1
|
Tang T, Zhao S, Chen K, Liu Y, Mo G, Sun L, Zhu R, Tang X, Yi H. Dual effect of anchored sulphur and activated oxygen in the catalytic oxidation of organic sulfur over Pt single-atom catalysts. J Colloid Interface Sci 2025; 688:264-275. [PMID: 40010091 DOI: 10.1016/j.jcis.2025.02.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Foul-smelling organic sulfur gases removal of which is crucial for improving environmental quality and protecting human health. Herein, in this study, Pt single-atom (SA) loaded magnesium oxide (MgO) nanosheet catalysts were prepared, which exhibited the dual effects of anchored sulfur and activated oxygen that greatly enhanced the catalytic oxidation efficiency of methyl mercaptan (CH3SH), and 90 % complete oxidation of CH3SH could be achieved by Pt SA/MgO at 325 °C, with an oxidation efficiency that was 8 times higher than that of MgO nanosheets. A series of characterization results indicate that the valence state of Pt in the Pt SA/MgO catalyst ranges between 0 and +4, demonstrating its inherent electron-donating capability. Theoretical calculations show that the oxygen vacancy formation energy is reduced to 4.0 eV after the introduction of Pt SA, and the adsorption energy of atomic groups SH and CH3 is reduced to -1.5 and -2.0 eV. And the bond length of the MgO bond in Pt SA/MgO is shortened to 2.083 Å, forming an asymmetric structure with the PtO bond of 2.142 Å, effectively activating the lattice oxygen. Furthermore, A series of activity tests confirmed that the introduction of Pt SA reduced sulfate deposition, while the reaction pathway of CH3SH catalytic oxidation was optimised by changing the oxidation mechanism. The investigation offers a significant experimental foundation and novel viewpoints for the enhancement of high-performance catalytic oxidation catalysts targeting sulfur-containing volatile organic compounds (VOCs).
Collapse
Affiliation(s)
- Tian Tang
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shunzheng Zhao
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Salt Lake Chemical Engineering Research Complex, Qinghai University, China; Key Laboratory of Salt Lake Chemical Material of Qinghai Province, China.
| | - Kai Chen
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yunpeng Liu
- Institute of High Energy Physics, Chines Academy of Sciences, Beijing 100049, China
| | - Guang Mo
- Institute of High Energy Physics, Chines Academy of Sciences, Beijing 100049, China
| | - Long Sun
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ronghui Zhu
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaolong Tang
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Honghong Yi
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
2
|
An Z, Jian X, Hong W, Zhang X, Ma J, Li M, Zhang B, Guo LH. An ultrasensitive free-of-electronic sacrificial agent photoelectrochemical aptasensor for the detection of dibutyl phthalate based on Z-scheme p-n Bi-doped BiOI/Bi 2S 3 heterojunction. Talanta 2025; 282:126997. [PMID: 39378766 DOI: 10.1016/j.talanta.2024.126997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/08/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Dibutyl phthalate (DBP), a common and outstanding plasticizer, exhibits estrogenic, mutagenic, carcinogenic, and teratogenic properties. It is easily liberated from plastic materials and pollutes aquatic ecosystems, endangering human health. Therefore, highly sensitive and selective DBP detection methods are necessary. In this work, a free-of-electronic sacrificial agent photoelectrochemical (PEC) aptasensor for DBP detection was constructed using a novel Z-scheme Bi-doped BiOI/Bi2S3 (Bi-BIS) p-n heterojunction. The Bi-BIS composites had higher visible-light absorption, charge transfer, and separation efficiency. This is attributed to the synergistic effect of the formation of Z-scheme p-n heterojunction between BiOI and Bi2S3, the plasma resonance effect of metallic Bi and photosensitization of Bi2S3, thus exhibiting large and stable photocurrent response in the absence of electron sacrificial agent, that was 10.4 and 6.4 times higher than that of BiOI and Bi2S3, respectively. Then, a DBP PEC aptasensor was constructed by modifying the DBP aptamer on the surface of the ITO/Bi-BIS electrode. The aptasensor demonstrated a broad linear range (2-500 pM) and a low detection limit (0.184 pM). What's more, because there is no interference from electronic sacrificial agent, the aptasensor exhibited excellent selectivity in real water samples. Therefore, the proposed PEC has considerable potential for DBP monitoring.
Collapse
Affiliation(s)
- Zhiquan An
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China
| | - Xiaoyu Jian
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China
| | - Wenjun Hong
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China
| | - Xilong Zhang
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China
| | - Jiateng Ma
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China
| | - Minjie Li
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China
| | - Bihong Zhang
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China.
| | - Liang-Hong Guo
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China.
| |
Collapse
|
3
|
Xie Y, Peng X, Song X, Ning P, Sun X, Ma Y, Wang C, Li K. Structural/surface characterization of transition metal element-doped H-ZSM-5 adsorbent for CH 3SH removal: identification of active adsorption sites and deactivation mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24398-24411. [PMID: 38441737 DOI: 10.1007/s11356-024-32518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/14/2024] [Indexed: 04/07/2024]
Abstract
CH3SH is a potential hazard to both chemical production and human health, so controlling its emissions is an urgent priority. In this work, a series of transition metal-loaded H-ZSM-5 adsorbents (Si/Al = 25) (Cu, Fe, Co, Ni, Mn, and Zn) were synthesized through the wet impregnation method and tested for CH3SH physicochemical adsorption at 60 °C. It was shown that the Cu-modified H-ZSM-5 adsorbent was much more active for CH3SH removal due to its abundant strong acid sites than other transition metal-modified H-ZSM-5 adsorbents. The detailed physicochemical properties of various modified H-ZSM-5 adsorbents were characterized by SEM, XRD, N2 physisorption, XPS, H2-TPR, and NH3-TPD. The effects of metal loading mass ratio, calcination temperature, and acid or alkali modification on the performance of the adsorbent were also investigated, and finally 20% Cu/ZSM-5 was found to have the best adsorption capacity after calcined at 350 °C. Additionally, the Cu/ZSM-5 adsorbent modified by sodium bicarbonate could expose more active components, which improved the adsorbent's stability. However, the consumption and reduction of the active component Cu2+ and the accumulation of sulfate during the adsorption process are the main reasons for the deactivation of the adsorbent. In addition, the simultaneous purging of N2 + O2 can effectively restore the adsorption capacity of the deactivated adsorbent and can be used as a potential strategy to regenerate the adsorbent.
