1
|
Baysal HE, Yu TY, Naenen V, De Smedt S, Hiz D, Zhang B, Xia H, Florenciano I, Rosenthal M, Cardinaels R, Molina-Lopez F. Omnidirectional 3D Printing of PEDOT: PSS Aerogels with Tunable Electromechanical Performance: A Playground for Unconventional Stretchable Interconnects and Thermoelectrics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2412491. [PMID: 39840920 DOI: 10.1002/advs.202412491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/10/2025] [Indexed: 01/23/2025]
Abstract
The next generation of soft electronics will expand to the third dimension. This will require the integration of mechanically compliant 3D functional structures with stretchable materials. Here, omnidirectional direct ink writing (DIW) of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) aerogels with tunable electrical and mechanical performance is demonstrated, which can be integrated with soft substrates. Several PEDOT:PSS hydrogels are formulated for DIW and freeze-dried directly on stretchable substrates to form integrated aerogels displaying high shape fidelity and minimal shrinkage. This technology demonstrates 3D-structured stretchable interconnects, planar thermoelectric generators for skin electronics, and vertically printed high aspect ratio thermoelectric pillars with ultralow thermal conductivity of 0.065 W m-1 K-1. The aerogel pillars outpower their dense counterparts in realistic energy harvesting scenarios, where contact resistances cannot be ignored and produced up to 26 nW cm-2 (corresponding to a gravimetric power density of 0.76 mW kg-1) for a difference of temperature of 15 K. Here, promising advancements in soft and energy-efficiency electronic systems relevant to soft robotics and wearables are suggested.
Collapse
Affiliation(s)
- Hasan Emre Baysal
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Tzu-Yi Yu
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Viktor Naenen
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Stijn De Smedt
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, Leuven, 3001, Belgium
| | - Defne Hiz
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Bokai Zhang
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Heyi Xia
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Isidro Florenciano
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Martin Rosenthal
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f, Leuven, 3001, Belgium
| | - Ruth Cardinaels
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, Leuven, 3001, Belgium
| | - Francisco Molina-Lopez
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| |
Collapse
|
2
|
Oh B, Baek S, Nam KS, Sung C, Yang C, Lim YS, Ju MS, Kim S, Kim TS, Park SM, Park S, Park S. 3D printable and biocompatible PEDOT:PSS-ionic liquid colloids with high conductivity for rapid on-demand fabrication of 3D bioelectronics. Nat Commun 2024; 15:5839. [PMID: 38992011 PMCID: PMC11239939 DOI: 10.1038/s41467-024-50264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
3D printing has been widely used for on-demand prototyping of complex three-dimensional structures. In biomedical applications, PEDOT:PSS has emerged as a promising material in versatile bioelectronics due to its tissue-like mechanical properties and suitable electrical properties. However, previously developed PEDOT:PSS inks have not been able to fully utilize the advantages of commercial 3D printing due to its long post treatment times, difficulty in high aspect ratio printing, and low conductivity. We propose a one-shot strategy for the fabrication of PEDOT:PSS ink that is able to simultaneously achieve on-demand biocompatibility (no post treatment), structural integrity during 3D printing for tall three-dimensional structures, and high conductivity for rapid-prototyping. By using ionic liquid-facilitated PEDOT:PSS colloidal stacking induced by a centrifugal protocol, a viscoplastic PEDOT:PSS-ionic liquid colloidal (PILC) ink was developed. PILC inks exhibit high-aspect ratio vertical stacking, omnidirectional printability for generating suspended architectures, high conductivity (~286 S/cm), and high-resolution printing (~50 µm). We demonstrate the on-demand and versatile applicability of PILC inks through the fabrication of 3D circuit boards, on-skin physiological signal monitoring e-tattoos, and implantable bioelectronics (opto-electrocorticography recording, low voltage sciatic nerve stimulation and recording from deeper brain layers via 3D vertical spike arrays).
Collapse
Affiliation(s)
- Byungkook Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Seunghyeok Baek
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Kum Seok Nam
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Changhoon Sung
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Congqi Yang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Young-Soo Lim
- Department of Convergence IT Engineering (CiTE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, Republic of Korea
| | - Min Sang Ju
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Soomin Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Sung-Min Park
- Department of Convergence IT Engineering (CiTE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, Republic of Korea
- Institute of Convergence Science, Yonsei University, Seoul, Republic of Korea
| | - Seongjun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea.
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea.
- KAIST Institute for NanoCentury, 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea.
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea.
- KAIST Institute for NanoCentury, 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Banks JD, Emami A. Carbon-Based Piezoresistive Polymer Nanocomposites by Extrusion Additive Manufacturing: Process, Material Design, and Current Progress. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:e548-e571. [PMID: 38689914 PMCID: PMC11057547 DOI: 10.1089/3dp.2022.0153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Advancement in additive manufacturing (AM) allows the production of nanocomposites with complex and custom geometries not typically allowable with conventional manufacturing techniques. The benefits of AM have led to recent interest in producing multifunctional materials capable of being printed with current AM technologies. In this article, piezoresistive composites realized by AM and the matrices and fillers utilized to make such devices are introduced and discussed. Carbon-based nanoparticles (Carbon Nanotubes, Graphene/Graphite, and Carbon Black) are often the filler choice of most researchers and are heavily discussed throughout this review in combination with extrusion AM methods. Piezoresistive applications such as physiological and wearable sensors, structural health monitoring, and soft robotics are presented with an emphasis on material and AM selection to meet the demands of such applications.
Collapse
Affiliation(s)
- James D. Banks
- Materials Science, Engineering, & Commercialization, Ingram School of Engineering, Texas State University, San Marcos, Texas, USA
| | - Anahita Emami
- Mechanical Engineering, Ingram School of Engineering, Texas State University, San Marcos, Texas, USA
| |
Collapse
|
4
|
Zhang P, Zhu B, Du P, Travas-Sejdic J. Electrochemical and Electrical Biosensors for Wearable and Implantable Electronics Based on Conducting Polymers and Carbon-Based Materials. Chem Rev 2024; 124:722-767. [PMID: 38157565 DOI: 10.1021/acs.chemrev.3c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Bioelectronic devices are designed to translate biological information into electrical signals and vice versa, thereby bridging the gap between the living biological world and electronic systems. Among different types of bioelectronics devices, wearable and implantable biosensors are particularly important as they offer access to the physiological and biochemical activities of tissues and organs, which is significant in diagnosing and researching various medical conditions. Organic conducting and semiconducting materials, including conducting polymers (CPs) and graphene and carbon nanotubes (CNTs), are some of the most promising candidates for wearable and implantable biosensors. Their unique electrical, electrochemical, and mechanical properties bring new possibilities to bioelectronics that could not be realized by utilizing metals- or silicon-based analogues. The use of organic- and carbon-based conductors in the development of wearable and implantable biosensors has emerged as a rapidly growing research field, with remarkable progress being made in recent years. The use of such materials addresses the issue of mismatched properties between biological tissues and electronic devices, as well as the improvement in the accuracy and fidelity of the transferred information. In this review, we highlight the most recent advances in this field and provide insights into organic and carbon-based (semi)conducting materials' properties and relate these to their applications in wearable/implantable biosensors. We also provide a perspective on the promising potential and exciting future developments of wearable/implantable biosensors.
