysBio), MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| |
Collapse
|
16
|
Shipunova VO, Kolesnikova OA, Kotelnikova PA, Soloviev VD, Popov AA, Proshkina GM, Nikitin MP, Deyev SM. Comparative Evaluation of Engineered Polypeptide Scaffolds in HER2-Targeting Magnetic Nanocarrier Delivery. ACS OMEGA 2021; 6:16000-16008. [PMID: 34179645 PMCID: PMC8223436 DOI: 10.1021/acsomega.1c01811] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/31/2021] [Indexed: 06/01/2023]
Abstract
Targeted drug delivery is one of the most intriguing and challenging issues in modern biomedicine. For active targeting, full-size IgG molecules (150 kDa) are usually used. Recent studies have revealed that small artificial polypeptide scaffolds such as DARPins (14 kDa) and affibodies (8 kDa) are much more promising tools for drug delivery due to their small size, artificial nature, low immunogenicity, and many other properties. However, there is no comparative information on the targeting abilities of scaffold polypeptides, which should be taken into account when developing drug delivery systems (DDSs). The present work is the first comprehensive study on the comparison of the effectiveness of different HER2-targeting proteins within the architecture of nanoparticles. Namely, we synthesized trimodal nanoparticles: magnetic, fluorescent, and directed toward HER2 oncomarker on cancer cells. The magnetic particles (MPs) were covalently modified with (i) full-size IgG, 150 kDa, (ii) DARPin_G3, 14 kDa, and (iii) affibody ZHER2:342, 8 kDa. We showed that the number of DARPin_G3 and affibody ZHER2:342 molecules conjugated to the nanoparticle surface are 10 and 40 times higher, respectively, than the corresponding value for trastuzumab. Using the methods of magnetic particle quantification (MPQ)-cytometry and confocal microscopy, we showed that all types of the obtained magnetic conjugates specifically labeled HER2-overexpressing cells. Namely, we demonstrated that particle binding to HER2-positive cells is 1113 ± 39 fg/cell for MP*trastuzumab, 1431 ± 186 fg/cell for MP*ZHER2:342, and 625±21 fg/cell for MP*DARPin_G3, which are 2.77, 2.75, and 2.30 times higher than the corresponding values for control HER2-negative cells. Thus, we showed that the smallest HER2-recognizing polypeptide affibody ZHER2:342 is more effective in terms of specificity and selectivity in nanoparticle-mediated cell labeling.
Collapse
Affiliation(s)
- Victoria O. Shipunova
- Shemyakin−Ovchinnikov
Institute of Bioorganic Chemistry, Russian
Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
- Moscow
Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny 141701, Russia
- MEPhI
(Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
- Sirius
University of Science and Technology, 1 Olympic Avenue, Sochi 354340, Russia
| | - Olga A. Kolesnikova
- Shemyakin−Ovchinnikov
Institute of Bioorganic Chemistry, Russian
Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Polina A. Kotelnikova
- Shemyakin−Ovchinnikov
Institute of Bioorganic Chemistry, Russian
Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Vladislav D. Soloviev
- Shemyakin−Ovchinnikov
Institute of Bioorganic Chemistry, Russian
Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
- Sirius
University of Science and Technology, 1 Olympic Avenue, Sochi 354340, Russia
| | - Anton A. Popov
- MEPhI
(Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
| | - Galina M. Proshkina
- Shemyakin−Ovchinnikov
Institute of Bioorganic Chemistry, Russian
Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Maxim P. Nikitin
- Shemyakin−Ovchinnikov
Institute of Bioorganic Chemistry, Russian
Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
- Moscow
Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny 141701, Russia
- Sirius
University of Science and Technology, 1 Olympic Avenue, Sochi 354340, Russia
| | - Sergey M. Deyev
- Shemyakin−Ovchinnikov
Institute of Bioorganic Chemistry, Russian
Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
- MEPhI
(Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
| |
Collapse
|
17
|
Mujtaba J, Liu J, Dey KK, Li T, Chakraborty R, Xu K, Makarov D, Barmin RA, Gorin DA, Tolstoy VP, Huang G, Solovev AA, Mei Y. Micro-Bio-Chemo-Mechanical-Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007465. [PMID: 33893682 DOI: 10.1002/adma.202007465] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Wireless nano-/micromotors powered by chemical reactions and/or external fields generate motive forces, perform tasks, and significantly extend short-range dynamic responses of passive biomedical microcarriers. However, before micromotors can be translated into clinical use, several major problems, including the biocompatibility of materials, the toxicity of chemical fuels, and deep tissue imaging methods, must be solved. Nanomaterials with enzyme-like characteristics (e.g., catalase, oxidase, peroxidase, superoxide dismutase), that is, nanozymes, can significantly expand the scope of micromotors' chemical fuels. A convergence of nanozymes, micromotors, and microfluidics can lead to a paradigm shift in the fabrication of multifunctional micromotors in reasonable quantities, encapsulation of desired subsystems, and engineering of FDA-approved core-shell structures with tuneable biological, physical, chemical, and mechanical properties. Microfluidic methods are used to prepare stable bubbles/microbubbles and capsules integrating ultrasound, optoacoustic, fluorescent, and magnetic resonance imaging modalities. The aim here is to discuss an interdisciplinary approach of three independent emerging topics: micromotors, nanozymes, and microfluidics to creatively: 1) embrace new ideas, 2) think across boundaries, and 3) solve problems whose solutions are beyond the scope of a single discipline toward the development of micro-bio-chemo-mechanical-systems for diverse bioapplications.