Collapse
Affiliation(s)
- Yuxuan Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Xiao Peng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- Faculty of Chemistry and Chemical Engineering, Zhaotong College, Zhaotong, 657000, People's Republic of China
| | - Xin Song
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- National-Regional Engineering Center for Recovery of Waste Gases From Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- National-Regional Engineering Center for Recovery of Waste Gases From Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Xin Sun
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Yixing Ma
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- National-Regional Engineering Center for Recovery of Waste Gases From Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Chi Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| | - Kai Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- National-Regional Engineering Center for Recovery of Waste Gases From Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| |
Collapse
|
4
|
Liu X, Hu X, Zhang K, Yi Q, Zhang H, Yan T, Cheng D, Han L, Zhang D. Selective Synergistic Catalytic Elimination of NO x and CH 3SH via Engineering Deep Oxidation Sites against Toxic Byproducts Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21470-21482. [PMID: 38050842 DOI: 10.1021/acs.est.3c06825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
NOx and CH3SH as two typical air pollutants widely coexist in various energy and industrial processes; hence, it is urgent to develop highly efficient catalysts to synergistically eliminate NOx and CH3SH. However, the catalytic system for synergistically eliminating NOx and CH3SH is seldom investigated to date. Meanwhile, the deactivation effects of CH3SH on catalysts and the formation mechanism of toxic byproducts emitted from the synergistic catalytic elimination reaction are still vague. Herein, selective synergistic catalytic elimination (SSCE) of NOx and CH3SH via engineering deep oxidation sites over Cu-modified Nb-Fe composite oxides supported on TiO2 catalyst against toxic CO and HCN byproducts formation has been originally demonstrated. Various spectroscopic and microscopic characterizations demonstrate that the sufficient chemisorbed oxygen species induced by the persistent electron transfer from Nb-Fe composite oxides to copper oxides can deeply oxidize HCOOH to CO2 for avoiding highly toxic byproducts formation. This work is of significance in designing superior catalysts employed in more complex working conditions and sheds light on the progress in the SSCE of NOx and sulfur-containing volatile organic compounds.
Collapse
Affiliation(s)
- Xiangyu Liu
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaonan Hu
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Kai Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Qiuying Yi
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hengxiang Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tingting Yan
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Danhong Cheng
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lupeng Han
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
5
|
Su H, Liu J, Hu Y, Ai T, Gong C, Lu J, Luo Y. Comparative Study of α- and β-MnO 2 on Methyl Mercaptan Decomposition: The Role of Oxygen Vacancies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:775. [PMID: 36839143 PMCID: PMC9964818 DOI: 10.3390/nano13040775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
As a representative sulfur-containing volatile organic compounds (S-VOCs), CH3SH has attracted widespread attention due to its adverse environmental and health risks. The performance of Mn-based catalysts and the effect of their crystal structure on the CH3SH catalytic reaction have yet to be systematically investigated. In this paper, two different crystalline phases of tunneled MnO2 (α-MnO2 and β-MnO2) with the similar nanorod morphology were used to remove CH3SH, and their physicochemical properties were comprehensively studied using high-resolution transmission electron microscope (HRTEM) and electron paramagnetic resonance (EPR), H2-TPR, O2-TPD, Raman, and X-ray photoelectron spectroscopy (XPS) analysis. For the first time, we report that the specific reaction rate for α-MnO2 (0.029 mol g-1 h-1) was approximately 4.1 times higher than that of β-MnO2 (0.007 mol g-1 h-1). The as-synthesized α-MnO2 exhibited higher CH3SH catalytic activity towards CH3SH than that of β-MnO2, which can be ascribed to the additional oxygen vacancies, stronger surface oxygen migration ability, and better redox properties from α-MnO2. The oxygen vacancies on the catalyst surface provided the main active sites for the chemisorption of CH3SH, and the subsequent electron transfer led to the decomposition of CH3SH. The lattice oxygen on catalysts could be released during the reaction and thus participated in the further oxidation of sulfur-containing species. CH3SSCH3, S0, SO32-, and SO42- were identified as the main products of CH3SH conversion. This work offers a new understanding of the interface interaction mechanism between Mn-based catalysts and S-VOCs.
Collapse
Affiliation(s)
- Hong Su
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Jiangping Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Yanan Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Tianhao Ai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Chenhao Gong
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Jichang Lu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Yongming Luo
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
6
|
Xie Y, Bao J, Song X, Sun X, Ning P, Wang C, Wang F, Ma Y, Fan M, Li K. Catalysts for gaseous organic sulfur removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130029. [PMID: 36166909 DOI: 10.1016/j.jhazmat.2022.130029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Organic sulfur gases (COS, CS2 and CH3SH) are widely present in reducing industrial off-gases, and these substances pose difficulties for the recovery of carbon monoxide and other gases. The reaction pathways and reaction mechanisms of organic sulfur on different catalyst surfaces have yet to be fully summarized. The literature shows that many factors, such as catalyst synthesis method, loaded metal composition, number of surface hydroxyl groups, number of acid-base sites and methods of surface modification, have important effects on the catalytic performance of metal catalysts. Therefore, this paper presents a comprehensive review of the research on the application of catalysts such as zeolites, metal oxides, carbon-based materials, and hydrotalcite-like derivatives in the field of organic sulfur removal. Future research prospects are summarized, more in situ characterization experiments and theoretical calculations are needed for the catalytic decomposition of methanethiol to analyze the coke generation pathways at the microscopic level, while the simultaneous removal of multiple organic sulfur gases needs to be focused on. Based on previous catalyst research, we propose possible innovations in catalyst design, desulfurization technology and organic sulfur resource utilization technology.