Collapse
Affiliation(s)
- Peikai Zhang
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Bicheng Zhu
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
5
|
Yan Y, Han M, Jiang Y, Ng ELL, Zhang Y, Owh C, Song Q, Li P, Loh XJ, Chan BQY, Chan SY. Electrically Conductive Polymers for Additive Manufacturing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5337-5354. [PMID: 38284988 DOI: 10.1021/acsami.3c13258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The use of electrically conductive polymers (CPs) in the development of electronic devices has attracted significant interest due to their unique intrinsic properties, which result from the synergistic combination of physicochemical properties in conventional polymers with the electronic properties of metals or semiconductors. Most conventional methods adopted for the fabrication of devices with nonplanar morphologies are still challenged by the poor ionic/electronic mobility of end products. Additive manufacturing (AM) brings about exciting prospects to the realm of CPs by enabling greater design freedom, more elaborate structures, quicker prototyping, relatively low cost, and more environmentally friendly electronic device creation. A growing variety of AM technologies are becoming available for three-dimensional (3D) printing of conductive devices, i.e., vat photopolymerization (VP), material extrusion (ME), powder bed fusion (PBF), material jetting (MJ), and lamination object manufacturing (LOM). In this review, we provide an overview of the recent research progress in the area of CPs developed for AM, which advances the design and development of future electronic devices. We consider different AM techniques, vis-à-vis, their development progress and respective challenges in printing CPs. We also discuss the material requirements and notable advances in 3D printing of CPs, as well as their potential electronic applications including wearable electronics, sensors, energy storage and conversion devices, etc. This review concludes with an outlook on AM of CPs.
Collapse
Affiliation(s)
- Yinjia Yan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Miao Han
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yixue Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Evelyn Ling Ling Ng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yanni Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Qing Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Benjamin Qi Yu Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
6
|
Hengsteler J, Kanes KA, Khasanova L, Momotenko D. Beginner's Guide to Micro- and Nanoscale Electrochemical Additive Manufacturing. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:71-91. [PMID: 37068744 DOI: 10.1146/annurev-anchem-091522-122334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrochemical additive manufacturing is an advanced microfabrication technology capable of producing features of almost unlimited geometrical complexity. A unique combination of the capacity to process conductive materials, design freedom, and micro- to nanoscale resolution offered by these electrochemical techniques promises tremendous opportunities for a multitude of future applications spanning microelectronics, sensing, robotics, and energy storage. This review aims to equip readers with the basic principles of electrochemical 3D printing at the small length scale. By describing the basic principles of electrochemical additive manufacturing technology and using the recent advances in the field, this beginner's guide illustrates how controlling the fundamental phenomena that underpin the print process can be used to vary dimensions, morphology, and microstructure of printed structures.
Collapse
Affiliation(s)
- Julian Hengsteler
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | - Karuna Aurel Kanes
- Department of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany;
| | - Liaisan Khasanova
- Department of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany;
| | - Dmitry Momotenko
- Department of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany;
| |
Collapse
|
7
|
Gibalova A, Arndt NB, Burg L, Ravoo BJ. Light-Responsive Conductive Surface Coatings on the Basis of Azidomethyl-PEDOT Electropolymer Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12363-12371. [PMID: 36848114 DOI: 10.1021/acsami.2c21995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The design of responsive coatings has gained increasing attention recently, with light-responsive interfaces receiving particular appreciation, as their surface properties can be modulated with excellent spatiotemporal control. In this article, we present light-responsive conductive coatings acquired through a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction between electropolymerized azide-functionalized poly(3,4-ethylenedioxythiophene) (PEDOT-N3) and arylazopyrazole (AAP)-bearing alkynes. The UV/vis and X-ray photoelectron spectroscopy (XPS) data indicate a successful post-modification, supporting a covalent attachment of AAP moieties to PEDOT-N3. The thickness and degree of PEDOT-N3 modification are accessible by varying the amount of passed charge during electropolymerization and time of reaction, respectively, providing a degree of synthetic control over the physicochemical material properties. The produced substrates demonstrate a reversible and stable light-driven switching of photochromic properties in both "dry" and swelled states, as well as efficient electrocatalytic Z → E switching. The AAP-modified polymer substrates exhibit a light-controlled wetting behavior, demonstrating a consistently reversible switching of the static water contact angle with a difference up to 10.0° for CF3-AAP@PEDOT-N3. The results highlight the application of conducting PEDOT-N3 for the covalent immobilization of molecular switches while preserving their stimuli-responsive features.
Collapse
Affiliation(s)
- Anna Gibalova
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstr. 36, D-48149 Münster, Germany
| | - Niklas B Arndt
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstr. 36, D-48149 Münster, Germany
| | - Luca Burg
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstr. 36, D-48149 Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstr. 36, D-48149 Münster, Germany
| |
Collapse
|
8
|
Goswami S, Nandy S, Fortunato E, Martins R. Polyaniline and its composites engineering: A class of multifunctional smart energy materials. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Ruggiero A, Criscuolo V, Grasselli S, Bruno U, Ausilio C, Bovio CL, Bettucci O, Santoro F. Two-photon polymerization lithography enabling the fabrication of PEDOT:PSS 3D structures for bioelectronic applications. Chem Commun (Camb) 2022; 58:9790-9793. [PMID: 35971788 DOI: 10.1039/d2cc03152c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conductive 3D platforms have gained increasing attention in bioelectronics thanks to the improvement in the cell-chip coupling. PEDOT:PSS is nowadays widely employed in bioelectronic applications thanks to its electrical and mechanical properties. In this work, an innovative fabrication method for the realization of PEDOT:PSS-based conductive micropillars and 3D cage-like structures is presented, combining two-photon lithography and electrodeposition techniques.
