1
|
Li B, Zhang J, Zhu Q, Xiang T, Wang R, Hu T, Jin R, Yang J. Nanoreactor of Fe, N Co-Doped Hollow Carbon Spheres for Oxygen Reduction Catalysis. Inorg Chem 2023; 62:6510-6517. [PMID: 37027781 DOI: 10.1021/acs.inorgchem.3c00582] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
A simple template strategy was applied to prepare a Fe, N co-doped hollow carbon (Fe-NHC) nanoreactor for the oxygen reduction reaction (ORR) by coating Fe nanoparticles (Fe-NPs) with polydopamine (PDA), followed by high temperature pyrolysis and acid-leaching. With this method, Fe-NPs were used as both the template and the metal precursor, so that the nanoreactors can preserve the original spherical morphology and embed Fe single atoms on the inner walls. The carbonized PDA contained abundant N content, offering an ideal coordination environment for Fe atoms. By regulating the mass ratio of Fe-NPs and PDA, an optimal sample with a carbon layer thickness of 12 nm (Fe-NHC-3) was obtained. The hollow spherical structure of the nanoreactors and the atomically dispersed Fe were verified by various physical characterizations. As a result, Fe-NHC-3 performed well in ORR tests under alkaline conditions, with high catalytic activity, durability, and methanol resistance, demonstrating that the as-fabricated materials have the potential to be applied in the cathodic catalysis of fuel cells.
Collapse
Affiliation(s)
- Bing Li
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiali Zhang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qingchao Zhu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tingting Xiang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ruibo Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tieyu Hu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ran Jin
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juan Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Li K, Cheng R, Xue Q, Zhao T, Wang F, Fu C. Construction of a Co/MnO Mott-Schottky Heterostructure to Achieve Interfacial Synergy in the Oxygen Reduction Reaction for Aluminum-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9150-9159. [PMID: 36780395 DOI: 10.1021/acsami.2c13871] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The rational design of non-noble metal-based electrocatalysts for an efficient oxygen reduction reaction (ORR) is an important research topic to promote the advancement of aluminum-air batteries. In this work, heterostructural Co/MnO nanoparticles encapsulated in a N-doped carbon electrocatalyst were prepared via one-step pyrolysis utilizing different reduction potentials of Co and Mn ions, and the heterointerface between the two phases was confirmed. The prepared catalyst displays Pt/C competitive ORR performance because of the interfacial synergy of a Co/MnO Mott-Schottky (M-S) heterostructure, which leads to boosted conductivity, formation of an M-S barrier, and a reduced oxygen reduction energy barrier for excited electrons. Furthermore, the Co/MnO-based aluminum-air battery displays good discharge performance, demonstrating good feasibility for practical application.
Collapse
Affiliation(s)
- Kaiqi Li
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruiqi Cheng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingyue Xue
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tianshuo Zhao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei Wang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chaopeng Fu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Duraisamy V, Arumugam N, Almansour AI, Wang Y, Liu TX, Kumar SMS. In situ decoration of Co3O4 on N-doped hollow carbon sphere as an effective bifunctional oxygen electrocatalyst for oxygen evolution and oxygen reduction reactions. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Zhang B, Li J. "Electron Complementation"-Induced Molybdenum Nitride/Co-Anchored Graphitic Carbon Nitride Porous Nanoparticles for Efficient Overall Water Splitting. Inorg Chem 2022; 61:20095-20104. [PMID: 36454043 DOI: 10.1021/acs.inorgchem.2c03516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Maximizing the usable space of electrocatalysts and fine-tuning the interface geometry as well as the electronic structure to facilitate hydrogen and oxygen evolution reactions (HER and OER) have always been the focus of research. Herein, a homogeneous porous nanoparticle construction strategy was proposed, in which molybdenum nitride (Mo2N) particles were prepared by controlled heat treatment of the precursor nanoparticle induced by polyethylene glycol, and the Mo2N/Co-C3N4 heterostructure with a pore size of about 1.13 nm was obtained by compounding Co-anchored graphitic carbon nitride. In particular, exploring the change of charge distribution at the interface based on the principle of "electron complementation" shows that under the regulation of nitrogen with high electronegativity, the affinity of active site Co to oxygenated species in the OER process and the adsorption as well as cleavage ability of HER reactants in the active site were effectively optimized. Thus, Mo2N/Co-C3N4 not only inherits the functions of each component, but also provides an ideal heterogeneous interface for exhibiting impressive bifunctional activity, which only needs 100 and 210 mV to deliver 10 mA cm-2 for the HER and OER, respectively. In addition, the Mo2N/Co-C3N4 catalyst also demonstrates high overall water splitting stability with a slight current decrease after 95 h. Manipulating the electronic structure of multiple sites by constructing electronically complementary interfaces may provide another avenue to develop highly active catalysts for overall water splitting and other applications.
Collapse
Affiliation(s)
- Beiyi Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Junqi Li
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
5
|
Flores-Lasluisa JX, Huerta F, Cazorla-Amorós D, Morallón E. Transition metal oxides with perovskite and spinel structures for electrochemical energy production applications. ENVIRONMENTAL RESEARCH 2022; 214:113731. [PMID: 35753372 DOI: 10.1016/j.envres.2022.113731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Transition metal oxide-based materials are an interesting alternative to substitute noble-metal based catalyst in energy conversion devices designed for oxygen reduction (ORR), oxygen evolution (OER) and hydrogen evolution reactions (HER). Perovskite (ABO3) and spinel (AB2O4) oxides stand out against other structures due to the possibility of tailoring their chemical composition and, consequently, their properties. Particularly, the electrocatalytic performance of these materials depends on features such as chemical composition, crystal structure, nanostructure, cation substitution level, eg orbital filling or oxygen vacancies. However, they suffer from low electrical conductivity and surface area, which affects the catalytic response. To mitigate these drawbacks, they have been combined with carbon materials (e.g. carbon black, carbon nanotubes, activated carbon, and graphene) that positively influence the overall catalytic activity. This review provides an overview on tunable perovskites (mainly lanthanum-based) and spinels featuring 3d metal cations such as Mn, Fe, Co, Ni and Cu on octahedral sites, which are known to be active for the electrochemical energy conversion.