Collapse
Affiliation(s)
- Yuxuan Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jiacheng Bao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xin Song
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xin Sun
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Chi Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Fei Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yixing Ma
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Maohong Fan
- Department of Chemical Engineering and Department of Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA.
| | - Kai Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
7
|
Qu W, Tang Z, Wen H, Luo M, Zhong T, Lian Q, Hu L, Tian S, He C, Shu D. Electron Transfer Trade-offs in MOF-Derived Cobalt-Embedded Nitrogen-Doped Carbon Nanotubes Boost Catalytic Ozonation for Gaseous Sulfur-Containing VOC Elimination. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wei Qu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Zhuoyun Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Hailin Wen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Manhui Luo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Tao Zhong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Qiyu Lian
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Lingling Hu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Shuanghong Tian
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou510275, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou510275, China
| | - Dong Shu
- School of Chemistry, South China Normal University, Guangzhou510006, China
| |
Collapse
|
8
|
Tian R, Lu J, Xu Z, Zhang W, Liu J, Wang L, Xie Y, Zhao Y, Cao X, Luo Y. Unraveling the Synergistic Reaction and the Deactivation Mechanism for the Catalytic Degradation of Double Components of Sulfur-Containing VOCs over ZSM-5-Based Materials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 57:1443-1455. [PMID: 36196013 DOI: 10.1021/acs.est.2c04033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The competitive adsorption behavior, the synergistic catalytic reaction, and deactivation mechanisms under double components of sulfur-containing volatile organic compounds (VOCs) are a bridge to solve their actual pollution problems. However, they are still unknown. Herein, simultaneous catalytic decomposition of methyl mercaptan (CH3SH) and ethyl mercaptan (C2H5SH) is investigated over lanthanum (La)-modified ZSM-5, and kinetic and thermodynamic results confirm a great difference in the adsorption property and catalytic transformation behavior. Meanwhile, the new synergistic reaction and deactivation mechanisms are revealed at the molecular level by combining with in situ diffuse reflectance infrared spectroscopy (in situ DRIFTS) and density functional theory (DFT) calculations. The CH3CH2* and SH* groups are presented in decomposing C2H5SH, while the new species of CH2*, active H* and S*, instead of CH3* and SH*, are proved as the key elementary groups in decomposing CH3SH. The competitive recombining of SH* in C2H5SH with highly active H* in dimethyl sulfide (CH3SCH3), an intermediate in decomposing CH3SH, would aggravate the deposition of carbon and sulfur. La/ZSM-5 exhibits potential environmental application due to the excellent stability of 200 h and water resistance. This work gives an understanding of the adsorption, catalysis, reaction, and deactivation mechanisms for decomposing double components of sulfur-containing VOCs.
Collapse
Affiliation(s)
- Rui Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming650500, P. R. China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming650500, P. R. China
| | - Jichang Lu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming650500, P. R. China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming650500, P. R. China
| | - Zhizhi Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming650500, P. R. China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming650500, P. R. China
| | - Wenjun Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming650500, P. R. China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming650500, P. R. China
| | - Jiangping Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming650500, P. R. China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming650500, P. R. China
| | - Langlang Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
| | - Yibing Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
| | - Yutong Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming650500, P. R. China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming650500, P. R. China
| | - Xiaohua Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming650500, P. R. China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming650500, P. R. China
| | - Yongming Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming650500, P. R. China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming650500, P. R. China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming650500, P. R. China
| |
Collapse
|
9
|
Mai X, Lin W, Chen J, Yang Q, Gao R. Synthesis of Z-scheme (001)-TiO2/Bi5O7I heterojunctions with enhanced interfacial charge separation and photocatalytic degradation of Rhodamine B. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Du Y, Ma R, Wang L, Qian J, Wang Q. 2D/1D BiOI/g-C 3N 4 nanotubes heterostructure for photoelectrochemical overall water splitting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156166. [PMID: 35618118 DOI: 10.1016/j.scitotenv.2022.156166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
To boost the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances, the BiOI/graphitic carbon nitride nanotubes (g-C3N4 nanotubes) heterojunction was synthesized herein through the hydrothermal method. BiOI in-situ grew on the surface of g-C3N4 nanotubes derived from melamine. The rapid recombination between photoexcited electrons and holes of pristine semiconductors was prevented via building the stable heterojunction. The SEM results indicated that the BiOI was wrapped around the surface of g-C3N4 nanotubes, resulting in an optimized electronic transmission pathway. Much lower charge transfer resistance at the p-n heterojunction was demonstrated compared with pristine BiOI according to the EIS results, thus leading to the faster surface reaction rates. Moreover, the composite exhibited both outstanding OER and HER activities under illuminated conditions. This study may shed light upon establishing a bifunctional photoelectrocatalysis for photoelectrochemical water splitting based on stable 2D metal and 1D metal-free nanocomposite.
Collapse
Affiliation(s)
- Yufei Du
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Rui Ma
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Lingzhen Wang
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Jin Qian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
11
|
Shi A, Sun D, Zhang X, Ji S, Wang L, Li X, Zhao Q, Niu X. Direct Z-Scheme Photocatalytic System: Insights into the Formative Factors of Photogenerated Carriers Transfer Channel from Ultrafast Dynamics. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Anqi Shi
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Dazhong Sun
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xuemei Zhang
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Shilei Ji
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Longlu Wang
- School of Optoelectronic Engineering and Grüenberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xing’ao Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Qiang Zhao
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- School of Optoelectronic Engineering and Grüenberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xianghong Niu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| |
Collapse
|
12
|
Li Z, Feng Y, Chang L, Long Y, Suo N, Wang Z, Yu Y. Efficient degradation of naproxen in a three dimensional biofilm electrode magnetism reactor (3DBEMR): Removal performance and microbial community. BIORESOURCE TECHNOLOGY 2022; 346:126653. [PMID: 34979277 DOI: 10.1016/j.biortech.2021.126653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
A three-dimensional biofilm electrode magnetism reactor (3DBEMR) was constructed to removal naproxen (NPX). This study evaluated 3DBEMR performance in removal of refractory NPX, while also discussing the effect of the electro-magnetic superposition on microbial community by high throughput sequencing. Results indicated that 3DBEMR's average removal rate for NPX stood at 88.36%, representing an increase by 75.24%, 65.03% and 12.36%, respectively, compared to 3DBR (Three-Dimensional Biofilm Reactor), 3DBMR (Three-Dimensional Biofilm Magnetism Reactor) and 3DBER (Three-Dimensional Biofilm Electrode Reactor). This was attributed to the influence of electro-magnetic adsorption, electro-oxidaton/catalysis, and electro-magnetic biodegradation. Another major contributing factor to NPX removal was the presence in 3DBEMR of high-abundance genera such as Rhodobacter, Porphyrobacter, Methyloversatilis, Sphingopyxis,Bosea, Singulisphaera, Sphingomonas. Therefore, the 3DBEMR was successfully demonstrated to be a flexible and effective technique in NPX degradation, which would help to better understand the effect of superposition of electric and magnetic fields on microbial community.