Collapse
Affiliation(s)
- Jawayria Mujtaba
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jinrun Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Krishna K Dey
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China
| | - Rik Chakraborty
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Kailiang Xu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
- School of Information Science and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Roman A Barmin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Dmitry A Gorin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Valeri P Tolstoy
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Petergof, St. Petersburg, 198504, Russia
| | - Gaoshan Huang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Alexander A Solovev
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
18
|
Mirkasymov AB, Zelepukin IV, Nikitin PI, Nikitin MP, Deyev SM. In vivo blockade of mononuclear phagocyte system with solid nanoparticles: Efficiency and affecting factors. J Control Release 2020; 330:111-118. [PMID: 33326812 DOI: 10.1016/j.jconrel.2020.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/03/2020] [Indexed: 12/21/2022]
Abstract
Smart nanomaterials, contrast nanoparticles and drug nanocarriers of advanced targeting architecture were designed for various biomedical applications. Most of such agents demonstrate poor pharmacokinetics in vivo due to rapid elimination from the bloodstream by cells of the mononuclear phagocyte system (MPS). One of the promising methods to prolong blood circulation of the nanoparticles without their modification is MPS blockade. The method temporarily decreases macrophage endocytosis in response to uptake of a low-toxic non-functional material. The effect of different factors on the efficiency of macrophage blockade in vivo induced by solid nanomaterials has been studied here. Those include: blocker nanoparticle size, ζ-potential, surface coating, dose, mice strain, presence of tumor or inflammation. We found that the blocker particle coating type had the strongest effect on MPS blockade efficiency, which allowed to prolong functional particle blood circulation half-life 18 times. The mechanisms capable of regulation of the MPS blockade have been demonstrated, which can promote application of this phenomenon in medicine for improving delivery of diagnostic and therapeutic nanomaterials.
Collapse
Affiliation(s)
- Aziz B Mirkasymov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Ivan V Zelepukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Petr I Nikitin
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maxim P Nikitin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia.
| |
Collapse
|
19
|
Khalid K, Tan X, Mohd Zaid HF, Tao Y, Lye Chew C, Chu DT, Lam MK, Ho YC, Lim JW, Chin Wei L. Advanced in developmental organic and inorganic nanomaterial: a review. Bioengineered 2020; 11:328-355. [PMID: 32138595 PMCID: PMC7161543 DOI: 10.1080/21655979.2020.1736240] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 02/08/2023] Open
Abstract
With the unique properties such as high surface area to volume ratio, stability, inertness, ease of functionalization, as well as novel optical, electrical, and magnetic behaviors, nanomaterials have a wide range of applications in various fields with the common types including nanotubes, dendrimers, quantum dots, and fullerenes. With the aim of providing useful insights to help future development of efficient and commercially viable technology for large-scale production, this review focused on the science and applications of inorganic and organic nanomaterials, emphasizing on their synthesis, processing, characterization, and applications on different fields. The applications of nanomaterials on imaging, cell and gene delivery, biosensor, cancer treatment, therapy, and others were discussed in depth. Last but not least, the future prospects and challenges in nanoscience and nanotechnology were also explored.