Collapse
Affiliation(s)
- J X Flores-Lasluisa
- Dept. Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - F Huerta
- Dept. Ingenieria Textil y Papelera, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1, E-03801, Alcoy, Spain
| | - D Cazorla-Amorós
- Dept. Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - E Morallón
- Dept. Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain.
| |
Collapse
|
6
|
Olowoyo JO, Kriek RJ. Recent Progress on Bimetallic-Based Spinels as Electrocatalysts for the Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203125. [PMID: 35996806 DOI: 10.1002/smll.202203125] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Electrocatalytic water splitting is a promising and viable technology to produce clean, sustainable, and storable hydrogen as an energy carrier. However, to meet the ever-increasing global energy demand, it is imperative to develop high-performance non-precious metal-based electrocatalysts for the oxygen evolution reaction (OER), as the OER is considered the bottleneck for electrocatalytic water splitting. Spinels, in particular, are considered promising OER electrocatalysts due to their unique properties, precise structures, and compositions. Herein, the recent progress on the application of bimetallic-based spinels (AFe2 O4 , ACo2 O4 , and AMn2 O4 ; where A = Ni, Co, Cu, Mn, and Zn) as electrocatalysts for the OER is presented. The fundamental concepts of the OER are highlighted after which the family of spinels, their general formula, and classifications are introduced. This is followed by an overview of the various classifications of bimetallic-based spinels and their recent developments and applications as OER electrocatalysts, with special emphasis on enhancing strategies that have been formulated to improve the OER performance of these spinels. In conclusion, this review summarizes all studies mentioned therein and provides the challenges and future perspectives for bimetallic-based spinel OER electrocatalysts.
Collapse
Affiliation(s)
- Joshua O Olowoyo
- Electrochemistry for Energy & Environment Group, Research Focus Area: Chemical Resource Beneficiation (CRB), Private Bag X6001, North-West University, Potchefstroom, 2520, South Africa
| | - Roelof J Kriek
- Electrochemistry for Energy & Environment Group, Research Focus Area: Chemical Resource Beneficiation (CRB), Private Bag X6001, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
7
|
Huang Y, Zhang Y, Hao J, Wang Y, Yu J, Liu Y, Tian Z, Chan TS, Liu M, Li W, Li J. Tuning the coordination environment of Fe atoms enables 3D porous Fe/N-doped carbons as bifunctional electrocatalyst for rechargeable zinc-air battery. J Colloid Interface Sci 2022; 628:1067-1076. [PMID: 36163054 DOI: 10.1016/j.jcis.2022.09.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
Abstract
As one of the most promising candidates for power sources, the rechargeable Zn-air batteries have attracted much attention due to their high energy density. However, Zn-air batteries suffer from sluggish kinetics of oxygen reduction (ORR) and oxygen evolution reaction (OER) during the discharge and charge process. Herein, a FeN2-doped carbon with a unique three-dimensional (3D) porous structure (CeO2-FeNC-5) was synthesized as an electrocatalyst for Zn-air batteries by one-step pyrolysis and introducing CeO2 to tune the coordination environment of Fe atoms. Extended X-ray absorption fine structure (EXAFS) results indicate that the introduction of CeO2 can convert FeN3 moieties into FeN2 moieties. The CeO2-FeNC-5 exhibits a more positive half-wave potential of 0.902 V for ORR, and a low overpotential of 0.327 V at 10 mA cm-2 for OER. Furthermore, the Zn-air battery with CeO2-FeNC-5 achieve a maximum power density (169 mW cm-2), a high open voltage platform (1.47 V) and superior cycling stability (200 h). The unique 3D porous structure provides channels for mass transport and exposes sufficient active sites to facilitate the ORR and OER processes. Calculations prove that FeN2 moieties are beneficial to O2 adsorption on Fe/N-doped carbon surface. This work provides an effective strategy for designing and synthesizing FeNx-doped carbon matrix electrocatalysts for sustainable metal-air batteries.
Collapse
Affiliation(s)
- Yaling Huang
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yafei Zhang
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Changsha Uranium Geology Research Institute, China National Nuclear Corporation, China
| | - Jiayu Hao
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yanqiu Wang
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jiawen Yu
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhongliang Tian
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Min Liu
- School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Wenzhang Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha 410083, China.
| | - Jie Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
8
|
Ghorui UK, Mondal P, Adhikary B, Mondal A, Sarkar A. Newly designed one‐pot in‐situ synthesis of VS2/rGO nanocomposite to explore its electrochemical behavior towards oxygen electrode reactions. ChemElectroChem 2022. [DOI: 10.1002/celc.202200526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Uday Kumar Ghorui
- IIEST Shibpur: Indian Institute of Engineering Science and Technology Chemistry INDIA
| | - Papri Mondal
- IIEST Shibpur: Indian Institute of Engineering Science and Technology Chemistry INDIA
| | - Bibhutosh Adhikary
- IIEST Shibpur: Indian Institute of Engineering Science and Technology Chemistry INDIA
| | - Anup Mondal
- IIEST Chemistry Botanic Garden 711103 HOWRAH INDIA
| | - Arpita Sarkar
- IIEST Shibpur: Indian Institute of Engineering Science and Technology Chemistry INDIA
| |
Collapse
|
9
|
Sen R, Das S, Nath A, Maharana P, Kar P, Verpoort F, Liang P, Roy S. Electrocatalytic Water Oxidation: An Overview With an Example of Translation From Lab to Market. Front Chem 2022; 10:861604. [PMID: 35646820 PMCID: PMC9131097 DOI: 10.3389/fchem.2022.861604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
Water oxidation has become very popular due to its prime role in water splitting and metal–air batteries. Thus, the development of efficient, abundant, and economical catalysts, as well as electrode design, is very demanding today. In this review, we have discussed the principles of electrocatalytic water oxidation reaction (WOR), the electrocatalyst and electrode design strategies for the most efficient results, and recent advancement in the oxygen evolution reaction (OER) catalyst design. Finally, we have discussed the use of OER in the Oxygen Maker (OM) design with the example of OM REDOX by Solaire Initiative Private Ltd. The review clearly summarizes the future directions and applications for sustainable energy utilization with the help of water splitting and the way forward to develop better cell designs with electrodes and catalysts for practical applications. We hope this review will offer a basic understanding of the OER process and WOR in general along with the standard parameters to evaluate the performance and encourage more WOR-based profound innovations to make their way from the lab to the market following the example of OM REDOX.