Collapse
Affiliation(s)
- Zichen Li
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, PR China
| | - Yan Feng
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, PR China.
| | - Lei Chang
- Shandong Urban Construction Vocational College, Jinan 250022, PR China
| | - Yingying Long
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, PR China
| | - Ning Suo
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, PR China
| | - Zhongwei Wang
- Everbright Water (Jinan) Co., Ltd, Jinan 250022, PR China
| | - Yanzhen Yu
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, PR China; School of Civil Engineering and Architecture, Qilu Institute of Technology, Jinan 250022, PR China
| |
Collapse
|
13
|
Chen H, Xing Y, Liu S, Fu J, Shi H, Liang Y, Wang L, Wang W. Efficient pollutant degradation under ultraviolet to near-infrared light irradiation and dark condition using CuSe nanosheets: Mechanistic insight into degradation. J Colloid Interface Sci 2022; 613:103-116. [PMID: 35032771 DOI: 10.1016/j.jcis.2022.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
The hydrothermally prepared two-dimensional copper selenide nanosheets (2D CuSe NSs) have been employed for the first time to degrade rhodamine B (RhB) in the presence of hydrogen peroxide (H2O2) under ultraviolet to near-infrared (NIR) light irradiation and dark condition. The experimental measurements demonstrate that 99.7% RhB is degraded under NIR light irradiation for 120 min. Moreover, the experimental tests clearly demonstrate that the 2D CuSe NSs display excellent ability to degrade RhB under dark condition. The different degradation mechanisms under the light irradiation and dark condition have been revealed by the experimental tests through the investigation of H2O2 role and the evaluation of hydroxyl radicals (•OH) and H2O2 concentration during the degradation reaction. Under light irradiation, the H2O2 traps the photogenerated electrons of the CuSe to generate •OH and hydroxide ion (OH-), and the holes react with OH- to produce •OH, making RhB to be degraded efficiently. Under dark conduction, the 2D CuSe NSs react with H2O2 to exhibit Fenton-like process to degrade RhB with a degradation rate of 90.0% within 120 min. This work opens a pathway for developing nanostructures with full-solar-responsive and strong near-infrared photocatalytic activity as well as Fenton-like reaction to efficiently degrade pollutants under light irradiation and dark condition.
Collapse
Affiliation(s)
- Huabin Chen
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| | - Yujin Xing
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| | - Sitong Liu
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| | - Junli Fu
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Honglong Shi
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Yujie Liang
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Lijuan Wang
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Wenzhong Wang
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China; School of Science, Minzu University of China, Beijing 100081, PR China.
| |
Collapse
|
14
|
Cai H, Ma Z, Zhao T. Fabrication of magnetic CuFe 2O 4@PBC composite and efficient removal of metronidazole by the photo-Fenton process in a wide pH range. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113677. [PMID: 34507058 DOI: 10.1016/j.jenvman.2021.113677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/18/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
CuFe2O4-coated pretreated biochars (CuFe2O4@PBC) were synthesized for the first time via a facile method by impregnating and calcinating Cu-Fe-ethanol solution to activate H2O2 for the degradation of metronidazole (MNZ) at a wide pH range. CuFe2O4@PBC samples were characterized by XRD, SEM, VSM, XPS, and BET. The results showed that CuFe2O4 coating, which is evenly distributed on the surface of HNO3-pretreated biochar, can provide more active sites to enable CuFe2O4@PBC to be activated by visible light. The introduction of biochar by impregnating and calcinating method effectively suppressed the aggregation of CuFe2O4 and maintained its high surface area and pore structure. CuFe2O4@PBC composite can be separated easily by an external magnetic field. The PBC-400CuFe sample calcined under 400 °C showed superior photo-Fenton catalytic ability in MNZ degradation at a wide pH range (pH = 3-7) and exhibited high-efficiency degradation of about 96.3% with the dosage concentration of catalyst 0.4 g/L in the presence of H2O2 at pH 3.0 within 60 min. While, at pH 7.0, the PBC-400CuFe material removed 91.1% MNZ within 120 min, and the degradation efficiency was still higher than that of traditional Fenton reaction and some Fenton-like reaction. The PBC-400CuFe showed good stability. After 5 times of repeated use, its removal rate was still above 89.1%. This study confirmed that O2•- and h+ are both important radicals, but the •OH played a key role in the visible photo/CuFe2O4@PBC- H₂O₂ system. The results indicate that CuFe2O4@PBC is highly suitable for the wastewaters with high MNZ content under mild conditions.
Collapse
Affiliation(s)
- Hao Cai
- Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei GEO University, Shijiazhuang, China; College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang, China; Hebei Province Key Laboratory of Sustained Utilization and Development of Water Resources, Hebei GEO University, Shijiazhuang, China; Hebei Center for Ecological and Environmental Geology Research, Hebei GEO University, Shijiazhuang, China
| | - Zichuan Ma
- College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang, China.
| | - Tianci Zhao
- College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
15
|
Zhou M, Ou H, Li S, Qin X, Fang Y, Lee S, Wang X, Ho W. Photocatalytic Air Purification Using Functional Polymeric Carbon Nitrides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102376. [PMID: 34693667 PMCID: PMC8693081 DOI: 10.1002/advs.202102376] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/20/2021] [Indexed: 05/19/2023]
Abstract
The techniques for the production of the environment have received attention because of the increasing air pollution, which results in a negative impact on the living environment of mankind. Over the decades, burgeoning interest in polymeric carbon nitride (PCN) based photocatalysts for heterogeneous catalysis of air pollutants has been witnessed, which is improved by harvesting visible light, layered/defective structures, functional groups, suitable/adjustable band positions, and existing Lewis basic sites. PCN-based photocatalytic air purification can reduce the negative impacts of the emission of air pollutants and convert the undesirable and harmful materials into value-added or nontoxic, or low-toxic chemicals. However, based on previous reports, the systematic summary and analysis of PCN-based photocatalysts in the catalytic elimination of air pollutants have not been reported. The research progress of functional PCN-based composite materials as photocatalysts for the removal of air pollutants is reviewed here. The working mechanisms of each enhancement modification are elucidated and discussed on structures (nanostructure, molecular structue, and composite) regarding their effects on light-absorption/utilization, reactant adsorption, intermediate/product desorption, charge kinetics, and reactive oxygen species production. Perspectives related to further challenges and directions as well as design strategies of PCN-based photocatalysts in the heterogeneous catalysis of air pollutants are also provided.
