1
|
Khan NU, Chengfeng X, Jiang MQ, Khan ZU, Razzaq A, Ullah A, Ni J, Abdullah, Iqbal H, Jin ZM. Obstructed vein delivery of ceftriaxone via poly(vinyl-pyrrolidone)-iodine-chitosan nanofibers for the management of diabetic foot infections and burn wounds. Int J Biol Macromol 2024; 277:134166. [PMID: 39084444 DOI: 10.1016/j.ijbiomac.2024.134166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Superficial skin injuries especially burn injuries and unhealed diabetic foot open wounds remain troubling for public health. The healing process is often interrupted by the invasion of resistant pathogens that results in the failure of conventional procedures outside the clinical settings. Herein, we designed nanofibers dressing with intrinsic antibacterial potential of poly(vinyl-pyrrolidone)-iodine/ poly (vinyl)-alcohol by electrospinning with chitosan encapsulating ceftriaxone (CPC/NFs). The optimized electrospun CPC/NFs exhibited smooth surface morphology with average diameter of 165 ± 7.1 nm, drug entrapment and loading efficiencies of 76.97 ± 4.7 % and 8.32 ± 1.73 %, respectively. The results displayed smooth and uniformed fibers with adequate thermal stability and ensured chemical doping. The enhanced in vitro antibacterial efficacy of CPC/NFs against resistant E. coli isolates and biosafety studies encourage the use of designed nanofibers dressing for burn injuries and diabetic foot injuries. In vivo studies proved the healing power of dressing for burn wounds model and diabetic infected wounds model. Immunofluorescence investigation of the wound tissue also suggested promising healing ability of CPC/NFs. The designed approach would be helpful to treat these infected skin open wounds in the hospitals and outside the clinical settings.
Collapse
Affiliation(s)
- Naveed Ullah Khan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, PR China
| | - Xie Chengfeng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, PR China
| | - Meng-Qin Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, PR China
| | - Zaheer Ullah Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Anam Razzaq
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| | - Asmat Ullah
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, PR China
| | - Jiang Ni
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi 214000, PR China
| | - Abdullah
- College of Food Sciences, Zhejiang University of Technology, Hangzhou 310012, PR China
| | - Haroon Iqbal
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, PR China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China.
| | - Zhi Min Jin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, PR China.
| |
Collapse
|
2
|
Yang D, Zhang L, Ni J, Ding Y, Razzaq A, Khan ZU, Iqbal H, Alanazi YF, Khan NU, Wang R. Stimuli-sensitive biomimetic nanoparticles for the inhibition of breast cancer recurrence and pulmonary metastasis. Int J Pharm X 2024; 7:100252. [PMID: 38766479 PMCID: PMC11101870 DOI: 10.1016/j.ijpx.2024.100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
Biomimetic nanoparticles represent a promising avenue for mitigating rapid clearance by the reticuloendothelial system (RES); however, current challenges include insufficient tumour targeting, suboptimal adhesion, and inadequate localized drug release within tumour regions. These shortcomings contribute to persistent contests, such as recurrence and pulmonary metastasis, even with advanced breast cancer therapies. Stimuli-sensitive drug release can furbish the membrane coated nanoparticles for their efficiency against the stated problems. To enhance the efficacy of biomimetic nanoparticles in addressing these issues, we proposed a versatile, stimuli-responsive drug delivery system by encapsulating doxorubicin (Dox) and perfluorohexane (PFH) within poly (lactic-co-glycolic acid) (PLGA) nanoparticles, subsequently coated with macrophage-derived cell membranes. Within this framework, PFH serves as the mediator for ultrasonic (US)-irradiation-triggered drug release specifically within tumour microenvironment, while the macrophage-derived cell membrane coating enhances cell adhesion, enables immune evasion, and natural tumour-homing ability. The characterization assays and in vitro evaluations yielded encouraging results, indicating enhanced targeting and release efficiencies. In vivo studies demonstrated marked inhibitory effects on both breast cancer recurrence and pulmonary metastasis. The resulting data indicate that these engineered nanoparticles have notable potential for targeted delivery and controlled release upon US irradiation, thereby offering significant therapeutic efficacy against primary breast cancer, pulmonary metastasis, and recurrent malignancies. Our findings lay the groundwork for a novel clinical approach, representing an intriguing direction for ongoing investigation by oncologists.