Collapse
Affiliation(s)
- Amedeo Ruggiero
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy. .,Faculty of Electrical Engineering and IT, RWTH Aachen, 52074, Germany.,Institute for Biological Information Processing-Bioelectronics, Forschungszentrum Juelich, 52428, Germany.
| | - Valeria Criscuolo
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy.
| | - Sara Grasselli
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy.
| | - Ugo Bruno
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy. .,Dipartimento di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Chiara Ausilio
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy.
| | - Claudia Latte Bovio
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy. .,Dipartimento di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Ottavia Bettucci
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy.
| | - Francesca Santoro
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy. .,Faculty of Electrical Engineering and IT, RWTH Aachen, 52074, Germany.,Institute for Biological Information Processing-Bioelectronics, Forschungszentrum Juelich, 52428, Germany.
| |
Collapse
|
10
|
Zhang P, Athavale ON, Cowan RAL, Clark AR, Avci R, Cheng LK, Travas-Sejdic J, Du P. Wet-printing of PEDOT:PSS Microelectrodes for Gastric Slow Wave Recording. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4868-4871. [PMID: 36086592 DOI: 10.1109/embc48229.2022.9870834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioelectrical slow waves are fundamental to maintaining the normal motility of the gastrointestinal tract. Slow wave abnormalities are associated with several major digestive disorders. High-resolution electrical mapping arrays have been used to investigate pathological slow wave abnormalities. However, conventional electrode substrate materials are opaque with high mechanical modulus, which leads to non-compliance and sub-par contact with the organ, without additional manipulations. Here we developed highly conformal and transparent conducting polymer electrode arrays using the extrusion wet-printing technique. The performance of electrodes for the electrophysiological recording of the gastric slow wave was validated using in a pig model, against a previously validated reference array over 100 s recording window. The conducting polymer electrodes registered comparable frequency to the reference array ( 3.31±0.20 cpm vs. 3.27±0.07 cpm, p = 0.067), with lower amplitude ( 372±237 vs. ), and signal to noise ratio ( 10.92±7.83 vs. [Formula: see text]). Further adjustments to the deposition parameters and contact material will improve the performance of the conducting polymer array for future experimental applications. Clinical Relevance- These conducting polymer electrodes provide better compliance and minimized mechanical mismatch to the gut tissue thus allowing long-term monitoring and stimulation of the gut. This could be potentially extended to other organs as well.
Collapse
|
11
|
Park Y, Yun I, Chung WG, Park W, Lee DH, Park J. High-Resolution 3D Printing for Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104623. [PMID: 35038249 PMCID: PMC8922115 DOI: 10.1002/advs.202104623] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/04/2021] [Indexed: 05/17/2023]
Abstract
The ability to form arbitrary 3D structures provides the next level of complexity and a greater degree of freedom in the design of electronic devices. Since recent progress in electronics has expanded their applicability in various fields in which structural conformability and dynamic configuration are required, high-resolution 3D printing technologies can offer significant potential for freeform electronics. Here, the recent progress in novel 3D printing methods for freeform electronics is reviewed, with providing a comprehensive study on 3D-printable functional materials and processes for various device components. The latest advances in 3D-printed electronics are also reviewed to explain representative device components, including interconnects, batteries, antennas, and sensors. Furthermore, the key challenges and prospects for next-generation printed electronics are considered, and the future directions are explored based on research that has emerged recently.
Collapse
Affiliation(s)
- Young‐Geun Park
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Insik Yun
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Won Gi Chung
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Wonjung Park
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Dong Ha Lee
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Jang‐Ung Park
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
12
|
Mariano A, Lubrano C, Bruno U, Ausilio C, Dinger NB, Santoro F. Advances in Cell-Conductive Polymer Biointerfaces and Role of the Plasma Membrane. Chem Rev 2022; 122:4552-4580. [PMID: 34582168 PMCID: PMC8874911 DOI: 10.1021/acs.chemrev.1c00363] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 02/07/2023]
Abstract
The plasma membrane (PM) is often described as a wall, a physical barrier separating the cell cytoplasm from the extracellular matrix (ECM). Yet, this wall is a highly dynamic structure that can stretch, bend, and bud, allowing cells to respond and adapt to their surrounding environment. Inspired by shapes and geometries found in the biological world and exploiting the intrinsic properties of conductive polymers (CPs), several biomimetic strategies based on substrate dimensionality have been tailored in order to optimize the cell-chip coupling. Furthermore, device biofunctionalization through the use of ECM proteins or lipid bilayers have proven successful approaches to further maximize interfacial interactions. As the bio-electronic field aims at narrowing the gap between the electronic and the biological world, the possibility of effectively disguising conductive materials to "trick" cells to recognize artificial devices as part of their biological environment is a promising approach on the road to the seamless platform integration with cells.
Collapse
Affiliation(s)
- Anna Mariano
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Claudia Lubrano
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Ugo Bruno
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Chiara Ausilio
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Nikita Bhupesh Dinger
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Francesca Santoro
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| |
Collapse
|
13
|
Li Y, Wei L, Lan L, Gao Y, Zhang Q, Dawit H, Mao J, Guo L, Shen L, Wang L. Conductive biomaterials for cardiac repair: A review. Acta Biomater 2022; 139:157-178. [PMID: 33887448 DOI: 10.1016/j.actbio.2021.04.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 12/18/2022]
Abstract
Myocardial infarction (MI) is one of the fatal diseases in humans. Its incidence is constantly increasing annually all over the world. The problem is accompanied by the limited regenerative capacity of cardiomyocytes, yielding fibrous scar tissue formation. The propagation of electrical impulses in such tissue is severely hampered, negatively influencing the normal heart pumping function. Thus, reconstruction of the internal cardiac electrical connection is currently a major concern of myocardial repair. Conductive biomaterials with or without cell loading were extensively investigated to address this problem. This article introduces a detailed overview of the recent progress in conductive biomaterials and fabrication methods of conductive scaffolds for cardiac repair. After that, the advances in myocardial tissue construction in vitro by the restoration of intercellular communication and simulation of the dynamic electrophysiological environment are systematically reviewed. Furthermore, the latest trend in the study of cardiac repair in vivo using various conductive patches is summarized. Finally, we discuss the achievements and shortcomings of the existing conductive biomaterials and the properties of an ideal conductive patch for myocardial repair. We hope this review will help readers understand the importance and usefulness of conductive biomaterials in cardiac repair and inspire researchers to design and develop new conductive patches to meet the clinical requirements. STATEMENT OF SIGNIFICANCE: After myocardial infarction, the infarcted myocardial area is gradually replaced by heterogeneous fibrous tissue with inferior conduction properties, resulting in arrhythmia and heart remodeling. Conductive biomaterials have been extensively adopted to solve the problem. Summarizing the relevant literature, this review presents an overview of the types and fabrication methods of conductive biomaterials, and focally discusses the recent advances in myocardial tissue construction in vitro and myocardial repair in vivo, which is rarely covered in previous reviews. As well, the deficiencies of the existing conductive patches and their construction strategies for myocardial repair are discussed as well as the improving directions. Confidently, the readers of this review would appreciate advantages and current limitations of conductive biomaterials/patches in cardiac repair.