Collapse
Affiliation(s)
- Min Zhou
- Department of Science and Environmental StudiesThe Education University of Hong KongTai Po, New TerritoriesHong KongP. R. China
| | - Honghui Ou
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Shanrong Li
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350116P. R. China
| | - Xing Qin
- Department of Science and Environmental StudiesThe Education University of Hong KongTai Po, New TerritoriesHong KongP. R. China
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350116P. R. China
| | - Shun‐cheng Lee
- Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHong KongP. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350116P. R. China
| | - Wingkei Ho
- Department of Science and Environmental StudiesThe Education University of Hong KongTai Po, New TerritoriesHong KongP. R. China
| |
Collapse
|
16
|
Kuchmiy SY. Photocatalytic Air Decontamination from Volatile Organic Pollutants Using Graphite-Like Carbon Nitride: a Review. THEOR EXP CHEM+ 2021. [DOI: 10.1007/s11237-021-09693-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Zhang H, Li M, Wang W, Zhang G, Tang Q, Cao J. Designing 3D porous BiOI/Ti3C2 nanocomposite as a superior coating photocatalyst for photodegradation RhB and photoreduction Cr (VI). Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118911] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Usui H, Kojima H, Domi Y, Sakaguchi H. Regeneration of Nicotinamide Adenine Dinucleotide Phosphate by a Chlorophyll a-Coated TiO 2 Film Electrode. ACS APPLIED BIO MATERIALS 2021; 4:5975-5980. [PMID: 35006912 DOI: 10.1021/acsabm.1c00649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A TiO2 electrode was coated with chlorophyll a to regenerate nicotinamide adenine dinucleotide phosphate (NADPH), which can enhance the photovoltages of the electrodes for photoelectrochemical capacitors. The photovoltage of an uncoated TiO2 electrode was high during the first cycle but then steadily reduced owing to the oxidization of NADPH in the electrolyte during the photo-charge-discharge cycling. By contrast, a chlorophyll a-coated TiO2 electrode maintained high photovoltages for 100 cycles. Residual NADPH concentrations after 100 cycles increased from 73% to 90% because of the coating, demonstrating that NADPH was regenerated by photoexcited chlorophyll a similar to a photosynthetic reaction in nature.
Collapse
Affiliation(s)
- Hiroyuki Usui
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 minami, Koyama-cho, Tottori 680-8552, Japan.,Course of Chemistry and Biotechnology, Department of Engineering, Graduate School of Sustainability Science, Tottori University, 4-101 minami, Koyama-cho, Tottori 680-8552, Japan
| | - Haruka Kojima
- Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 minami, Koyama-cho, Tottori 680-8552, Japan.,Course of Chemistry and Biotechnology, Department of Engineering, Graduate School of Sustainability Science, Tottori University, 4-101 minami, Koyama-cho, Tottori 680-8552, Japan
| | - Yasuhiro Domi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 minami, Koyama-cho, Tottori 680-8552, Japan.,Course of Chemistry and Biotechnology, Department of Engineering, Graduate School of Sustainability Science, Tottori University, 4-101 minami, Koyama-cho, Tottori 680-8552, Japan
| | - Hiroki Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 minami, Koyama-cho, Tottori 680-8552, Japan.,Course of Chemistry and Biotechnology, Department of Engineering, Graduate School of Sustainability Science, Tottori University, 4-101 minami, Koyama-cho, Tottori 680-8552, Japan
| |
Collapse
|
19
|
Kovalakova P, Cizmas L, Feng M, McDonald TJ, Marsalek B, Sharma VK. Oxidation of antibiotics by ferrate(VI) in water: Evaluation of their removal efficiency and toxicity changes. CHEMOSPHERE 2021; 277:130365. [PMID: 34384193 DOI: 10.1016/j.chemosphere.2021.130365] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics in water and wastewater have been determined extensively. The treatment of antibiotics in water needs evaluation of possible harmful effects on aquatic ecosystems and human health. This paper presents the toxicity evaluation of antibiotics after their treatment with ferrate (VI) (FeVIO42-, Fe(VI)) in water. The antibiotics (sulfamethoxazole (SMX), erythromycin (ERY), ofloxacin (OFL), ciprofloxacin (CIP), tetracycline (TET), oxytetracycline (OXY), and trimethoprim (TMP)) were treated at pH 8.0 by applying two concentrations of Fe(VI) to have molar ratios of 5:1 and 10:1 ([Fe(VI)]:[antibiotic]). Under the studied conditions, incomplete removal of antibiotics was observed, suggesting that the treated solutions contained parent antibiotics and their transformation products. The toxicity of antibiotics without Fe(VI) treatment was tested against freshwater green alga Raphidocelis subcapitata and cyanobacterium Synechococcus elongatus, which were determined to be generally sensitive to antibiotics, with EC50 < 1.0 mg/L. The toxicity of Fe(VI) treated solution was tested against R. subcapitata. Results found no toxicity for the treated solutions of OFL, CIP, and OXY. However, SMX, ERY, and TET remained toxic after Fe(VI) treatment (i.e., more than 75% growth inhibition of R. subcapitata). Results demonstrated that R. subcapitata may be applied to test the toxicity of antibiotics after oxidative treatments.
Collapse
Affiliation(s)
- Pavla Kovalakova
- Institute of Botany of the Czech Academy of Sciences of the Czech Republic, Department of Experimental Phycology and Ecotoxicology, Lidicka 25/27, 60200, Brno, Czech Republic; T. G. Masaryk Water Research Institute, Podbabska 2582/30, 16000, Praha 6, Czech Republic
| | - Leslie Cizmas
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, 77843, USA
| | - Mingbao Feng
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, 77843, USA
| | - Thomas J McDonald
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, 77843, USA
| | - Blahoslav Marsalek
- Institute of Botany of the Czech Academy of Sciences of the Czech Republic, Department of Experimental Phycology and Ecotoxicology, Lidicka 25/27, 60200, Brno, Czech Republic
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
20
|
Liu J, Li C, Kong W, Lu Q, Zhang J, Qian G. Lactone radical transformed methyl mercaptan-adsorbed activated carbon into graphene oxide modified activated carbon. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:124527. [PMID: 33582466 DOI: 10.1016/j.jhazmat.2020.124527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Activated carbon was a widely-used adsorbent. However, it was usually classified as a hazardous waste after saturation adsorption for one pollution. For the first time, this article reported a regeneration method for the activated carbon saturated with methyl mercaptan. The regenerated carbon was partially transformed into graphene-oxide fragment with a thickness of 0.9-1.0 nm after a hydrothermal treatment at 180 °C. Electron paramagnetic resonance revealed that lactone group was transformed into lactone radical under the hydrothermal condition. The spins were increased from 4.54E+17-1.24E+18. The formed radical effectively reacted with the adsorbed methyl mercaptan and re-distributed the amorphous activated carbon to form lamellar graphene oxide. As a result, the spins were decreased from 1.24E+18-8.73E+17. At the same time, the amount of lactone group was decreased from 0.71 to 0.42 mmol/g. The regenerated activated carbon thus regained ability to adsorb methyl mercaptan. The main result of this paper puts forward a simple and low-cost method to obtain graphene oxide modified activated carbon from the regeneration of hazardous waste carbon. This conclusion makes contribution to the development of "zero-waste" conception.