Collapse
Affiliation(s)
- Khalisanni Khalid
- Malaysian Agricultural Research and Development Institute (MARDI), Serdang, Malaysia
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Xuefei Tan
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, PR China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, PR China
- Dalian SEM Bio-Engineering Technology Co., Ltd, Dalian, PR China
| | - Hayyiratul Fatimah Mohd Zaid
- Fundamental and Applied Sciences Department, Centre of Innovative Nanostructures & Nanodevices (COINN), Institute of Autonomous System, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chien Lye Chew
- Sime Darby Plantation Research (Formerly Known as Sime Darby Research), R&D Centre – Carey Island, Pulau Carey, Malaysia
| | - Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Norway
| | - Man Kee Lam
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Yeek-Chia Ho
- Civil and Environmental Engineering Department, Univesiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Center for Urban Resource Sustainably, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia Lim
| | - Lai Chin Wei
- Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya (UM), Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Shipunova VO, Komedchikova EN, Kotelnikova PA, Zelepukin IV, Schulga AA, Proshkina GM, Shramova EI, Kutscher HL, Telegin GB, Kabashin AV, Prasad PN, Deyev SM. Dual Regioselective Targeting the Same Receptor in Nanoparticle-Mediated Combination Immuno/Chemotherapy for Enhanced Image-Guided Cancer Treatment. ACS NANO 2020; 14:12781-12795. [PMID: 32935975 DOI: 10.1021/acsnano.0c03421] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
When combined with immunotherapy, image-guided targeted delivery of chemotherapeutic agents is a promising direction for combination cancer theranostics, but this approach has so far produced only limited success due to a lack of molecular targets on the cell surface and low therapeutic index of conventional chemotherapy drugs. Here, we demonstrate a synergistic strategy of combination immuno/chemotherapy in conditions of dual regioselective targeting, implying vectoring of two distinct binding sites of a single oncomarker (here, HER2) with theranostic compounds having a different mechanism of action. We use: (i) PLGA nanoformulation, loaded with an imaging diagnostic fluorescent dye (Nile Red) and a chemotherapeutic drug (doxorubicin), and functionalized with affibody ZHER2:342 (8 kDa); (ii) bifunctional genetically engineered DARP-LoPE (42 kDa) immunotoxin comprising of a low-immunogenic modification of therapeutic Pseudomonas exotoxin A (LoPE) and a scaffold targeting protein, DARPin9.29 (14 kDa). According to the proposed strategy, the first chemotherapeutic nanoagent is targeted by the affibody to subdomain III and IV of HER2 with 60-fold specificity compared with nontargeted particles, while the second immunotoxin is effectively targeted by DARPin molecule to subdomain I of HER2. We demonstrate that this dual targeting strategy can enhance anticancer therapy of HER2-positive cells with a very strong synergy, which made possible 1000-fold decrease of effective drug concentration in vitro and a significant enhancement of HER2 cancer therapy compared to monotherapy in vivo. Moreover, this therapeutic combination prevented the appearance of secondary tumor nodes. Thus, the suggested synergistic strategy utilizing dual targeting of the same oncomarker could give rise to efficient methods for aggressive tumors treatment.
Collapse
Affiliation(s)
- Victoria O Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
| | - Elena N Komedchikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Polina A Kotelnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Ivan V Zelepukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
| | - Alexey A Schulga
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Galina M Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Elena I Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Hilliard L Kutscher
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, 428 Natural Science Complex, Buffalo, New York 14260-3000, United States
- Department of Medicine, University at Buffalo, 875 Ellicott Street, Buffalo, New York 14203, United States
- Department of Anesthesiology, University at Buffalo, 77 Goodell Street, Suite 550, Buffalo, New York 14203, United States
| | - Georgij B Telegin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Andrei V Kabashin
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
- Aix Marseille University, CNRS, LP3, Campus de Luminy-case 917, 13288, Marseille Cedex 9, France
| | - Paras N Prasad
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, 428 Natural Science Complex, Buffalo, New York 14260-3000, United States
| | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
| |
Collapse
|
21
|
Gudkov SV, Simakin AV, Bunkin NF, Shafeev GA, Astashev ME, Glinushkin AP, Grinberg MA, Vodeneev VA. Development and application of photoconversion fluoropolymer films for greenhouses located at high or polar latitudes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112056. [PMID: 33142218 DOI: 10.1016/j.jphotobiol.2020.112056] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/25/2020] [Accepted: 10/13/2020] [Indexed: 11/28/2022]
Abstract
To convert and store energy in the process of photosynthesis, plants primarily use quanta of the red and blue parts of the spectrum. At high latitudes, the average daily intensity of red and blue parts of the spectrum is not very high; for many crops cultivated under greenhouse conditions, it reaches the sufficient level only on clear summer days. The problem of insufficient illumination in greenhouses is usually solved with artificial light sources. This article describes a technology for the manufacture of photoconversion fluoropolymer films for greenhouses. The fluoropolymer films described in the paper make use of original gold nanoparticles and nanoparticles with fluorescence in the blue or red region of the spectrum. In the polymer film, nanoparticles aggregate in the form of "beads", which enhances the field of the optical wave. The film photoconverts UV and violet light into blue and red light. Gold nanoparticles also partially convert energy in the green region of the spectrum (not used by plants) into heat, which is also important for agriculture at high latitudes. In addition, impregnation of gold nanoparticles into fluoropolymer significantly increases the lifetime of the film. The films described in the paper can significantly increase the productivity of greenhouses located at high latitudes. Plants cultivated under the films have more chlorophyll and a higher intensity of photosynthesis - although their system of distance stress signals is, to a certain degree, suppressed.