Collapse
Affiliation(s)
- Rakesh Sen
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Supriya Das
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Aritra Nath
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Priyanka Maharana
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Pradipta Kar
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
| | - Francis Verpoort
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- Center for Environmental and Energy Research, Ghent University Global Campus, Incheon, South Korea
- *Correspondence: Francis Verpoort, ; Pei Liang, ; Soumyajit Roy,
| | - Pei Liang
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
- *Correspondence: Francis Verpoort, ; Pei Liang, ; Soumyajit Roy,
| | - Soumyajit Roy
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
- *Correspondence: Francis Verpoort, ; Pei Liang, ; Soumyajit Roy,
| |
Collapse
|
10
|
Rao Y, Li W, Chen S, Yue Q, Zhang Y, Kang Y. V 2 O 3 /MnS Arrays as Bifunctional Air Electrode for Long-Lasting and Flexible Rechargeable Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104411. [PMID: 35233951 DOI: 10.1002/smll.202104411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Exploring highly efficient, stable, and cost-effective bifunctional electrocatalysts is crucial for the wide commercialization of rechargeable Zn-air batteries. Herein, a vanadium-oxide-based hybrid air electrode comprising a heterostructure of V2 O3 and MnS (V2 O3 /MnS) is reported. The V2 O3 /MnS catalyst shows a decent catalytic activity that is comparable to Pt/C toward the oxygen reduction reaction and acceptable toward oxygen evolution. The extraordinary stability as well as the low cost set the V2 O3 /MnS among the best bifunctional oxygen electrocatalysts. In a demonstration of an assembled liquid-state Zn-air battery using V2 O3 /MnS as cathode, high power density (118 mW cm-2 ), specific capacity (808 mAh gZn -1 ), and energy density (970 Wh kgZn -1 ), as well as the outstanding rechargeability and durability for 4000 cycles (>1333 h, i.e., >55 days) are enabled. The V2 O3 /MnS is also integrated into an all-solid-state Zn-air battery to demonstrate its great potential as a flexible power source for next-generation electronics. Density functional theory calculations further elucidate the origin of the intrinsic activity and stability of the V2 O3 /MnS heterostructure.
Collapse
Affiliation(s)
- Yuan Rao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Weili Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Shan Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Qin Yue
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yanning Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yijin Kang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
11
|
Bredar ARC, Blanchet MD, Burton AR, Matthews BE, Spurgeon SR, Comes RB, Farnum BH. Oxygen Reduction Electrocatalysis with Epitaxially Grown Spinel MnFe 2O 4 and Fe 3O 4. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Alexandria R. C. Bredar
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Miles D. Blanchet
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Andricus R. Burton
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Bethany E. Matthews
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Steven R. Spurgeon
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Ryan B. Comes
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Byron H. Farnum
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
12
|
Flores-Lasluisa JX, Salinas-Torres D, López-Ramón MV, Moreno-Castilla C, Álvarez MA, Morallón E, Cazorla-Amorós D. Electrocatalytic activity of calcined manganese ferrite solid nanospheres in the oxygen reduction reaction. ENVIRONMENTAL RESEARCH 2022; 204:112126. [PMID: 34563521 DOI: 10.1016/j.envres.2021.112126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
In this study, we synthesized MnFe2O4 solid nanospheres (MSN) calcined at different temperatures (200-500 °C) and MSN-based materials mixed with carbon black, for their use as electrocatalysts in the oxygen reduction reaction (ORR) in alkaline medium (0.1 M KOH). It was demonstrated that the calcination temperature of MSN material determined its chemical surface composition and microstructure and it had an important effect on the electrocatalytic properties for ORR, which in turn was reflected in the performance of MSN/CB-based electrocatalysts. The study revealed that the presence of Mn species plays a key role in the ORR activity. Among tested, MSN200/CB and MSN350/CB exhibited the best electrochemical performances together with outstanding stability.
Collapse
Affiliation(s)
- J X Flores-Lasluisa
- Departamento de Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - D Salinas-Torres
- Departamento de Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain.
| | - M V López-Ramón
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, E-23071, Jaén, Spain.
| | - C Moreno-Castilla
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, E-18071, Granada, Spain.
| | - M A Álvarez
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, E-23071, Jaén, Spain
| | - E Morallón
- Departamento de Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - D Cazorla-Amorós
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| |
Collapse
|
13
|
Wang T, Ola O, Dapaah MF, Lu Y, Niu Q, Cheng L, Wang N, Zhu Y. Preparation and Characterization of Multi-Doped Porous Carbon Nanofibers from Carbonization in Different Atmospheres and Their Oxygen Electrocatalytic Properties Research. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:832. [PMID: 35269320 PMCID: PMC8912686 DOI: 10.3390/nano12050832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/24/2022]
Abstract
Recently, electrocatalysts for oxygen reduction reaction (ORR) as well as oxygen evolution reaction (OER) hinged on electrospun nanofiber composites have attracted wide research attention. Transition metal elements and heteroatomic doping are important methods used to enhance their catalytic performances. Lately, the construction of electrocatalysts based on metal-organic framework (MOF) electrospun nanofibers has become a research hotspot. In this work, nickel-cobalt zeolitic imidazolate frameworks with different molar ratios (NixCoy-ZIFs) were synthesized in an aqueous solution, followed by NixCoy-ZIFs/polyacrylonitrile (PAN) electrospun nanofiber precursors, which were prepared by a simple electrospinning method. Bimetal (Ni-Co) porous carbon nanofiber catalysts doped with nitrogen, oxygen, and sulfur elements were obtained at high-temperature carbonization treatment in different atmospheres (argon (Ar), Air, and hydrogen sulfide (H2S)), respectively. The morphological properties, structures, and composition were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Moreover, the specific surface area of materials and their pore size distribution was characterized by Brunauer-Emmett-Teller (BET). Linear sweep voltammetry curves investigated catalyst performances towards oxygen reduction and evolution reactions. Importantly, Ni1Co2-ZIFs/PAN-Ar yielded the best ORR activity, whereas Ni1Co1-ZIFs/PAN-Air exhibited the best OER performance. This work provides significant guidance for the preparation and characterization of multi-doped porous carbon nanofibers carbonized in different atmospheres.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (T.W.); (Y.L.)
| | - Oluwafunmilola Ola
- Advanced Materials Research Group, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Malcom Frimpong Dapaah
- Institute of Environmental Health and Ecological Security, School of the Environment and SafetyEngineering, Jiangsu University, Zhenjiang 212013, China; (M.F.D.); (L.C.)
| | - Yuhao Lu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (T.W.); (Y.L.)
| | - Qijian Niu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (T.W.); (Y.L.)
| | - Liang Cheng
- Institute of Environmental Health and Ecological Security, School of the Environment and SafetyEngineering, Jiangsu University, Zhenjiang 212013, China; (M.F.D.); (L.C.)