Collapse
Affiliation(s)
- Jianhua Liu
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, PR China
| | - Chuanhua Li
- Shanghai Engineering and Technology Research Center of Hazardous Waste Disposal and Recycling, No. 2491 Jiazhu Road, Shanghai 201815, PR China.
| | - Wangsheng Kong
- Shanghai Engineering and Technology Research Center of Hazardous Waste Disposal and Recycling, No. 2491 Jiazhu Road, Shanghai 201815, PR China
| | - Qing Lu
- Shanghai Engineering and Technology Research Center of Hazardous Waste Disposal and Recycling, No. 2491 Jiazhu Road, Shanghai 201815, PR China
| | - Jia Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, PR China.
| | - Guangren Qian
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, PR China
| |
Collapse
|
21
|
Wang Y, Gu X, Quan J, Xing G, Yang L, Zhao C, Wu P, Zhao F, Hu B, Hu Y. Application of magnetic fields to wastewater treatment and its mechanisms: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145476. [PMID: 33588219 DOI: 10.1016/j.scitotenv.2021.145476] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Magnetic field (MF) has been applied widely and successfully as an efficient, low-cost and easy-to-use technique to enhance wastewater treatment (WWT) performance. Although the effects of MF on WWT were revealed and summarized by some works, they are still mysterious and complex. This review summarizes the application of MF in magnetic adsorption-separation of heavy metals and dyes, treatment of domestic wastewater and photo-magnetic coupling technology. Furthermore, the mechanisms of MF-enhanced WWT are critically elaborated from the perspective of magnetic physicochemical and biological effects, such as magnetoresistance, Lorentz force, and intracellular radical pair mechanism. At last, the challenges and opportunities for MF application in WWT are discussed. For overcoming the limitations and taking advantages of MFs in WWT, fundamental research of the mechanisms of the application of MFs should be carried out in the future.
Collapse
Affiliation(s)
- Yilin Wang
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Xin Gu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Jianing Quan
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Guohua Xing
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Liwei Yang
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Chuanliang Zhao
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Pei Wu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Fan Zhao
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Bo Hu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China.
| | - Yuansheng Hu
- School of Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| |
Collapse
|
22
|
Advanced Two-Dimensional Heterojunction Photocatalysts of Stoichiometric and Non-Stoichiometric Bismuth Oxyhalides with Graphitic Carbon Nitride for Sustainable Energy and Environmental Applications. Catalysts 2021. [DOI: 10.3390/catal11040426] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Semiconductor-based photocatalysis has been identified as an encouraging approach for solving the two main challenging problems, viz., remedying our polluted environment and the generation of sustainable chemical energy. Stoichiometric and non-stoichiometric bismuth oxyhalides (BiOX and BixOyXz where X = Cl, Br, and I) are a relatively new class of semiconductors that have attracted considerable interest for photocatalysis applications due to attributes, viz., high stability, suitable band structure, modifiable energy bandgap and two-dimensional layered structure capable of generating an internal electric field. Recently, the construction of heterojunction photocatalysts, especially 2D/2D systems, has convincingly drawn momentous attention practicably owing to the productive influence of having two dissimilar layered semiconductors in face-to-face contact with each other. This review has systematically summarized the recent progress on the 2D/2D heterojunction constructed between BiOX/BixOyXz with graphitic carbon nitride (g-C3N4). The band structure of individual components, various fabrication methods, different strategies developed for improving the photocatalytic performance and their applications in the degradation of various organic contaminants, hydrogen (H2) evolution, carbon dioxide (CO2) reduction, nitrogen (N2) fixation and the organic synthesis of clean chemicals are summarized. The perspectives and plausible opportunities for developing high performance BiOX/BixOyXz-g-C3N4 heterojunction photocatalysts are also discussed.
Collapse
|
23
|
Pei Y, Ge Y, Zhang X, Li Y. Cathodic photoelectrochemical aptasensor based on NiO/BiOI/Au NP composite sensitized with CdSe for determination of exosomes. Mikrochim Acta 2021; 188:51. [PMID: 33496853 DOI: 10.1007/s00604-021-04716-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/17/2021] [Indexed: 12/13/2022]
Abstract
A cathodic photoelectrochemical sensor has been developed for the determination of exosomes, based on a dual-signal reduction strategy. A heterostructure of NiO/BiOI/Au NP/CdSe was synthesized as a photoelectrochemical sensing interface, which is able to suppress the recombination of electron-hole pairs and produce a higher photocurrent. The obtained materials were characterized, and the mechanism for the generation of the cathodic photocurrent was proposed. CdSe QDs (quantum dots) modified with DNA2 were assembled on the electrode through the hybridization with EpCAM aptamer on the surface of ITO/NiO/BiOI/Au NP. The introduction of CdSe QDs to the electrode increases the photocurrent.The recognition of exosomes with aptamer DNA led to the separation of CdSe QDs from the electrode, which in turn caused the decrease of photocurrents. Meanwhile, the big volume of exosomes hinders the electron transfer between the electrode and electrolyte. Due to the dual reduction effect, a sensitive PEC sensor was obtained with a detection limit of 1.2 × 102 particles/μL exosomes (λex = 430 nm, bias voltage = - 0.1 V). The cathodic photoelectrochemical sensor showed good selectivity, performed well in a complex biological environment and could be used to distinguishbreast cancer patients from healthy individuals.