Collapse
Affiliation(s)
- Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St, Moscow 119991, Russia.
| | - Alexander V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St, Moscow 119991, Russia
| | - Nikolay F Bunkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St, Moscow 119991, Russia; Bauman Moscow State Technical University, 2-nd Baumanskaya str. 5, Moscow 105005, Russia
| | - Georgy A Shafeev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St, Moscow 119991, Russia
| | - Maxim E Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St, Moscow 119991, Russia; Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., Pushchino, Moscow 119991, Russia
| | - Alexey P Glinushkin
- All-Russian Research Institute of Phytopatology, ul. Institut 5, Bolshie Vyazemy, Moscow 143050, Russia
| | - Marina A Grinberg
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave, Nizhny Novgorod 603950, Russia
| | - Vladimir A Vodeneev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave, Nizhny Novgorod 603950, Russia
| |
Collapse
|
22
|
Shramova EI, Kotlyar AB, Lebedenko EN, Deyev SM, Proshkina GM. Near-Infrared Activated Cyanine Dyes As Agents for Photothermal Therapy and Diagnosis of Tumors. Acta Naturae 2020; 12:102-113. [PMID: 33173600 PMCID: PMC7604893 DOI: 10.32607/actanaturae.11028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
Today, it has become apparent that innovative treatment methods, including those involving simultaneous diagnosis and therapy, are particularly in demand in modern cancer medicine. The development of nanomedicine offers new ways of increasing the therapeutic index and minimizing side effects. The development of photoactivatable dyes that are effectively absorbed in the first transparency window of biological tissues (700-900 nm) and are capable of fluorescence and heat generation has led to the emergence of phototheranostics, an approach that combines the bioimaging of deep tumors and metastases and their photothermal treatment. The creation of near-infrared (NIR) light-activated agents for sensitive fluorescence bioimaging and phototherapy is a priority in phototheranostics, because the excitation of drugs and/or diagnostic substances in the near-infrared region exhibits advantages such as deep penetration into tissues and a weak baseline level of autofluorescence. In this review, we focus on NIR-excited dyes and discuss prospects for their application in photothermal therapy and the diagnosis of cancer. Particular attention is focused on the consideration of new multifunctional nanoplatforms for phototheranostics which allow one to achieve a synergistic effect in combinatorial photothermal, photodynamic, and/or chemotherapy, with simultaneous fluorescence, acoustic, and/or magnetic resonance imaging.
Collapse
Affiliation(s)
- E. I. Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - A. B. Kotlyar
- Tel Aviv University, Ramat Aviv, Tel Aviv, 69978 Israel
| | - E. N. Lebedenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - S. M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
- National Research Tomsk Polytechnic University, Tomsk, 634050 Russia
| | - G. M. Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
23
|
Antibody-directed metal-organic framework nanoparticles for targeted drug delivery. Acta Biomater 2020; 103:223-236. [PMID: 31843718 DOI: 10.1016/j.actbio.2019.12.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/15/2019] [Accepted: 12/10/2019] [Indexed: 11/22/2022]
Abstract
Nanosized metal-organic frameworks (nMOFs) have shown great promise as high-capacity carriers for a variety of applications. For biomedicine, numerous nMOFs have been proposed that can transport virtually any molecular drug, can finely tune their payload release profile, etc. However, perspectives of their applications for the targeted drug delivery remain relatively unclear. So far, only a few works have reported specific cell targeting by nMOFs exclusively through small ligands such as folic acid or RGD peptides. Here we show feasibility of targeted drug delivery to specific cancer cells in vitro with nMOFs functionalized with such universal tool as an antibody. We demonstrate ca. 120 nm magnetic core/MOFs shell nanoagents loaded with doxorubicin/daunorubicin and coupled with an antibody though a hydrophilic carbohydrate interface. We show that carboxymethyl-dextran coating of nMOFs allows extensive loading of the drug molecules (up to 15.7 mg/g), offers their sustained release in physiological media and preserves antibody specificity. Reliable performance of the agents is illustrated with trastuzumab-guided selective targeting and killing of HER2/neu-positive breast cancer cells in vitro. The approach expands the scope of nMOF applications and can serve as a platform for the development of potent theranostic nanoagents. STATEMENT OF SIGNIFICANCE: The unique combination of exceptional drug capacity and controlled release, biodegradability and low toxicity makes nanosized metal-organic frameworks (nMOFs) nearly ideal drug vehicles for various biomedical applications. Unfortunately, the prospective of nMOF applications for the targeted drug delivery is still unclear since only a few examples have been reported for nMOF cell targeting, exclusively for small ligands. In this work, we fill the important gap and demonstrate nanoagent that can specifically kill target cancer cells via drug delivery based on recognition of HER2/neu cell surface receptors by such universal and specific tool as antibodies. The proposed approach is universal and can be adapted for specific biomedical tasks using antibodies of any specificity and nMOFs of a various composition.