Collapse
Affiliation(s)
- Dongjie Yang
- Pathology Department& Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi 214000, P.R. China
| | - Lan Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, P.R. China
| | - Jiang Ni
- Pathology Department& Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi 214000, P.R. China
| | - Yang Ding
- College of Pharmacy, Pharmaceutical Series, China Pharmaceutical University, Nanjing 210000, P.R. China
| | - Anam Razzaq
- College of Pharmaceutical Sciences, Soochow University, Suzhou, P.R. China
| | - Zaheer Ullah Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Haroon Iqbal
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, P.R. China
| | - Yasmene Falah Alanazi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Naveed Ullah Khan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, P.R. China
| | - Rong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, P.R. China
| |
Collapse
|
3
|
Tong Y, An P, Tang P, Mu R, Zeng Y, Sun H, Zhao M, Lv Z, Wang P, Han W, Gui C, Zhen X, Han L. Suppressing Wnt signaling of the blood‒tumor barrier to intensify drug delivery and inhibit lipogenesis of brain metastases. Acta Pharm Sin B 2024; 14:2716-2731. [PMID: 38828148 PMCID: PMC11143535 DOI: 10.1016/j.apsb.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 06/05/2024] Open
Abstract
Lipogenesis is often highly upregulated in breast cancer brain metastases to adapt to intracranial low lipid microenvironments. Lipase inhibitors hold therapeutic potential but their intra-tumoral distribution is often blocked by the blood‒tumor barrier (BTB). BTB activates its Wnt signaling to maintain barrier properties, e.g., Mfsd2a-mediated BTB low transcytosis. Here, we reported VCAM-1-targeting nano-wogonin (W@V-NPs) as an adjuvant of nano-orlistat (O@V-NPs) to intensify drug delivery and inhibit lipogenesis of brain metastases. W@V-NPs were proven to be able to inactivate BTB Wnt signaling, downregulate BTB Mfsd2a, accelerate BTB vesicular transport, and enhance tumor accumulation of O@V-NPs. With the ability to specifically kill cancer cells in a lipid-deprived environment with IC50 at 48 ng/mL, W@V-NPs plus O@V-NPs inhibited the progression of brain metastases with prolonged survival of model mice. The combination did not induce brain edema, cognitive impairment, and systemic toxicity in healthy mice. Targeting Wnt signaling could safely modulate the BTB to improve drug delivery and metabolic therapy against brain metastases.
Collapse
Affiliation(s)
- Yang Tong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Pei An
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Puxian Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Rui Mu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yuteng Zeng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Hang Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Mei Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ziyan Lv
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Pan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Wanjun Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Chunshan Gui
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| | - Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Liu Y, Liang Y, Yuhong J, Xin P, Han JL, Du Y, Yu X, Zhu R, Zhang M, Chen W, Ma Y. Advances in Nanotechnology for Enhancing the Solubility and Bioavailability of Poorly Soluble Drugs. Drug Des Devel Ther 2024; 18:1469-1495. [PMID: 38707615 PMCID: PMC11070169 DOI: 10.2147/dddt.s447496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
This manuscript offers a comprehensive overview of nanotechnology's impact on the solubility and bioavailability of poorly soluble drugs, with a focus on BCS Class II and IV drugs. We explore various nanoscale drug delivery systems (NDDSs), including lipid-based, polymer-based, nanoemulsions, nanogels, and inorganic carriers. These systems offer improved drug efficacy, targeting, and reduced side effects. Emphasizing the crucial role of nanoparticle size and surface modifications, the review discusses the advancements in NDDSs for enhanced therapeutic outcomes. Challenges such as production cost and safety are acknowledged, yet the potential of NDDSs in transforming drug delivery methods is highlighted. This contribution underscores the importance of nanotechnology in pharmaceutical engineering, suggesting it as a significant advancement for medical applications and patient care.
Collapse
Affiliation(s)
- Yifan Liu
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yushan Liang
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Jing Yuhong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Peng Xin
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Jia Li Han
- School of Health Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yongle Du
- School of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Xinru Yu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Runhe Zhu
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Mingxun Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Wen Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yingjie Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
5
|
Mu R, Sun H, Zeng Y, Tong Y, Tang P, Zhao M, Lv Z, Yu J, Chen Y, Lan Q, Zhen X, Han L. Nanomodulators targeting endothelial WNT and pericytes to reversibly open the blood-tumor barrier for boosted brain tumor therapy. J Control Release 2024; 369:458-474. [PMID: 38575077 DOI: 10.1016/j.jconrel.2024.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
The blood-brain barrier (BBB)/blood-tumor barrier (BTB) impedes brain entry of most brain-targeted drugs, whether they are water-soluble or hydrophobic. Endothelial WNT signaling and neoplastic pericytes maintain BTB low permeability by regulating tight junctions. Here, we proposed nitazoxanide (NTZ) and ibrutinib (IBR) co-loaded ICAM-1-targeting nanoparticles (NI@I-NPs) to disrupt the BTB in a time-dependent, reversible, and size-selective manner by targeting specific ICAM-1, inactivating WNT signaling and depleting pericytes in tumor-associated blood vessels in breast cancer brain metastases. At the optimal NTZ/IBR mass ratio (1:2), BTB opening reached the optimum effect at 48-72 h without any sign of intracranial edema and cognitive impairment. The combination of NI@I-NPs and chemotherapeutic drugs (doxorubicin and etoposide) extended the median survival of mice with breast cancer brain metastases. Targeting BTB endothelial WNT signaling and tumor pericytes via NI@I-NPs could open the BTB to improve chemotherapeutic efficiency against brain metastases.