Collapse
Affiliation(s)
- Yujiao Pei
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yonghao Ge
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xiaoru Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Ying Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
24
|
Huang Z, Zhao S, Yu Y. Experimental method to explore the adaptation degree of type-II and all-solid-state Z-scheme heterojunction structures in the same degradation system. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63495-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Wu H, Yuan C, Chen R, Wang J, Dong F, Li J, Sun Y. Mechanisms of Interfacial Charge Transfer and Photocatalytic NO Oxidation on BiOBr/SnO 2 p-n Heterojunctions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43741-43749. [PMID: 32867469 DOI: 10.1021/acsami.0c12628] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this work, hydrothermally prepared p-n heterojunction BiOBr/SnO2 photocatalysts were applied to eliminate NO in visible light. The as-synthesized BiOBr/SnO2 photocatalysts exhibit superior photocatalytic activity and stability through the establishment of a p-n heterojunction, resulting in a significant improvement in charge separation and transfer properties. The morphological structure and optical property of the BiOBr/SnO2 heterojunction were also investigated comprehensively. Extended light absorption into the visible range was achieved by SnO2 coating on the surface of the BiOBr microsphere through the constructed heterojunction between BiOBr and SnO2, thus achieving efficient NO removal. Moreover, the transfer channels and directions of charge at the BiOBr/SnO2 interface were determined by a combination of theoretical calculations and experimental studies. Within this p-n heterojunction, the charge in SnO2 migrates into BiOBr through the preformed electron transfer channels, thus generating an internal electric field (IEF) between SnO2 and BiOBr. Under the influence of IEF, the photogenerated electrons of BiOBr migrate from the conduction band (CB) to the CB of SnO2, thus promoting the separation of electrons (e-)-holes (h+) pairs. The intermediates and final products were monitored by the in situ DRIFTS technology in the process of removal of NO in visible light; hence, the oxidation pathways of NO were reasonably proposed. Meanwhile, the construction of the heterojunction not only achieves more efficient NO photocatalytic oxidation but also inhibits the production of more toxic NO2. This work provides mechanistic insights into the interfacial charge transfer for heterojunction photocatalysts and reaction mechanism for efficient air purification.
Collapse
Affiliation(s)
- Huizhong Wu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chaowei Yuan
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Ruimin Chen
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Jiadong Wang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Fan Dong
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jieyuan Li
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yanjuan Sun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
26
|
Guo L, You Y, Huang H, Tian N, Ma T, Zhang Y. Z-scheme g-C3N4/Bi2O2[BO2(OH)] heterojunction for enhanced photocatalytic CO2 reduction. J Colloid Interface Sci 2020; 568:139-147. [DOI: 10.1016/j.jcis.2020.02.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/31/2019] [Accepted: 02/09/2020] [Indexed: 10/25/2022]
|
27
|
Wang M, Yao H, Zhang L, Zhou X. Synthesis of highly-efficient photocatalyst for visible- light-driven hydrogen evolution by recycling of heavy metal ions in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121149. [PMID: 31550667 DOI: 10.1016/j.jhazmat.2019.121149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/21/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Water pollution and energy crisis are two important research subjects awaited to solution. Herein, we propose a strategy of "turning scrap into wealth" to obtain the highly-efficient photocatalyst for hydrogen evolution by recycling of heavy metal ions in wastewater. The novel mesoporous zeolite Beta (mBeta) can be used as adsorbent to remove the heavy metal ions (i.e., Cd2+ and/or Zn2+) from wastewater due to its excellent adsorptive performance from the electrostatic affinity, ion-exchange ability and structural channels in zeolite. Subsequently, in-situ sulfuring of the Cd2+ or/and Zn2+ adsorbed mBeta was carried out to obtain highly-efficient photocatalysts. As expected, the sample CdS/ZnS-mBeta exhibited super photocatalytic activity and high stability under visible light irradiation. It is believed that the synergetic effect between CdS and ZnS nanoparticles are responsible for its good visible light absorption performance and the effective separation of photoelectrons and holes. Besides, the mBeta with high specific surface area can improve the dispersibility of sulfides, which would contribute to its high stability.
Collapse
Affiliation(s)
- Min Wang
- College of Materials Science & Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao 266042, PR China; State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China
| | - Heliang Yao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China
| | - Linlin Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China
| | - Xiaoxia Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China.
| |
Collapse
|
28
|
Hu L, Liao Y, Xia D, Zhang Q, He H, Yang J, Huang Y, Liu H, Zhang F, He C, Shu D. In-situ fabrication of AgI-BiOI nanoflake arrays film photoelectrode for efficient wastewater treatment, electricity production and enhanced recovery of copper in photocatalytic fuel cell. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.12.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
In situ self-assembly synthesis of sandwich-like TiO2/reduced graphene oxide/LaFeO3 Z-scheme ternary heterostructure towards enhanced photocatalytic hydrogen production. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Yue P, Zhang G, Cao X, Wang B, Zhang Y, Wei Y. In situ synthesis of Z-scheme BiPO4/BiOCl0.9I0.1 heterostructure with multiple vacancies and valence for efficient photocatalytic degradation of organic pollutant. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Oxygen functionalized graphitic carbon nitride as an efficient metal-free ozonation catalyst for atrazine removal: Performance and mechanism. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.10.052] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Bhosale R, Jain S, Vinod CP, Kumar S, Ogale S. Direct Z-Scheme g-C 3N 4/FeWO 4 Nanocomposite for Enhanced and Selective Photocatalytic CO 2 Reduction under Visible Light. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6174-6183. [PMID: 30681322 DOI: 10.1021/acsami.8b22434] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Photocatalytic reduction of CO2 to renewable solar fuels is considered to be a promising strategy to simultaneously solve both global warming and energy crises. However, development of a superior photocatalytic system with high product selectivity for CO2 reduction under solar light is the prime requisite. Herein, a series of nature-inspired Z-scheme g C3N4/FeWO4 composites are prepared for higher performance and selective CO2 reduction to CO as solar fuel under solar light. The novel direct Z-scheme coupling of the visible light-active FeWO4 nanoparticles with C3N4 nanosheets is seen to exhibit excellent performance for CO production with a rate of 6 μmol/g/h at an ambient temperature, almost 6 times higher compared to pristine C3N4 and 15 times higher than pristine FeWO4. More importantly, selectivity for CO is 100% over other carbon products from CO2 reduction and more than 90% over H2 products from water splitting. Our results clearly demonstrate that the staggered band structure between FeWO4 and C3N4 reflecting the nature-inspired Z-scheme system not only favors superior spatial separation of the electron-hole pair in g-C3N4/FeWO4 but also shows good reusability. The present work provides unprecedented insights for constructing the direct Z-scheme by mimicking the nature for high performance and selective photocatalytic CO2 reduction into solar fuels under solar light.