Collapse
|
24
|
Elucidating the Binding Mechanism of a Novel Silica-Binding Peptide. Biomolecules 2019; 10:biom10010004. [PMID: 31861313 PMCID: PMC7022404 DOI: 10.3390/biom10010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
Linker-protein G (LPG) is a bifunctional fusion protein composed of a solid-binding peptide (SBP, referred as the "linker") with high affinity to silica-based compounds and a Streptococcus protein G (PG), which binds antibodies. The binding mechanisms of LPG to silica-based materials was studied using different biophysical techniques and compared to that of PG without the linker. LPG displayed high binding affinity to a silica surface (KD = 34.77 ± 11.8 nM), with a vertical orientation, in comparison to parent PG, which exhibited no measurable binding affinity. Incorporation of the linker in the fusion protein, LPG, had no effect on the antibody-binding function of PG, which retained its secondary structure and displayed no alteration of its chemical stability. The LPG system provided a milder, easier, and faster affinity-driven immobilization of antibodies to inorganic surfaces when compared to traditional chemical coupling techniques.
Collapse
|
25
|
Functionalized Upconversion Nanoparticles for Targeted Labelling of Bladder Cancer Cells. Biomolecules 2019; 9:biom9120820. [PMID: 31816991 PMCID: PMC6995529 DOI: 10.3390/biom9120820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 01/22/2023] Open
Abstract
Bladder cancer is the ninth most common cancer worldwide. Due to a high risk of recurrence and progression of bladder cancer, every patient needs long-term surveillance, which includes regular cystoscopy, sometimes followed by a biopsy of suspicious lesions or resections of recurring tumours. This study addresses the development of novel biohybrid nanocomplexes representing upconversion nanoparticles (UCNP) coupled to antibodies for photoluminescent (PL) detection of bladder cancer cells. Carrying specific antibodies, these nanoconjugates selectively bind to urothelial carcinoma cells and make them visible by emitting visible PL upon excitation with deeply penetrating near-infrared light. UCNP were coated with a silica layer and linked to anti-Glypican-1 antibody MIL38 via silica-specific solid-binding peptide. Conjugates have been shown to specifically attach to urothelial carcinoma cells with high expression of Glypican-1. This result highlights the potential of produced conjugates and conjugation technology for further studies of their application in the tumour detection and fluorescence-guided resection.
Collapse
|
26
|
Sindeeva OA, Verkhovskii RA, Sarimollaoglu M, Afanaseva GA, Fedonnikov AS, Osintsev EY, Kurochkina EN, Gorin DA, Deyev SM, Zharov VP, Galanzha EI. New Frontiers in Diagnosis and Therapy of Circulating Tumor Markers in Cerebrospinal Fluid In Vitro and In Vivo. Cells 2019; 8:E1195. [PMID: 31581745 PMCID: PMC6830088 DOI: 10.3390/cells8101195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/21/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
One of the greatest challenges in neuro-oncology is diagnosis and therapy (theranostics) of leptomeningeal metastasis (LM), brain metastasis (BM) and brain tumors (BT), which are associated with poor prognosis in patients. Retrospective analyses suggest that cerebrospinal fluid (CSF) is one of the promising diagnostic targets because CSF passes through central nervous system, harvests tumor-related markers from brain tissue and, then, delivers them into peripheral parts of the human body where CSF can be sampled using minimally invasive and routine clinical procedure. However, limited sensitivity of the established clinical diagnostic cytology in vitro and MRI in vivo together with minimal therapeutic options do not provide patient care at early, potentially treatable, stages of LM, BM and BT. Novel technologies are in demand. This review outlines the advantages, limitations and clinical utility of emerging liquid biopsy in vitro and photoacoustic flow cytometry (PAFC) in vivo for assessment of CSF markers including circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), microRNA (miRNA), proteins, exosomes and emboli. The integration of in vitro and in vivo methods, PAFC-guided theranostics of single CTCs and targeted drug delivery are discussed as future perspectives.