Collapse
Affiliation(s)
- Rui Mu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hang Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yuteng Zeng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yang Tong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Puxian Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Mei Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Ziyan Lv
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Ju Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, Jiangsu, China
| | - Yanming Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, Jiangsu, China
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, Jiangsu, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
6
|
Naturally Equipped Urinary Exosomes Coated Poly (2−ethyl−2−oxazoline)−Poly (D, L−lactide) Nanocarriers for the Pre−Clinical Translation of Breast Cancer. Bioengineering (Basel) 2022; 9:bioengineering9080363. [PMID: 36004889 PMCID: PMC9404723 DOI: 10.3390/bioengineering9080363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/01/2022] Open
Abstract
Recently, biomimetic nanoparticles for tumor−targeted therapy have attracted intensifying interest. Although exosomes are an excellent biomimetic material, numerous challenges are still hindering its clinical applications, such as low yield, insufficient targeting efficiency, and high cost. In this work, urinary exosomes (UEs) with high expression of CD9 and CD47 were extracted from breast cancer patients by a non−invasive method. Here, a nanotechnology approach is reported for tumor homologous targeting via CD9 and phagocytosis escape via CD47 through UE−coated poly (2−ethyl−2−oxazoline)−poly (D, L−lactide) (PEOz−PLA) nanoparticles (UEPP NPs). The cytotoxic agent doxorubicin (DOX)−loaded UEPP (UEPP−D) NPs with an initial particle size of 61.5 nm showed a burst release under acidic condition mimicking the tumor microenvironment. In vitro experiments revealed that UEPP−D NPs exhibited significantly improved cellular uptake, cytotoxicity, and apoptosis in MCF−7 cell lines as compared to DOX−loaded PEOz−PLA nanoparticles (PP−D NPs) and free DOX. More importantly, anti−phagocytosis and pharmacokinetic studies confirmed that UEPP−D NPs had superior immune escape ability and significantly prolonged the drug’s bloodstream circulation in vivo. Finally, UEPP−D NPs showed a markedly higher antitumor efficacy and lower side−toxicity in MCF−7 tumor bearing nude mice model. Thus, this versatile nano−system with immune escape, homologous targeting, and rapid response release characteristics could be a promising tool for breast cancer treatment.
Collapse
|
7
|
Ahmadi A, Sokunbi M, Patel T, Chang MW, Ahmad Z, Singh N. Influence of Critical Parameters on Cytotoxicity Induced by Mesoporous Silica Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2016. [PMID: 35745355 PMCID: PMC9228019 DOI: 10.3390/nano12122016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023]
Abstract
Mesoporous Silica Nanoparticles (MSNs) have received increasing attention in biomedical applications due to their tuneable pore size, surface area, size, surface chemistry, and thermal stability. The biocompatibility of MSNs, although generally believed to be satisfactory, is unclear. Physicochemical properties of MSNs, such as diameter size, morphology, and surface charge, control their biological interactions and toxicity. Experimental conditions also play an essential role in influencing toxicological results. Therefore, the present study includes studies from the last five years to statistically analyse the effect of various physicochemical features on MSN-induced in-vitro cytotoxicity profiles. Due to non-normally distributed data and the presence of outliers, a Kruskal-Wallis H test was conducted on different physicochemical characteristics, including diameter sizes, zeta-potential measurements, and functionalisation of MSNs, based on the viability results, and statistical differences were obtained. Subsequently, pairwise comparisons were performed using Dunn's procedure with a Bonferroni correction for multiple comparisons. Other experimental parameters, such as type of cell line used, cell viability measurement assay, and incubation time, were also explored and analysed for statistically significant results.