Collapse
Affiliation(s)
- Yimeng Li
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Leqian Wei
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Lizhen Lan
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yaya Gao
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Qian Zhang
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Hewan Dawit
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Jifu Mao
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China.
| | - Lamei Guo
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China
| | - Li Shen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| | - Lu Wang
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
14
|
Chen D, Tan H, Xu T, Wang W, Chen H, Zhang J. Micropatterned PEDOT with Enhanced Electrochromism and Electrochemical Tunable Diffraction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58011-58018. [PMID: 34797985 DOI: 10.1021/acsami.1c17897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Micro-nanofabrication of conductive polymers (CPs) with functional structures is in great demand in organic electronic devices, micro-optics, and flex sensors. Here, we report the fabrication of micropatterned poly(3,4-ethylenedioxythiophene) (PEDOT) and its applications on flexible electrochromic devices and tunable diffractive optics. The localized electropolymerization of 3,4-ethylenedioxythiophene at the electrode/agarose gel stamping interface through an electrochemical wet stamping (E-WETS) technique is used to fabricate PEDOT with functional microstructures. PEDOT microdots, micro-rectangles, and interdigitated array microelectrodes are fabricated with submicron tolerance and ∼2 μm smallest feature size. Furthermore, the flexible PEDOT electrochromic devices consisting of the logo of Xiamen University are fabricated with a reversible switch of absorptivity. The improved optical and coloration-amperometric responses of electrochromism are demonstrated because of the enhanced charge transport rate of the micropatterned PEDOT. The electrochromism of the 2D PEDOT micropatterns is further used as a binary diffractive optical element to modulate the intensity and efficiency of diffracted 2D structural light because of the switchable absorptivity during doping and dedoping processes. When the potential is switched from 1 to -1 V to tune the absorptivity at ∼600 nm from low to high, the intensity of zero-order diffraction light spot decreases with the intensity of other order diffraction light spots increasing dramatically. The results demonstrate that E-WETS provides an alternative method for the fabrication of CPs with functional micro-nanostructures. The electrochemical tunable diffraction with high reversibility and fast response is of potential applications in micro-optics and flex sensors.
Collapse
Affiliation(s)
- Duan Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Hao Tan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Tianyi Xu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Wei Wang
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Hezhang Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jie Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
15
|
Hengsteler J, Lau GPS, Zambelli T, Momotenko D. Electrochemical 3D micro‐ and nanoprinting: Current state and future perspective. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Julian Hengsteler
- Laboratory of Biosensors and Bioelectronics Institute for Biomedical Engineering Zurich Switzerland
| | - Genevieve P. S. Lau
- School of Physical and Mathematical Sciences Division of Chemistry and Biological Chemistry Nanyang Technological University Singapore Singapore
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics Institute for Biomedical Engineering Zurich Switzerland
| | - Dmitry Momotenko
- Department of Chemistry Carl von Ossietzky University of Oldenburg Oldenburg Germany
| |
Collapse
|
16
|
Cho YH, Park YG, Kim S, Park JU. 3D Electrodes for Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005805. [PMID: 34013548 DOI: 10.1002/adma.202005805] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/04/2020] [Indexed: 05/08/2023]
Abstract
In recent studies related to bioelectronics, significant efforts have been made to form 3D electrodes to increase the effective surface area or to optimize the transfer of signals at tissue-electrode interfaces. Although bioelectronic devices with 2D and flat electrode structures have been used extensively for monitoring biological signals, these 2D planar electrodes have made it difficult to form biocompatible and uniform interfaces with nonplanar and soft biological systems (at the cellular or tissue levels). Especially, recent biomedical applications have been expanding rapidly toward 3D organoids and the deep tissues of living animals, and 3D bioelectrodes are getting significant attention because they can reach the deep regions of various 3D tissues. An overview of recent studies on 3D bioelectronic devices, such as the use of electrical stimulations and the recording of neural signals from biological subjects, is presented. Subsequently, the recent developments in materials and fabrication processing to 3D micro- and nanostructures are introduced, followed by broad applications of these 3D bioelectronic devices at various in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Yo Han Cho
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young-Geun Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sumin Kim
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jang-Ung Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
17
|
Liu JYH, Rudd JA, Du P. A pipeline for phase-based analysis of in vitro micro-electrode array recordings of gastrointestinal slow waves. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:261-264. [PMID: 34891286 DOI: 10.1109/embc46164.2021.9630494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Motility of the gastrointestinal tract (GI) is governed by an bioelectrical event termed slow waves. Accurately measuring the characteristics of GI slow waves is critical to understanding its role in clinical applications. High-resolution (HR) bioelectrical mapping involves placing a spatially dense array of electrodes directly over the surface of the GI wall to record the spatiotemporal changes in slow waves. A micro-electrode array (MEA) with spatial resolution of 200 μm in an 8x8 configuration was employed to record intestinal slow waves using isolated tissues from small animals including rodents, shrews and ferrets. A filtering, processing, and analytic pipeline was developed to extract useful metrics from the recordings. The pipeline relied on CWT and Hilbert Transform to identify the frequency and phase of the signals, from which the individual activation times of slow waves were identified and clustered using k-means. A structural similarity index was applied to group the major activation patterns. Overall, the pipeline identified 91 cycles of slow waves from 300 s of recordings in mice, with an average frequency of 20.68 ± 0.71 cpm, amplitude of 7.94 ± 2.15 µV, and velocity of 3.64 ± 1.75 mm s-1. Three major propagation patterns were identified during this period. The findings of this study will inform the development of a high throughput software platform for future in vitro pharmacological studies using the MEA.