Collapse
Affiliation(s)
- Olga A. Sindeeva
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
| | - Roman A. Verkhovskii
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
| | - Mustafa Sarimollaoglu
- Arkansas Nanomedicine Center & Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Galina A. Afanaseva
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Saratov State Medical University, 112 Bolshaya Kazachia St., 410012 Saratov, Russia
| | - Alexander S. Fedonnikov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Saratov State Medical University, 112 Bolshaya Kazachia St., 410012 Saratov, Russia
| | - Evgeny Yu. Osintsev
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Saratov State Medical University, 112 Bolshaya Kazachia St., 410012 Saratov, Russia
| | - Elena N. Kurochkina
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Saratov State Medical University, 112 Bolshaya Kazachia St., 410012 Saratov, Russia
| | - Dmitry A. Gorin
- Laboratory of Biophotonics, Skolkovo Institute of Science and Technology, 3 Nobelya Str., 121205 Moscow, Russia;
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia;
| | - Vladimir P. Zharov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Arkansas Nanomedicine Center & Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Ekaterina I. Galanzha
- Laboratory of Biomedical Photoacoustics, Saratov State University, 83 Astrakhanskaya St, 410012 Saratov, Russia; (O.A.S.); (R.A.V.); (G.A.A.); (A.S.F.); (E.Y.O.); (E.N.K.); (V.P.Z.)
- Laboratory of Lymphatic Research, Diagnosis and Therapy (LDT), University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
27
|
Shilovskiy IP, Dyneva ME, Kurbacheva OM, Kudlay DA, Khaitov MR. The Role of Interleukin-37 in the Pathogenesis of Allergic Diseases. Acta Naturae 2019; 11:54-64. [PMID: 31993235 PMCID: PMC6977961 DOI: 10.32607/20758251-2019-11-4-54-64] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
Cytokines of the interleukin-1 (IL-1) family play an important role in the realization of the protective functions of innate immunity and are the key mediators involved in the pathogenesis of a wide range of diseases, including various manifestations of allergy. The IL-1 family includes more than 11 members. However, the functions of many of them remain to be elucidated. Recently, new members of the IL-1 family have been discovered. In 2000, several independent research groups reported the discovery of a new interleukin of this family, which was named IL-37, or IL-1F7 (according to the new nomenclature). IL-37 was assigned to the IL-1 family based on its structural similarity with other members of this family. The study of its biological properties showed that its activity changes in inflammatory diseases, such as rheumatoid arthritis, psoriasis, as well as allergic diseases (allergic rhinitis, bronchial asthma, and atopic dermatitis). However, unlike most members of the IL-1 family, IL-37 acts as a negative regulator of inflammation. Activation of IL-37 suppresses inflammation, resulting in the suppression of inflammatory cytokines and chemokines, which in turn prevents infiltration of pro-inflammatory cells, mainly eosinophils and neutrophils. The exact molecular and cellular mechanisms of the anti-inflammatory effect of IL-37 in the development of allergic diseases (AD) have not been fully studied. This review summarizes and analyzes the accumulated experimental data on the role of IL-37 in the pathogenesis of AD, such as allergic rhinitis, bronchial asthma, and atopic dermatitis.
Collapse
Affiliation(s)
- I. P. Shilovskiy
- National Research Center – Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522 Russia
| | - M. E. Dyneva
- National Research Center – Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522 Russia
| | - O. M. Kurbacheva
- National Research Center – Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522 Russia
| | - D. A. Kudlay
- National Research Center – Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522 Russia
| | - M. R. Khaitov
- National Research Center – Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522 Russia
| |
Collapse
|
28
|
Shilova ON, Deyev SM. DARPins: Promising Scaffolds for Theranostics. Acta Naturae 2019; 11:42-53. [PMID: 31993234 PMCID: PMC6977956 DOI: 10.32607/20758251-2019-11-4-42-53] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Monoclonal antibodies are the classical basis for targeted therapy, but the development of alternative binding proteins has made it possible to use non-immunoglobulin proteins as targeting modules. The advantages of DARPins, scaffold proteins based on ankyrin repeats, over antibodies are as follows: small size, stability over a wide range of temperatures and pH values, low aggregation tendency, and ease of production in heterologous expression systems. The differences in the structure of the paratope of DARPin and antibodies broaden the spectrum of target molecules, while the ease of creating hybrid fusion proteins allows one to obtain bispecific and multivalent constructs. In this article, we summarize recent data on the development of therapeutic and imaging compounds based on DARPins.
Collapse
Affiliation(s)
- O. N. Shilova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow
| | - S. M. Deyev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow
| |
Collapse
|
29
|
Belova MM, Shipunova VO, Kotelnikova PA, Babenyshev AV, Rogozhin EA, Cherednichenko MY, Deyev SM. "Green" Synthesis of Cytotoxic Silver Nanoparticles Based on Secondary Metabolites of Lavandula Angustifolia Mill. Acta Naturae 2019; 11:47-53. [PMID: 31413879 PMCID: PMC6643349 DOI: 10.32607/20758251-2019-11-2-47-53] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, we used "green" synthesis to prepare silver nanoparticles (NPs) from aqueous plant and callus extracts of the narrow-leaved lavender Lavandula angustifolia Mill. 35.4 ± 1.6 nm and 56.4 ± 2.4 nm nanoparticles, colloidally stable in phosphate-buffered saline, were synthesized using the plant extract and the callus extract, respectively. NPs were characterized by spectrophotometry, dynamic light scattering, and scanning electron microscopy. We studied the dynamics of the nanoparticle synthesis and evaluated the cytotoxic properties of the plant extract-based NPs. Modification of NPs with bovine serum albumin demonstrated that blockage of the nanoparticle surface completely suppressed NP cytotoxic activity in vitro. The synthesized NPs possess localized surface plasmon resonance properties and are of small sizes, and their surface can be modified with protein molecules, which makes them promising agents for cancer theranostics.