Collapse
Affiliation(s)
- Amirsadra Ahmadi
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (A.A.); (M.S.); (T.P.)
| | - Moses Sokunbi
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (A.A.); (M.S.); (T.P.)
| | - Trisha Patel
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (A.A.); (M.S.); (T.P.)
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, Jordanstown Campus, University of Ulster, Newtownabbey BT37 0QB, UK;
| | - Zeeshan Ahmad
- Leicester School of Pharmaceutical Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK;
| | - Neenu Singh
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (A.A.); (M.S.); (T.P.)
| |
Collapse
|
8
|
Hu Q, Yao J, Wang X, Wang Y, Fu X, Ma J, Lin H, Xu J, Shen L, Yu X. Combinational Chemoimmunotherapy for Breast Cancer by Codelivery of Doxorubicin and PD-L1 siRNA Using a PAMAM-Incorporated Liposomal Nanoplatform. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8782-8792. [PMID: 35138103 DOI: 10.1021/acsami.1c21775] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chemoimmunotherapy can synergistically enhance the therapeutic effects and decrease the side effects by a combined method. However, the effective targeted codelivery of various chemotherapeutic agents and siRNAs remains challenging. Although nanomedicine-based chemoimmunotherapy has shown great potential in cancer treatment in recent years, further effort is needed to simplify the nanocarrier designs and maintain their effective functions. Here, we report a simple but robust multifunctional liposomal nanocarrier that contains a pH-sensitive liposome (LP) shell and a dendritic core for tumor-targeted codelivery of programmed cell death ligand 1 (PD-L1) siRNA and doxorubicin (DOX) (siPD-L1@PM/DOX/LPs). siPD-L1@PM/DOX/LPs had a suitable particle size and zeta potential, excellent stability in serum, and pH-sensitive drug release in vitro. They exhibited significant cell proliferation inhibition compared to free DOX and DOX-loaded LPs and could escape endosomes, effectively release siRNA into the cytoplasm of MCF-7 cells, and significantly reduce the PD-L1 expression on tumor cells. In vivo imaging confirmed high accumulation of siPD-L1@PM/DOX/LPs at the tumor site. More importantly, compared with siPD-L1@PM/LPs or DOX alone, siPD-L1@PM/DOX/LPs were more effective in inhibiting tumor growth and activating cytotoxic T cells in vivo. In conclusion, this nanocarrier may hold promise as a codelivery nanoplatform to improve the treatment of various solid tumors.
Collapse
Affiliation(s)
- Qing Hu
- School of Pharmacy, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou 350122, P. R. China
| | - Jiayi Yao
- School of Pharmacy, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou 350122, P. R. China
| | - Xiaoqin Wang
- School of Pharmacy, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou 350122, P. R. China
| | - Yanfang Wang
- School of Pharmacy, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou 350122, P. R. China
| | - Xiaoling Fu
- School of Pharmacy, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou 350122, P. R. China
| | - Ju Ma
- School of Pharmacy, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou 350122, P. R. China
| | - Han Lin
- School of Pharmacy, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou 350122, P. R. China
| | - Jiaqi Xu
- School of Pharmacy, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou 350122, P. R. China
| | - Longhua Shen
- School of Pharmacy, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou 350122, P. R. China
| | - Xiangbin Yu
- School of Pharmacy, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou 350122, P. R. China
| |
Collapse
|
9
|
Modulation of the Blood-Brain Barrier for Drug Delivery to Brain. Pharmaceutics 2021; 13:pharmaceutics13122024. [PMID: 34959306 PMCID: PMC8708282 DOI: 10.3390/pharmaceutics13122024] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 12/26/2022] Open
Abstract
The blood-brain barrier (BBB) precisely controls brain microenvironment and neural activity by regulating substance transport into and out of the brain. However, it severely hinders drug entry into the brain, and the efficiency of various systemic therapies against brain diseases. Modulation of the BBB via opening tight junctions, inhibiting active efflux and/or enhancing transcytosis, possesses the potential to increase BBB permeability and improve intracranial drug concentrations and systemic therapeutic efficiency. Various strategies of BBB modulation have been reported and investigated preclinically and/or clinically. This review describes conventional and emerging BBB modulation strategies and related mechanisms, and safety issues according to BBB structures and functions, to try to give more promising directions for designing more reasonable preclinical and clinical studies.