Collapse
Affiliation(s)
- Reshma Bhosale
- Department of Physics and Centre for Energy Science , Indian Institute of Science Education and Research (IISER) , Pune 411008 , India
| | - Srashti Jain
- Department of Physics and Centre for Energy Science , Indian Institute of Science Education and Research (IISER) , Pune 411008 , India
| | | | - Santosh Kumar
- Department of Chemical Engineering , University of Bath , Claverton , Bath BA2 7AY , U.K
| | - Satishchandra Ogale
- Department of Physics and Centre for Energy Science , Indian Institute of Science Education and Research (IISER) , Pune 411008 , India
| |
Collapse
|
33
|
Ren X, Yao J, Cai L, Li J, Cao X, Zhang Y, Wang B, Wei Y. Band gap engineering of BiOI via oxygen vacancies induced by graphene for improved photocatalysis. NEW J CHEM 2019. [DOI: 10.1039/c8nj05538f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reduced graphene oxide–bismuth iodide oxide (rGO–BiOI) composite was prepared by a thermal reduction method.
Collapse
Affiliation(s)
- Xuejun Ren
- National Demonstration Center for Experimental Chemistry Education College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
| | - Jingwen Yao
- National Demonstration Center for Experimental Chemistry Education College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
| | - Lei Cai
- National Demonstration Center for Experimental Chemistry Education College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
| | - Jibiao Li
- National Demonstration Center for Experimental Chemistry Education College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
| | - Xingzhong Cao
- Multi-discipline Research Division
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Yanfeng Zhang
- National Demonstration Center for Experimental Chemistry Education College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
| | - Baoyi Wang
- Multi-discipline Research Division
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Yu Wei
- National Demonstration Center for Experimental Chemistry Education College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
| |
Collapse
|
34
|
Xia D, Xu W, Wang Y, Yang J, Huang Y, Hu L, He C, Shu D, Leung DYC, Pang Z. Enhanced Performance and Conversion Pathway for Catalytic Ozonation of Methyl Mercaptan on Single-Atom Ag Deposited Three-Dimensional Ordered Mesoporous MnO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13399-13409. [PMID: 30362732 DOI: 10.1021/acs.est.8b03696] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, Ag deposited three-dimensional MnO2 porous hollow microspheres (Ag/MnO2 PHMSs) with high dispersion of the atom level Ag species are first prepared by a novel method of redox precipitation. Due to the highly efficient utilization of downsized Ag nanoparticles, the optimal 0.3% Ag/MnO2 PHMSs can completely degrade 70 ppm CH3SH within 600 s, much higher than that of MnO2 PHMSs (79%). Additionally, the catalyst retains long-term stability and can be regenerated to its initial activity through regeneration with ethanol and HCl. The results of characterization of Ag/MnO2 PHMSs and catalytic performance tests clearly demonstrate that the proper amount of Ag incorporation not only facilitates the chemi-adsorption but also induces more formation of vacancy oxygen (Ov) and lattice oxygen (OL) in MnO2 as well as Ag species as activation sites to collectively favor the catalytic ozonation of CH3SH. Ag/MnO2 PHMSs can efficiently transform CH3SH into CH3SAg/CH3S-SCH3 and then oxidize them into SO42- and CO2 as evidenced by in situ diffuse reflectance infrared Fourier transform spectroscopy. Meanwhile, electron paramagnetic resonance and scavenger tests indicate that •OH and 1O2 are the primary reactive species rather than surface atomic oxygen species contributing to CH3SH removal over Ag/MnO2 PHMSs. This work presents an efficient catalyst of single atom Ag incorporated MnO2 PHMSs to control air pollution.
Collapse
Affiliation(s)
- Dehua Xia
- School of Environmental Science and Engineering , Sun Yat-sen University , Guangzhou , 510275 , China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology , Guangzhou , 510275 , China
| | - Wenjun Xu
- School of Environmental Science and Engineering , Sun Yat-sen University , Guangzhou , 510275 , China
- South China Institute of Environmental Science , Ministry of Environmental Protection (MEP) , Guangzhou 510655 , PR China
| | - Yunchen Wang
- School of Environmental Science and Engineering , Sun Yat-sen University , Guangzhou , 510275 , China
| | - Jingling Yang
- School of Environmental Science and Engineering , Sun Yat-sen University , Guangzhou , 510275 , China
| | - Yajing Huang
- School of Environmental Science and Engineering , Sun Yat-sen University , Guangzhou , 510275 , China
| | - Lingling Hu
- School of Environmental Science and Engineering , Sun Yat-sen University , Guangzhou , 510275 , China
| | - Chun He
- School of Environmental Science and Engineering , Sun Yat-sen University , Guangzhou , 510275 , China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology , Guangzhou , 510275 , China
| | - Dong Shu
- Key Lab of Technology on Electrochemical Energy Storage and Power Generation in Guangdong Universities, School of Chemistry and Environment , South China Normal University , Guangzhou , 510006 , China
| | - Dennis Y C Leung
- Department of Mechanical Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong
| | - Zhihua Pang
- South China Institute of Environmental Science , Ministry of Environmental Protection (MEP) , Guangzhou 510655 , PR China
| |
Collapse
|
35
|
Li Y, Chen F, Luan Z, Zhang X. A versatile cathodic "signal-on" photoelectrochemical platform based on a dual-signal amplification strategy. Biosens Bioelectron 2018; 119:63-69. [PMID: 30099233 DOI: 10.1016/j.bios.2018.07.068] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 01/01/2023]
Abstract
Novel cathodic photoelectrochemical (PEC) aptasensors for sensitive and selective determination of thrombin and Pb2+ were developed based on a new dual-signal amplification strategy. The presence of gold nanoparticles (AuNPs) could quench the PEC signal of bismuth oxyiodide (BiOI). At the same time, the redox moiety G-quadruplex/hemin or ferrocene (Fc) was found to enhance the PEC signal of BiOI. So, in the presence of thrombin or Pb2+, the interaction between target and the aptamer resulted in the releasement of the AuNPs, as well as shorter distance between the redox moiety and the electrode surface. Hence dual-enhanced cathodic PEC biosensor strategy was realized. Under the optimized conditions, the detection limits of thrombin and Pb2+ were 17.3 fM and 3.16 pM, respectively with good selectivity. At the same time, the PEC performance of redox moiety G-quadruplex/hemin and Fc was compared.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Scienceand Technology, Qingdao 266042, PR China
| | - Fengting Chen
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Scienceand Technology, Qingdao 266042, PR China
| | - Zhenzhu Luan
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Scienceand Technology, Qingdao 266042, PR China
| | - Xiaoru Zhang
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Scienceand Technology, Qingdao 266042, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Scienceand Technology, Qingdao 266042, PR China..
| |
Collapse
|