Collapse
Affiliation(s)
- M. M. Belova
- Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49 , Moscow, 127550, Russia
| | - V. O. Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, GSP-7, Miklukho-Maklaya Str. 16/10, Moscow, 117997, Russia
- Moscow Institute of Physics & Technology, Kerchenskaya Str. 1 “A”, Moscow, 117303, Russia
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, Moscow, 115409, Russia
| | - P. A. Kotelnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, GSP-7, Miklukho-Maklaya Str. 16/10, Moscow, 117997, Russia
| | - A. V. Babenyshev
- Moscow Institute of Physics & Technology, Kerchenskaya Str. 1 “A”, Moscow, 117303, Russia
| | - E. A. Rogozhin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, GSP-7, Miklukho-Maklaya Str. 16/10, Moscow, 117997, Russia
| | - M. Yu. Cherednichenko
- Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49 , Moscow, 127550, Russia
| | - S. M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, GSP-7, Miklukho-Maklaya Str. 16/10, Moscow, 117997, Russia
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, Moscow, 115409, Russia
- Sechenov First Moscow State Medical University, Trubetskaya Str., 8-2, Moscow, 119991, Russia
| |
Collapse
|
30
|
Zelepukin IV, Yaremenko AV, Petersen EV, Deyev SM, Cherkasov VR, Nikitin PI, Nikitin MP. Magnetometry based method for investigation of nanoparticle clearance from circulation in a liver perfusion model. NANOTECHNOLOGY 2019; 30:105101. [PMID: 30572321 DOI: 10.1088/1361-6528/aafa3a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoparticles (NPs) are among the most promising agents for advanced theranostics. However, their functioning in vivo is severely inhibited by the mononuclear phagocyte system (MPS), which rapidly removes all foreign entities from blood circulation. Little is known about the sequestration mechanisms and the ways to counteract them. New methods are highly demanded for investigation with high scrutiny of each aspect of NP clearance from blood. For example, while liver macrophages capture the majority of the administered particles, reliable investigation of this process in absence of other MPS components is hard to implement in vivo. Here, we demonstrate a novel method for real-time investigation hepatic uptake of NPs in an isolated perfused liver based on an extremely accurate magnetometric registration technique. The signal is obtained solely from the magnetic NPs without any 'background' from blood or tissues, which is a significant advantage over other techniques, e.g. optical ones. We illustrate the method capacity by investigation of behavior of different particles and show good correlation with in vivo studies. We also demonstrate notable suitability of the method for studying the NP clearance from the flow in the user-defined mediums, e.g. those containing specific serum components. Finally, the method was applied to reveal an interesting effect of short-term decrease of liver macrophage activity after the first interaction with small amounts of NPs. The developed perfusion model based on the high-performance magnetometry can be used for finding new mechanisms of NP sequestration and for development of novel 'stealth' nanoagents.
Collapse
Affiliation(s)
- I V Zelepukin
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia. Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia. National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
31
|
Zelepukin IV, Yaremenko AV, Shipunova VO, Babenyshev AV, Balalaeva IV, Nikitin PI, Deyev SM, Nikitin MP. Nanoparticle-based drug delivery via RBC-hitchhiking for the inhibition of lung metastases growth. NANOSCALE 2019; 11:1636-1646. [PMID: 30644955 DOI: 10.1039/c8nr07730d] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Delivery of particle-based theranostic agents via their transportation on the surfaces of red blood cells, commonly referred to as RBC-hitchhiking, has historically been developed as a promising strategy for increasing the extremely poor blood circulation lifetime, primarily, of the large-sized sub-micron agents. Here, we show for the first time that RBC-hitchhiking can be extremely efficient for nanoparticle delivery and tumor treatment even in those cases when no circulation prolongation is observed. Specifically, we demonstrate that RBC-hitchhiking of certain small 100 nm particles, unlike that of the conventional sub-micron ones, can boost the delivery of non-targeted particles to lungs up to a record high value of 120-fold (and up to 40% of the injected dose). To achieve this remarkable result, we screened sub-200 nm nanoparticles of different sizes, polymer coatings and ζ-potentials and identified particles with the optimal RBC adsorption/desorption behavior. Furthermore, we demonstrated that such RBC-mediated rerouting of particles to lungs can be used to fight pulmonary metastases of aggressive melanoma B16-F1. Our findings could change the general paradigm of drug delivery for cancer treatment with RBC-hitchhiking. It is not the blood circulation lifetime that is the key factor for nanoparticle efficiency, but rather the complexation of nanoparticles with the RBC. The demonstrated technology could become a valuable tool for development of new strategies based on small nanoparticles for the treatment of aggressive and small-cell types of cancer as well as other lung diseases.