Collapse
|
10
|
Han L, Jiang C. Evolution of blood-brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharm Sin B 2021; 11:2306-2325. [PMID: 34522589 PMCID: PMC8424230 DOI: 10.1016/j.apsb.2020.11.023] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Blood–brain barrier (BBB) strictly controls matter exchange between blood and brain, and severely limits brain penetration of systemically administered drugs, resulting in ineffective drug therapy of brain diseases. However, during the onset and progression of brain diseases, BBB alterations evolve inevitably. In this review, we focus on nanoscale brain-targeting drug delivery strategies designed based on BBB evolutions and related applications in various brain diseases including Alzheimer's disease, Parkinson's disease, epilepsy, stroke, traumatic brain injury and brain tumor. The advances on optimization of small molecules for BBB crossing and non-systemic administration routes (e.g., intranasal treatment) for BBB bypassing are not included in this review.
Collapse
Key Words
- AD, Alzheimer's disease
- AMT, alpha-methyl-l-tryptophan
- Aβ, amyloid beta
- BACE1, β-secretase 1
- BBB, blood–brain barrier
- BDNF, brain derived neurotrophic factor
- BTB, blood–brain tumor barrier
- Blood–brain barrier
- Brain diseases
- Brain-targeting
- CMT, carrier-mediated transportation
- DTPA-Gd, Gd-diethyltriaminepentaacetic acid
- Drug delivery systems
- EPR, enhanced permeability and retention
- GLUT1, glucose transporter-1
- Gd, gadolinium
- ICAM-1, intercellular adhesion molecule-1
- KATP, ATP-sensitive potassium channels
- KCa, calcium-dependent potassium channels
- LAT1, L-type amino acid transporter 1
- LDL, low density lipoprotein
- LDLR, LDL receptor
- LFA-1, lymphocyte function associated antigen-1
- LRP1, LDLR-related protein 1
- MFSD2A, major facilitator superfamily domain-containing protein 2a
- MMP9, metalloproteinase-9
- MRI, magnetic resonance imaging
- NPs, nanoparticles
- Nanoparticles
- P-gp, P-glycoprotein
- PD, Parkinson's disease
- PEG, polyethyleneglycol
- PEG-PLGA, polyethyleneglycol-poly(lactic-co-glycolic acid)
- PLGA, poly(lactic-co-glycolic acid)
- PSMA, prostate-specific membrane antigen
- RAGE, receptor for advanced glycosylation end products
- RBC, red blood cell
- RMT, receptor-mediated transcytosis
- ROS, reactive oxygen species
- TBI, traumatic brain injury
- TJ, tight junction
- TfR, transferrin receptor
- VEGF, vascular endothelial growth factor
- ZO1, zona occludens 1
- siRNA, short interfering RNA
- tPA, tissue plasminogen activator
Collapse
Affiliation(s)
- Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Corresponding author. Tel./fax: +86 512 65882089.
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Ju X, Chen H, Miao T, Ni J, Han L. Prodrug Delivery Using Dual-Targeting Nanoparticles To Treat Breast Cancer Brain Metastases. Mol Pharm 2021; 18:2694-2702. [PMID: 34109794 DOI: 10.1021/acs.molpharmaceut.1c00224] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Brain metastases from breast cancer are the most frequent brain metastasis in women, which are often difficult to be surgically removed due to the multifocal and infiltrative intracranial growth patterns. Cytotoxic drugs have potent anti-breast cancer properties. However, owing to the toxic side effects and the blood-brain barrier (BBB), these drugs cannot be fully and aggressively exploited with systemic administration and hence have very limited application for brain metastases. In this study, hyaluronidase-activated prodrug hyaluronic-doxorubicin (hDOX) was assembled by the BBB and metastatic breast cancer dual-targeting nanoparticles (NPs), which were constructed based on transcytosis-targeting peptide and hyaluronic acid co-modified poly(lactic-co-glycolic acid)-poly(ε-carbobenzoxy-l-lysine). hDOX showed enzyme-recovered DNA insertion, selective cytotoxicity to metastatic breast cancer cells rather than astrocytes, and efficient loading into dual-targeting NPs. hDOX@NPs displayed the ability of dually targeting the BBB and metastatic breast cancer and significantly extended the median survival time of mice with intracranial metastatic breast cancer. Based on these improvements, this prodrug delivery tactic may serve as an important direction for drug therapy against brain metastases.