Collapse
|
18
|
Chortos A. Extrusion
3D
printing of conjugated polymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Alex Chortos
- Department of Mechanical Engineering Purdue University West Lafayette Indiana USA
| |
Collapse
|
19
|
Abstract
Scanning ion conductance microscopy (SICM) has emerged as a versatile tool for studies of interfaces in biology and materials science with notable utility in biophysical and electrochemical measurements. The heart of the SICM is a nanometer-scale electrolyte filled glass pipette that serves as a scanning probe. In the initial conception, manipulations of ion currents through the tip of the pipette and appropriate positioning hardware provided a route to recording micro- and nanoscopic mapping of the topography of surfaces. Subsequent advances in instrumentation, probe design, and methods significantly increased opportunities for SICM beyond recording topography. Hybridization of SICM with coincident characterization techniques such as optical microscopy and faradaic electrodes have brought SICM to the forefront as a tool for nanoscale chemical measurement for a wide range of applications. Modern approaches to SICM realize an important tool in analytical, bioanalytical, biophysical, and materials measurements, where significant opportunities remain for further exploration. In this review, we chronicle the development of SICM from the perspective of both the development of instrumentation and methods and the breadth of measurements performed.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kaixiang Huang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Natasha P Siepser
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
20
|
Chen Y, Zhu Z, Jiang X, Jiang L. Superhydrophobic-Substrate-Assisted Construction of Free-Standing Microcavity-Patterned Conducting Polymer Films. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100949. [PMID: 34245121 PMCID: PMC8425917 DOI: 10.1002/advs.202100949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/05/2021] [Indexed: 06/13/2023]
Abstract
Patterned conducting polymer films with unique structures have promising prospects for application in various fields, such as actuation, water purification, sensing, and bioelectronics. However, their practical application is hindered because of the limitations of existing construction methods. Herein, a strategy is proposed for the superhydrophobic-substrate-assisted construction of free-standing 3D microcavity-patterned conducting polymer films (McPCPFs) at micrometer resolution. Easy-peeling and nondestructive transfer properties are achieved through electrochemical polymerization along the solid/liquid/gas triphase interface on micropillar-structured substrates. The effects of the wettability and geometrical parameters of the substrates on the construction of McPCPFs are systematically investigated in addition to the evolution of the epitaxial growth along the triphase interface at different polymerization times. The McPCPFs can be easily peeled from superhydrophobic surfaces using ethanol because of weak adhesion and nondestructively transferred to various substrates taking advantage of the capillarity. Furthermore, sensitive light-driven McPCPF locomotion on organic liquid surfaces is demonstrated. Ultimately, a facile strategy for the construction of free-standing 3D microstructure-patterned conducting polymer films is proposed, which can improve productivity and applicability of the films in different fields and expand the application scope of superwettable interfaces.
Collapse
Affiliation(s)
- Yupeng Chen
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Zhongpeng Zhu
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Xiangyu Jiang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Lei Jiang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang UniversityBeijing100191P. R. China
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing101407China
| |
Collapse
|
21
|
Solazzo M, Monaghan MG. Structural crystallisation of crosslinked 3D PEDOT:PSS anisotropic porous biomaterials to generate highly conductive platforms for tissue engineering applications. Biomater Sci 2021; 9:4317-4328. [PMID: 33683230 DOI: 10.1039/d0bm02123g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An emerging class of materials finding applications in biomaterials science - conductive polymers (CPs) - enables the achievement of smarter electrode coatings, piezoresistive components within biosensors, and scaffolds for tissue engineering. Despite their advances in recent years, there exist still some challenges which have yet to be addressed, such as long-term stability under physiological conditions, adequate long-term conductivity and optimal biocompatibility. Additionally, another hurdle to the use of these materials is their adaptation towards three-dimensional (3D) scaffolds, a feature that is usually achieved by virtue of applying CPs as a functionalised coating on a bulk material. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is by far one of the most promising CPs in terms of its stability and conductivity, with the latter capable of being enhanced via a crystallisation treatment using sulphuric acid. In this work, we present a new generation of 3D electroconductive porous biomaterial scaffolds based on PEDOT:PSS crosslinked via glycidoxypropyltrimethoxysilane (GOPS) and subjected to sulphuric acid crystallisation. The resultant isotropic and anisotropic crystallised porous scaffolds exhibited, on an average, a 1000-fold increase in conductivity when compared with the untreated scaffolds. Moreover, we also document a precise control over the pore microarchitecture, size and anisotropy with high repeatability to achieve both isotropic and aligned scaffolds with mechanical and electrical anisotropy, while exhibiting adequate biocompatibility. These findings herald a new approach towards generating anisotropic porous biomaterial scaffolds with superior conductivity through a safe and scalable post-treatment.
Collapse
Affiliation(s)
- Matteo Solazzo
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland. and Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Michael G Monaghan
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland. and Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland and Advance Materials and BioEngineering Research (AMBER) Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland and CÚRAM, Centre for Research in Medical Devices, National University of Ireland, Galway, Newcastle Road, H91 W2TY Galway, Ireland
| |
Collapse
|
22
|
Criado-Gonzalez M, Dominguez-Alfaro A, Lopez-Larrea N, Alegret N, Mecerreyes D. Additive Manufacturing of Conducting Polymers: Recent Advances, Challenges, and Opportunities. ACS APPLIED POLYMER MATERIALS 2021; 3:2865-2883. [PMID: 35673585 PMCID: PMC9164193 DOI: 10.1021/acsapm.1c00252] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/19/2021] [Indexed: 05/19/2023]
Abstract
Conducting polymers (CPs) have been attracting great attention in the development of (bio)electronic devices. Most of the current devices are rigid two-dimensional systems and possess uncontrollable geometries and architectures that lead to poor mechanical properties presenting ion/electronic diffusion limitations. The goal of the article is to provide an overview about the additive manufacturing (AM) of conducting polymers, which is of paramount importance for the design of future wearable three-dimensional (3D) (bio)electronic devices. Among different 3D printing AM techniques, inkjet, extrusion, electrohydrodynamic, and light-based printing have been mainly used. This review article collects examples of 3D printing of conducting polymers such as poly(3,4-ethylene-dioxythiophene), polypyrrole, and polyaniline. It also shows examples of AM of these polymers combined with other polymers and/or conducting fillers such as carbon nanotubes, graphene, and silver nanowires. Afterward, the foremost applications of CPs processed by 3D printing techniques in the biomedical and energy fields, that is, wearable electronics, sensors, soft robotics for human motion, or health monitoring devices, among others, will be discussed.