Collapse
Affiliation(s)
- I V Zelepukin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia. and Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia and Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia and National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | - A V Yaremenko
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia. and Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - V O Shipunova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia. and Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia and National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | - A V Babenyshev
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.
| | - I V Balalaeva
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - P I Nikitin
- Prokhorov General Physics, Institute of the Russian Academy of Sciences, Moscow, Russia and National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | - S M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia and National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | - M P Nikitin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia. and Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia and Prokhorov General Physics, Institute of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
32
|
Tregubov AA, Nikitin PI, Nikitin MP. Advanced Smart Nanomaterials with Integrated Logic-Gating and Biocomputing: Dawn of Theranostic Nanorobots. Chem Rev 2018; 118:10294-10348. [DOI: 10.1021/acs.chemrev.8b00198] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Andrey A. Tregubov
- Moscow Institute of Physics and Technology (State University), 1A Kerchenskaya St, Moscow 117303, Russia
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, Moscow 119991, Russia
| | - Maxim P. Nikitin
- Moscow Institute of Physics and Technology (State University), 1A Kerchenskaya St, Moscow 117303, Russia
| |
Collapse
|
33
|
Chernov AS, Reshetnikov DA, Kovalitskaya Yu A, Manokhin AA, Gudkov SV. Influence of wideband visible light with an padding red component on the functional state of mice embryos and embryonic stem cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 188:77-86. [PMID: 30232055 DOI: 10.1016/j.jphotobiol.2018.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/16/2018] [Accepted: 09/10/2018] [Indexed: 11/29/2022]
Abstract
It is known that visible light, including sunlight and laboratory lighting, adversely affect the development of embryos in vitro. In with article we present a technology for the synthesis of composite screens, capable to photoconvert UV and a part of the blue spectrum into red light with the maximum ~630 nm. It is established that the application of such transformed light with an evident red component raises the chances of embryos to survive and protects embryonic stem cells. To create photoconversion screens, the CdZn/Se quantum dots were obtained, the average size being about 7 nm. When the quantum dots are excited by electromagnetic waves of the UV and blue spectral range, photoluminescence is observed. The average photon energy for photoluminescence is of the order of 2 eV. On the basis of CdZn/Se quantum dots and methylphenylsiloxane polymer, light-transforming composite screens were made. In case of the light-transforming composite screen, the UV component disappeared from the energy spectrum, and the intensity of the blue region of the spectrum was reduced. On the contrary, in the red region (λmax = 630 nm) one can see a little more than two-fold increase of intensity. It is shown that when exposed to 2-cell embryos by transformed light, the proportion of normally developing embryos increases by 20%, the number of dead embryos decreases twice, and number of dead and apoptotic cells was lower in blastocysts, what's decreased by 70%, as compared to the control group. When blastocysts are transferred to the feeder substrate, colonies of embryonic stem cells are formed. Cells obtained from blastocysts irradiated with transformed visible light are in a normal state in 90% of cases and did not change expression levels, biochemistry and morphology for at least 20 passages. It is assumed that the data obtained can be used for the design of systems of efficient cultivation of embryonic cells for tissue engineering and cell therapy.
Collapse
Affiliation(s)
- A S Chernov
- National Research Center «Kurchatov Institute», Akademika Kurchatova pl. 1, Moscow 123182, Russia.
| | - D A Reshetnikov
- Institute of Cell Biophysics, Russian Academy of Sciences, Nauki Ave., 3, Pushchino, Moscow oblast 142290, Russia
| | - A Kovalitskaya Yu
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Nauki Ave., 6, Pushchino, Moscow oblast 142290, Russia
| | - A A Manokhin
- Institute of Cell Biophysics, Russian Academy of Sciences, Nauki Ave., 3, Pushchino, Moscow oblast 142290, Russia
| | - S V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Ave., 38, Moscow, 119991, Russia; Lobachevsky State University of Nizhni Novgorod, prosp. Gagarina 23, Nizhny Novgorod, 603950, Russia; Moscow Regional Research and Clinical Institute (MONIKI), Shchepkina St., 61/2, Moscow 129110, Russia
| |
Collapse
|