| | - Nannan Wang
- Guangxi Institute for Fullerene Technology, Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources Environment and Materials, University of Guangxi, Nanning 530000, China;
| | - Yanqiu Zhu
- Guangxi Institute for Fullerene Technology, Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources Environment and Materials, University of Guangxi, Nanning 530000, China;
| |
Collapse
|
14
|
Sahu N, Das JK, Behera JN. NiSe 2 Nanoparticles Encapsulated in N-Doped Carbon Matrix Derived from a One-Dimensional Ni-MOF: An Efficient and Sustained Electrocatalyst for Hydrogen Evolution Reaction. Inorg Chem 2022; 61:2835-2845. [PMID: 35113554 DOI: 10.1021/acs.inorgchem.1c03323] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The spherical-type NiSe2 nanoparticles encapsulated in a N-doped carbon (NC) matrix (NiSe2-T@NC, temperature (T) = 400-800 °C) are derived from a 1D Ni-MOF precursor of the formula [Ni(BPY)(DDE)] [(BPY = 2,2'-bipyridyl), (DDE = 4,4'-dicarboxy diphenyl ether)] via a facile solvothermal technique followed by annealing at different temperatures and selenylation strategies. The combined effect of a NC matrix and the Ni nanoparticles has been optimized during varied annealing processes with subsequent selenylation, leading to the formation of the series NiSe2-400@NC, NiSe2-500@NC, NiSe2-600@NC, NiSe2-700@NC, and NiSe2-800@NC, respectively. The variation of annealing temperature plays a vital role in optimizing the catalytic behavior of the NiSe2-T@NCs. Among different high-temperature annealed products, NiSe2-600@NC shows superior electrocatalytic performance because of the unique spherical-type morphology and higher specific surface area (57.95 m2 g-1) that provides a large number of electrochemical active sites. The synthesized material exhibits a lower overpotential of 196 mV to deliver 10 mA cm-2 current density, a small Tafel slope of 45 mV dec-1 for better surface kinetics, and outstanding durability in an acidic solution, respectively. Consequently, the post stability study of the used electrocatalyst gives insight into surface phase analysis. Therefore, we presume that the synthesized 1D MOF precursor derived NiSe2 nanoparticles encapsulated in a NC matrix has excellent potential to replace the noble-metal-based electrocatalyst for enhanced hydrogen evolution through simple water electrolysis.
Collapse
Affiliation(s)
- Nachiketa Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Khordha 752050, Odisha, India.,Homi Bhabha National Institute (HBNI), Mumbai 400094, India.,Centre for Interdisciplinary Sciences (CIS), NISER, 752050 Jatni, Odisha, India
| | - Jiban K Das
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Khordha 752050, Odisha, India.,Homi Bhabha National Institute (HBNI), Mumbai 400094, India.,Centre for Interdisciplinary Sciences (CIS), NISER, 752050 Jatni, Odisha, India
| | - J N Behera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Khordha 752050, Odisha, India.,Homi Bhabha National Institute (HBNI), Mumbai 400094, India.,Centre for Interdisciplinary Sciences (CIS), NISER, 752050 Jatni, Odisha, India
| |
Collapse
|
15
|
Chattopadhyay J, Pathak TS, Pak D. Heteroatom-Doped Metal-Free Carbon Nanomaterials as Potential Electrocatalysts. Molecules 2022; 27:670. [PMID: 35163935 PMCID: PMC8838211 DOI: 10.3390/molecules27030670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/26/2022] Open
Abstract
In recent years, heteroatom-incorporated specially structured metal-free carbon nanomaterials have drawn huge attention among researchers. In comparison to the undoped carbon nanomaterials, heteroatoms such as nitrogen-, sulphur-, boron-, phosphorous-, etc., incorporated nanomaterials have become well-accepted as potential electrocatalysts in water splitting, supercapacitors and dye-sensitized solar cells. This review puts special emphasis on the most popular synthetic strategies of heteroatom-doped and co-doped metal-free carbon nanomaterials, viz., chemical vapor deposition, pyrolysis, solvothermal process, etc., utilized in last two decades. These specially structured nanomaterials' extensive applications as potential electrocatalysts are taken into consideration in this article. Their comparative enhancement of electrocatalytic performance with incorporation of heteroatoms has also been discussed.
Collapse
Affiliation(s)
| | - Tara Sankar Pathak
- Department of Science and Humanities, Surendra Institute of Engineering and Management, Siliguri, Darjeeling 734009, India;
| | - Daewon Pak
- Department of Environmental Engineering, Seoul National University of Science and Technology, Gongneung-ro, Nowon-gu, Seoul 01811, Korea
| |
Collapse
|
16
|
Farahpour M, Arvand M. In situ synthesis of advantageously united copper stannate nanoparticles for a new high powered supercapacitor electrode. NEW J CHEM 2022. [DOI: 10.1039/d1nj04972k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel CuNi2O4@SnS@rGO/NF multicomponent hybrid material leads to fast ion/electron transfers at the electrode/electrolyte interface.
Collapse
Affiliation(s)
- Mona Farahpour
- Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Guilan, P.O. Box: 1914–41335, Rasht, Iran
| | - Majid Arvand
- Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Guilan, P.O. Box: 1914–41335, Rasht, Iran
| |
Collapse
|
17
|
Han J, Zhang M, Bai X, Duan Z, Tang T, Guan J. Mesoporous Mn-Fe oxyhydroxides for oxygen evolution. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00722c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of high-performance and earth-abundant catalysts is imperative for the oxygen evolution reaction (OER), and mesoporous oxyhydroxides show huge potential as advanced catalysts toward OER due to large specific surface...