Collapse
Affiliation(s)
- Miryam Criado-Gonzalez
- POLYMAT
University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Instituto
de Ciencia y Tecnología de Polímeros CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Antonio Dominguez-Alfaro
- POLYMAT
University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Naroa Lopez-Larrea
- POLYMAT
University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Nuria Alegret
- POLYMAT
University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - David Mecerreyes
- POLYMAT
University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48013 Bilbao, Spain
| |
Collapse
|
23
|
Costa EL, Soares FB, Lourenço SA, Muniz EC, Cava CE. Design experiment (parameters) applied to PEDOT: PSS/AgNW composite doped with EG for transparent conductive films. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Rodríguez-Jiménez S, Bennington MS, Akbarinejad A, Tay EJ, Chan EWC, Wan Z, Abudayyeh AM, Baek P, Feltham HLC, Barker D, Gordon KC, Travas-Sejdic J, Brooker S. Electroactive Metal Complexes Covalently Attached to Conductive PEDOT Films: A Spectroelectrochemical Study. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1301-1313. [PMID: 33351602 DOI: 10.1021/acsami.0c16317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The successful covalent attachment, via copper(I)-catalyzed azide alkyne cycloaddition (CuAAC), of alkyne-functionalized nickel(II) and copper(II) macrocyclic complexes onto azide (N3)-functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) films on ITO-coated glass electrodes is reported. To investigate the surface attachment of the selected metal complexes, which are analogues of the cobalt-based complex previously reported to be a molecular catalyst for hydrogen evolution, first, three different PEDOT films were formed by electropolymerization of pure PEDOT or pure N3-PEDOT, and last, 1:2N3-PEDOT:PEDOT were formed by co-polymerizing a 1:4 mixture of N3-EDOT:EDOT monomers. The successful surface immobilization of the complexes on the latter two azide-functionalized films, by CuAAC, was confirmed by X-ray photoelectron spectroscopy (XPS) and electrochemistry as well as by UV-vis-NIR and resonance Raman spectroelectrochemistry. The ratio between the N3 groups, and hence, the number of surface-attached metal complexes after CuAAC functionalization, in pristine N3-PEDOT versus 1:2N3-PEDOT:PEDOT is expected to be 3:1 and seen to be 2.86:1 with a calculated surface coverage of 3.28 ± 1.04 and 1.15 ± 0.09 nmol/cm2, respectively. The conversion, to the metal complex attached films, was lower for the N3-PEDOT films (Ni 74%, Cu 76%) than for the copolymer 1:2N3-PEDOT:PEDOT films (Ni 83%, Cu 91%) due to the former being more sterically congested. The Raman and UV-vis-NIR results were simulated using density functional theory (DFT) and time-dependent DFT (TD-DFT), respectively, and showed good agreement with the experimental data. Importantly, the spectroelectrochemical behavior of both anchored metal complexes is analogous to that of the free metal complexes in solution. This proves that PEDOT films are promising conducting scaffolds for the covalent immobilization of metal complexes, as the existing electrochromic features of the complexes are preserved on immobilization, which is important for applications in electrocatalytic proton and carbon dioxide reduction, optoelectronics, and sensing.
Collapse
Affiliation(s)
- Santiago Rodríguez-Jiménez
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Michael S Bennington
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Alireza Akbarinejad
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- Polymer Biointerface Centre and School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Elliot J Tay
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Eddie Wai Chi Chan
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- Polymer Biointerface Centre and School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Ziyao Wan
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- Polymer Biointerface Centre and School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Abdullah M Abudayyeh
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Paul Baek
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- Polymer Biointerface Centre and School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Humphrey L C Feltham
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - David Barker
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- Polymer Biointerface Centre and School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Keith C Gordon
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Jadranka Travas-Sejdic
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- Polymer Biointerface Centre and School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Sally Brooker
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
25
|
Friction behavior of gecko-inspired polydimethylsiloxane micropillar array with tailored Young’s modulus by incorporation of ZrO2 particles. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Ziegler JM, Andoni I, Choi EJ, Fang L, Flores-Zuleta H, Humphrey NJ, Kim DH, Shin J, Youn H, Penner RM. Sensors Based Upon Nanowires, Nanotubes, and Nanoribbons: 2016-2020. Anal Chem 2020; 93:124-166. [PMID: 33242951 DOI: 10.1021/acs.analchem.0c04476] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Joshua M Ziegler
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Ilektra Andoni
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Eric J Choi
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Lu Fang
- Department of Automation, Hangzhou Dianzi University, 1158 Second Street, Xiasha, Hangzhou 310018, China
| | - Heriberto Flores-Zuleta
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Nicholas J Humphrey
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu Suwon, Gyeonggi-do 16419, South Korea
| | - Jihoon Shin
- School of Chemical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu Suwon, Gyeonggi-do 16419, South Korea
| | - Hyunho Youn
- School of Chemical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu Suwon, Gyeonggi-do 16419, South Korea
| | - Reginald M Penner
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
27
|
Luo Z, Liu Y, Liu Z, Wang D, Gan Z, Xie C. Direct laser writing of nanoscale undoped conductive polymer. NANOTECHNOLOGY 2020; 31:255301. [PMID: 32150739 DOI: 10.1088/1361-6528/ab7de4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The fabrication of poly 3,4-ethylene dioxythiophene (PEDOT) devices generally requires a separated strategy for EDOT polymerization and PEDOT coating, thus increasing th difficulty of their integration. With the goal of insolubility of PEDOT in a common solution, material modifications including grafting vinyl moiety groups on the side chain of the PEDOT can increase its solubility, but also markedly reduce the conductivity. Here, we report direct laser writing of pure EDOT monomer into PEDOT with a feature size of 140 nm. The PEDOT nanowire possesses the high conductivity of 1.28 × 105 S m-1 and can be patterned on solid and flexible substrates with various structures, thus paving the way towards organic highly conductive device fabrication and integration.
Collapse
Affiliation(s)
- Zhijun Luo
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China. Key Laboratory of Education Ministry for Information Storage Systems, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China. Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, People's Republic of China
| | | | | | | | | | | |
Collapse
|
28
|
Zhuang J, Cheng L, Liao X, Zia AA, Wang Z. A fuzzy control for high-speed and low-overshoot hopping probe ion conductance microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:033703. [PMID: 32259936 DOI: 10.1063/1.5114642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 02/07/2020] [Indexed: 06/11/2023]
Abstract
At present, hopping probe ion conductance microscopy (HPICM) is the most capable ion conductance microscopy for imaging complex surface topography. However, the HPICM controller usually does not begin to stop the pipette sample approach until the ion current reaches a threshold, which results in short deceleration distances. Furthermore, closed-loop piezo actuation usually increases the response time. These problems tend to increase the ion current overshoot and affect imaging speed and quality. A fuzzy control system was developed to solve these problems via ion current deviation and deviation rate. This lengthens the deceleration distance to enable a high-speed approach toward the sample and smooth deceleration. Open-loop control of the piezo actuator is also used to increase sensitivity. To compensate for the nonlinearity of the actuator, a multi-section fuzzy logic strategy was used to maintain performance in all sections. Glass and poly(dimethylsiloxane) samples were used to demonstrate greater imaging speed and stability of the fuzzy controller relative to those of conventional controllers.