Collapse
Affiliation(s)
- Xiufeng Ju
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Haiyan Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tongtong Miao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jiang Ni
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
12
|
Ju X, Miao T, Chen H, Ni J, Han L. Overcoming Mfsd2a-Mediated Low Transcytosis to Boost Nanoparticle Delivery to Brain for Chemotherapy of Brain Metastases. Adv Healthc Mater 2021; 10:e2001997. [PMID: 33738958 DOI: 10.1002/adhm.202001997] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/06/2021] [Indexed: 12/27/2022]
Abstract
Microvessels of the blood-brain barrier (BBB) exclusively express the major facilitator superfamily domain-containing protein 2a (Mfsd2a), which is the key transporter for docosahexaenoic acid uptake into the brain. Mfsd2a suppresses caveolae-mediated transcytosis to regulate BBB transcellular permeability via controlling lipid composition of BBB endothelial cells. It is speculated that Mfsd2a can restrain BBB crossing efficiency and brain accumulation efficiency of brain-targeting drug delivery systems, which penetrate the BBB often through the receptor-mediated transcytosis pathway. Transcytosis across the BBB is a crucial bottleneck for targeted chemotherapy of brain metastases. To overcome this issue, a pair of priming nanoparticles (NPs) and following drug-loaded NPs are designed. Tunicamycin-(TM)-loaded transcytosis-targeting-peptide-(TTP)-decorated NPs (TM@TTP) are used to boost BBB transcytosis via inhibiting Mfsd2a. Doxorubicin (DOX)-loaded TTP and CD44-specific hyaluronic acid (HA)-comodified NPs (DOX@TTP-HA) are designed as following drug-loaded NPs. The brain accumulation efficacy of following DOX@TTP-HA with priming is 4.30-fold higher than that without priming through the enhanced transcytosis pathway rather than the tight junction opening. Effective BBB crossing and brain accumulation, selective tumor uptake, excellent antitumor efficacy, and low hepatotoxicity are achieved by TM@TTP and DOX@TTP-HA, suggesting this tactic as a significant therapeutic strategy against breast cancer brain metastases.
Collapse
Affiliation(s)
- Xiufeng Ju
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences Soochow University 199 Ren'ai Road Suzhou 215123 China
| | - Tongtong Miao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences Soochow University 199 Ren'ai Road Suzhou 215123 China
| | - Haiyan Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences Soochow University 199 Ren'ai Road Suzhou 215123 China
| | - Jiang Ni
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences Soochow University 199 Ren'ai Road Suzhou 215123 China
| | - Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences Soochow University 199 Ren'ai Road Suzhou 215123 China
- Stake Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| |
Collapse
|
13
|
Luo D, Lei G, Zhen W, Zhao L. The synthesis, characterization of opal-poly(methyl methacrylate) graft polymer based on ICAR-ATRP and its effect on performance of poly (lactic acid). POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1876878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Dawei Luo
- College of Chemistry and Chemical Engineering, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi, China
| | - Gaowei Lei
- College of Chemistry and Chemical Engineering, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi, China
| | - Weijun Zhen
- College of Chemistry and Chemical Engineering, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi, China
| | - Ling Zhao
- College of Chemistry and Chemical Engineering, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi, China
| |
Collapse
|
14
|
Hao X, Gai W, Wang L, Zhao J, Sun D, Yang F, Jiang H, Feng Y. 5-Boronopicolinic acid-functionalized polymeric nanoparticles for targeting drug delivery and enhanced tumor therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111553. [PMID: 33321617 DOI: 10.1016/j.msec.2020.111553] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/02/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
Abstract
Strong specificity for cancer cells is still the main challenge to deliver drugs for the therapy of cancer. Herein, we developed a convenient strategy to prepare a series of 5-boronopicolinic acid (BA) modified tumor-targeting drug delivery systems (T-DDSs) with strong tumor targeting function. An anti-tumor drug of camptothecin (CPT) was encapsulated into poly(lactide-co-glycolide)-g-polyethylenimine (PLGA-PEI) to form drug-loaded nanoparticles (NP/CPT). Then, the surface of NP/CPT was coated by BA with different polymer and BA molar ratios of 1:1, 1:5, 1:10 and 1:20 via electrostatic interaction to obtain T-DDSs with enhanced biocompatibility and specificity for tumor cells. The introduced BA can endow drug-loaded NPs with high targeting ability to tumor cells because of the overexpression of sialic acids (SA) in tumor cells, which possessed strong interaction with BA. Those T-DDSs exhibited good biocompatibility according to the results of MTT assay, hemolysis test and cellular uptake. Moreover, they were capable of decreasing the viability of breast cancer cell line 4T1 and MCF-7 cells with no obvious cytotoxicity for endothelial cells. Especially, T-DDS with 1:20 molar ratio displayed much higher cellular uptake than other groups, and also exhibited highly efficient in vivo anti-tumor effect. The significantly high targeting function and biocompatibility of T-DDSs improved their drug delivery efficiency and achieved good anti-tumor effect. The BA decorated T-DDSs provides a simple and robust strategy for the design and preparation of DDSs with good biocompatibility and strong tumor-specificity to promote drug delivery efficiency.