Collapse
|
18
|
Wu M, Wu X, Wang Z, Hu B, Guo H, Zhang B, Wang L. Direct thermal annealing synthesis of FeO nanodots anchored on N-doped carbon nanosheet for long-term electrocatalytic oxygen reduction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Yu XH, Yi JL, Zhang RL, Wang FY, Liu L. Hollow carbon spheres and their noble metal-free hybrids in catalysis. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2097-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
20
|
Li M, Fan L, Zhang Y, Li X, Liu S, Kang Z, Sun D. Constructing Porous Carbon Electrocatalysts from Cobalt Complex-Decorated Micelles of Mesoporous Silica for Oxygen Reduction/Evolution Reaction. Inorg Chem 2021; 60:14892-14903. [PMID: 34523919 DOI: 10.1021/acs.inorgchem.1c02268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The construction of a porous carbon structure with a high specific surface area is conducive to enhanced electrocatalytic activity due to the accessibility of active sites and improvement of the mass transfer. Herein, we explored the possibility of using micelles of mesoporous silica (MCM-48) as the carbon source to generate porous carbon under the confinement of MCM-48 channels. The complexes formed by Co2+ and 4,4'-bipyridine were in situ incorporated into the micelles to derive Co-related active sites (Co-Nx, Co, and Co3O4) for catalyzing the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). After pyrolysis in the N2 atmosphere and subsequent removal of the MCM-48 skeleton, the target porous carbon electrocatalyst was obtained, which exhibited promising performance for both ORR and OER and has great potential as the cathode material for Zn-air battery application. This work not only confirms the effectiveness of using the micelles of MCM-48 as the carbon source for preparing the porous carbon materials, but also provides a new platform for design and synthesis of structurally controllable materials for energy-related electrocatalytic applications.
Collapse
Affiliation(s)
- Mengfei Li
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Lili Fan
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yuming Zhang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xuting Li
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Shuo Liu
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Zixi Kang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Daofeng Sun
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
21
|
Simon C, Blösser A, Eckardt M, Kurz H, Weber B, Zobel M, Marschall R. Magnetic properties and structural analysis on spinel MnFe
2
O
4
nanoparticles prepared
via
non‐aqueous microwave synthesis. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Christopher Simon
- Department of Chemistry University of Bayreuth Universitaetsstrasse 30 95447 Bayreuth Germany
| | - André Blösser
- Department of Chemistry University of Bayreuth Universitaetsstrasse 30 95447 Bayreuth Germany
| | - Mirco Eckardt
- Department of Chemistry University of Bayreuth Universitaetsstrasse 30 95447 Bayreuth Germany
| | - Hannah Kurz
- Department of Chemistry University of Bayreuth Universitaetsstrasse 30 95447 Bayreuth Germany
| | - Birgit Weber
- Department of Chemistry University of Bayreuth Universitaetsstrasse 30 95447 Bayreuth Germany
| | - Mirijam Zobel
- Department of Chemistry University of Bayreuth Universitaetsstrasse 30 95447 Bayreuth Germany
- Institute of Crystallography RWTH Aachen University 52066 Aachen Germany
| | - Roland Marschall
- Department of Chemistry University of Bayreuth Universitaetsstrasse 30 95447 Bayreuth Germany
| |
Collapse
|
22
|
Efficient electrocatalytic oxidation of water and glucose on dendritic-shaped multicomponent transition metals/spongy graphene composites. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138484] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
MnFe2O4 nanoparticles-decorated graphene nanosheets used as an efficient peroxidase minic enable the electrochemical detection of hydrogen peroxide with a low detection limit. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Fei M, Zhang R, Li L, Li J, Ma Z, Zhang K, Li Z, Yu Z, Xiao Q, Yan D. Epitaxial growth of MnFe2O4 nanosheets arrays for supercapacitor. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137586] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Zhong P, Wang K, Wang X, Lu Z, Xie J, Cao Y. Hollow porous nitrogen-doped carbon embedded with ultrafine Co nanoparticles boosting lithium-ion storage. CrystEngComm 2021. [DOI: 10.1039/d0ce01847c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hollow porous nitrogen-doped carbon embedded with ultrafine Co nanoparticles (Co@NC) was synthesized by a facile self-template strategy, which exhibited excellent cycling stability and remarkable rate performance.
Collapse
Affiliation(s)
- Ping Zhong
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials, Autonomous Region
- College of Chemistry
- Xinjiang University
| | - Kun Wang
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials, Autonomous Region
- College of Chemistry
- Xinjiang University
| | - Xingchao Wang
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials, Autonomous Region
- College of Chemistry
- Xinjiang University
| | - Zhenjiang Lu
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials, Autonomous Region
- College of Chemistry
- Xinjiang University
| | - Jing Xie
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials, Autonomous Region
- College of Chemistry
- Xinjiang University
| | - Yali Cao
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials, Autonomous Region
- College of Chemistry
- Xinjiang University
| |
Collapse
|
26
|
Ahmed Z, Bagchi V. Current trends and perspectives on emerging Fe-derived noble-metal-free oxygen electrocatalysts. NEW J CHEM 2021. [DOI: 10.1039/d1nj05062a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This article discusses recent progress in the development of Fe-derived noble metal-free electrocatalysts, including the strategies used for design, synthesis, and assessment of their performance in alkaline conditions.
Collapse
Affiliation(s)
- Zubair Ahmed
- Institute of Nano Science and Technology (INST) Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India
| | - Vivek Bagchi
- Institute of Nano Science and Technology (INST) Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India
| |
Collapse
|
27
|
Li S, Lei X, Hu H, Fu L, Peng R, Huang H, Wang J. Flaky cobalt phosphide-modified manganese iron oxide as a highly efficient OER catalyst. NEW J CHEM 2021. [DOI: 10.1039/d1nj01587g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel CoP modified manganese ferrite was synthesized by a new strategy, showing efficient OER catalytic performance.
Collapse
Affiliation(s)
- Shumei Li
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Gan Zhou 341000
- P. R. China
| | - Xiang Lei
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Gan Zhou 341000
- P. R. China
| | - Huixia Hu
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Gan Zhou 341000
- P. R. China
| | - Liwen Fu
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Gan Zhou 341000
- P. R. China
| | - Ruzhen Peng
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Gan Zhou 341000
- P. R. China
| | - Haiping Huang
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Gan Zhou 341000
- P. R. China
| | - Jinliang Wang
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Gan Zhou 341000
- P. R. China
| |
Collapse
|
28
|
Zhao M, Li H, Li W, Li J, Yi L, Hu W, Li CM. Ru-Doping Enhanced Electrocatalysis of Metal-Organic Framework Nanosheets toward Overall Water Splitting. Chemistry 2020; 26:17091-17096. [PMID: 32734617 DOI: 10.1002/chem.202002072] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/29/2020] [Indexed: 11/08/2022]
Abstract
An Ru-doping strategy is reported to substantially improve both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalytic activity of Ni/Fe-based metal-organic framework (MOF) for overall water splitting. As-synthesized Ru-doped Ni/Fe MIL-53 MOF nanosheets grown on nickel foam (MIL-53(Ru-NiFe)@NF) afford HER and OER current density of 50 mA cm-2 at an overpotential of 62 and 210 mV, respectively, in alkaline solution with a nominal Ru loading of ≈110 μg cm-2 . When using as both anodic and cathodic (pre-)catalyst, MIL-53(Ru-NiFe)@NF enables overall water splitting at a current density of 50 mA cm-2 for a cell voltage of 1.6 V without iR compensation, which is much superior to state-of-the-art RuO2 -Pt/C-based electrolyzer. It is discovered that the Ru-doping considerably modulates the growth of MOF to form thin nanosheets, and enhances the intrinsic HER electrocatalytic activity by accelerating the sluggish Volmer step and improving the intermediate oxygen adsorption for increased OER catalytic activity.