Collapse
Affiliation(s)
- Jian Zhuang
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Cheng
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaobo Liao
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ali Akmal Zia
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhiwu Wang
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
29
|
Kee S, Zhang P, Travas-Sejdic J. Direct writing of 3D conjugated polymer micro/nanostructures for organic electronics and bioelectronics. Polym Chem 2020. [DOI: 10.1039/d0py00719f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
3D direct writing and meniscus-guided pen writing methods, which are capable of fabricating 3D micro/nanostructures from soluble π-conjugated polymers (CPs) and CP precursors, and recent advances in these techniques are addressed in this review.
Collapse
Affiliation(s)
- Seyoung Kee
- Polymer Biointerface Centre
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
| | - Peikai Zhang
- Polymer Biointerface Centre
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
| | - Jadranka Travas-Sejdic
- Polymer Biointerface Centre
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
| |
Collapse
|
30
|
Solazzo M, O'Brien FJ, Nicolosi V, Monaghan MG. The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering. APL Bioeng 2019; 3:041501. [PMID: 31650097 PMCID: PMC6795503 DOI: 10.1063/1.5116579] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
The human heart possesses minimal regenerative potential, which can often lead to chronic heart failure following myocardial infarction. Despite the successes of assistive support devices and pharmacological therapies, only a whole heart transplantation can sufficiently address heart failure. Engineered scaffolds, implantable patches, and injectable hydrogels are among the most promising solutions to restore cardiac function and coax regeneration; however, current biomaterials have yet to achieve ideal tissue regeneration and adequate integration due a mismatch of material physicochemical properties. Conductive fillers such as graphene, carbon nanotubes, metallic nanoparticles, and MXenes and conjugated polymers such as polyaniline, polypyrrole, and poly(3,4-ethylendioxythiophene) can possibly achieve optimal electrical conductivities for cardiac applications with appropriate suitability for tissue engineering approaches. Many studies have focused on the use of these materials in multiple fields, with promising effects on the regeneration of electrically active biological tissues such as orthopedic, neural, and cardiac tissue. In this review, we critically discuss the role of heart electrophysiology and the rationale toward the use of electroconductive biomaterials for cardiac tissue engineering. We present the emerging applications of these smart materials to create supportive platforms and discuss the crucial role that electrical stimulation has been shown to exert in maturation of cardiac progenitor cells.
Collapse
|
31
|
Affiliation(s)
- Robert S. Jordan
- Department of Materials Science and EngineeringUniversity of California, Merced Merced California 95343
| | - Yue Wang
- Department of Materials Science and EngineeringUniversity of California, Merced Merced California 95343
| |
Collapse
|
32
|
Zips S, Grob L, Rinklin P, Terkan K, Adly NY, Weiß LJK, Mayer D, Wolfrum B. Fully Printed μ-Needle Electrode Array from Conductive Polymer Ink for Bioelectronic Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32778-32786. [PMID: 31424902 DOI: 10.1021/acsami.9b11774] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microelectrode arrays (MEAs) are widely used platforms in bioelectronics to study electrogenic cells. In recent years, the processing of conductive polymers for the fabrication of three-dimensional electrode arrays has gained increasing interest for the development of novel sensor designs. Here, additive manufacturing techniques are promising tools for the production of MEAs with three-dimensional electrodes. In this work, a facile additive manufacturing process for the fabrication of MEAs that feature needle-like electrode tips, so-called μ-needles, is presented. To this end, an aerosol-jet compatible PEDOT:PSS and multiwalled carbon nanotube composite ink with a conductivity of 323 ± 75 S m-1 is developed and used in a combined inkjet and aerosol-jet printing process to produce the μ-needle electrode features. The μ-needles are fabricated with a diameter of 10 ± 2 μm and a height of 33 ± 4 μm. They penetrate an inkjet-printed dielectric layer to a height of 12 ± 3 μm. After successful printing, the electrochemical properties of the devices are assessed via cyclic voltammetry and impedance spectroscopy. The μ-needles show a capacitance of 242 ± 70 nF at a scan rate of 5 mV s-1 and an impedance of 128 ± 22 kΩ at 1 kHz frequency. The stability of the μ-needle MEAs in aqueous electrolyte is demonstrated and the devices are used to record extracellular signals from cardiomyocyte-like HL-1 cells. This proof-of-principle experiment shows the μ-needle MEAs' cell-culture compatibility and functional integrity to investigate electrophysiological signals from living cells.
Collapse
Affiliation(s)
- Sabine Zips
- Neuroelectronics - Munich School of Bioengineering, Department of Electrical and Computer Engineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany
| | - Leroy Grob
- Neuroelectronics - Munich School of Bioengineering, Department of Electrical and Computer Engineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany
| | - Philipp Rinklin
- Neuroelectronics - Munich School of Bioengineering, Department of Electrical and Computer Engineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany
| | - Korkut Terkan
- Neuroelectronics - Munich School of Bioengineering, Department of Electrical and Computer Engineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany
| | - Nouran Yehia Adly
- Neuroelectronics - Munich School of Bioengineering, Department of Electrical and Computer Engineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany
| | - Lennart Jakob Konstantin Weiß
- Neuroelectronics - Munich School of Bioengineering, Department of Electrical and Computer Engineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany
| | - Dirk Mayer
- Institute of Complex Systems, Bioelectronics (ICS-8) , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Bernhard Wolfrum
- Neuroelectronics - Munich School of Bioengineering, Department of Electrical and Computer Engineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany
- Institute of Complex Systems, Bioelectronics (ICS-8) , Forschungszentrum Jülich , 52425 Jülich , Germany
| |
Collapse
|
33
|
Tullii G, Giona F, Lodola F, Bonfadini S, Bossio C, Varo S, Desii A, Criante L, Sala C, Pasini M, Verpelli C, Galeotti F, Antognazza MR. High-Aspect-Ratio Semiconducting Polymer Pillars for 3D Cell Cultures. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28125-28137. [PMID: 31356041 PMCID: PMC6943816 DOI: 10.1021/acsami.9b08822] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/16/2019] [Indexed: 05/20/2023]
Abstract
Hybrid interfaces between living cells and nano/microstructured scaffolds have huge application potential in biotechnology, spanning from regenerative medicine and stem cell therapies to localized drug delivery and from biosensing and tissue engineering to neural computing. However, 3D architectures based on semiconducting polymers, endowed with responsivity to visible light, have never been considered. Here, we apply for the first time a push-coating technique to realize high aspect ratio polymeric pillars, based on polythiophene, showing optimal biocompatibility and allowing for the realization of soft, 3D cell cultures of both primary neurons and cell line models. HEK-293 cells cultured on top of polymer pillars display a remarkable change in the cell morphology and a sizable enhancement of the membrane capacitance due to the cell membrane thinning in correspondence to the pillars' top surface, without negatively affecting cell proliferation. Electrophysiology properties and synapse number of primary neurons are also very well preserved. In perspective, high aspect ratio semiconducting polymer pillars may find interesting applications as soft, photoactive elements for cell activity sensing and modulation.