Collapse
Affiliation(s)
- Xuefang Hao
- Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Weiwei Gai
- Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Lina Wang
- Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Jiadi Zhao
- Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Dandan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Fan Yang
- Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Haixia Jiang
- Analysis and Testing Center of Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China; Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
15
|
Qi Q, Zeng X, Peng L, Zhang H, Zhou M, Fu J, Yuan J. Tumor-targeting and imaging micelles for pH-triggered anticancer drug release and combined photodynamic therapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1385-1404. [PMID: 32345136 DOI: 10.1080/09205063.2020.1760698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we construct a charge - switchable polymer nano micelles poly (2-(hexamethyl eneimino) ethyl methacrylate) - b - poly (ethylene glycol) monomethyl ether methacrylate) - b - poly (diethyl enetriaminepentaacetic acid methacrylate) - b - poly (1-vinyl imidazole) - b - poly (4-vinyl phenylboronic acid) (PC7A-PEG-DTPA-VI-PBA) in different pH solutions. DOX released faster from micelles in a weakly acidic environment (pH 5.0) than at pH 7.4. In order to enhance the anti-tumor effect, the imidazole functional groups in the polymer were used to coordinate CdSeTe quantum dots (QDs) for photodynamic treatment (PDT). In addition, the surfaces of the micelles were further decorated with phenylboronic acidas a targeting group, using DTPA chelating 99mTc for SPECT imaging.It has been successfully demonstrated that the nanoparticles have a good cumulative effect on the tumor site.The structure of the polymer was characterized by 1HNMR. The morphology and particle size of the micelles were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The drug loading capacity (DLC) and drug loading efficiency (DLE) of the micelles were analyzed by ultraviolet visible spectroscopy. And the pH-sensitive drug release and cytotoxicity of the micelles were verified in vitro. In vitro experiments showed that the nano micelles were noncytotoxic to different cell lines, while DOX@CdSeTe@PC7A-PEG-DTPA-VI-PBA inhibited the proliferation and promoted the apoptosis of B16F10 cells. An in vivo study with C57BL tumor-bearing mice indicated that DOX@CdSeTe@PC7A-PEG-DTPA-VI-PBA nano micelles efficiently inhibited tumor growth. Results showed that the nano micelles had good pH responsibility and biocompatibility, and the loaded DOX could be released in the weak acidic environment of tumor cells, and it was expected to be a good drug delivery system.
Collapse
Affiliation(s)
- Qianqian Qi
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materialsof Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Xianwu Zeng
- Department of Nuclear Medicine, Gansu Academy of Medical Sciences, Gansu Provincial Tumor Hospital, Lanzhou, China
| | - Licong Peng
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materialsof Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Hailiang Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materialsof Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Miao Zhou
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materialsof Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Jingping Fu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materialsof Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Jianchao Yuan
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materialsof Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| |
Collapse
|
16
|
Peng L, Zeng X, Qi Q, Zhang H, Fu J, Zhou M, Yuan J. Sialic acid–targeted drug delivery and imaging system for pH- and glutathione-triggered multiple anticancer drug release and enhanced oxidative stress. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520913913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The emergence of multiple drug delivery systems can solve the disadvantages of single-drug therapy, such as high dose and easy generation of drug resistance. Here, we designed a sialic acid–targeted dextran-mercaptopurine prodrug linked by carbonyl vinyl sulfide for coordinate ZnO quantum dots to achieve multiple drug delivery (doxorubicin, 5-fluorouracil, 6-mercaptopurine), which can be released under the trigger of pH and glutathione. To enhance the antitumor effect, we used inorganic photosensitizer CdSe quantum dots to achieve photodynamic therapy, which can produce cytotoxic reactive oxygen species (hydroxyl radicals) under light conditions. Notably, we found that glutathione is consumed by the delivery of 6-mercaptopurine. It is able to efficiently amplify intracellular oxidative stress via increasing •OH generation. After chelating 99mTc4+ radioisotopes by diethylenetriamine pentaacetic acid, the drug delivery system could be tracked under in vivo single-photon emission computed tomography imaging. The results showed that the phenylboronic acid targeting substance can specifically recognize sialic acid, so that the drug system has a good accumulation in the tumor site, which can better increase the therapeutic effect. Compared to free doxorubicin, the drug system can reduce the IC50 value of cells 4.4-fold under light conditions and significantly inhibit tumor growth in vivo. These data indicate that the sialic acid–targeted nanomedicine system has achieved ideal antitumor effects and apparent photodynamic therapy effects and has broad application prospects.