Collapse
Affiliation(s)
- Ming Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education; School of Materials & Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| | - Huilin Li
- Institute of Henan Key Laboratory of Photovoltaic Material, Henan University, Kaifeng, 475001, P. R. China
| | - Wei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education; School of Materials & Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| | - Junying Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education; School of Materials & Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| | - Lingya Yi
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education; School of Materials & Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| | - Weihua Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education; School of Materials & Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| | - Chang Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education; School of Materials & Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
29
|
Electrocatalysts optimized with nitrogen coordination for high-performance oxygen evolution reaction. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213468] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Hu R, Li Y, Wang F, Shang J. Rational prediction of multifunctional bilayer single atom catalysts for the hydrogen evolution, oxygen evolution and oxygen reduction reactions. NANOSCALE 2020; 12:20413-20424. [PMID: 33026034 DOI: 10.1039/d0nr05202g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bimetallic atom catalysts (BACs), which can exhibit remarkable catalytic performance compared with single atom catalysts (SACs) due to their higher metal loading and the synergy between two metal atoms, have attracted great attention in research. Herein, by means of density functional theory calculations, novel BACs with a bilayer structure composed of monolayers FeN4 (Fe and nitrogen co-doped graphene) and MN4 (Fe/M, M represents transition metal atoms) as electrocatalysts for the hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), and oxygen evolution reaction (OER) are investigated. Among these bilayer SACs, a series of highly efficient monofunctional, bifunctional, and even trifunctional electrocatalysts have been screened. For example, the overpotentials for the HER, ORR, and OER can reach -0.02 (Fe/Cu), 0.31 (Fe/Hg), and 0.27 V (Fe/Hf), respectively; Fe/Hf and Ir/Fe can serve as promising bifunctional catalysts for the ORR/OER and HER/OER, respectively and Fe/Rh is considered as an excellent trifunctional catalyst for the HER, OER, and ORR. This work not only provides a new idea for understanding and optimizing the active sites of BACs, but also proposes a new strategy for designing high-performance multifunctional electrocatalysts for fuel cells and metal-air batteries.
Collapse
Affiliation(s)
- Riming Hu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
| | - Yongcheng Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
| | - Fuhe Wang
- Center for Condensed Matter Physics, Department of Physics, Capital Normal University, Beijing 100048, China
| | - Jiaxiang Shang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
31
|
Liu X, Huo YQ, Yan LK, Fan N, Cai KZ, Su ZM. Hollow Porous MnFe 2 O 4 Sphere Grown on Elm-Money-Derived Biochar towards Energy-Saving Full Water Electrolysis. Chemistry 2020; 26:14397-14404. [PMID: 32510739 DOI: 10.1002/chem.202002134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/01/2020] [Indexed: 11/07/2022]
Abstract
The development of inexpensive and efficient bifunctional electrocatalysts is significant for widespread practical applications of overall water splitting technology. Herein, a one-pot solvothermal method is used to prepare hollow porous MnFe2 O4 spheres, which are grown on natural-abundant elm-money-derived biochar material to construct MnFe2 O4 /BC composite. When the overpotential is 156 mV for both the oxygen evolution reaction and the hydrogen evolution reaction, the current density reaches up to 10 mA cm-2 , and its duration is 10 h. At 1.51 V, the overall water decomposition current density of 10 mA cm-2 can be obtained in 1 m KOH. This work proves that elm-money-derived biochar is a valid substrate for growing hollow porous spheres. MnFe2 O4 /BC give a promising general strategy for preparing the effective and stable bifunctional catalysis that can be expand to multiple transition metal oxide.
Collapse
Affiliation(s)
- Xia Liu
- Chemistry department, College of science, Northeastern University, Shenyang, 110819, P. R. China
| | - Yu-Qiu Huo
- Chemistry department, College of science, Northeastern University, Shenyang, 110819, P. R. China
| | - Li-Kai Yan
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Na Fan
- Chemistry department, College of science, Northeastern University, Shenyang, 110819, P. R. China
| | - Kui-Zhe Cai
- Chemistry department, College of science, Northeastern University, Shenyang, 110819, P. R. China
| | - Zhong-Min Su
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.,Science College, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| |
Collapse
|
32
|
Chen XL, Zhu HB, Ding LF. Cu dopant triggering remarkable enhancement in activity and durability of Fe-N-C electrocatalysts toward oxygen reduction. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Xiao L, Yang JM, Huang GY, Zhao Y, Zhu HB. Construction of efficient Mn-N-C oxygen reduction electrocatalyst from a Mn(II)-based MOF with N-rich organic linker. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Abe H, Nozaki K, Sokabe S, Kumatani A, Matsue T, Yabu H. S/N Co-Doped Hollow Carbon Particles for Oxygen Reduction Electrocatalysts Prepared by Spontaneous Polymerization at Oil-Water Interfaces. ACS OMEGA 2020; 5:18391-18396. [PMID: 32743215 PMCID: PMC7391958 DOI: 10.1021/acsomega.0c02182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/01/2020] [Indexed: 05/08/2023]
Abstract
We herein report that sulfur and nitrogen co-doped hollow spherical carbon particles can be applied to oxygen reduction reaction (ORR) electrocatalysts prepared by calcination of polydopamine (PDA) hollow particles. The hollow structure of PDA was formed by auto-oxidative interfacial polymerization of dopamine at the oil and water interface of emulsion microdroplets. The PDA was used as the nitrogen source as well as a platform for sulfur-doping. The obtained sulfur and nitrogen co-doped hollow particles showed a higher catalytic activity than that of nonsulfur-doped particles and nonhollow particles. The high ORR activity of the calcined S-doped PDA hollow particles could be attributed to the combination of nitrogen and sulfur active sites and the large surface areas owing to a hollow spherical structure.