Collapse
Affiliation(s)
- Gabriele Tullii
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
- Department
of Physics, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy
| | | | - Francesco Lodola
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
| | - Silvio Bonfadini
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
- Department
of Physics, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy
| | - Caterina Bossio
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
| | - Simone Varo
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
| | - Andrea Desii
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
| | - Luigino Criante
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
| | - Carlo Sala
- CNR Neuroscience
Institute, Milan 20129, Italy
| | - Mariacecilia Pasini
- Istituto
per lo Studio delle Macromolecole, Consiglio
Nazionale delle Ricerche (ISMAC-CNR), Via Bassini 15, 20133 Milano, Italy
| | | | - Francesco Galeotti
- Istituto
per lo Studio delle Macromolecole, Consiglio
Nazionale delle Ricerche (ISMAC-CNR), Via Bassini 15, 20133 Milano, Italy
| | - Maria Rosa Antognazza
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
| |
Collapse
|
34
|
Tomaskovic‐Crook E, Zhang P, Ahtiainen A, Kaisvuo H, Lee C, Beirne S, Aqrawe Z, Svirskis D, Hyttinen J, Wallace GG, Travas‐Sejdic J, Crook JM. Human Neural Tissues from Neural Stem Cells Using Conductive Biogel and Printed Polymer Microelectrode Arrays for 3D Electrical Stimulation. Adv Healthc Mater 2019; 8:e1900425. [PMID: 31168967 DOI: 10.1002/adhm.201900425] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/03/2019] [Indexed: 11/09/2022]
Abstract
Electricity is important in the physiology and development of human tissues such as embryonic and fetal development, and tissue regeneration for wound healing. Accordingly, electrical stimulation (ES) is increasingly being applied to influence cell behavior and function for a biomimetic approach to in vitro cell culture and tissue engineering. Here, the application of conductive polymer (CP) poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate (PEDOT:PSS) pillars is described, direct-write printed in an array format, for 3D ES of maturing neural tissues that are derived from human neural stem cells (NSCs). NSCs are initially encapsulated within a conductive polysaccharide-based biogel interfaced with the CP pillar microelectrode arrays (MEAs), followed by differentiation in situ to neurons and supporting neuroglia during stimulation. Electrochemical properties of the pillar electrodes and the biogel support their electrical performance. Remarkably, stimulated constructs are characterized by widespread tracts of high-density mature neurons and enhanced maturation of functional neural networks. Formation of tissues using the 3D MEAs substantiates the platform for advanced clinically relevant neural tissue induction, with the system likely amendable to diverse cell types to create other neural and non-neural tissues. The platform may be useful for both research and translation, including modeling tissue development, function and dysfunction, electroceuticals, drug screening, and regenerative medicine.
Collapse
Affiliation(s)
- Eva Tomaskovic‐Crook
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute AIIM Facility University of Wollongong 2519 Australia
- Illawarra Health and Medical Research Institute University of Wollongong 2522 Australia
| | - Peikai Zhang
- Polymer Electronics Research Centre School of Chemical Sciences The University of Auckland 1010 New Zealand
| | - Annika Ahtiainen
- Computational Biophysics and Imaging Group BioMediTech Institute and Faculty of Biomedical Sciences and Engineering Tampere University of Technology Tampere 33720 Finland
| | - Heidi Kaisvuo
- Computational Biophysics and Imaging Group BioMediTech Institute and Faculty of Biomedical Sciences and Engineering Tampere University of Technology Tampere 33720 Finland
| | - Chong‐Yong Lee
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute AIIM Facility University of Wollongong 2519 Australia
| | - Stephen Beirne
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute AIIM Facility University of Wollongong 2519 Australia
| | - Zaid Aqrawe
- School of Pharmacy The University of Auckland 1010 New Zealand
| | - Darren Svirskis
- School of Pharmacy The University of Auckland 1010 New Zealand
| | - Jari Hyttinen
- Computational Biophysics and Imaging Group BioMediTech Institute and Faculty of Biomedical Sciences and Engineering Tampere University of Technology Tampere 33720 Finland
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute AIIM Facility University of Wollongong 2519 Australia
| | - Jadranka Travas‐Sejdic
- Polymer Electronics Research Centre School of Chemical Sciences The University of Auckland 1010 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology 6140 New Zealand
| | - Jeremy M. Crook
- ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute AIIM Facility University of Wollongong 2519 Australia
- Illawarra Health and Medical Research Institute University of Wollongong 2522 Australia
- Department of Surgery St Vincent's Hospital The University of Melbourne 3065 Australia
| |
Collapse
|
35
|
Solazzo M, Krukiewicz K, Zhussupbekova A, Fleischer K, Biggs MJ, Monaghan MG. PEDOT:PSS interfaces stabilised using a PEGylated crosslinker yield improved conductivity and biocompatibility. J Mater Chem B 2019; 7:4811-4820. [DOI: 10.1039/c9tb01028a] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rapidly expanding fields of bioelectronics, and biological interfaces with sensors and stimulators, are placing an increasing demand on candidate materials to serve as robust surfaces that are both biocompatible, stable and electroconductive.
Collapse
Affiliation(s)
- Matteo Solazzo
- Department of Mechanical and Manufacturing Engineering
- Trinity College Dublin
- The University of Dublin
- Dublin
- Ireland
| | - Katarzyna Krukiewicz
- Centre for Research in Medical Devices (CURAM)
- National University of Ireland
- Galway
- Ireland
- Department of Physical Chemistry and Technology of Polymers
| | - Ainur Zhussupbekova
- School of Physics and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Karsten Fleischer
- School of Physics and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Manus J. Biggs
- Centre for Research in Medical Devices (CURAM)
- National University of Ireland
- Galway
- Ireland
- Department of Biomedical Engineering
| | - Michael G. Monaghan
- Department of Mechanical and Manufacturing Engineering
- Trinity College Dublin
- The University of Dublin
- Dublin
- Ireland
| |
Collapse
|