Collapse
Affiliation(s)
- Licong Peng
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Xianwu Zeng
- Department of Nuclear Medicine, Gansu Academy of Medical Sciences, Gansu Provincial Tumor Hospital, Lanzhou, China
| | - Qianqian Qi
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Hailiang Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Jinping Fu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Miao Zhou
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Jianchao Yuan
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| |
Collapse
|
17
|
Lei G, Zhen W. Poly(lactic acid)/opal-methacryloylpropyltrimethoxysilane-polystyrene graft polymer composites: preparation, characterization, and performance. IRANIAN POLYMER JOURNAL 2019. [DOI: 10.1007/s13726-019-00777-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Zhao Z, Ukidve A, Krishnan V, Mitragotri S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv Drug Deliv Rev 2019; 143:3-21. [PMID: 30639257 DOI: 10.1016/j.addr.2019.01.002] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/07/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023]
Abstract
Over the years, a plethora of materials - natural and synthetic - have been engineered at a nanoscopic level and explored for drug delivery. Nanocarriers based on such materials could improve the payload's pharmacokinetics and achieve the desired pharmacological response at the target tissue. Despite the development of rationally designed drug nanocarriers, only a handful of such formulations have been successfully translated into the clinic. The physicochemical properties (size, shape, surface chemistry, porosity, elasticity, and many others) of these nanocarriers influence its biological identity, which in presence of biological barriers in vivo, could significantly modulate the therapeutic index of its cargo and alter the desired outcome. Further, complexities associated with developing effective drug nanocarriers have led to conflicting views of its safety, permeation of biological barriers and cellular uptake. Here, in this review, we emphasize the effect of physicochemical properties of nanocarriers on their interactions with the biological milieu. The review will discuss in depth, how modulating the physicochemical properties would influence a drug nanocarrier's behavior in vivo and the mechanisms underlying these effects. The goal of this review is to summarize the design considerations based on these properties and to provide a conceptual template for achieving improved therapeutic efficacy with enhanced patient compliance.
Collapse
|
19
|
Dong A, Han L, Shao Z, Fan P, Zhou X, Yuan H. Glaucoma Drainage Device Coated with Mitomycin C Loaded Opal Shale Microparticles to Inhibit Bleb Fibrosis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10244-10253. [PMID: 30689341 DOI: 10.1021/acsami.8b18551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Excessive fibrosis is the topmost factor for the defeat of surgical glaucoma drainage device (GDD) implantation. Adjuvant drug approaches are promising to help reduce the scar formation and excessive fibrosis. Opal shale (OS), as a natural state and noncrystalline silica substance with poriferous nature and strong adsorbability, is highly likely to undertake drug loading and delivery. Here, we employed OS microparticles (MPs) by ultrasound and centrifugation and presented an innovative and improved GDD coated with OS MPs, which were loaded with mitomycin C (MMC). MMC-loaded OS MPs were physically absorbed on the Ahmed glaucoma valve surface through OS' adsorbability. About 5.51 μg of MMC was loaded on the modified Ahmed glaucoma valve and can be released for 18 days in vitro. MMC-loaded OS MPs inhibited fibroblast proliferation and showed low toxicity to primary Tenon's fibroblasts. The ameliorated drainage device was well tolerated and effective in reducing the fibrous reaction in vivo. Hence, our study constructed an improved Ahmed glaucoma valve using OS MPs without disturbing aqueous humor drainage pattern over the valve surface. The modified Ahmed glaucoma valve successfully alleviated scar tissue formation after GDD implantation surgery.
Collapse
Affiliation(s)
- Aimeng Dong
- Department of Ophthalmology , The Second Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang 150081 , P. R. China
- The Key Laboratory of Myocardial Ischemia , Harbin Medical University, Ministry of Education , Harbin , Heilongjiang Province 150081 , P. R. China
| | - Liang Han
- Department of Pharmaceutics, College of Pharmaceutical Sciences , Soochow University , Suzhou 215123 , P. R. China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences , Soochow University , Suzhou 215123 , P. R. China
| | - Zhengbo Shao
- Department of Ophthalmology , The Second Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang 150081 , P. R. China
| | - Pan Fan
- Department of Ophthalmology , The Second Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang 150081 , P. R. China
| | - Xinrong Zhou
- Department of Ophthalmology , The Second Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang 150081 , P. R. China
| | - Huiping Yuan
- Department of Ophthalmology , The Second Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang 150081 , P. R. China
| |
Collapse
|