Collapse
Affiliation(s)
- Hiroya Abe
- Frontier
Research Institute for Interdisciplinary Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
- WPI-Advanced
Institute for Materials Research, Tohoku
University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Kohei Nozaki
- Graduate
School of Environmental Studies, Tohoku
University, 6-6-11-604
Aramaki-aza, Aoba, Sendai 980-8579, Japan
| | - Shu Sokabe
- School
of Engineering, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Akichika Kumatani
- WPI-Advanced
Institute for Materials Research, Tohoku
University, 2-1-1 Katahira, Sendai 980-8577, Japan
- Graduate
School of Environmental Studies, Tohoku
University, 6-6-11-604
Aramaki-aza, Aoba, Sendai 980-8579, Japan
- WPI-International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Center for
Science and Innovation in Spintronics, Tohoku
University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Tomokazu Matsue
- Graduate
School of Environmental Studies, Tohoku
University, 6-6-11-604
Aramaki-aza, Aoba, Sendai 980-8579, Japan
| | - Hiroshi Yabu
- WPI-Advanced
Institute for Materials Research, Tohoku
University, 2-1-1 Katahira, Sendai 980-8577, Japan
| |
Collapse
|
35
|
Begum H, Ahmed MS, Kim YB. Nitrogen-rich graphitic-carbon@graphene as a metal-free electrocatalyst for oxygen reduction reaction. Sci Rep 2020; 10:12431. [PMID: 32709940 PMCID: PMC7381605 DOI: 10.1038/s41598-020-68260-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
The metal-free nitrogen-doped graphitic-carbon@graphene (Ng-C@G) is prepared from a composite of polyaniline and graphene by a facile polymerization following by pyrolysis for electrochemical oxygen reduction reaction (ORR). Pyrolysis creates a sponge-like with ant-cave-architecture in the polyaniline derived nitrogenous graphitic-carbon on graphene. The nitrogenous carbon is highly graphitized and most of the nitrogen atoms are in graphitic and pyridinic forms with less oxygenated is found when pyrolyzed at 800 °C. The electrocatalytic activity of Ng-C@G-800 is even better than the benchmarked Pt/C catalyst resulting in the higher half-wave potential (8 mV) and limiting current density (0.74 mA cm-2) for ORR in alkaline medium. Higher catalytic performance is originated from the special porous structure at microscale level and the abundant graphitic- and pyridinic-N active sites at the nanoscale level on carbon-graphene matrix which are beneficial to the high O2-mass transportation to those accessible sites. Also, it possesses a higher cycle stability resulting in the negligible potential shift and slight oxidation of pyridinic-N with better tolerance to the methanol.
Collapse
Affiliation(s)
- Halima Begum
- Department of Mechanical Engineering, Chonnam National University, Gwangju, Republic of Korea
| | | | - Young-Bae Kim
- Department of Mechanical Engineering, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
36
|
Rational Design of Spinel Oxide Nanocomposites with Tailored Electrochemical Oxygen Evolution and Reduction Reactions for ZincAir Batteries. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093165] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The unique physical and chemical properties of spinels have made them highly suitable electrocatalysts in oxygen evolution reaction and oxygen reduction reaction (OER & ORR). Zinc–air batteries (ZABs), which are safer and more cost-effective power sources than commercial lithium-ion batteries, hinge on ORR and OER. The slow kinetics of the air electrode reduce its high theoretical energy density and specific capacity, which limits its practical applications. Thus, tuning the performance of the electrocatalyst and cathode architecture is vital for improving the performance of ZABs, which calls for exploring spinel, a material that delivers improved performance. However, the structure–activity relationship of spinel is still unclear because there is a lack of extensive information about it. This study was performed to address the promising potential of spinel as the bifunctional electrocatalyst in ZABs based on an in-depth understanding of spinel structure and active sites at the atomic level.
Collapse
|
37
|
Qian M, Xu M, Zhou S, Tian J, Taylor Isimjan T, Shi Z, Yang X. Template synthesis of two-dimensional ternary nickel-cobalt-nitrogen co-doped porous carbon film: Promoting the conductivity and more active sites for oxygen reduction. J Colloid Interface Sci 2020; 564:276-285. [DOI: 10.1016/j.jcis.2019.12.089] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
|
38
|
Feng B, Wu X, Li L, Gao W, Hu W, Li CM. Rational Synthesis of Iron/Nitrogen-Doped Carbon Catalyst through a Spatial Isolation Strategy for Efficient Oxygen Reduction in Acidic and Alkaline Media. Chemistry 2019; 25:11560-11565. [PMID: 31297891 DOI: 10.1002/chem.201902521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Indexed: 12/19/2022]
Abstract
It remains challenging to rationally synthesize iron/nitrogen-doped carbon (Fe/N-C) catalysts with rich Fe-Nx atomic active sites for improved oxygen reduction reaction (ORR) electrocatalysis. A highly efficient Fe/N-C catalyst, which has been synthesized through a spatial isolation strategy, is reported. Derived from bioinspired polydopamine (PDA)-based hybrid microsphere precursors, it is a multifunctional carrier that loads atomically dispersed Fe3+ /Zn2+ ions through coordination interactions and N-rich melamine through electrostatic attraction and covalent bonding. The Zn2+ ions and melamine in the precursor efficiently isolate Fe3+ atoms upon pyrolysis to form rich Fe-Nx atomic active sites, and generate abundant micropores during high-temperature treatment; as a consequence, the resultant Fe-N/C catalyst contains rich catalytically active Fe-Nx sites and a hierarchical porous structure. The catalyst exhibits improved ORR activity that is superior to and close to that of Pt/C in alkaline and acidic solutions, respectively.
Collapse
Affiliation(s)
- Bomin Feng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, (Southwest University), Ministry of Education, School of Materials & Energy, Southwest University, Chongqing, 400715, P.R. China.,Institution Chongqing Key Lab for Advanced Materials and Clean Energies of Technologies, School of Materials and Energy, Southwest University, Chongqing, 400715, P.R. China
| | - Xiuju Wu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, (Southwest University), Ministry of Education, School of Materials & Energy, Southwest University, Chongqing, 400715, P.R. China.,Institution Chongqing Key Lab for Advanced Materials and Clean Energies of Technologies, School of Materials and Energy, Southwest University, Chongqing, 400715, P.R. China
| | - Ling Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, (Southwest University), Ministry of Education, School of Materials & Energy, Southwest University, Chongqing, 400715, P.R. China.,Institution Chongqing Key Lab for Advanced Materials and Clean Energies of Technologies, School of Materials and Energy, Southwest University, Chongqing, 400715, P.R. China
| | - Wei Gao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, (Southwest University), Ministry of Education, School of Materials & Energy, Southwest University, Chongqing, 400715, P.R. China.,Institution Chongqing Key Lab for Advanced Materials and Clean Energies of Technologies, School of Materials and Energy, Southwest University, Chongqing, 400715, P.R. China
| | - Weihua Hu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, (Southwest University), Ministry of Education, School of Materials & Energy, Southwest University, Chongqing, 400715, P.R. China.,Institution Chongqing Key Lab for Advanced Materials and Clean Energies of Technologies, School of Materials and Energy, Southwest University, Chongqing, 400715, P.R. China
| | - Chang Ming Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, (Southwest University), Ministry of Education, School of Materials & Energy, Southwest University, Chongqing, 400715, P.R. China.,Institution Chongqing Key Lab for Advanced Materials and Clean Energies of Technologies, School of Materials and Energy, Southwest University, Chongqing, 400715, P.R. China
| |
Collapse
|
39
|
Zheng D, Ci S, Cai P, Wang G, Wen Z. Nitrogen‐Doped Carbon Nanosheets Encapsulating Cobalt Nanoparticle Hybrids as High‐Performance Bifunctional Electrocatalysts. ChemElectroChem 2019. [DOI: 10.1002/celc.201900355] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dandan Zheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences, Fuzhou Fujian 350002 China
| | - Suqin Ci
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 China
| | - Pingwei Cai
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences, Fuzhou Fujian 350002 China
| | - Genxiang Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences, Fuzhou Fujian 350002 China
| | - Zhenhai Wen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences, Fuzhou Fujian 350002 China
| |
Collapse
|
40
|
Jia C, Wang X, Zhong W, Wang Z, Prezhdo OV, Luo Y, Jiang J. Catalytic Chemistry Predicted by a Charge Polarization Descriptor: Synergistic O 2 Activation and CO Oxidation by Au-Cu Bimetallic Clusters on TiO 2(101). ACS APPLIED MATERIALS & INTERFACES 2019; 11:9629-9640. [PMID: 30741519 DOI: 10.1021/acsami.9b00925] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The versatile properties of bimetallic nanoparticles greatly expand the range of catalyzed chemical reactions. We demonstrate that surface chemistry can be understood and predicted using a simple adsorbate-surface interaction descriptor that relates charge polarization to chemical reactivity. Our density functional theory studies of O2 activation and CO oxidation catalyzed by Au7-Cu1 bimetallic nanoparticles supported on the TiO2(101) surface demonstrate that the generated oxidized Cu atom (CuO x) can efficiently inhibit the aggregation of the active Cu sites. Moreover, because of the strong dipole-dipole interaction between the surface and the adsorbate on the oxidized Cu site, the adsorption of CO + O2/CO + O can be significantly enhanced, which can decrease the CO oxidation barriers and further improve catalytic performance. The product of the two electric dipole moments provides a parameter that allows us to predict the key catalytic properties for different adsorption sites and reaction pathways. The reported findings provide important insights into the mechanism of chemical reactivity of metallic clusters and generate a valuable principle for catalyst design.
Collapse
Affiliation(s)
| | - Xijun Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | | | | | - Oleg V Prezhdo
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
41
|
Ou G, Wu F, Huang K, Hussain N, Zu D, Wei H, Ge B, Yao H, Liu L, Li H, Shi Y, Wu H. Boosting the Electrocatalytic Water Oxidation Performance of CoFe 2O 4 Nanoparticles by Surface Defect Engineering. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3978-3983. [PMID: 30624038 DOI: 10.1021/acsami.8b19265] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Spinel oxides have attracted widespread interest for electrocatalytic applications owing to their unique crystal structure and properties. The surface structure of spinel oxides significantly influences the electrocatalytic performance of spinel oxides. Herein, we report a Li reduction strategy that can quickly tune the surface structure of CoFe2O4 (CFO) nanoparticles and optimize its electrocatalytic oxygen evolution reaction (OER) performance. Results show that a large number of defective domains have been successfully introduced at the surface of CFO nanopowders after Li reduction treatment. The defective CFO nanoparticles demonstrate significantly improved electrocatalytic OER activity. The OER potential observed a negative shift from 1.605 to 1.513 V at 10 mA cm-2, whereas the Tafel slope is greatly decreased to 42.1 mV dec-1 after 4 wt % Li reduction treatment. This efficient Li reduction strategy can also be applied to engineer the surface defect structure of other material systems and broaden their applications.
Collapse
Affiliation(s)
- Gang Ou
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , China
| | | | - Kai Huang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , China
| | - Naveed Hussain
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , China
| | - Di Zu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , China
| | - Hehe Wei
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , China
| | - Binghui Ge
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
- Institute of Physical Science and Information Technology , Anhui University , Hefei 230601 , Anhui , China
| | | | | | | | | | - Hui Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
42
|
Huang X, Wu X, Niu Y, Dai C, Xu M, Hu W. Effect of nanoparticle composition on oxygen reduction reaction activity of Fe/N–C catalysts: a comparative study. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02385a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Fe/N–C catalyst is a type of promising catalyst to replace costly Pt/C for oxygen reduction reaction (ORR).
Collapse
Affiliation(s)
- Xiaoqin Huang
- Institute for Clean Energy & Advanced Materials
- Faculty of Materials & Energy
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies
- Southwest University
- Chongqing 400715
| | - Xiuju Wu
- Institute for Clean Energy & Advanced Materials
- Faculty of Materials & Energy
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies
- Southwest University
- Chongqing 400715
| | - Yanli Niu
- Institute for Clean Energy & Advanced Materials
- Faculty of Materials & Energy
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies
- Southwest University
- Chongqing 400715
| | - Chunlong Dai
- Institute for Clean Energy & Advanced Materials
- Faculty of Materials & Energy
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies
- Southwest University
- Chongqing 400715
| | - Maowen Xu
- Institute for Clean Energy & Advanced Materials
- Faculty of Materials & Energy
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies
- Southwest University
- Chongqing 400715
| | - Weihua Hu
- Institute for Clean Energy & Advanced Materials
- Faculty of Materials & Energy
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies
- Southwest University
- Chongqing 400715
| |
Collapse
|
43
|
Synergetic enhancement of oxygen evolution reaction by Ti3C2Tx nanosheets supported amorphous FeOOH quantum dots. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.098] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|